
Verifying computations with state (extended version)*

Benjamin Braun, Ariel J. Feldman?, Zuocheng Ren,
Srinath Setty, Andrew J. Blumberg, and Michael Walfish

The University of Texas at Austin ?University of Pennsylvania

Abstract
When a client outsources a job to a third party (e.g., the cloud), how can the client check the result, without
reexecuting the computation? Recent work in proof-based verifiable computation has made significant
progress on this problem by incorporating deep results from complexity theory and cryptography into
built systems. However, these systems work within a stateless model: they exclude computations that
interact with RAM or a disk, or for which the client does not have the full input.

This paper describes Pantry, a built system that overcomes these limitations. Pantry composes proof-
based verifiable computation with untrusted storage: the client expresses its computation in terms of
digests that attest to state, and verifiably outsources that computation. Using Pantry, we extend verifiability
to MapReduce jobs, simple database queries, and interactions with private state. Thus, Pantry takes another
step toward practical proof-based verifiable computation for realistic applications.

1 Introduction
This paper addresses a fundamental problem in systems security: how can a local computer verify
the correctness of a remote execution? (Checking that the given program was expressed correctly is a
complementary concern, studied by the field of program verification.) Our focus on execution verification
is motivated by large MapReduce jobs, remote database queries, and cloud computing more generally. In
these scenarios, the causes of incorrect execution include corruption of input data in storage or transit,
hardware faults, platform bugs, and misconfiguration. Unfortunately, the faults, and their effects, may not
be visible as such. Indeed, when a job completes, after having processed petabytes of data, how can the
client be sure that the output is correct [83]?

The client could audit the output [60], but this technique fails if a problem happens outside the selected
sample. The client could replicate the computation (using state machine replication [27], quorums [56], or
outsourcing to two clouds [5, 26]), but this technique works only if replica faults are uncorrelated. The
client could trust the remote hardware and use attestation [66, 69], but what if the hardware is faulty? The
client could use a tailored solution [8, 16, 22, 32, 43, 64, 76, 79, 81], but such solutions are not available
for all applications.

Perhaps surprisingly, the client can receive a guarantee that covers the entire execution of the com-
putation, that makes no assumptions about the performing platform (other than cryptographic hardness
assumptions), and that applies generally. In proof-based verifiable computation, the performing computer
(or prover) returns the results along with a proof that the client (or verifier) can efficiently and probabilis-
tically check. If the entire computation was executed correctly, the client accepts, and if there is any error,
the client rejects with high probability.

These protocols are based on deep theoretical tools: probabilistically checkable proofs (PCPs) [6, 7],
interactive proofs [9, 41, 42, 53, 75], and cryptography [18, 23, 35, 36, 47, 50]. This theory provides very

*This is the full version of [25]. This version includes proofs (Appendices A–C), further experimental details (Appendices D–
E), and minor improvements to the text.

strong guarantees and is usually phrased as defending against an arbitrarily malicious prover. Note that
maliciousness is not an accusation but rather a comprehensive model that includes benign malfunctions
with unpredictable effects.

Recent works have aimed to realize proof-based verifiable computation in built systems [15, 28, 65, 70–
73, 77, 78, 80]. On the one hand, these systems appear to approach practicality. Some of them come with
compilers that allow programmers to express computations in a high-level language [15, 65, 71, 73, 80].
And the best of them achieve reasonable client performance, provided that there are many identical
computations (with potentially different inputs) over which to amortize overhead—a requirement met by
typical data-parallel cloud computing applications.

On the other hand, almost none of these systems admit a notion of state or storage:1 their compilation
target is constraints, a generalization of circuits (§2). Given this “assembly language”, the computation
cannot feasibly use memory, and the client must handle all of the input and output. Besides hindering
programmability, these limitations are inconsistent with remotely stored inputs (as in MapReduce jobs,
queries on remote databases, etc.); for example, verifying a large MapReduce job would require the client
to materialize the entire dataset.

This paper introduces Pantry, the first system to provide verifiable computation with state. To do so,
Pantry marries machinery for verifying pure computations with techniques from untrusted storage [21, 33,
52, 58]. While this picture is folklore among theorists [14, 18, 36, 46], the contributions of Pantry are to
work out the details and build a system, specifically:

(1) Pantry enhances state of the art systems (§2) for verifiable computation (Ginger [73], Zaatar [71],
Pinocchio [65]) with a storage abstraction (§3). The programmer expresses a computation using a subset
of C plus two new primitives—PutBlock and GetBlock—and the Pantry compiler produces appropriate
constraints. These primitives name data blocks by a cryptographic digest, or hash, of their contents. Such
blocks are used extensively in systems for untrusted storage [33, 52]; however, in Pantry, the verifier will
not be fetching the blocks to check them. The key insight here is that there exist hash functions that are
amenable to the constraint formalism.

(2) Using PutBlock and GetBlock, we build a verifiable MapReduce framework (§4). The programmer
writes Map and Reduce functions, much as in standard MapReduce frameworks. Here, however, input and
output files are named by the digests of their contents.

(3) We also use PutBlock and GetBlock (together with well-known techniques [21, 58]) to build
higher-level storage abstractions: a RAM and a searchable tree (§5). We use the tree to build a database
application that supports verifiable queries in a (small) subset of SQL. The notable aspects here are the
placement of functionality and the result: the abstractions are exposed to the C programmer, they need not
be built into the compiler, and operations on these abstractions happen verifiably even though the client
does not have the state.

(4) We compose PutBlock and GetBlock with a zero-knowledge variant of Pinocchio [36, 65], to
build applications in which the prover’s state is private: face matching, toll collection, etc. (§6).

The components just described have awkward usage restrictions (the database is single-writer, iteration
constructs need static upper bounds, etc.), due in part to the clumsiness of the constraint formalism. Worse,
the measured cost (§8) of the implementation (§7) is very high: the prover’s overhead is tremendous, and
the verifier incurs a similarly high per-computation setup cost, requiring many invocations to justify this
expense.

However, compared to prior systems for verifiable computation (§9), Pantry improves performance:
by not handling inputs, the verifier saves CPU and network costs. This effect, together with Pantry’s
enhanced expressiveness, expands the universe of applications for which verification makes sense (§10).
MapReduce, for example, works over remote state, and is well-suited to amortizing the setup costs, since it

1The exception is concurrent work by Ben-Sasson et al. [15]; see §9.

2

Ψ , x
y

queries

prover (P) verifier (V)

tests

Ψ Ψ

accept/
reject

1 1
C C

π z

2

3

replies

Figure 1—Verifiable outsourcing in Zaatar and Pinocchio, assuming a single instance of a computation Ψ on input
x (amortization is depicted in Figure 2). Step À: V and P compile Ψ from a high-level language to constraints
C. Step Á: P produces a satisfying assignment, z, to C(X=x, Y=y). Step Â: P uses complexity-theoretic and
cryptographic machinery to convince V that P holds a satisfying assignment.

entails many identical computations. And the private state applications provide functionality that does not
exist otherwise or previously required intricate custom protocols. In summary, Pantry extends proof-based
verifiable computation to real applications of cloud computing (albeit at much smaller scales for now).

2 Pantry’s base: Zaatar and Pinocchio
We present Zaatar [71] and Pinocchio [65], and the underlying theory, in a unified framework. Similar
frameworks appear in prior work [65, 71–73, 80], and aspects of our presentation are borrowed [71,
§2][80, §2].

2.1 Overview of Zaatar and Pinocchio
A client, or verifier V , sends a program Ψ, expressed in a high-level language, to a server, or prover P . V
sends input x and receives output y, which is supposed to be Ψ(x). V then engages P in a protocol that
allows V to check whether P executed correctly. This protocol assumes a computational bound on P (e.g.,
that P cannot break a cryptographic primitive). However, the protocol makes no other assumptions about
P : its guarantees hold regardless of how or why P malfunctions. These guarantees are probabilistic (over
V’s random choices):

• Completeness. If y = Ψ(x), then if P follows the protocol, Pr{V accepts} = 1.

• Soundness. If y 6= Ψ(x), then Pr{V rejects} > 1− ε, where ε can be made small.

Given a specific computation Ψ, we call each invocation of it an instance. The per-instance costs for
V are very low. However, in order to participate in the protocol, V incurs a setup cost for each Ψ, which
amortizes over multiple instances, either over a batch [71] or indefinitely [65] (see Section 2.3).

2.2 Zaatar and Pinocchio in more detail
Verifiably outsourcing a computation happens in three steps, depicted in Figure 1. First, a compiler
transforms the computation Ψ to an algebraic system of constraints. Next, P produces a solution to these
constraints that implies y = Ψ(x). Finally, P convinces V that it has produced such a solution, thereby
establishing that y = Ψ(x). We now describe each step in detail; for the time being, we assume only one
instance (§2.3 revisits).

(1) Ψ is represented as constraints. The programmer begins by expressing a computation, Ψ, in a subset
of C or an equivalent high-level language (described in §2.4) and invoking a compiler [55, 65, 71, 73].
Here, we focus on the compilation target: a set of constraints [24, 73].

In our context, a set of constraints C is a system of equations in variables (X, Y , Z), over a large finite
field, F; we choose F=Fp (the integers mod a prime p), where p is large (e.g., 128 bits). Each constraint

3

has total degree 2, so each summand in a constraint is either a variable or a product of two variables.
Variables X and Y represent the input and output variables, respectively; for now, we assume one of each.
Upper-case letters (X, Y , Z, . . .) represent constraint variables; their lower-case counterparts (x, y, z, . . .)
represent concrete values taken by (or assigned to, or bound to) those variables.

Also, let C(X=x) mean C with X bound to x (V’s requested input); C(X=x, Y=y) indicates that in
addition Y is bound to y (the purported output). Notice that C(X=x, Y=y) is a set of constraints over the
variables Z. If for some z, setting Z=z makes all constraints in C(X=x, Y=y) hold simultaneously, then
C(X=x, Y=y) is said to be satisfiable, and z is a satisfying assignment.

For a given computation Ψ, a set of constraints C is said to be equivalent to Ψ if: for all x, y,
we have y = Ψ(x) if and only if C(X=x, Y=y) is satisfiable. As a simple example, the constraints
C={Z − X = 0, Z + 1 − Y = 0} are equivalent to add-1 [24]. Indeed, consider a pair (x, y). If
y = x + 1, then there is a satisfying assignment to C(X=x, Y=y), namely Z=x. However, if y 6= x + 1,
then C(X=x, Y=y) is not satisfiable.

(2) P computes and identifies a satisfying assignment. P “executes” Ψ(x) by identifying a satisfying
assignment to the equivalent constraints C(X=x), and obtaining the output y in the process. To do so, P
runs a constraint-solving routine that takes as input a compiler-produced list of annotated constraints. This
routine goes constraint-by-constraint. A common case is that a constraint introduces a variable and can be
written as an assignment to that new variable (e.g., {. . . , Z4 = Z3 · (Z2 + Z1), Z5 = Z4 · Z2, . . .}); the
routine “solves” such constraints by evaluating their right-hand sides.

Some constraints require additional work of P . An example is the != test (this will give some intuition
for the techniques in Section 3). Consider the following snippet:

if (Z1 != Z2)

Z3 = 1;

else

Z3 = 0;

This compiles to the following constraints [24]:

C!= =

{
M · (Z1 − Z2)− Z3 = 0

(1− Z3) · (Z1 − Z2) = 0

}
.

Notice that the first constraint introduces two new variables (M, Z3), and thus there are multiple ways to
satisfy this constraint. To choose values for these variables that also satisfy the second constraint, P’s
constraint-solving routine consults the constraints’ annotations. The relevant annotation tells P that if
Z1 6= Z2, then P should set M equal to the multiplicative inverse of Z1 − Z2, which P computes outside
of the constraint formalism. We call this “computing exogenously” (in theoretical terms, M and Z3 are
“non-deterministic input”), and there is an analogy between the exogenous computation of M and supplying
values from storage in Section 3.

(3) P argues that it has a satisfying assignment. P wants to prove to V that it knows a satisfying
assignment to C(X=x, Y=y); this would convince V that the output y is correct (and moreover that the
computation, expressed in constraints, was executed correctly). Of course, there is a simple proof that a
satisfying assignment exists: the satisfying assignment itself. However, V could check this proof only by
examining all of it, which would be as much work as executing the computation.

Instead, Zaatar and Pinocchio apply the theory of PCPs [6, 7],2 which implies that a classical proof—a
satisfying assignment z, in this case—can be encoded into a long string π in a way that allows V to detect

2Our description takes some expositional license: Pinocchio’s explicit base is GGPR [36], which does not invoke PCPs. However,
one can regard the key in their work as PCP queries, in encrypted form [20].

