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Abstract

In this paper we demonstrate a number of attacks against proposed protocols for privacy-
preserving linear programming, based on publishing and solving a transformed version of
the problem instance. Our attacks exploit the geometric structure of the problem, which has
mostly been overlooked in the previous analyses and is largely preserved by the proposed
transformations. The attacks are efficient in practice and cast serious doubt to the viability
of transformation-based approaches in general.
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1 Introduction

Linear programming (LP) is one of the most versatile polynomial-time solvable optimization
problems. It is usually straightforward to express various production planning and transporta-
tion problems as linear programs. There exist LP solving algorithms that are efficient both
in theory and in practice. If the instances of these problems are built from data belonging to
several mutually distrustful parties, the solving procedure must preserve the privacy of the par-
ties. Thus it would be very useful to have an efficient privacy-preserving protocol that the data
owners (and possibly also some other parties that help with computation) could execute for
computing the optimal solution to a linear program that is obtained by combining the data of
different owners. It is likely that such protocol would directly give us efficient privacy-preserving
protocols for many other optimization tasks.

Several such protocols have indeed been proposed, following one of two main approaches. In
the secure multiparty computation (SMC') approach, composable protocols for privacy-preserving
arithmetic and relational operations are used to build a privacy-preserving implementation
of some LP solving algorithm, typically the simplex algorithm. In the transformation-based
approach, the algebraic structure of systems of linear inequalities and equations is used to apply
a linear transformation to the description of the original problem, thus disguising it and allowing
it to be solved publicly.

*The research leading to these results has received funding from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 284731 (Usable and Efficient Secure Multiparty Computa-
tion, UaESMC), and from the European Regional Development Fund through the Estonian Center of Excellence
in Computer Science, EXCS.



The security properties of the protocols of SMC approach can be derived from the properties
of the protocols for primitive arithmetic and relational operations through composability. The
privacy guarantees these protocols offer are thus pretty well understood. The transformation-
based methods have so far lacked the understanding of their privacy properties at a comparable
level. The current paper demonstrates that such unavailability of security definitions is danger-
ous.

2 Privacy-Preserving Linear Programming
The canonical form for a linear programming task is the following:
minimize ¢! - x, subject to Ax <b,x >0 . (1)

Here A is an m x n matrix, b is a vector of length m and c is a vector of length n. There are
n variables in the vector x. The inequality of vectors is defined pointwise.

The LP solving algorithms, as well as protocols for privacy-preserving solution commonly
expect the task to be in the standard form:

minimize ¢! - x, subject to Ax =b,x >0 . (2)

The inequality constraints of the canonical form can be transformed to equality constraints by
introducing slack variables. The system of constraints Ax < b, x > 0 is equivalent to the
system Ax + Ixg = b, x, x5 > 0, where I is m x m identity matrix and x; is a vector of m new
variables.

In the privacy-preserving setting, the elements of the matrix A and the vectors b, c are
somehow contributed by several different parties. The cost vector ¢ may be either held entirely
by some party, or its entries may belong to different parties. Two standard ways of partitioning
the constraints Ax < b are the horizontal partitioning (each party contributes some of the
constraints) and the vertical partitioning (each party knows certain columns of the matrix
A). More general ways of data partitioning are possible, but these are not considered by the
transformation methods that we are attacking.

In general, there are two main approaches to privacy-preserving linear programming. One
approach is the straightforward cryptographic implementation of a privacy-preserving version
of some LP solving algorithm [13, 9]. Its main problem is efficiency since the entire optimization
process must be performed in a manner that protects all intermediate values and comparison
results. Another approach is transforming the program such a way that it could be given to a
solver for offline computation. The optimal solution to the initial program has to be recoverable
from the optimal solution to the transformed program.

In this work we present new attacks against some of the existing transformation methods.
Without lessening the generality, we assume the number of parties to be 2, called Alice and
Bob.

2.1 Transformation methods

Transformation-based methods have been proposed in [4, 3, 14, 11, 12, 15, 8, 2, 10, 7]. A set
of “standard” transformations, applicable to the initial program, have been proposed over the
years. Depending on the partitioning of constraints and the objective function, the application
of a transformation may require cryptographic protocols of varying complexity. Each of the
methods proposed in the literature typically uses several of these standard transformations.