4

replies(ß)

Ψ, x(1)

queries

P V

…

y(1)

x(2)

y(2)

x(ß)

y(ß)

tests(1)

π(1)

π(ß)

…

tests(ß)

…

replies(1) …
…

Ψ P V

…

x(1)

y(1)

tests(1)

π(1)

Enc(queries)

x(2)

y(2)

tests(2)

π(2)

replies(1)

replies(2)

(a) Zaatar (b) Pinocchio

Figure 2—Amortization in Zaatar [71] and Pinocchio [65]. Superscripts denote different instances. In Zaatar, V’s
work to formulate queries amortizes over a batch of β instances; in Pinocchio, analogous work amortizes over all
future instances of the same computation (this is better). In both protocols, the Ψ→ C step happens only once for
each Ψ (not depicted).

the proof’s validity by (a) inspecting a small number of randomly-chosen locations in π, and (b) applying
efficient tests to the contents found at those locations. The details—what is in the encoding π, how V
selects locations to inspect, what tests V applies, and why all of this works—are beyond the scope of this
paper.

The protocols do not use PCPs alone: the encoded proof π is far larger than the number of steps in Ψ,
so making V receive π would again defeat our purpose. To get around this issue, Zaatar and Pinocchio—
and their theoretical progenitors—compose PCPs with cryptography, based on assumptions that P cannot
break certain primitives. There are two types of protocols; our compiler produces V and P binaries for
both.

First, Zaatar [71] instantiates an efficient argument [23, 47, 50, 72, 73]: V extracts from P a cryp-
tographic commitment to π, and then V queries P , meaning that V asks P what values π contains at
particular locations. V uses PCPs to choose the locations and test the replies, and cryptography to ensure
that P’s replies pass V’s tests only if P’s replies are consistent with a proof π that a satisfying assignment
exists. The protocol details are given in prior works [71, §2][73, §2][72].

The second variant is instantiated by Pinocchio [65] and known as a non-interactive argument [36, 37]:
V preencrypts queries and sends them to P . As in the first variant, the queries are chosen by PCP
machinery and describe locations where V wants to inspect an eventual π. Here, however, P replies to
the queries without knowing which locations V is querying. This process (hiding the queries, replying
to them, testing the answers) relies on sophisticated cryptography layered atop the PCP machinery. The
details are described elsewhere [20, 36, 65].

2.3 Amortization, guarantees, and costs
V incurs a setup cost (to express which locations in π to query) for each computation Ψ and each input
size. This cost amortizes differently in Zaatar and Pinocchio.

In Zaatar, amortization happens over a batch: a set of β instances of the identical computation
Ψ, on different inputs (Figure 2(a)). Thus, Zaatar presumes parallelism: for j ∈ {1, . . . ,β}, V sends
parallel inputs x(j), P returns parallel outputs y(j), and P formulates parallel proofs π(j) establishing that
y(j)=Ψ(x(j)). The synchronization requirement is that V extract commitments to all π(j) before issuing the
queries (because queries are reused across the batch). Note that P is an abstraction and could represent
multiple machines (as in our MapReduce application in Section 4). Zaatar meets the completeness and

5

naive Zaatar [71], Pinocchio [65]

V , setup 0 c2 · (|Z|+ |C|)
V , runtime β · (T(|x|) + c1|y|) β · (c3 + c4 · (|x|+ |y|))
P , runtime 0 β · (c5 · (|Z|+ |C|) + c6 · |C| · log |C|)
T: running time of computation as a function of input length.
x, y: input and output of computation.
β: number of instances over which V’s setup cost amortizes
c1, c2, . . .: model costs of processing input/output, cryptographic primitives, PCP queries, etc.

Figure 3—CPU costs of step (3) under Zaatar and Pinocchio, and under the naive approach: reexecute and compare.
The amortization behavior is different for Zaatar and Pinocchio (see text). Also, the constants (c2, c3, . . .) differ:
Pinocchio’s c4 is lower while for the other constants, Zaatar’s values are lower. Section 8.1 discusses these constants,
the magnitudes of |Z| and |C|, and the costs of step (2).

soundness properties given earlier (§2.1), with ε < 1/106 (see [71, Apdx. A.2]), and in addition provides
soundness for the batch: if for any j ∈ {1, . . . ,β}, y(j) 6= Ψ(x(j)), then Pr{V rejects the batch} > 1− ε.

In Pinocchio, query formulation by V and installation on P happen once per Ψ, thereby amortizing
over all future instances of the identical computation (Figure 2(b)). Pinocchio meets the completeness
and soundness properties, with ε < 1/2128. Pinocchio also has versions that provide zero-knowledge
(the prover can keep private the contents of the satisfying assignment z) and public verifiability [65]; the
former provides a crucial foundation for Pantry’s privacy-preserving applications (§6).

Figure 3 depicts the protocols’ CPU costs for step (3). A key performance goal is that V should incur
lower (amortized) CPU costs than the naive alternative: reexecuting the computation [35].3 Performance
is thus evaluated as follows [65, 71–73, 80]. (1) Are the per-instance costs for V less than the running
time of Ψ, when Ψ is expressed in C and compiled to machine code? (Otherwise, the performance goal
cannot be met.) (2) What is the cross-over point, meaning the number of instances past which V expends
less total CPU than the naive verifier? (3) What are the overheads of P , relative to normal execution?

Rough answers are as follows (see also Section 8). For question (1), the answer is “sometimes;
it depends on the computation”. For (2), the cross-over points are tens of thousands or millions [71,
§5.2], depending on the computation. For (3), the overheads are very high: factors of 104 or 105 are not
uncommon.

To briefly compare the performance of Zaatar and Pinocchio, Pinocchio has superior amortization
behavior (see above) but higher proving and setup costs (and hence higher cross-over points), by constant
factors.

2.4 Expressiveness
As context for Pantry, we now describe the language features and limitations of prior work [24, 65, 71, 73].

Pre-Pantry, compilers accepted a C subset [65] (or the equivalent [55, 71, 73]) that includes functions,
structs, typedefs, preprocessor definitions, if-else statements, explicit type conversion, and standard integer
and bitwise operations. These compilers partially support pointers and loops: pointers and array indexes
must be compile-time constants (ruling out a RAM abstraction), and likewise with the maximum number
of loop iterations.

When compiled, most operations introduce only a few new variables or constraints [71, §4]. There are
four exceptions. The first two are inequalities and bitwise operations; these constructs separate numbers
into their bits and glue them back together [24, 65, 73], requiring ≈ log2 |F| constraints and variables per
operation. The other two are looping and if-else statements: loops are unrolled at compile time, and the
costs of an if-else statement combine the costs of the then-block and the else-block [24].

3One might think to compare to replicated execution (§1), but a goal of verifiable computation is to provide very strong
guarantees (§2.1); replication stops working when faults are correlated.

6

Apart from the specifics of language constructs and costs, the pre-Pantry model of computation is
severely limited, even hermetic: computations can interact with state neither as auxiliary input, nor during
execution, nor as auxiliary output. Therefore, using Zaatar or Pinocchio requires V to supply all inputs,
receive all outputs, and eschew any notion of RAM, disk, or storage. These are the limitations addressed
by Pantry.

3 Storage model and primitives in Pantry
The core of Pantry is two primitives, verifiable PutBlock and GetBlock, that extend the model above. This
section describes the primitives; Sections 4–6 describe their use.

To explain Pantry’s approach, we note that the interface to step (3) in Section 2.2 is a set of constraints
and a purported satisfying assignment. Thus, a first cut attempt at incorporating state into verifiable
computation would be to represent load and store operations with constraints explicitly. However, doing
so naively would incur horrific expense: if memory is an array of variables, then load(addr) would require
a separate constraint for each possible value of addr (assuming addr is not resolvable at compile-time).
This approach would also require the input state to be available to the verifier V .

To overcome these problems, we want a model in which computations do not execute storage but can
efficiently verify it. Given such a model, we could use constraints to represent computation (as we do
now) as well as efficient checks of storage. But such a model is actually well-studied, in the context of
untrusted storage: the state is represented by hash trees [21, 58], often accompanied by a naming scheme
in which data blocks are referenced by hashes of their contents [33, 52].

If we could efficiently represent the computation of the hash function as constraints, then we could
extend the computational model in Section 2 with the semantics of untrusted storage. At that point, a
satisfying assignment to the constraints would imply correct computation and correct interaction with
state—and we could use step (3) from Section 2.2 to prove to V that P holds such an assignment. We now
describe this approach.

3.1 Verifiable blocks: overview
The lowest level of storage is a block store; it consists of variable-length blocks of data, in which the
blocks are named by collision-resistant hash functions (CRHFs) of those blocks. Letting H denote a
CRHF, a correct block store is a map

S : name→ block ∪ ⊥,

where if block = S(name), then H(block) = name. In other words, S implements the relation H−1. This
naming scheme allows clients to use untrusted storage servers [33, 52]. The technique’s power is that given
a name for data, the client can check that the returned block is correct, in the sense of being consistent
with its name. Likewise, a client that creates new blocks can compute their names and use those names as
references later in the computation.

But unlike the scenario in prior work, our V cannot actually check the contents of the blocks that it
“retrieves” or impose the correct names of the blocks that it “stores”, as the entire computation is remote.
Instead, V represents its computations with constraints that P can satisfy only if P uses the right blocks.
Another way to understand this approach is that V uses the verification machinery to outsource the storage
checks to P; in fact, P itself could be using an untrusted block store!

We will show in later sections how to write general-purpose computations; for now, we illustrate
the model with a simple example. Imagine that the computation takes as input the name of a block and
returns the associated contents as output. The constraints are set up to be satisfiable if and only if the
return value hashes to the requested name. In effect, P is being asked to identify a preimage of H, which

7

GetBlock(name n):
block← read block with name n in block store S
assert n == H(block)
return block

PutBlock(block):
n← H(block)
store (n, block) in block store S
return n

Figure 4—Pseudocode for verifiable storage primitives. These primitives compile to constraints that enforce the
required relation between n and block; the constraints do not represent interactions with S explicitly.

(by the collision-resistance of H) P can do only if it returns the actual block previously stored under the
requested name.

3.2 Verifiable blocks: details and costs
Pantry provides two primitives to the programmer:

block = GetBlock(name);
name = PutBlock(block);

These primitives are detailed in Figure 4. Notice that in a correct execution, H(block)=name. Given this
relation, and given the collision-resistance of H, the programmer receives from GetBlock and PutBlock a
particular storage model: S functions as write-once memory, where the addresses are in practice unique,
and where an address certifies the data that it holds.

Of course, how S is implemented is unspecified here; the choice can be different for different kinds of
storage (MapReduce, RAM, etc.). And, per the definition of S, block length can vary; for example, in the
MapReduce application (§4), an entire file will be one block.

To bootstrap, the client supplies one or more names as input, and it may receive one or more names as
output, for use in further computations. These names are related to capabilities [44, 51]: with capabilities,
a reference certifies to the system, by its existence, that the programmer is entitled to refer to a particular
object; here, the reference itself certifies to the programmer that the system is providing the programmer
with the correct object.

We now describe the constraints that enforce the model. The code b = GetBlock(n) compiles to
constraints CH−1 , where: the input variable, X, represents the name; the output variable, Y , represents the
block contents; and CH−1(X=n, Y=b) is satisfiable if and only if b ∈ H−1(n) (i.e., H(b) = n). The code
n = PutBlock(b) compiles to the same constraints, except that the inputs and outputs are switched.
Specifically, this line compiles to constraints CH , where: X represents the block contents, Y represents the
name, and CH(X=b, Y=n) is satisfiable if and only if n = H(b).

Of course, CH and CH−1 will usually appear inside a larger set of constraints, in which case the
compiler relabels the inputs and outputs of CH and CH−1 to correspond to intermediate program variables.
As an example, consider the following computation:

add(int x1, name x2) {

block b = GetBlock(x2);

/* assume that b is a field element */

return b + x1;

}

The corresponding constraints are:

C = {Y − B− X1 = 0} ∪ CH−1(X=X2, Y=B),

where the notation X=X2 and Y=B means that, in CH−1 above, the appearances of X are relabeled X2 and
the appearances of Y are relabeled B. Notice that variable B is unbound in C(X1=x1, X2=x2, Y=y). To
assign B=b in a way that satisfies the constraints, P must identify a concrete b, presumably from storage,
such that H(b)=x2.

8

Costs. The main cost of GetBlock and PutBlock is the set of constraints required to represent the hash
function H in CH and CH−1 . Unfortunately, widely-used functions (e.g., SHA-1) make heavy use of bitwise
operations, which do not have compact representations as constraints (§2.4). Instead, we use an algebraic
hash function, due to Ajtai [4, 40] and based on the hardness of approximation problems in lattices.
The Ajtai function multiplies its input, represented as a bit vector, by a large matrix modulo an integer.
This matrix-vector multiplication can be expressed concisely in constraints because constraints naturally
encode sums of products (§2.2). Indeed, Ajtai requires approximately ten times fewer constraints than
SHA-1 would. Nevertheless, Ajtai uses some bitwise operations (for modular arithmetic) and hence
requires a substantial number of constraints (§8.1).