Multiplying from the left. The idea of multiplying A and b in (2) by a random m x m
invertible matrix P from the left was first introduced by Du [4]. This transformation conceals
the outer appearance of A and b, but the feasible region remains unchanged.

Multiplying from the right. The idea of multiplying A and b in (2) by a random invertible
matrix Q from the right was also proposed by Du [4]. This hides also the cost vector ¢. Unfor-
tunately, it changes the optimal solution if some external constraints (e.g. the non-negativity
constraints) of the form Bx > b’ are present, as it has been shown in [2]. In this case, the
vector b’ should also be modified according to the transformation, but that in fact reveals all
the information about Q.

Scaling and Permutation. Bednarz et al. [2] have shown that, in order to preserve the
inequality x > 0, the most general type of Q is a positive generalized permutation matrix (a
square matrix where each row and each column contains exactly one non-zero element). This
results in scaling and permuting the columns of A. This transformation may also be applied to
a problem in the canonical form (1).

Shifting. The shifting of variables has first been proposed in [3], and it has been also used in
[15]. This transformation is achieved by replacing the constraints Ax < b with Ay < b + Ar,
where r is a random non-negative vector of length n and y are new variables, related to the
variables x through the equality y = x + r. To preserve the set of feasible solutions, the
inequalities y > r have to be added to the system. A different transformation must then be
used to hide r.

2.2 Security Definition

There are no formal security definitions used in the transformation-based approach. The defi-
nition that has been used in the previous works is the acceptable security. This notion was first
used in [5].

Definition 1. A protocol achieves acceptable security if the only thing that the adversary can
do is to reduce all the possible values of the secret data to some domain with the following
properties:

1. The number of values in this domain is infinite, or the number of values in this domain is
so large that a brute-force attack is computationally infeasible.

2. The range of the domain (the difference between the upper and lower bounds) is acceptable
for the application.

Although acceptable security could make the analysis simpler, it is not very well applicable
in practice. Attacks on schemes that are secure by this definition have been found [2, 1].
The security of different transformation methods is very dependent on the initial settings of the
problem — the partitioning of initial data, as well as on the type of used constraints (inequalities
or equations).

2.3 Classification of Initial Settings

For each of the proposed transformation methods, the applicability and security strongly depend
on the initial settings of the problem. For that reason, Bednarz [1] has introduced a classification
of initial settings, provided with corresponding notation. She proposes to consider the following
parameters:



Objective Function Partitioning How is the vector c initially shared? Is it known to Alice,
to Bob, or to both of them? Are some entries known to Alice and others to Bob? Or does
C = Calice + CBob hold, where cajice is “completely” unknown to Bob and vice versa?

Constraint Partitioning How is the matrix A initially shared? Is it public, known to one
party, partitioned horizontally or vertically, or additively shared?

RHS Vector Partitioning How is the vector b initially shared?

Allowable Constraint Types Does the method admit only equality constraints, only in-
equalities, or both of them? Note that admitting only equality constraints means that the
“natural” representation of the optimization problem is in terms of equalities. The use of
slack variables to turn inequalities to equalities is not allowed.

Allowable Variable Types May the variables be assumed non-negative? Or may they be
assumed free? Or can both types be handled?

Additionally, the classification considers which party or parties learn the optimal solution. This
aspect does not play a role for our attacks.

The attacks described in this paper mostly target the transformation methods for LP tasks
where the constraints are in the form of inequalities (1), and the set of constraints has been
horizontally partitioned between Alice and Bob. The optimization direction ¢ and its sharing
does not play a big role in the main attacks, although some proposed transformation methods
leave into it information that makes the attacks simpler. In our treatment, we assume all
variables to be non-negative.

2.4 Overview of proposed methods

For exactly the setting described in the previous paragraph, Bednarz [1, Chap. 6] has proposed
the following transformation. The set of constraints in (1) is transformed to

Ay=b,y>o0, (3)

where A = P (A I) Q, b= Pb, I is the m x m identity matrix, P is a random invertible m x m
matrix and Q is a random positive (m + n) x (m + n) generalized permutation matrix. New
variables y are related to the original variables x and the slack variables x5 by the equation
(;‘s ) = Qy. The objective function is disguised as éT = (¢ 01)Q, where 0 is a vector of m
Zeroes.