3.3 Guarantees and non-guarantees
Appendices A and B describe the formal guarantees of Pantry; here we give an informal and heuristic
explanation.

Notice that the constraints do not capture the actual interaction with the block store S; the prover P is
separately responsible for maintaining the map S. What ensures that P does so honestly? The high-level
answer is the checks in the constraints plus the collision-resistance of H.

As an illustration, consider this code snippet:

n = PutBlock(b);

b’ = GetBlock(n);

In a reasonable (sequential) computational model, a read of a memory location should return the value
written at that location; since our names act as “locations”, a correct execution of the code above should
have variables b and b′ equal. But the program is compiled to constraints that include CH (for PutBlock)
and CH−1 (for GetBlock), and these constraints could in principle be satisfied with b′ 6= b, if H(b′) = H(b).
However, P is prevented from supplying a spurious satisfying assignment because collision-resistance
implies that identifying such a b and b′ is computationally infeasible. That is, practically speaking, P can
satisfy the constraints only if it stores the actual block and then returns it.

However, Pantry does not formally enforce durability: a malicious P could discard blocks inside
PutBlock yet still exhibit a satisfying assignment. Such a P might be caught only when executing a
subsequent computation (when V issues a corresponding GetBlock, P would be unable to satisfy the
constraints), and at that point, it might be too late to get the data back. For a formal guarantee of durability,
one can in principle use other machinery [74]. Also, Pantry (like its predecessors) does not enforce
availability: P could refuse to engage, or fail to supply a satisfying assignment, even if it knows one.

What Pantry enforces is integrity, meaning that purported memory values (the blocks that are used in
the computation) are consistent with their names, or else the computation does not verify.

For this reason, if V’s computation executes GetBlock(foo), and foo is an erroneous name in the sense
that it does not represent the hash of any block previously stored, then P has no way of providing a
satisfying assignment. This is as it should be: the computation itself is erroneous (in this model, correct
programs pass the assert in GetBlock; see Figure 4).

A limitation of this model is that P cannot prove to V that V made such an error; to the argument
step (step (3) in §2.2), this case looks like the one in which P refuses to provide a satisfying assignment.
While that might be disconcerting, Pantry’s goal is to establish that a remote execution is consistent with
an expressed computation; program verification is a complementary concern (§1).

4 Verifiable MapReduce
This section describes how Pantry provides verifiability for MapReduce jobs. We begin with a brief review
of the standard MapReduce model [30].

9

DigestArray Mapper(Digest X) {

Block list_in = GetBlock(X);

Block list_out[NUM_REDUCERS];

Digest Y[NUM_REDUCERS];

// invoke programmer-supplied Map

Map(list_in, &list_out);

for (i = 0; i < NUM_REDUCERS; i++)

Y[i] = PutBlock(list_out[i]);

return Y;

}

Digest Reducer(DigestArray X) {

Block list_in[NUM_MAPPERS];

Block list_out;

for (i = 0; i < NUM_MAPPERS; i++)

list_in[i] = GetBlock(X[i]);

// invoke programmer-supplied Reduce

Reduce(list_in, &list_out);

Y = PutBlock(list_out);

return Y;

}

Figure 5—For verifiable MapReduce, Pantry regards the depicted functions, Mapper and Reducer, as separate
computations. The two functions compile to separate constraints, and V verifies in two batches: one for the mappers
and one for the reducers.

A MapReduce job consists of Map and Reduce functions, and input data structured as a list of key-value
pairs; the output is a transformed list of key-value pairs. The programmer supplies the implementations of
Map and Reduce; Map takes as input a list of key-value pairs and outputs another list of key-value pairs,
and Reduce takes as input a list of values associated with a single key and outputs another list of values.
The framework runs multiple instances of Map and Reduce as stand-alone processes, called mappers and
reducers. The framework gives each mapper a chunk of the input data, shuffles the mappers’ output, and
supplies it to the reducers; each reducer’s output contributes a chunk to the overall output of the job. A
centralized module, which is part of the framework, drives the job (by assigning processes to machines,
etc.).

Overview of MapReduce in Pantry. The verifier V is a machine that invokes a MapReduce job (for
instance, the desktop machine of a cloud customer). The goal of Pantry’s MapReduce is to assure V that
its job starts from the correct input data and executes correctly from there.

The model here will be similar to the standard one outlined above, except that the input and output
files will be verifiable blocks (§3): a file will be referenced by a collision-resistant hash, or digest, of
its contents (from now on, we use “digest” and “name” interchangeably). In this model, invoking a
MapReduce job requires V to supply a list of digests, one for each input file; call this list x. Likewise, V
receives as output a list of digests, y. V learns of the digests in x either from a bootstrapping step (creating
the data and keeping track of its digest, say) or as the output of a job; likewise, V can use the digests in y
either to download (and verify the integrity of) the actual data or to feed another job. That is, these digests
are self-certifying references to the data [33, 52].

Given this model, V will be guaranteed that the output digests y are correct, meaning that the actual
input data (the key-value pairs whose digests are x), when transformed by V’s desired Map and Reduce
functions, results in output data with digests y. But providing this guarantee requires an application of the
verification machinery (§2–§3), which raises a design question: what exactly is the computation to be
verified, and which machine(s) implement P?

Pantry’s approach is as follows (we discuss the rationale later). The verifier regards the MapReduce
job as two separate batch computations (§2.3), one for the map phase and one for the reduce phase. In
these computations, each mapper and reducer is an instance, with a prover. In our design, V handles an
intermediate digest for every (mapper, reducer) pair.

Mechanics. Pantry’s MapReduce framework wraps Map and Reduce into functions Mapper and Reducer,
which are depicted in Figure 5; the job is executed by multiple instances of each. For verification,
Pantry’s C-to-constraint compiler transforms these functions into constraints, and then each instance—

10

naive (local) Pantry

CPU costs
V , setup 0 c2 · (|Zmapper|+ |CMapper|)
V , runtime M · Tmapper(|ch|) M · (c3 + c4 · |d| · (R + 1))

network costs
setup 0 c7 · (|Zmapper|+ |CMapper|)
runtime M · |ch| M · (c8 + |d| · (R + 1))

Tmapper: running time of a map instance M: # of mappers
|ch|: length of a mapper’s input |d|: length of a digest

Figure 6—Verification costs in Pantry’s MapReduce and naive (local) verification, for the map phase; the reduce
phase is similar. The CPU costs largely follow Figure 3; the main difference is that V now handles only a digest of
the inputs. P’s costs are omitted, but the substitutions are similar.

playing the role of the prover—convinces V that it knows a satisfying assignment to the corresponding
constraints (§2.2, step (3)). Execution and verification can be decoupled, but under Zaatar, the complete
execution of a phase (map or reduce) must happen before verification of that phase.

We now give more detail, beginning with some notation. Let M and R be the number of mappers and
reducers, and CMapper and CReducer the constraint representations of Mapper and Reducer. Also, recall that
superscripts denote instances in a batch (§2.3).

When the mappers execute, each instance j ∈ {1, . . . , M} gets as its input, x(j), the digest of some
data. The output of an instance, map out(j), is a vector of R digests, one for each reducer that this mapper
is “feeding”; the framework receives this output and forwards it to V . Verification convinces V that each
mapper j knows a satisfying assignment to CMapper(X=x(j), Y=map out(j)), which establishes for V that
the mapper worked over the correct data, applied Map correctly, partitioned the transformed data over
the reducers correctly, and—in outputting map out(j)—named the transformed data correctly. Note that
{map out(j)}j={1,...,M} are the M · R intermediate digests mentioned above.

The framework then supplies the inputs to the second phase, by shuffling the digests {map out(j)}j={1,...,M}
and regrouping them as {reduce in(j)}j={1,...,R}, where each reduce in(j) is a vector of M digests, one for
each mapper. (V does this regrouping too, in order to know the reducers’ inputs.)

The framework then invokes the reducers, and the output of each reducer j ∈ {1, . . . , R} is a single di-
gest y(j). Verification convinces V that each reducer j knows a satisfying assignment to CReducer(X=reduce in(j), Y=y(j)).
This establishes for V that each reducer worked over the correct M blocks, applied Reduce to them cor-
rectly, and produced the correct output digests.

Analysis. Figure 6 compares the costs of the map phase under Pantry’s MapReduce and the naive
approach of verifying a job by downloading the inputs (perhaps checking them against digests) and locally
executing the computation. A similar analysis applies to the reduce phase.

Both pre-Pantry and under Pantry, the verifier can save CPU cycles compared to the naive verifier
provided that the per-instance verification cost is less than the cost to execute the instance. Pre-Pantry, this
condition holds only if c3 + c4 · (|x|+ |y|) < T(|x|) + c1|y|, implying that using the verification machinery
makes sense only if the computation is superlinear in its input size (see Figure 3). Under Pantry, however,
the analogous condition holds when c3 + c4 · |d| · (R + 1) < Tmapper(|ch|), which can hold even when the
computation is linear in its input. If this condition holds, then the CPU cross-over point (§2.3) occurs
when M ≥ c2·(|Zmapper|+|CMapper|)

Tmapper(|ch|)−c3−c4·|d|·(R+1) , per Figure 6.

Pantry also saves the verifier network costs. This happens when M ≥ c7·(|Zmapper|+|CMapper|)
|ch|−c8−R·|d| . Notice that

the floor on M is proportional to the setup costs: the higher the setup costs, the more instances are needed
to beat naive verification. Also, the floor moves inversely with |ch|: the larger the chunk size, the greater

11

the expense incurred by the naive verifier in downloading the inputs.
We emphasize that this analysis is predicated on a baseline that is favorable to Pantry. If the baseline

were instead local execution and local storage (no remote party at all), then Pantry would never save
network costs. However, the analyzed baseline corresponds to common uses of the cloud today: MapRe-
duce jobs execute remotely because their inputs are remote, so downloading and uploading ought to be
recognized as a cost. Another basis for comparison is Zaatar and Pinocchio: their verifiers handle all
inputs and outputs, and thus cannot ever save network costs.

Summarizing the analysis, a MapReduce application calls for Pantry if (a) verifiability is needed and
(b) the computational cost of the job is high (so there is a CPU cross-over point), there is a lot of data (so
there is a network cross-over point), or both.

Rationale and limitations. Our design reflects awkward aspects of the framework. For example, because
of the existence of setup costs (§2.3), we chose to have V handle intermediate digests. In more detail, V
could avoid handling intermediate digests—it could verify the job’s output digests {y(j)} directly from the
input digests {x(j)}—by verifying a single batch. But each instance would have to encompass constraints
for one reducer and M mappers, causing setup costs to be, undesirably, proportional to the aggregate
mappers’ (instead of a single mapper’s) work. To further explain our choice, we note that quadratic
intermediate state is not inherently disastrous: in standard MapReduce, the framework keeps O(M · R)
state [30].

Other limitations stem from the constraint model. For example, we eschew a general-purpose par-
titioning module in the mapper, as it would compile to a large number of constraints, increasing costs.
Instead, the programmer must partition the output of Map into R chunks, and must similarly read from M
inputs in Reduce—tasks that are hidden in standard MapReduce. Moreover, Map and Reduce face the
expressiveness restrictions described earlier (§2.4); one consequence is that each mapper’s chunk size
must be identical and fixed at compile time, and likewise with the reducers.

5 Verifiable data structures
This section describes Pantry’s higher-level storage abstractions: RAM, a searchable tree, and a simple
database. As with MapReduce, we want to implement the abstractions as data structures in a subset of
C, augmented with PutBlock and GetBlock (§3). To do so, we apply the technique of embedding in data
blocks the names (or references or hashes—these concepts are equivalent here) of other blocks [21, 33,
52, 54, 58] (see also §9). In the resulting structure, the hashes are links—or pointers that authenticate
what they point to. The starting hash (for instance, of the root of a tree) can authenticate any value in
the structure; we review how this is done below. We can then incorporate the resulting abstractions into
some larger C program, compile that program to constraints, and apply the argument step (§2.2) to those
constraints.

5.1 Verifiable RAM
Pantry’s verifiable RAM abstraction enables random access to contiguously-addressable, fixed-size
memory cells. It exposes the following interface:

value = Load(address, digest);
new digest = Store(address, value, digest);

Pseudocode for the implementation is in Figure 7.
The high-level idea behind this pseudocode is that the digest commits to the full state of memory [21,

58], in a way that we explain shortly. Then, a Load guarantees that the claim “address contains value” is
consistent with digest. For Store, the guarantee is that new digest captures the same memory state that
digest does with the exception that address now holds value.