Other proposed transformations for horizontally partitioned constraints can be easily com-
pared with Bednarz’s. Du [4] applied the multiplication with both P and Q (where Q was
more general) directly to the system of inequalities (1). Unfortunately, this transformation did
not preserve the feasible region (and possibly the optimal solution) as shown by Bednarz et
al. [2]. Vaidya [14] uses only the matrix Q, with similar correctness problems. Mangasarian [12]
uses only the multiplication with P for a system with only equality constraints (2). Hong et
al. [8] propose a complex set of protocols for a certain kind of distributed linear programming
problems. Regarding the security, they prove that these protocols leak no more than what is
made public by Bednarz’s transformation. Li et al. [10] propose a transformation very similar
to Bednarz’s, only the matrix Q is selected from a more restricted set. This transformation
is analyzed by Hong and Vaidya [7] and shown to provide no security (their attack has slight
similarities with the one we present in Sec. 3.2). They propose a number of methods to make
the transformation more secure and to also hide the number of inequalities in (1), including the
addition of superfluous constraints and the use of more than one slack variable per inequality to



turn them to equalities. We will further discuss the use of more slack variables in Sec. 3.1. The
transformation by Dreier and Kerschbaum [3], when applied to (1), basically shifts the variables
(Sec. 2.1), followed by Bednarz’s transformation. We discuss the details and attacks specific to
this transformation in Sec. 3.3.

3 Attacks

The system of constraints (1) consists of m inequalities of the form > 1 ; ajiz; < b; for j €
{1,...,m}, in addition to the non-negativity constraints. We assume that Alice knows the first
r of these inequalities.

When Alice attempts to recover (1) from the result of Bednarz’s transformation (3), she
will first try to locate the slack variables, as described in Sec. 3.1. When she has located the
slack variables, she can remove these, turning the equalities back to inequalities of the form
A’x" <b'. These constraints are related to (1) by A’ = P’AQ’, b’ = P'b, where both P’ and Q’
are generalized permutation matrices (of size m x m and n x n, respectively; Q' is also positive).
Multiplication with P’ from the left does not actually change the constraints, so the goal of
Alice is to find Q. The correspondence of the variables in x and x’ can be found by looking at
scale-invariant quantities related to constraints. Once the correspondence is found, the scaling
factors can be easily recovered. All this is described in Sec. 3.2.

3.1 Identifying the Slack variables
3.1.1 Looking at the objective function

When we add the slack variables to the system of inequalities in order to turn them to equations,
then the coefficients of these slack variables in the cost vector ¢ will be 0. In the existing
transformation methods, the cost vector c is hidden by also multiplying it with a monomial
matrix Q from the right. In this way, the zero entries in ¢ are not changed. If all original
variables had non-zero coefficients in the objective function, then the location of zeroes in the
transformed vector c tells us the location of slack variables.

This issue can be solved by applying the transformation to the augmented form of linear
program that includes the cost vector into the constraint matrix, and the cost value is expressed
by a single variable:

. . RO o\ (Y
= > .
minimize w, subject to (0 A I> x (b)’ x| >0 (4)
Xs Xs

The slack variables may be now hidden amongst the real variables by permutation. The
location of the variable w should be known to the solver, although he may also solve all the n
instances of linear programming tasks: for each variable in the task, try to minimize it.

There may be possibly other means of hiding c¢. Hence we introduce more attacks that are
not related to c.

3.1.2 Looking at sizes of entries

If the positions of slack variables have been hidden in the cost vector, they may be located by
exploiting the structure of A. Namely, after the slack variables are introduced, they form an
identity matrix that is attached to A from the right. Thus each slack column contains exactly
one non-zero entry. The columns of A are very unlikely to contain just one non-zero entry. We
have found that the columns of P (A I) can be distinguished by performing statistical analysis



on the sizes of their entries. Even if using both positive and negative entries in A makes the
mean more or less the same, the variance is smaller for the slack variables. The following scaling
of the columns with the entries of Q does not provide any more protection.

We have discovered this problem occasionally, just because the columns appeared too dif-
ferent after applying the existing transformation methods. The previous works do not state
precisely the distribution from which the entries of P (and Q) should be sampled. We have
made experiments where we have sampled these entries independently of each other, according
to the uniform distribution, or the normal distribution (the parameters of the distribution are
currently unimportant, they only affect the scale of the resulting matrix, as well as the vari-
ance of its entries relative to each other). It turns out that selecting the entries of P randomly
according to either one of these distributions keeps the variables distinguishable.

We performed a series of experiments, described below in detail. First, let us define the
following probability distribution:

Definition 2. If a random variable X is distributed according to the normal distribution
N (1, ?), then the distribution of the absolute value | X| is called the folded normal distribution
and is denoted N;(p, 0?).

Our experiments were parametrized by the following quantities:

e the number of variables n and the number of inequality constraints m in (1);
e the fraction p € [0, 1] of zero entries in A;

e the fraction a € [0, 1] of constraints with non-negative coefficients;

e the fraction ¢ € [0, 1] of zero entries in P;

We performed two sets of experiments. In one of them we sampled the entries of P, Q from
a uniform distribution, and in the other one from a normal distribution.
An experiment proceeded as follows.

1. Generate a random point v = (v1,...,v,) € R™ where v; is chosen uniformly from (0, 100].
This point will be contained in the polyhedron defined by the constraints in (1), thereby
ensuring its non-emptiness.

2. Generate a random mxn matrix A = (aij)?j’zl ; whose entries are assigned in the following
way:

e The value 0 is taken with the probability p.

e A random value is sampled uniformly from [—100,100] C R (or from a normal dis-
tribution A (0, 100)) with probability 1 — p.

e After a row of A is generated, with probability a all entries in this row are replaced
with their absolute values.

3. Generate the entries of the vector b of length m in such a way that the polyhedron defined
by Ax < b definitely contains the point v. That is, for each i € {1,...,m}, compute
b; = a;1v1 + ... + ajpv, + 8, where s is a random positive number. In our experiments, s
was chosen uniformly from [1000, 2000].

4. Let P be a m x m random matrix, the entries of which are assigned in the following way:

e The value 0 is taken with the probability ¢ (except the main diagonal, which stays
non-zero in any case).



e A random value is sampled uniformly from [—100, 100] (or from a normal distribution
N(0,100)) with probability 1 — q.

Note that P is invertible with probability 1.

5. Let Q be a (m + n) x (m + n) random positive generalized permutation matrix. The
permutation defined by Q was picked uniformly from S,,1, and the non-zero entries of
Q were uniformly sampled from [1,100] (or sampled from a folded normal distribution

N;(0,100)).
6. Construct A and b according to Bednarz’s transformation.

7. For each column of A compute the mean and the variance of its entries. Find the sets of
m columns where (a) the means are the largest, (b) the means are the smallest, (c) the
variances are the largest, or (d) the variances are the smallest.

8. The experiment was considered successful if one of the four sets of m columns found in
the previous step exactly corresponded to the slack variables in y introduced by Bednarz’s
transformation.

When sampling the entries of P, Q from the uniform distribution, we ran 5 experiments for all
possible values of the parameters, where m+n € {100, 250,500}, m/(m+n) € {25%, 50%, 75%},
p,q € {0%, 25%, 50%, 75%,90%}, and a € {0%, 25%, 50%, 100%}. For almost all settings, there
was at least one experiment that was successful. The experiments were less successful only if m
was small and p was large. When sampling the entries of P, Q from the normal distribution, we
ran the same number of experiments with the same parameters, except that the case m+n = 500
was not covered. Again, for most settings, at least one of the experiments was successful. Again,
we had less success if many entries in A were 0 (i.e. p was large) and there were less constraints
than variables (i.e. m/(m + n) was small).

This problem can be potentially resolved by scaling the columns by a value that comes
from a sufficiently large distribution to hide these differences. Although this makes the columns
approximately the same size, it makes the values of the slack variables in the optimal solution
to the transformed LP task much smaller than the values of the original variables, still keeping
them distinguishable. Also, this modification does not affect the variances of the variables.

Another way is to add extra constraints whose entries that are large enough to provide noise
for all the variables. The problem is that introducing more constraints requires introducing
more slack variables for correctness. These slack variables cannot be protected by the same
method. Once they have been revealed, they may be removed from the system by Gaussian
elimination.

We would also like to note that the adversary may always bring the transformed matrix to
its reduced row echelon form. This means that this transformation provides the best possible
hiding, and the security analysis should be performed on this form. Unfortunately, it cannot be
used for hiding instead of P since it is expensive to compute it while preserving the privacy.