12

Load(address a, digest d):
`← dlog Ne
h← d
for i = 1 to `:

node← GetBlock(h)
x← ith bit of a
if x = 0:

h← node.left
else:

h← node.right
node← GetBlock(h)
return node.value

Store(address a, value v, digest d):
path← LoadPath(a, d)
`← dlog Ne
node← path[`]
node.value← v
d′ ← PutBlock(node)
for i = ` to 1:

node← path[i− 1]
x← ith bit of a
if x = 0:

node.left← d′

else:
node.right← d′

d′ ← PutBlock(node)

return d′

Figure 7—RAM operations use verifiable blocks in a Merkle tree [21, 58]. N is the number of addresses in the
memory.

To explain how a digest d can commit to memory, we briefly review Merkle trees [21, 58]. Every
node is named by a collision-resistant hash (denoted H) of its contents. An interior node’s contents are the
names (or hashes) of the node’s left and right children. Each leaf node corresponds to a memory address,
and contains the value currently held at the memory address. Then, the digest d is the hash of the root
node’s contents. Indeed, if entity A holds a digest d, and entity B claims “the value at address a is v”,
then B could argue that claim to A by exhibiting a witness-path: the purported name of a’s sibling, the
purported name of their parent, and so on, to the root. A could then check that the hash relationships hold
and match d. For B to succeed in a spurious claim, it would have to identify a collision in H.

The pseudocode in Figure 7 is simply applying this idea: the verifiable blocks in Section 3 provide the
required names-are-hashes referencing scheme, and the GetBlock invocations compile to constraints that
force P to exhibit a witness-path. Thus, using CLoad to denote the constraints to which Load compiles,
CLoad(X=(a, d), Y=v) can be satisfied only if the digest d is consistent with address a holding value v,
which is the guarantee that Load is supposed to be providing.

How does P identify a path through the tree? In principle, it could recompute the internal nodes
on demand from the leaves. But for efficiency, our implementation caches the internal nodes to avoid
recomputation.

To invoke Load or Store, the program must begin with a digest; in Pantry, V supplies this digest as
part of the input to the computation. One way to bootstrap this is for V to first create a small amount
of state locally, then compute the digest directly, then send the data to P , and then use the verification
machinery to track the changes in the digest. Of course, this requires that a computation’s output include
the new digest.

This brings us to the implementation of Store, which takes as input one digest and returns a digest
of the new state. Store begins by placing in local variables the contents of the nodes along the required
path (LoadPath in Figure 7 is similar to Load and involves calls to GetBlock); this ensures continuity
between the old state and the new digest. Store then updates this path by creating new verifiable blocks,
starting with the block for address a (which is a new verifiable block that contains a new value), to that
block’s parent, and so on, up to the root. Let CStore denote the constraints that Store compiles to. To satisfy
CStore(X=(a, v, d), Y=d′), P must (1) exhibit a path through the tree, to a, that is consistent with d, and
(2) compute a new digest that is consistent with the old path and with the memory update. Thus, the
constraints enforce the guarantee that Store promises.

13

Costs. We briefly describe the blowup from the constraint representation; Sections 2.2 and 4 show how
this blowup feeds into the costs of V and P . Letting N denote the number of memory addresses, a Load
or Store compiles to O(log N) constraints and variables, with the constant mostly determined by the
constraint representation of H inside GetBlock and PutBlock (§3.2).

5.2 Search tree
We now consider a searchable tree; we wish to support efficient range searches over any keys for which
the less-than comparison is defined. Specifically, we wish to support the following API:

values = FindEquals(key, digest)
values = FindRange(key start, key end, digest)
new digest = Insert(key, value, digest)
new digest = Remove(key, digest)

To implement this interface, a first cut approach would be to use the general-purpose RAM abstrac-
tion (§5.1) to build a binary tree or B-tree out of pointers (memory addresses). Unfortunately, this approach
is more expensive than we would like: since every pointer access in RAM costs O(log N), a search in a
balanced tree of m elements would cost O((log N) · (log m)). Instead, we use an alternative construction,
which illustrates a strategy applicable to a wide class of data structures.

To get the per-operation cost down to O(log m), we build a searchable Merkle tree (this is different
from the tree in §5.1). Each node in the tree contains a key, one or more values corresponding to that key,
and pointers to (that is, hashes of) its children. The nodes are in sorted order, and the tree is a balanced
(AVL) tree, so operations take time that is logarithmic in the number of keys stored.

A search operation (FindEquals, FindRange) descends the tree, via a series of GetBlock calls. An
update operation (Insert, Remove) first descends the tree to identify the node where the operation will
be performed; then modifies that node (via PutBlock, thereby giving it a new name); and then updates
the nodes along the path to the root (again via PutBlock), resulting in a new digest. As with RAM, these
operations are expressed in C and compile to constraints; if P satisfies the resulting constraints then,
unless it has identified a collision in H, it is returning the correct state (in the case of searches) and the
correct digests (in the case of updates).

5.3 Verifiable database queries
The data structures described above enable us to implement a simple database that supports verifiable
queries.
V specifies queries in a primitive SQL-like language, which supports the following non-transactional

queries on single tables: SELECT (the WHERE predicates must refer to a single column), INSERT, UPDATE,
DELETE, CREATE, and DROP. V and P convert each query into C code that invokes the APIs from
Sections 3.2 and 5.2, and is then compiled into constraints.

The database itself has a simple design. Each row of every table is stored as a verifiable block, accessed
through GetBlock/PutBlock (§3). These blocks are pointed to by one or more indexes, and there is a
separate index for each column that the author of the computation wants to be searchable. Indexes are
implemented as verifiable search trees (§5.2), and database queries are converted into a series of calls to
the trees’ FindEquals, FindRange, Insert, and Remove operations.

Because this database uses verifiable data structures and the code is compiled into constraints, we get
strong integrity guarantees—with little programmer effort beyond implementing the data structures and
queries.

5.4 Compromises and limitations
A key compromise is that efficiency sometimes requires not using RAM and instead constructing data
structures directly from verifiable pointers (§5.2, §5.3). One consequence is that the implementer of these

14

data structures is directly exposed to the clumsiness of the constraint model (§2.4); for example, if the
data structure implementation indexes into a small array at a variable offset, the code must loop through
the set of possible indexes.

The constraint model imposes several other limitations. First, because traversal loops have fixed
bounds, data structures have a static size (a fixed depth for trees, etc.), regardless of the number of
elements that they logically contain. (However, empty cells and nodes need not consume memory or disk.)
For similar reasons, the number of results returned by the search API must be fixed at compile time. Third,
as every operation on a data structure is compiled into a fixed number of constraints, P’s running time to
perform the operation is largely determined by the data structure’s static size.

6 Private prover state
Pantry enables applications where the prover’s state is private. For example, the prover holds photographs
(e.g., of suspects), the verifier (e.g., a surveillance camera) submits a photograph, and the prover indicates
if there is a match. Using Pantry, the client is assured that the response is correct, but no information about
the prover’s database leaks (beyond what the output implies).

Pinocchio’s zero-knowledge (ZK) variant [36, 65] provides most of the solution. Here, step (3) of
Section 2.2 persuades V that P has a satisfying assignment to a set of constraints (as usual), but P
cryptographically hides the actual satisfying assignment. Since the contents of P’s state appear in the
satisfying assignment (§3), the ZK variant effectively hides P’s state—almost. The wrinkle is that, under
Pantry as so far described, V would begin with a cryptographic digest of P’s state (§5), and this digest
itself leaks information (V could conceivably guess P’s state and use a digest to check the guess).

Thus, we assume that V begins with a cryptographic commitment [39, §4.4.1] to the prover’s state. A
commitment binds the prover to its state in a way that permits verifiable queries against that state (as with
the previously described digests) but also hides the state. Then, the computation to be verified takes as
input a commitment (not a digest), begins by querying for values and checking that they are consistent
with the commitment (as with digests), and then uses those values in the rest of the computation. To
summarize, the commitment hides the prover’s beginning state from V , and the ZK machinery hides the
prover’s execution.

To realize this approach, we want a commitment primitive that has a reasonably efficient represen-
tation in constraints. As a compromise, we instantiate a simple scheme using HMAC-SHA256 [13]
(see Appendix C for details). Relative to the protocol of Pedersen [67], our scheme makes a stronger
cryptographic assumption but saves an order of magnitude in constraint size. Of course, this scheme uses
SHA-256,4 so it is more expensive for us than Ajtai’s function (§3.2), but the expense is incurred only
once per execution (§8.1).

Applications. We build (§7) and evaluate (§8) several applications of the machinery described above.
The first is face matching, which implements the example at the start of this section. This example is
inspired by previous work [63], but that work provides privacy to both parties and verifiability to neither.
The second is tolling; the prover is a car, the verifier is a toll collector, and the verifier checks the prover’s
claim about what it owes for the billing period. This example is inspired by [68], which requires a custom
protocol, while we require only a simple C program (§7). The third application is regression analysis
(again inspired by prior work that requires a custom protocol [62]); the prover holds a set of patient
files, the verifier is an analyst seeking to fit a model to this data, and the computation returns the best-fit
parameters. The details of our applications are in Appendix D.

4Ajtai is unsuitable because it is not a pseudorandom function (PRF) and therefore would not hide the prover’s beginning state.

15

7 Implementation details
The Pantry implementation modifies the Ginger-Zaatar compiler [24, 71, 73]. The base compiler first
transforms programs written in a high-level language (§2.4) into a list of assignment statements, producing
a constraint or pseudoconstraint for each statement. The pseudoconstraints abstract operations that require
multiple constraints (inequality comparisons, bitwise operations, etc.). Next, the compiler expands the
pseudoconstraints and annotates the results (§2.2). The verifier and prover each consist of computation-
independent routines that take a list of annotated constraints as input. P’s routines solve the constraints
and use the resulting satisfying assignment to respond to queries; V’s routine selects queries according to
the argument protocol and tests the replies (§2.2).

Pantry adds several conveniences to the base compiler. Following Pinocchio [65], the Pantry compiler
accepts a subset of C (§2.4). More significantly, the compiler targets the Pinocchio and the Zaatar
encodings, with a unified code base. The main work here was implementing Pinocchio’s pairing-based
cryptography, for which we use a public library [2, 17].

To implement GetBlock and PutBlock (§3), Pantry includes new pseudoconstraints, which expand to
CH−1 and CH , respectively. The associated annotations tell P how to interact with storage S (see Figure 4);
we implement S using the LevelDB key-value store [3].

The CH−1 and CH constraints implement H as (a variable-length version of) the Ajtai [4, 40] hash
function. Using the notation in [40], this function hashes m bits into n · log q bits. Based on the analysis
in [59], we set these parameters as m=7296, n=64, and q=219—resulting in a digest of 1216 bits—to
achieve at least 180 bits of security. To support variable-length input, we use a prefix-free variant of the
Merkle-Damgård transform [49, Ch. 4.6.4] that prepends the input with its length [29].

To implement GetBlock and PutBlock, we added to the compiler pipeline 2200 lines of Java (for
parsing Pantry’s subset-of-C), 2100 lines of Go and 360 lines of Python (for expanding pseudoconstraints
into constraints), and 300 lines of C++ (in the prover’s constraint solving module). The MapReduce
framework (§4) requires 1500 lines of C++. The verifiable data structures (§5.1–§5.2) require 400 lines in
Pantry’s subset-of-C. The main component in the database application (§5.3) is a query-to-C translator,
which we implement with 2000 lines of Java, on top of Cassandra’s CQL parser [1]. Our private state
applications (§6) are 60 lines for face matching, 80 lines for tolling, and 143 lines for regression analysis.

8 Evaluation
Our evaluation answers two questions: (1) What are the overheads for the prover and verifier? and (2) What
does the verifier gain from Pantry, versus alternatives? Given Pantry’s goals (§1–§2), these alternatives
must be general-purpose and not make restrictive hypotheses about failure classes. This often means
comparing to naive verifiers (§2.3). However, we would be the first to admit that tailored protocols (of the
kind cited in the introduction; an example is [76]) or replication are likely to far outperform Pantry.

Applications and setup. We experiment with a set of sample applications, listed in Figure 8. Additional
parameters (for the cryptographic primitives in Zaatar and Pinocchio, etc.) are described in Appendix D.

Our experiments use a local cluster of machines, each running Linux on an Intel Xeon processor E5
2680 2.7 GHz with 32GB of RAM and a 250GB 7.5K RPM SATA disk; they are connected by a 56 Gb/s
InfiniBand network. Additionally, each machine has an access to a 14PB Lustre 2.1.3 parallel file system.

8.1 Overhead and its sources
Pantry’s costs boil down to three sources of overhead:
T1 The techniques of untrusted storage;
T2 The constraint representation of computations; and
T3 The argument step.

16

computation (Ψ) type O(·)

dot product of two length-m vectors MapReduce (Z) m
search m nucleotides for length-d substring MapReduce (Z) m · d
nearest neigh. search of m length-d vectors MapReduce (Z) m · d
covariance matrix for m samples of dim. d MapReduce (Z) m · d2

SELECT rows from a table with m rows Database (P) log m
INSERT a row into a table with m rows Database (P) log m
UPDATE a row in a table with m rows Database (P) log m

match against m 900-bit face fingerprints Private state (P) m
compute toll bill for a maximum of m tolls Private state (P) m
fit a linear model to m-many d-dim. records Private state (P) m · d2 + d3

Figure 8—Sample applications in our experiments. The MapReduce applications uses Zaatar (Z); the other two
categories use Pinocchio (P). In the MapReduce applications (§4), Map and Reduce are roughly 60 lines, combined.
The DB queries are expressed in Pantry’s query framework (§5.3, §7). The private state applications (details and
code size) are described in §6 and §7.

operation number of constraints (|C|)

GetBlock or PutBlock; 1KB blocks 13,000
GetBlock or PutBlock; 4KB blocks 47,000
GetBlock or PutBlock; 16KB blocks 180,000
Load (Store); 220 memory cells 93,000 (190,000)
Load (Store); 230 memory cells 140,000 (280,000)

Figure 9—Cost of Pantry’s storage primitives, in constraints (to the nearest 1000), for varying block size or memory
size; the number of variables (|Z|) is similar (not shown). PutBlock is the same as GetBlock (§3.2). Store is shown
in the same row as Load, and is twice as expensive (§5.1); the memory cell size here is 64 bits, and the intermediate
Merkle nodes are 2432 bits. The costs scale linearly (in the block size) for GetBlock and logarithmically (in the
memory size) for Load and Store.

Below, we investigate each of these overheads.
We assess the cost of T1 in terms of the number of constraints and variables to which Pantry’s

primitives compile. (We will focus on the number of constraints, |C|, as the number of variables, |Z|,
scales linearly in |C|.) We use this metric because constraints are the computational model (and later, we
will express actual running times in terms of constraint set size). Each constraint corresponds to a “register
operation” (arithmetic, assignment, etc.), which provides an interpretation of our metric.

Figure 9 shows the number of constraints to which GetBlock and PutBlock (§3) compile, varying
the size of the block. The cost is ≈12 constraints per byte, or 50 constraints per 32-bit word; thus, in
this model, reading a number is 50 times more expensive than adding—a ratio superior to the analogous
comparison between hard disks and a CPU’s register operations.5 On the other hand, disks benefit from
sequential access whereas the costs of GetBlock and PutBlock scale linearly. Moreover, constraints will
translate into active CPU costs (as we will cover below), whereas real disks leverage DMA.

The preceding discussion presumes that each data item has its own name, or hash. If instead we want
to give the programmer contiguously addressable random access memory (e.g., for a program’s heap), we
must use the RAM abstraction (§5.1). Unfortunately, as shown in Figure 9, a verifiable Load costs 93,000
constraints to read 64 bits of memory; the ratio here is not close to the analogous memory-vs-register
comparison. Thus, GetBlock and PutBlock are best used to implement data structures built directly from
verifiable blocks (§5.2–§5.3); as indicated above, the costs are manageable if the programmer interacts
with them as if they lived on disk.

5Of course, P (not V) also has to pay for actual execution (in step (2)).

17

|C| (millions) prover (P) Â verifier (V)

computation (Ψ) input size baseline storage total Á solve Â argue total setup per-instance

dot product m=20k 10 ms 1.7 1.8 4.5 min 8.2 min 13 min 5.4 min 380 µs
nucleotide substr. search m=600k, d=4 13 ms 1.6 4.0 4.4 min 18 min 23 min 9.9 min 390 µs
nearest neigh. search m=20k, d=10 5.6 ms 0.9 1.1 2.5 min 7 min 9.5 min 4 min 380 µs
covariance matrix m=2.5k, d=10 3.8 ms 0.6 0.8 1.4 min 4 min 5.4 min 2.3 min 380 µs

SELECT query m=227 rows 90 µs 1.0 1.3 2.5 min 17 min 20 min 18 min 6.9 ms
INSERT query m=220 rows 89 µs 2.0 2.4 6.3 min 31 min 37 min 34 min 13 ms
UPDATE query m=220 rows 64 µs 2.0 2.4 6.4 min 31 min 37 min 34 min 14 ms

face matching m=128 100 µs 0.2 0.7? 27 s 7.8 min 8.2 min 6.5 min 7.2 ms
tolling m=512 6.7 µs 0.1 0.5? 9.8 s 7.1 min 7.3 min 5.2 min 6.2 ms
regression analysis m=1024, d=8 30 µs 0.4 0.7? 50 s 8.2 min 9.1 min 7.7 min 6.2 ms

?Includes 250k constraints for commitment (§6)

Figure 10—Overheads in our sample applications at sample input sizes; for the four MapReduce applications, only
the map phase is included. The input size represents a single instance. The baseline column represents the execution
of a normally compiled C program. For MapReduce, the baseline is the naive verifier (§4), including a SHA-256
digest check for data integrity (§4); for the database queries, the baseline is a MySQL query; and for the private
state apps, the baseline is normal execution (no verifiability). The quantity |Z| is not depicted but is roughly the
same as |C| for each sample application. The remaining columns depict the running times (for a single instance; no
amortization) of steps (2) and (3), as defined in §2.2; circled numbers refer to these steps.

Even so, storage constraints contribute heavily to the total constraint set size in our applications; the
weight is clear from the two columns labeled |C| in Figure 10, which displays many of Pantry’s costs for
our sample experiments.

This brings us to the next source of overhead: the fact that there are constraints (T2). Indeed, the costs
of step (2) are due to the constraint representation. The final source of overhead is the argument step (T3),
which—together with T2—determines the cost of step (3). We consider steps (2) and (3) in turn.

Constraint solving (step (2), §2.2) is a cost for P . We compute the ratio of solving time (Figure 10,
the “solve” column) to |C| for each of our sample applications. This ratio ranges from 20 to 160 µs per
constraint,6 where tolling has the smallest ratio and UPDATE query has the largest. The computations with
the largest ratios are those with the highest proportion of GetBlock and PutBlock calls: “solving” these
requires computing the Ajtai function (§3.2), which invokes many large integer arithmetic operations.
(Another source of overhead here is that GetBlock / PutBlock operations incur I/O costs associated with
accessing the block store.)

Arguing (step (3), §2.2) induces costs for P and V , which are depicted for our measured applications
in Figure 10 (the columns labeled Â). These costs are largely determined by |C| and |Z|, as indicated by
the models given earlier (Figures 3 and 6). In these models, the largest constants are c2, c3, c5 (representing
cryptographic operations), and are on the order of 100µs. Note that these models are chosen for simplicity;
their predictions are within a factor of two of empirical results. The primary sources of variation are the
structure of the constraints (treated in prior work [71, §4]) and the relative number of bitwise constraints
(small values reduce the costs of some of the cryptographic steps). A model that is more faithful (but more
involved) is in Appendix E, which also quantifies the constants {ci}.

The aforementioned costs can be understood by comparing to the cost of simply executing the
computation (Figure 10, the “baseline” column). Both V’s setup work and P’s runtime work are orders
of magnitude more than this baseline, in our sample applications. On top of these costs, the largest
experiments (e.g., nucleotide substring search with m=600k, d=4) use roughly 75% of the available RAM
in our machines (in the setup phase for V and per-instance for P).

6These costs are higher than necessary. Our implementation of P’s constraint-solving routine is decidedly unoptimized.

18

 0

 12

 24

 0 12 24 36 48 60C
P

U
 t

im
e

(m
in

u
te

s)

number of nucleotides (billions)

Pantry

baseline

 0

 5

 10

 15

 0 12 24 36 48 60

n
et

w
o
rk

 c
o
st

 (
G

B
)

number of nucleotides (billions)

Pantry

baseline

Figure 11—The verifier’s CPU and network costs (extrapolated) as a function of job size for the nucleotide
substring application in Figures 8 and 10 (each mapper gets a chunk of 600k nucleotides; one reducer is allocated
per ten mappers). All y-intercepts (fixed costs) and slopes (per-instance costs) are empirically determined, based
on experiments that exhibit the depicted scaling with hundreds of machines. In the CPU (resp., network) graph,
Pantry’s y-intercept is roughly ten minutes (resp., 2.3 GB); meanwhile, the baseline’s slope is tens of milliseconds
per chunk (resp., 146.5 KB per chunk). Thus, 40,000–50,000 chunks are required for V to break even, corresponding
to 24–30 billion nucleotides.

8.2 All is not lost
Amidst the many appalling overheads in Figure 10, there is actually some encouraging news: the per-
instance CPU costs for V are sometimes less than local execution (compare the “per-instance” and
“baseline” columns). And though it is not depicted, an analogous thing happens for network costs. Given
enough instances, then, the Pantry verifier could save resources relative to the naive verifier (§2.3). We
investigate these and other benefits by taking a closer look at some of our sample applications.

MapReduce. For the MapReduce examples, we want to determine the cross-over points (§2.3, §4)
for CPU and network. We will focus on the nucleotide substring search example; results for the other
applications are similar.

We experiment within the limits of our testbed, and use the resulting data to extrapolate. A work unit
will be 10 mappers (each with a chunk size of 600k nucleotides, per Figure 10) and one reducer; let N
denote the total job size, in number of input nucleotides. We experiment with N=6 million (one work
unit, 10 machines), N=60 million (ten work units, 100 machines), and N=1.2 billion (200 work units,
250 machines, each machine executing multiple workers sequentially). Across these (and smaller-scale)
experiments, we observe little variation (std. deviations are within 10% of means, scaling is linear, etc.).

Figure 11 reports the extrapolated resource costs for V; the CPU (resp., network) cross-over point
is 29 billion nucleotides, or 48,340 mappers (resp., 24 billion nucleotides, or 40,000 mappers). While
the chunk size is tiny—reflecting overheads (§8.1)—the results are nevertheless encouraging. First, the
baseline is stiff competition: it is linear-time, it runs as optimized machine code, and it uses SHA-256 (not
Ajtai) for data integrity. Second, Pantry’s V beats this baseline at a job size that is plausible: the human
genome is roughly 3 billion nucleotides, so the cross-over point is ≈10 such genomes.

DB queries. This class of applications has an additional overhead: storage at the prover, for the hash
trees (§5.2). Below, we assess that cost, and ask about Pantry’s ability to save resources for V . What
should the baseline be? In Figure 10, we present the running time of MySQL, which helps us gauge the
prover’s overhead. However, for a naive verifier to benefit from MySQL’s optimized query execution
while achieving verifiability, it would have to download the entire database and execute the query itself.

Instead, our baseline will be reasonably network-efficient and avoid two sources of overhead in Pantry:
constraints and the argument step. We assume a server that implements a hash-based block store [33, 52]
(akin to the map S in §3.1) and a verifier that runs the computation natively; where the program calls
GetBlock and PutBlock, the verifier issues an RPC to the server. Since the computation is run natively
rather than in constraints, H is SHA-256 (§3.2). We have not yet built this alternative, so we estimate its
network costs; we can do this since queries are highly constrained (§2.4, §5.4).

19

Pantry block store (est.)

network costs
setup, kept as storage (argue step) 430 MB 0 MB
per-instance (argue step) 288 bytes 8.3 KB
per-instance (input, output) 624 bytes 620 bytes

storage costs
data 11.5 GB 11.5 GB
metadata (for hash tree) 262 GB ≥53.5 GB

Figure 12—Resource costs of a SELECT query, under Pantry and estimates for an alternative based on an un-
trusted block store. The table has 227 rows, each holding 92 bytes in 12 columns; the query allows 5 matching
rows (§5.3, §5.4).

Figure 12 depicts the comparison, for a SELECT query. This table indicates, first, that our implementa-
tion needs some work: the metadata is far larger than the data (for both Pantry and the alternative) due in
part to unoptimized parameter choices (number of indexes, branching factor, etc.). Second, the effect of
the size of Ajtai digests (versus SHA-256) is apparent in the metadata row. Nevertheless, despite these
limitations, the Pantry verifier can amortize its network costs in the setup phase (because it does not
incur the network cost of handling the verifiable blocks themselves); for this computation, the network
cross-over point is 55,000 instances.