3.1.3 Sampling the vertices of the polyhedron

If the previous attack does not work well because the random values used during the transfor-
mation have been sampled so, that the entries of the resulting matrix have similar distributions,
then there are still more ways of locating the slack variables. Consider (3), where each of the
new variables y; € x is either a scaled copy of some original variable z;; € x or a (scaled) slack
variable. The constraints (3) define an n-dimensional polyhedron in the space R™" (due to its
construction, the matrix A has full rank). In each vertex of this polyhedron, at least n of the



variables in y are equal to zero. We have hypothesized that for at least a significant fraction
of linear programs, it is possible to sample the vertices of this polyhedron in such manner, that
slack variables will be 0 more often than the original variables.

To verify our hypothesis, we performed a series of experiments, described below in detail.
Our experiments were parametrized by the quantities m,n,p,a described at the previous ex-
periment. Additionally, the number k& € N determines the number of vertex samples done in an
experiment, and the fraction e € [0, 1] affects the polyhedron that we use to look for variables
that most often take the value 0 in vertices.

An experiment proceeded as follows.

1-6. Generate A, b, A, b as in the previous experiment, using the current values of m,n,p, a,
and taking ¢ = 0. The entries of all matrices are sampled from the uniform distribution.

7. Modify A [resp. f)] by removing their first e - m rows [resp. elements]. This corresponds
to discarding a fraction of e equations from the system Ay = b. We have found that such
removal increases the success rate of the experiments for certain parameters.

8. Initialize the counters 21, ..., 2myn to 0.
9. Repeat the following k times.

(a) Generate the optimization direction ¢ € R™*" sampling each entry from the distri-
bution N¢(0,1).

(b) Find an optimal basic solution (a solution located in a vertex of the polyhedron) to
the linear program

minimize ¢’ -y, subject to Ay = f),y >0 .

(c) If the optimal solution y.p exists, then increase by one each z; where the i-th element
of yopt equals 0.

10. The experiment was considered successful if the counters with n largest values exactly
corresponded to the slack variables in y introduced by Bednarz’s transformation.

We have performed our experiments with different settings. In all experiments, k was fixed
to 100 (larger values did not seem to give any significant difference). For each set of values for the
parameters (m,n,p, a,e), we performed 20 experiments. The results for all sets of experiments
are reported in Table 1. For given (m,n,p,a), the symbol * in the corresponding cell of the
table indicates that none of 20 experiments performed for all values of e we considered were
successful. If at least one experiment was successful for some value of e, given the parameters
(m,n,p,a), then this value of e is given in the corresponding cell of the table.

We also performed some initial experiments where the entries of the optimization direction
¢ were sampled from A(0,1). This choice did not perform better (and sometimes performed
much worse) than the sampling from N (0, 1).

We see that the worst case for our algorithm is when m is much smaller than n and the
fraction of zero entries in A is large. The problem is that there are too few inequalities already
in the beginning, and the zeroes make the initial matrix A even sparser and less constraining.
The initial variables thus do not differ too much from the slack variables.

For m > n it may happen that even the slack variables will not be allowed to take the value
0 at all because of too tight bounds. In this case, some equations have been just eliminated
from the transformed program. This is not equivalent to removing bounds from the initial
polyhedron, and it is not quite clear what exactly happens to it. However, there are definitely
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Table 1: Results of the vertex-sampling experiments

less constraints than before, and the slack variables again have higher probabilities of becoming
0.

The results also show something interesting about the effect of the structure of A on the
outcome of the attack. It can be seen than the attack performs better when all the entries of A
are non-negative. The success rate is in general higher for smaller fraction of zero elements in
A, especially for the smaller number of constraints.

Our experimental results show that for many linear programs in canonical form (1), it is
possible to identify the slack variables after Bednarz’s transformation. The validity of our
hypothesis has been verified.

3.1.4 Several slack variables per inequality

The authors of [7] proposed introducing multiple slack variables for the same inequality. We have
tried experimentally that in this case there is even higher probability that the slack variables
are those that most often take the value 0 in a vertex sampled as described previously; this
can also be explained in theory. Also, in this case, the columns in A, corresponding to slack
variables added to the same inequality, are multiples of each other. This makes them easily
locatable.