Private state. For these applications, we do not ask about cross-over points because V cannot naively
re-execute the computation. Instead, we just report the costs, for our sample application of tolling; costs
for the others are similar. The CPU costs are in Figure 10; the storage and network resources are given
below:

private state 5 KB
network (setup) and storage (ongoing) 170 MB
network (per-instance), for inputs/outputs 1 KB
network (per-instance), for argument step 288 bytes

The storage overhead here is proportional to the size of the private state; the reason is as follows. The
storage overhead reflects setup costs (see above), setup costs are proportional to |C| and |Z| (see Figures 3
and 6), |C| and |Z| include terms for GetBlock’s input (§3.2), and GetBlock’s input is all of the state
because there is no hash tree structure (§5). Although the constant of proportionality is high (due to the
argument step), the absolute quantities are not necessarily alarming: the tolling application does not involve
much state, and an overhead of several hundred megabytes could fit comfortably on a mobile phone.
Moreover, the per-instance network costs are very low, owing to Pinocchio’s machinery (§2.2–§2.3).

9 Related work
Although verifiable computation has a decades-long history (see [65, 72, 80] for surveys), only recently
have systems emerged that are both (a) general-purpose (i.e., not targeted to a class of functionality) and
(b) rooted in powerful complexity theory and cryptography.

One line of work [28, 77, 78] refines the Muggles interactive proof protocol [41], which is purely
complexity-theoretic (no cryptography). As a consequence, the resulting systems are very efficient for the
verifier and prover. However, they are restricted to straight-line computations (though this limitation has
been partially relaxed [80]).

Another line of work [70–73, 80] refines an efficient argument protocol (§2) due to Ishai et al. [47].
Zaatar [71] is the best-performing entry in this line; it leverages the remarkable encoding of GGPR [36]
and handles general side-effect free computations [73].

20

Pinocchio [65] applies both GGPR’s encoding and its cryptographic constructions [36], and is the first
implementation of a general-purpose non-interactive argument (it is a SNARG [37] and a SNARK [18]).
It uses essentially the same computational model as Zaatar [71, 73], and for systems working within this
model, Pinocchio and Zaatar have the best performance in the literature (on different axes). The two are
compared in §2.2 and §2.3.

None of these three efforts handles computations over state. Pantry’s principal contribution is to extend
the computational model of Pinocchio and Zaatar to do so, using ideas from untrusted storage. First,
Pantry relies on Merkle trees [58] to authenticate a large untrusted memory, an idea used in theory [21]
and in practice (for smartcards [34], databases [31, 54, 57], file systems [38, 48], etc.). Second, Pantry
names data blocks by their digests, and treats the digests as references for the purposes of building data
structures (including Merkle trees); this idiom is due to the SFSRO [33] file system and used elsewhere
(e.g., SUNDR [52]). One (rough) way to understand Pantry is that it verifiably outsources an SFSRO or
SUNDR client. Of course, Pantry’s general approach is known [14, 18, 36, 46]. However, Pantry is the
first realization of this strategy.

A fourth project, appearing in parallel with Pantry, offers a different approach to state. BCGTV [15]
use a promising circuit representation from [14] (a different instantiation of steps (1) and (2) in §2.2).7

Using insights from [20, 36, 71], BCGTV combine their representation with a step (3) that is much like
Pinocchio’s (like Pinocchio, BCGTV is a “SNARK with pre-preprocessing”). On the one hand, BCGTV
achieve expressivity relative to Pantry, specifically data-dependent loops. On the other hand, they do not
(at present) work with remote state (§4–§6). Furthermore, although a complete evaluation has not been
done, their preliminary reported results indicate that performance is often orders of magnitude worse than
Pantry. A detailed comparison is future work.

10 Discussion, limitations, and conclusion
Pantry has many limitations. A number of these stem from the clumsiness of the constraint model (§2.4),
which led to various compromises described earlier (§4, §5.4, §6). A further compromise is the assumption
throughout that the verifier knows the digest of the remote state; this holds when the state is read-only or
when there is one client. Future work is to handle multiple writers, perhaps by outsourcing signature (not
just hash) checks.

But the biggest limitation by far is costs—which are currently so high for the prover and the verifier’s
setup phase (§8.1) that they limit our experiments (§8.2) to scales smaller than those of real applications
(to put it mildly). This issue afflicts the entire research area (§9). Indeed, key challenges are to reduce
the overhead of the argument protocol (which seems possible, as the costs stem from high constants,
not unfavorable asymptotics); reduce the overhead of memory operations within the constraint model
(evidence exists that this can be done [14]); and go beyond, or around, the constraint model.

Nevertheless, Pantry dramatically expands the set of scenarios where verifiable computation makes
sense. First, Pantry extends verifiability to computations that make indirect memory accesses (to RAM,
disk, etc.). Second, because the verifier can supply digests of inputs, the per-instance CPU cost of
verification can drop below the time cost to handle the actual inputs, thereby allowing the verifier to beat
naive verification even when outsourcing linear-time computations (§4, §8.2). Third, Pantry can save
network costs for the verifier versus the naive alternative (§4, §8.2). Thus, Pantry may be beneficial even
if verification costs more CPU cycles than local execution—a case that defeats the goals (§2.3) of prior
work [65, 71–73, 80]. Fourth, Pantry (with a major assist from Pinocchio) extends verifiability to a class
of computations involving private remote state (§6).

7Recent work takes a different approach to efficient circuit representations of various standard data structures [82]. Incorporating
into our system and comparing to Pantry and BCGTV is work in progress.

21

The preceding paragraph describes when Pantry could be applicable, but we must also consider when
it actually is. The answer depends on computation-specific factors: the cross-over points, one’s tolerance
for prover overhead, and the details of the scenario. But data-parallel cloud computing (e.g., MapReduce)
seems to fit the requirements: many instances of the same computation and an abundance of server CPU
cycles. Moreover, a high price for the private state applications might be acceptable, since there is no
naive alternative (§8.2).

In conclusion, there is a great deal of work remaining to bring verifiable computation to practice, but
Pantry is a significant step toward that goal.

A Pantry’s correctness
This appendix and the next will establish Pantry’s correctness. These arguments mainly draw on existing
techniques and folklore; we write them down here for completeness.

We wish to establish that Pantry’s verifier V accepts correct outputs y and rejects incorrect ones
with probability similar to that of Zaatar’s soundness (§2.1, §2.3). By the Completeness property of
Zaatar [71, Apdx. A] and an equivalent property in Pinocchio [36, 65], and the implementation of the
prover P (specifically, the use of the map S), V can be made to accept correct outputs with certainty. The
more involved step is showing that V rejects incorrect answers. One might think to apply the soundness
property (§2.2), but this property is not enough: its technical guarantee is that if no satisfying assignment
exists, then V is likely to reject [36, 65, 71]. Meanwhile, C(X=x, Y=y) could be satisfiable, even if y is
incorrect in the context of steps 1 and 2 (§2.2). As a simple example, imagine that the computation Ψ is:

name = PutBlock(x);

B = GetBlock(name);

if (B == x)

y = 1;

else

y = 0;

return y;

The correct answer here is y=1. But y=0 also results in many satisfying assignments to CΨ(X=x, Y=0);
in particular, any setting of the B variables for which H(B)=H(x)=name, where B 6=x, will satisfy
CΨ(X=x, Y=0). Since soundness says nothing about what V does when there are satisfying assignments,
soundness cannot be used to argue that V will reject y = 0.

We need another property, called proof of knowledge (PoK). A formal definition is below; less formally,
this property states that if P can make V accept a claimed output y with non-negligible probability, then
there is an efficient algorithm that can run P to produce a satisfying assignment to C(X=x, Y=y). Even
more informally, one can think of this property as stating that if V accepts the interaction, then P must
have “known” an assignment.

The power of the PoK property in our context is the following. If y is an incorrect output and
C(X=x, Y=y) is satisfiable, the only satisfying assignments contain memory consistency violations;
meanwhile, memory consistency violations imply hash collisions, and manufacturing such collisions is
presumed to be hard. Therefore, no efficient algorithm can produce satisfying assignments of this adverse
form, and hence (by the italicized assertion) no efficient algorithm can produce any satisfying assignments,
and hence—here is where we use the PoK property—the prover cannot systematically make the verifier
accept the corresponding output. Very informally, the prover must not “know” any adverse satisfying
assignments, which, by the PoK property, implies that it cannot make the verifier accept them.

22

In the rest of this appendix, we formally define a PoK property and use it to establish Pantry’s
correctness; Appendix B proves that Pantry meets this property. We will restrict attention to the case that
Pantry uses Zaatar; a similar analysis applies when Pantry uses Pinocchio.8

A.1 Setup and definition of proof-of-knowledge
Recall the Zaatar setup. V and P are given a set of constraints C (over variables X, Y , Z), input x, and
output y. C(X=x, Y=y) is a set of constraints over variables Z = (Z1, . . . , Zn′); each Zi ∈ F. V and
(a possibly incorrect P) interact. If, after getting the purported output y, V accepts, we notate that as
(V ,P)(C, x, y) = 1.

Definition A.1 (Proof of knowledge (PoK).). There exists a PPT extractor algorithm E (which is
presumed to have oracle access to the prover: it can run the prover by supplying arbitrary patterns) for
which the following holds. For all P and all polynomially-bounded (C, x, y), if

Pr{(V ,P)(C, x, y) = 1} > εK

then
Pr
s
{EPs (C, x, y)→ z = z1, . . . , zn′ , such that z satisfies C(X=x, Y=y)} > ε′K ,

where ε′K is non-negligible. The first probability is taken over the random choices of the Zaatar protocol
(specifically, the coin flips of the commit phase, the decommit phase, and the choice of PCP queries). The
second probability is taken over s, the random choices of the extractor algorithm E.

The next appendix proves that Zaatar has this property; for now, we take it as a given. As we will see
below, the quantity εK will wind up being Pantry’s actual error: it will upper-bound the probability that V
accepts an incorrect output. Sometimes this parameter is referred to as “knowledge error”, and we will be
motivated to ensure that it is not much larger than the soundness error. Notice that we cannot make this
parameter lower than the soundness error, since a protocol that has knowledge error of at most εK has
soundness error of at most εK (that is, PoK implies soundness). This is because if no satisfying assignment
exists at all, then of course the probability of producing one is zero (for all algorithms), which implies (by
PoK) that V rejects with probability at least 1− εK , which yields the soundness property.

A.2 V rejects incorrect outputs
This section considers only single executions; the next section generalizes to the case of state carried
across program executions.

We will use the PoK property (Defn. A.1) to establish that V rejects semantically incorrect outputs y′

with high probability. In the context of a computation Ψ, the (unique) semantically correct output y on
input x is the value or vector that results from following the logic of Ψ on input x. This logic includes
program logic and storage consistency. Program logic means, for example, that the result of an “add”
operation should actually be the sum of the two numbers.

Storage consistency is a typical definition: “reads should see writes”. In our context, this means
that if the program “reads address n” (that is, executes GetBlock with input n), then the return value
b should be the “most recently written value to address n” (that is, the program should have executed
n = PutBlock(b), and between that call and the GetBlock, there should be no intervening invocations
n = PutBlock(b′), where b′ 6= b). If an input x would cause Ψ to issue a call GetBlock(n) for which
there was no preceding call n = PutBlock(b), then there is no semantically correct output; in this
situation, we sometimes say that the correct output is ⊥ and that x itself as a semantically incorrect input.

8Pinocchio has been shown to have a PoK property [36, §8]. This PoK property is stronger than the one that we prove for Zaatar
(though Pinocchio’s relies on non-falsifiable “knowledge assumptions” whereas Zaatar’s relies on standard assumptions). As a
consequence, the analysis in this appendix also applies to Pantry’s use of Pinocchio.

23

Of course, the preceding notions require an ordering on operations; this order follows from program
order, and induces an ordering on the constraints that the Pantry compiler produces. In more detail,
recall that for a high-level program Ψ, the Pantry compiler produces constraints C that correspond to
Ψ’s program logic: the program variables in Ψ appear in C, and the equations in C enforce program
logic through the relations among the program variables. (The constraints C are said to be equivalent to
the computation Ψ.) An assignment w = (x, y, z) to C thus corresponds to a transcript for Ψ: a string
consisting of the program Ψ with loops unrolled and with all variables (X, Y , Z1, Z2, . . .) replaced with
values (x, y, z1, z2, . . .). In what follows, we will move back and forth between the notion of transcript τ
and its corresponding assignment wτ = (x, y, z).

A valid transcript is one that obeys program semantics. Specifically, in a valid transcript τ :

P1 All operations respect program logic. By the transcript-assignment equivalence, this property is
equivalent to saying that the assignment wτ = (x, y, z) satisfies the constraints C.

P2 Storage operations respect consistency. Specifically, if b = GetBlock(n) appears in τ , then an
operation n = PutBlock(b) appears earlier in τ (with no intervening n = PutBlock(b′), where
b′ 6= b).

Claim A.1. For a computation Ψ, if y 6= ⊥ is semantically correct on input x, then there exists a valid
transcript in which the input variables are set to x and the output variables are set to y. (Also, this transcript
is unique in our present context.)

Proof. The transcript is an unrolled program execution. So if the program Ψ would correctly produce y
from x, then we can write down all of the operations that lead from x to y. This list will respect validity
(properties P1 and P2), since validity admits those transcripts (and only those transcripts) that obey the
semantics.