3.1.5 Removing the slack variables

Once we have located the slack variables, we will reorder the variables in the constraints Ay =b
so, that the non-slack variables are the first n variables and the slack variables are the last m
variables in y. This corresponds to the first n columns of A containing the coefficients of non-
slack variables in the system of equations, and the last m columns containing the coefficients of
slack variables. We will now use row operations to bring the system to the form (A' I) y=Db/
where I is m x m identity matrix. This system, together with the non-negativity constraints, is
equivalent to the system of inequalities A’x’ < b’, where x’ are the first n elements of y.

3.2 Finding the permutation of variables

We will now describe the attack that allows to remove the scaling and the permutation of

variables. Alice knows r inequalities > ; ajiz; < b; (where j € {1,...,r}) of the original
system of constraints, from a total of m. We assume that r is at least 2. Alice also knows all
scaled and permuted constraints Y | a%;x; < b (where j € {1,...,m}). If we could undo the

scaling and permuting, then this set of m inequalities would contain all original r inequalities
known by Alice. As next we show how Alice can recover the permutation of the variables. Once
this has been recovered, the scaling is trivial to undo.

Alice picks two of the original inequalities she knows (e.g. k-th and [-th, where 1 < k,[ <)
and two inequalities from the scaled and permuted system (e.g. k'-th and I’-th, where 1 <
K',I" <'m). She makes the guess that k-th [resp. [-th] original inequality is the k’-th [resp. I’-th]
scaled and permuted inequality. This guess can be verified as follows. If the guess turns out to
be correct, then the verification procedure also reveals the permutation (or at least parts of it).

For the inequality Y ;" ; aj;z; < b; in the original system let H; be the corresponding hyper-

plane where “<” has been replaced by “=". Similarly, let H J’ be the hyperplane corresponding
to the j-th inequality in the scaled and permuted system. The hyperplane H; intersects with
the i-th coordinate axis in the point (0,...,0,2;;,0,...,0), where zj; = b;/aj; (here zj; is the

i-th component in the tuple). Also, let (0,... ,O,ZQ-i,O, ...,0) be the point where HJ’ and the
i-th coordinate axis intersect.

Note that scaling the (initial) polyhedron s times along the i-th axis would increase zj; by
s times, too, for all j. Scaling it along other axes would not change z;;. Hence the quantities
zki/zi; (for i € {1,...,n}) are scale-invariant.

To verify her guess, Alice computes the (multi)sets {zx; /2|1 < i < n} and {z},,/2, |1 <
i < n}. If her guess was correct, then these multisets are equal. Also, if they are equal, then the
i-th coordinate in the original system can only correspond to the i’-th coordinate in the scaled
and permuted system if zy;/2;; = 2},,//2},;,- This allows her to recover the permutation. If there
are repeating values in the multisets, or if division by 0 occurs somewhere, then she cannot
recover the complete permutation. In this case she repeats with other k,[, k', l’. But note that
the presence of zeroes in the coefficients also gives information about the permutation.

This attack does not allow to discover precise permutations if the known inequalities are
symmetric with respect to some variables, and the scaling cannot be derived for the variables
whose coefficients in all the known inequalities are 0. It is also impossible if the right sides of all
the known inequalities are 0. However, it would reduce the number of secure linear programming
tasks significantly. Also, if two variables in the system look the same for Alice (they participate
in the same way in all inequalities she knows) then it should not matter to her how they end
up in the recovered permutation.

We have followed up our experiments reported in the previous section, and verified that the
attack works in practice.
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3.3 Attacks specific to [3]

Dreier and Kerschbaum [3] propose a transformation that is applicable to LP tasks containing
both equality and inequality constraints. In this paper, we only consider its application to tasks
with inequality constraints only (although the operations presented in this section are also
applicable to equations). In their transformation, the variables are first shifted by a positive
vector (as described in Sec. 2.1), and then Bednarz’s transformation is applied to the resulting
system. In [3], the construction is described somewhat differently and the resulting positive
generalized permutation matrix Q used to scale and permute the columns of the constraint
system is not the most general matrix possible. The attacks described below work for any
possible Q.