The transcript is unique since each operation, when executed correctly, is deterministic. Note in
particular that storage operations are deterministic: PutBlock operations are deterministic by construction
(given an input block, PutBlock returns a digest of it), and the semantics given above specify the unique
return value of a GetBlock invocation.

Claim A.2. Let V be Pantry’s verifier, operating on constraints C and input x. If y 6= ⊥ is the semantically
correct output, then for all provers P and all y′ 6= y, Pr{(V ,P)(C, x, y′) = 1} ≤ εK .

Proof. Assume otherwise. Then there exists a proverP ′ and an incorrect answer y′ for which Pr{(V ,P ′)(C, x, y′) =
1} > εK . By the PoK property (Defn A.1, Lemma B.1), there exists an extractor algorithm EP

′
that,

with probability greater than ε′K , produces some assignment z′ such that (x, y′, z′) satisfies C; let τ ′ be the
transcript corresponding to the assignment w′τ ′ = (x, y′, z′). Also, since y 6= ⊥ is semantically correct,
Claim A.1 implies that there exists a valid transcript τ (while τ is unique, we will not explicitly rely on
that uniqueness below). By the validity of τ , there is an assignment wτ = (x, y, z) that satisfies C.

Compare τ and τ ′. Consider the first position in these strings where they disagree (they must disagree
somewhere, for their outputs are different). We now make two claims about this point of divergence: (1) it
must be a GetBlock(n) operation, and (2) the input to this operation must be the same in both τ and τ ′.

The reason for (1) is that if τ and τ ′ first disagreed on a different operation (either its inputs or outputs),
they would agree up until that operation, and then disagree on a deterministic operation (all operations
besides GetBlock are deterministic); hence, at least one of the two transcripts would be in violation of
program logic, which would mean that at least one of wτ and w′τ ′ would not satisfy C, which would
contradict statements above. Similarly, to establish (2), observe that the constraints are constructed so that
the input to GetBlock is deterministically produced from the computation’s input (x) and the computation
up to that point (and τ and τ ′ agree up to that point).

24

From claims (1) and (2), the output of the GetBlock in τ (call it b) and in τ ′ (call it b′) are different;
that is, b 6= b′. However, w and w′ are both satisfying, so τ and τ ′ obey property P1. From the compilation
of GetBlock into CH−1 , and the construction of CH−1 , per Section 3, we have n = H(b) and n = H(b′),
where H is a collision-resistant hash function (CRHF). Also, because τ is valid, it obeys P2, which means
that τ contains an earlier instance of n = PutBlock(b), where (by P1) H(b) = n. But τ and τ ′ match
through that earlier point in the transcript, which means that τ ′ also contains n = PutBlock(b). Thus, τ ′

contains b and b′, with b′ 6= b and H(b) = H(b′).
Therefore, an adversarial algorithm A can produce a collision in H as follows. A runs EP

′
to get z′

(which succeeds with > ε′K probability), forms w = (x, y′, z′), sorts w by output digests, scans to find b
and b′, and outputs them. This succeeds in producing a collision with probability > ε′K , which contradicts
the assumed collision-resistance of H.

A.3 Remote state
Arguing the correctness of Pantry’s MapReduce (§4), among other applications, requires allowing state to
be carried across executions. To this end, we generalize the definitions above.

We consider a model in which V and P interact sequentially: V supplies input x0 and specifies Ψ0 to
P , receiving output y0; next, V supplies input x1 and specifies Ψ1 to P , receiving output y1, etc. Suppose
that there are t + 1 pairs in all: (x0, y0), . . . , (xt, yt).

We define the semantic correctness of yi inductively. Specifically, we say that y0 is semantically correct
if it meets the earlier description (i.e., if the correct operation of Ψ0 on input x0 produces y0). For yi, where
i > 0, we say that yi is semantically correct if (a) all previous {(xj, yj)}i−1

j=0 are semantically correct; (b) yi

respects program logic on xi; and (c) if Ψi issues GetBlock(n), then the return value should be the b in
the most recent n = PutBlock(b) call, as above; here, however, we are looking not only at the current
execution but at the concatenated (valid) transcripts τ0, . . . , τi−1 together (these transcripts exist by the
correctness of y0, . . . , yi−1).

Label with Ci the constraints that correspond to computation Ψi. We now make a claim that is
analogous to Claim A.2:

Claim A.3. Consider a sequence of interactions between V and P that produces pairs (x0, ŷ0), . . . , (xt, ŷt),
where for i ∈ {0, . . . , t}, the semantically correct output yi is not ⊥. For all provers P , and all i, if ŷi 6= yi,
then for some j ≤ i, we have Pr{(V ,P)(Cj, xj, ŷj) = 1} ≤ εK .

Proof. (Sketch.) The proof is similar to that of Claim A.2. Let ŷi be the first semantically incorrect output
in the sequence. Assume to the contrary that Pr{(V ,P)(Cj, xj, ŷj) = 1} > εK , for all j ∈ {0, . . . , i}; by
the PoK property, E can produce, with probability greater than (ε′K)i+1, a list of assignments ẑ0, . . . , ẑi

(which satisfy the respective constraint sets, given the respective inputs and outputs). Let τ̂0, . . . , τ̂i be the
corresponding transcripts, and concatenate these together to form one large aggregate transcript, τ̂∗. There
is a valid aggregate transcript τ∗ that differs from τ̂∗ in at least one location (because yi 6= ŷi).

As in Claim A.2, the two transcripts must again diverge in a GetBlock operation (all other operations
are deterministic; furthermore, the inputs {x0, . . . , xi} match in the two transcripts, and so do the outputs
{ŷ0, . . . , ŷi−1}, since ŷi is the first semantically incorrect output in the sequence). This implies that τ̂∗
contains a collision. An adversarial PPT algorithm can thus produce a collision with probability at least
(ε′K)i+1/t (by guessing i, running i instances of the extractor E, and sorting the resulting witnesses), in
contradiction to the presumed collision-resistance of H.

The preceding analysis can be extended to cover the data structures that we build using the GetBlock
and PutBlock abstractions (§5). In the case of the verifiable RAM, this analysis is a mild variant of the
arguments for online memory-checking given by Blum et al. [21]. That paper specifies a simple memory
semantics (roughly, reads and writes are totally ordered and each read is matched by a preceding write),

25

describes a Merkle tree-based on-line checking algorithm, and argues that in order to violate the memory
semantics an adversary must fake some of the hash checks that validate a path through the Merkle tree.
Inspection of our verifiable RAM design (Section 5.1, Figure 7) indicates that violation of the memory
semantics would result in a violation of Claim A.2.

Discussion. Notice that the preceding claims are conditional on V supplying correct inputs (i.e., a
condition for the claims is that there are correct outputs). In particular, if the verifier supplies a made-up
digest as a reference to storage, the protocol provides no guarantees. In practice, this means that the onus
is on the verifier to supply correct digests as input.

Of course, if the verifier makes up a digest, then heuristically speaking, the prover will not be able
to manufacture a satisfying assignment, since that would require inverting H. In fact, if the verifier
chooses a digest d by random selection of b and then setting d ← H(b), then we can show that the
prover cannot convince the verifier to accept with greater than the knowledge error εK (this relies on
the preimage-resistance, or one-wayness, of H, which is Ajtai’s function [4]). By contrast, if the verifier
chooses an input digest arbitrarily (perhaps in collusion with the prover!), then we cannot apply the
preceding guarantees; however, cases where the verifier chooses a “wrong” digest for which it knows that
the prover knows a preimage are elaborate exercises in shooting oneself in the foot.

Finally, note that the security proof for remote state presumes that either the same verifier is partici-
pating across the sequence, or that there is a chain of trust linking them. This issue is handled somewhat
better in the non-interactive “proof-carrying data” (PCD) framework [19], where an extractor can produce
a complete transcript, given a certificate. On the other hand, existing PCD protocols rely on non-falsifiable
hypotheses.

B Zaatar and proof-of-knowledge
This appendix will establish that Zaatar meets a proof-of-knowledge (PoK) property. Recall from the
prior appendix that we are motivated to ensure that the knowledge error, εK , is not much larger than
Zaatar’s soundness error, εzaat; as established elsewhere [71, Apdx. A], εzaat = εpcp + εc, where εpcp is
the soundness error of the Zaatar PCP (approximately 5 · 10−7), and εc is the error from the commitment
protocol (for Zaatar, εc ≈ 6000 · 3

√
1/|F|).

Lemma B.1. The Zaatar argument protocol has the PoK property with εK = 2 · εpcp + εc, and ε′K =(
εpcp/2

)
·
(
1− n′ · e−100

)
.

Proof. The proof combines techniques from Barak and Goldreich (BG02) [10] and from the soundness
proof of Pepper [72, Apdx. B] and IKO [47] (which is Pepper’s and Zaatar’s base). We will assume
familiarity with the technical details of Zaatar, Pepper, and IKO, but not of BG02. At a very high level, all
of these protocols consist of a commit phase (in which the verifier makes the prover commit to an oracle,
which is supposed to be the PCP) and a decommit phase; in the latter phase, the verifier submits the PCP
queries.

The above works prove, loosely speaking, that at the end of the commit phase of the protocol, the
prover is effectively bound to a particular (possibly inefficient) function f , from queries to responses.
We face several technical difficulties in the present context. One of them is that just because f exists
does not mean that it is easy to make the prover respond to queries. We will get around this issue by
first showing that if there is a > εK probability of V accepting, then it must be true that for almost all
of the possible queries, the prover responds with non-negligible probability. Then, loosely speaking,
the extraction procedure will amplify the non-negligible probability to be near-certain. This is done by
pumping the prover: feeding it many different interactions. Another difficulty is that when the extractor
performs this pumping, we have to be sure that values other than the correct one will be sufficiently

26

infrequent that the pumping process won’t get confused; we get around this by reformulating the claims
that the prover is bound to a function f .

The proof proceeds according to the following outline:

1. We will describe an extraction procedure, leaving a number of parameters unspecified.

2. We will analyze the extraction procedure and in so doing fill in the parameters. The analysis is in
several parts:

• We will reformulate some of the analysis of the binding properties of Pepper [72, Apdx. B].

• We will define notions [10] of queries being “strong” (or weak) and “clear” (or confounding);
these notions are relative to a given commit phase. We hope that in a useful commit phase, the
vast majority of queries are both strong and clear; furthermore, we hope that a non-negligible
fraction of commit phases are useful.

• We will show that in useful commit phases, the function that the prover is bound to is a valid
PCP oracle that encodes a satisfying assignment and has a soundness error identical to our usual.

• We will show that in useful commit phases, the overwhelming majority of queries are strong.

• We will show that in useful commit phases, the overwhelming majority of queries are clear.

• The above results will be used to upper-bound εK and lower-bound ε′K .

B.1 Preliminaries
There are three sets of random coin flips in the Zaatar protocol: c represents the random coin flips that
determine the commit phase, d represents the random coin flips that determine the decommit phase, and r
represents the random coin flips that determine the PCP queries. Often, we will assume that the coins for
the commit phase have been flipped, and we will be working within a commit phase c.

Let Ai be the prover’s response to the ith query, independent of whether the decommitment succeeds;
when Ai depends on all three sources of randomness, we write Ai(c, d, r). A common case is that we
will be interested in Ai, within some commit phase (i.e., the commit coin flips will have already been
determined); in that case, Ai is a function of (d, r) and can be written Ai(d, r).

Whether V accepts is a random variable that is a function of (c, d, r). Likewise, whether V decommits
(that is, whether the decommitment succeeds) is a random variable.

Let Q1(r), . . . , Qµ(r) represent the µ PCP queries generated by a particular choice of the PCP verifier’s
coin flips, r. The Qi are random variables, but of course they do not depend on c or d.

Let Vpcp denote Zaatar’s PCP verifier. We will refer to Vpcp as generating queries and accepting
their replies. (This can be formalized/notated with a query generation procedure Q((C, x, y), r, i), which,
given the PCP coin flips, returns the ith query. Similarly, we can write down a decision procedure
D((C, x, y), r, a1, . . . , aµ) that returns 1 or 0. While the notation is borrowed from BG02 [10], the formal-
ization itself is standard in the PCP literature.)

A PCP admits reverse sampling (as defined in BG02 [10]) if, given a PCP query q and a position i, it is
possible to choose the other PCP queries according to the random coins r, but holding q in the ith position.
BG02 formalize this by saying that, given q, i, there is an efficient algorithm that can randomly and
uniformly sample from all r such that Q((C, x, y), r, i) = q. In our context, it will be more helpful to think
of the reverse sampling property as saying that for all q, i, it is possible to efficiently sample according to
the conditional distribution {Q1(r), . . . , Qµ(r)}|Qi(r)=q. Zaatar’s PCP has the reverse sampling property.