3.3.1 Shifting back

The shifting of variables that has been used in [3] (and also in the transformation presented
by Wang et al. [15], which only applies to LP tasks with equality constraints, and is thus
outside the scope of this paper) reduces to scaling. The inequalities y > r for the variables
y are transformed to equalities by the introduction of new slack variables s. For the variable
y; €y, related to the original variable x; through the equality y; = x; 4+ r;, we have the equality
Yy;i — S; = ri, where s; is a new slack variable. After applying Bednarz’s transformation, the
variables are scaled and this equality becomes ¢;y; — ¢;5; = r;. The new variables g; and §; are
related to the previous ones by y; = ¢;y; and s; = ¢.$;, where ¢; and ¢} are certain non-zero
entries in the matrix Q. Thus §; = (¢;9; — ri)/q, = (vi — 1i)/d;, = xi/q;. Le. the slack variable
§; is a scaled copy of the original variable x;.

We could now eliminate the variables y (the shifted versions of the original variables x)
from the system of constraints and the objective function. We will then be left with the system
that involves only the slack variables s from the inequalities y > r and the slack variables xg
from the inequalities in the original system. The resulting LP task could have been obtained
from the original task through Bednarz’s transformation and the attacks described above can
be applied to it.

To eliminate the variables y, we need to know their location. Dreier’s and Kerschbaum’s
transformation [3] does not actually hide these variables, due to their choice of Q. But even
if the permutation encoded in Q were more general, we could still recover the locations of
the variables y as described below. The procedure described below also recovers the pairs
(9, 8;) of variables and corresponding slack variables, the difficulty of which is postulated in the
cryptanalysis performed in [3].

3.3.2 Affine relationships in small sets of variables

Each variable from y = x + r is associated with exactly one slack variable from s. To find the
pairs (¥;, §;), the adversary can just pick pairs of variables and then verify that they correspond
to each other. The correspondence that the adversary can verify is the affine relationship
¢ — q,8; = r; between these variables.

This problem can be stated more generally. Suppose that we have a linear equation system
Ax = b. Consider the solution space of this system. If the space contains small sets of ¢
variables that are in affine relationship ajz;, + ...+ agz;, = B for some a4, f € R (that may be
not obvious from the outer appearance A), then these equations may be recovered by looking
through all the sets of variables of size ¢. To expose the affine relationship between z;,, ..., z;,,
we will just use Gaussian elimination to get rid of all other variables. The procedure can be
described as follows:
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1. Repeat the following, until only variables z;,, ..., z;, remain in the system.

(a) Pick any other variable x; that has not been removed yet.

(b) Take an equation where x; has non-zero coeflicient. Through this equation, express
the variable z; in terms of the other variables. Substitute it into all the other
equations. Remove the equation and the variable x;. If there are no equations where
x; has non-zero coefficient, then remove only z;, without touching any remaining
equations.

2. The previous operations do not change the solution set of the system (for the remaining
variables). Therefore, if there are any equations left, then there exist oy, 5 € R (not all
a; = 0) such that aqyz;, + ...+ apzwi, = B.

In this manner, the adversary is able to find all unordered pairs {g;, $;} related to each other
through ¢;9; + ¢;8; = r;. The signs of g;,q},r; in this relationship determine, which one is the
original variable (g;r; > 0), and which one the slack variable (g/r; < 0).

4 Conclusions

We have presented attacks against transformation-based methods for solving LP tasks in privacy-
preserving manner. The attacks are not merely theoretical constructions, but work with rea-
sonable likelihood on problems of practical size.

We have presented our attacks against methods that handle LP tasks where the constraints
are specified as inequalities. May the methods for differently-represented LP tasks, e.g. as
systems of equations [12, 15], still be considered secure? Our attacks are not directly applicable
against this setting because the set of equations representing the subspace of feasible solutions
is not unique and the hyperplanes in the original and transformed systems of constraints cannot
be directly matched against each other like in Sec. 3.2. In our opinion, one still has to be careful
because there is no sharp line delineating systems of constraints represented as equations, and
systems of constraints represented as inequalities. The canonical form (1) and the standard
form (2) can be transformed to each other and the actual nature of the constraints may be
hidden in the specified LP task.

The lack of precise definitions of confidentiality for transformation-based methods makes it
harder to argue about the (in)security of a particular method. Further advances in this field
would benefit from an indistinguishability-based definition of security, similar to [6]. In such a
definition, the adversary would be allowed to pick two LP tasks, one of which would then be
transformed by the environment. The adversary’s goal is to find out, which of the two tasks was
transformed. In this definition, it would also be possible to precisely state which parts of the
task the transformation will not attempt to protect: the environment would check that these
parts are equal for the two tasks selected by the adversary.
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