B.2 The extraction procedure
See Figure 13 for the extractor, E.

27

// Goal is to produce a witness z that satisfies C(X=x, Y=y)

extract(P , C, x, y):
flip the “commit coins”, and run the commit phase.
// for the remainder of the procedure, we will be in this commit phase.

for t = 1, . . . , n′: // extract the tth witness element
for k = 1, . . . , T1:

choose qr ∈R Fn′

qs ← qr + et

σ1 ← extract response(qr, C, x, y)
σ2 ← extract response(qs, C, x, y)

z(k)
t ← σ2 − σ1

if a majority of {z(1)
t , . . . , z(T1)

t } equal the same value v:
zt ← v

else:
abort()

output z1, . . . , zn

extract response(q, C, x, y):
for i = 1, . . . ,µ:

for j = 1, . . . , T2:
• place q in position i, and reverse sample to get full set of queries: q1, . . . , qµ. Here, qi = q.
• run P in the decommit phase, flipping decommit coins randomly.
• if decommit succeeds, save the ith response, labeling it σ(i, j)

if more than (δ/3) · T2 of the saved σ(i,·) are equal, store the value, calling it a candidate.

if there is exactly one candidate value, σ:
return σ

else:
abort()

Figure 13—Definition of knowledge extractor, E. It borrows techniques from the oracle recovery procedure of Barak
and Goldreich [10]. For now, δ, T1, T2 are parameters. et is the vector with a 1 in component t and 0s elsewhere.

B.3 Analysis of the extractor
The binding of Pepper and Zaatar, revisited

Following IKO [47], Pepper’s soundness analysis contains a binding game (Defn. B1 [72]); a commitment
protocol is admissible if for all environments (loosely speaking, an environment encapsulates the process
of producing PCP queries), the probability of the prover winning the binding game is negligible. The
definition in IKO and Pepper is quantified over all deterministic environments.

In the present work, the binding game is now played inside an environment E that (a) chooses a
distinguished query q and the positions i and i′ deterministically (as previously), and (b) chooses the
other queries ~q and ~q′ randomly, according to a distribution of E’s choosing. The definition of “S∗ wins”
is the same (outputting conflicting field values and successfully decommitting), and a protocol is now
admissible if for all environments E , the probability of S∗ winning is less than εB = 1/|F|, where the
probability now is taken over the coins r, r′ that generate the two choices of queries as well as the three

28

phases of the binding game (commit phase, and two runs of the decommit phase).
The new definition of admissible protocol (which quantifies over probabilistic environments) is, by

averaging, equivalent to the old one (which quantifies over deterministic environments); IKO also observe
this equivalence [47]. To see that meeting the old definition implies meeting the new one, observe that if
the protocol doesn’t meet the new property in some environment E , then there must (in E) be an adverse ~q
and ~q′ for which S∗’s probability of winning the old binding game is larger than εB, contradicting the old
definition.

Next, we rerun some of the analysis in Pepper, under probabilistic environments. Define Ac(q, i, a) =
Prd,r{Ai(d, r) = a | Qi(r) = q}; this quantity is with respect to a particular commit phase c, and
answers the question, “given that q is in the ith position, if we reverse sample to get the other queries
and flip the decommit coins, what is the probability that the ith output is a?”. Define Ext(c, q, i) =
argmaxa∈F Ac(q, i, a). Also, define fc(q) to be Ext(c, q, i∗), for some distinguished i∗ (for example, i∗ = 1).

Claim B.2. For all q ∈ Fn′ , i ∈ [µ], we have:

Pr
c

{
Pr
d,r
{{Ai(c, d, r) 6= fc(q)} and decommit happens | Qi(r) = q} < ε3

}
> 1− ε3,

where ε3 < 6 · 3
√

1/|F|.

Proof. (Sketch.) This claim is similar to Claim B.4 in Pepper [72]. Essentially, wherever Pepper’s proofs
for Claims B.3 and B.4 talk about “the probability over the decommit phase”, one should write “. . . over
the decommit phase and choice of Q(r)”. Also, the binding game that enforces the probabilities is of
course over five (not three) sets of random coin flips.

Claim B.3 (Existence of fc(·) and commit error). Define εc = 2 · µ · ε3.

Pr
c,d,r

{
decommit happens and ∪µi=1 {Ai(c, d, r) 6= fc(Qi(r))}

}
< εc,

Proof. Fix i ∈ [µ]. Claim B.2 implies that

∀q : Pr
c,d,r
{{Ai(c, d, r) 6= fc(q)} and decommit happens | Qi(r) = q} < 2ε3.

By an averaging argument, we get:

Pr
c,d,r
{{Ai(c, d, r) 6= fc(Qi(r))} and decommit happens} < 2ε3.

A union bound over the µ query positions implies the result.

Notions of strong and clear

Definition B.1 (strong and weak queries). Consider the event {Aj(d, r) = fc(Qj(r))}; notice that
whether this event holds is a function of the random coin flips (c, d, r). In commit view c, a query q ∈ Fn′

is:

• δ-strong if

∃i : Pr
d,r

{
V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} | Qi(r) = q

}
≥ δ.

• δ-weak if
∀i : Pr

d,r

{
V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} | Qi(r) = q

}
< δ.

29

This differs slightly from the Barak-Goldreich definition, which refers to strong and weak answers.
The motivation for this definition is that if we can show most queries are strong (which we will be able
to), then extract_response (in Figure 13) will produce fc(q) with non-negligible probability.

Definition B.2 (clear and confounding queries). In commit view c, a query q ∈ Fn′ is:

• δ/10-clear if

∀i : Pr
d,r
{V decommits and {Ai(d, r) 6= fc(q)} | Qi(r) = q} ≤ δ/10.

• δ/10-confounding if

∃i : Pr
d,r
{V decommits and {Ai(d, r) 6= fc(q)} | Qi(r) = q} > δ/10.

This, too, is different from the analogous Barak-Goldreich definition, since they do not talk about a specific
function fc(·). The motivation for this definition is that if we can show most queries are clear (which we
will be able to), then extract_response (Figure 13) does not have to worry that a field element other
than fc(q) shows up often enough to be confounding.

When a query is both strong and clear, observe that the extract_response subroutine is likely to
deliver a clear “signal.”

Auspicious commit phases happen often enough

Define a commit phase as auspicious if, in that phase, Prd,r{V accepts and∩µj=1 {Aj(d, r) = fc(Qj(r))}} >
(1/2) · ε; an auspicious commit phase will not necessarily be useful, but auspiciousness is a precondition
to usefulness (see Claim B.9 and the analysis that follows it).

Recall the premise of the PoK property: Prc,d,r{V accepts} > εK . The next claim guarantees that,
when this premise holds, auspicious commit phases happen with non-negligible probability.

Claim B.4 (Auspicious commit phases). If Prc,d,r{V accepts} > εK , then

Pr
c

{
Pr
d,r
{V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))}} > (1/2) · ε

}
> (1/2) · ε,

where ε def
= εK − εc, and εc was defined in Claim B.3.

Proof. From Claim B.3,

Pr
c,d,r
{V decommits and ∪µj=1 {Aj(c, d, r) 6= fc(Qj(r))}} < εc.

But accepting implies decommitting and not the other way around, so

Pr
c,d,r
{V accepts and ∪µj=1 {Aj(c, d, r) 6= fc(Qj(r))}} < εc.

Combining the given with the inequality immediately above, we get:

Pr
c,d,r
{V accepts and ∩µj=1 {Aj(c, d, r) = fc(Qj(r))}} > εK − εc = ε.

Standard counting or averaging implies the result.

Recall that Vpcp denotes the Zaatar PCP verifier. The next two claims state that with probability that
cannot be neglected (a) Vpcp accepts (which implies that fc(·) is of the right form), and (b) all queries
issued by Vpcp are, in the context of the argument protocol, δ-strong.

30

After auspicious commit phases, fc(·) is a valid PCP oracle

Claim B.5 (Vpcp accepts often). Assuming we are in an auspicious commit phase,

Pr
r

{
Vpcp accepts (fc(Q1(r)), . . . , fc(Qµ(r)))

}
> (1/2) · ε.

Proof. In an auspicious commit phase

(1/2) · ε <Pr
d,r

{
V accepts and ∩µi=1 {Ai(d, r) = fc(Qi(r))}

}
.

But if V accepts on a particular set of coin flips, then Vpcp must accept the same answers, since the latter
is a precondition for the former. So we can bound the expression above:

≤Pr
d,r

{
Vpcp accepts (A1(d, r), . . . , Aµ(d, r)) and ∩µi=1 {Ai(d, r) = fc(Qi(r))}

}
≤Pr

d,r

{
Vpcp accepts (fc(Q1(r)), . . . , fc(Qµ(r)))

}
= Pr

r

{
Vpcp accepts (fc(Q1(r)), . . . , fc(Qµ(r)))

}
.

The second inequality holds because the event in its LHS is a restricted case of the event in its RHS. The
equality holds because its LHS is independent of the d coins.

Take ε/2 = εpcp, where εpcp is Zaatar’s PCP soundness error. The claim above, together with the
properties of Zaatar (soundness [71, Lemma A.3] and one other: see below), implies the following:

Corollary B.6 (fc(·) is often a valid PCP oracle). In auspicious commit phases, fc(·) is a well-formed Za-
atar PCP oracle: it is 0.0294-close to a linear function that encodes a witness z that satisfies C(X=x, Y=y).

This corollary relies on a property of Zaatar’s PCP that is stronger than soundness: “well-formedness”.
As stated, this property is (a shade) stronger than PCP proof-of-knowledge (PCP PoK). PCP PoK [10]
says that if Vpcp accepts with greater than the soundness error, then not only is C satisfiable (which is
what the soundness property gives) but also there is an efficient algorithm that can extract a satisfying
witness, given access to the PCP oracle. As Barak and Goldreich [10] observe, many PCPs have the PCP
PoK property (Zaatar does too), but there are few (if any) proofs in the literature. The reason that our
well-formedness property is slightly stronger than a PCP PoK property is that it actually specifies the form
of the PCP (and any PCP meeting this form can, through self-correction, yield a witness).

After auspicious commit phases, most queries are strong

Claim B.7. Assuming we are in an auspicious commit phase,

Pr
r
{Vpcp makes only δ-strong queries} > ε/4,

for δ = (1/4)ε/µ.

Proof. Fix a query position i ∈ [µ]:

Pr
d,r

{
V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} and Qi(r) is δ-weak

}
=

∑
q : q is δ-weak

Pr
d,r

{
V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} | Qi(r) = q

}
· Pr

r
{Qi(r) = q}

=
∑

q : q is δ-weak

δ · Pr
r
{Qi(r) = q} < δ

31

By the union bound over positions 1, . . . ,µ,

Pr
d,r

{
V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} and any Qj(r) is δ-weak

}
< µ · δ.

Combining this with the definition of auspicious, we get

(1/2)ε− µ · δ <Pr
d,r

{
V accepts and ∩µj=1 {Aj(d, r) = fc(Qj(r))} and all of Q1(r), . . . , Qµ(r) are δ-strong

}
≤Pr

d,r
{all of Q1(r), . . . , Qµ(r) are δ-strong}

= Pr
r
{all of Q1(r), . . . , Qµ(r) are δ-strong}

Substituting δ = (1/4)ε/µ in the lower bound gives the result.

Corollary B.8 (Most queries are strong). Recalling that Vpcp makes µ PCP queries, if ρ′ of these queries
are independently and uniformly random, then (in auspicious commit phases) the fraction of total queries
that is δ-strong is greater than (ε/4)1/ρ′ .

At this point, we are ready to argue that the overwhelming majority of queries are δ-strong. Looking at
Zaatar’s PCP, it has ρ′ = 320 queries that hit πz randomly. Furthermore, we took ε = 2εpcp ≈ 10−6 (since
εpcp, the soundness error of Zaatar’s PCP, is ≈ 5 · 10−7 [71, Apdx. A]). Thus, by Corollary B.8, after
auspicious commit phases, the fraction of total queries that is δ-strong is greater than (ε/4)1/320 > 0.95.

In most commit phases, most queries are not confounding

Recall that the notion of being δ-confounding is a function of the commit phase. We will now show that in
the vast majority of commit phases, the vast majority of q are not ε3-confounding (ε3 is from Claim B.2).

Claim B.9 (Most queries are clear). Letting Prq denote a uniformly random choice of q,

Pr
c

{
Pr
q
{q is ε3-confounding} < 1/20

}
> 1− 20µε3

Proof. Let Gq,i(c) denote the event in commit phase c that

Pr
d,r
{{Ai(d, r) 6= fc(q)} and decommit happens | Qi(r) = q} > ε3.

Once q and i have been fixed, this expression is either true or not in commit phase c, and that is what the
events G will capture. Claim B.2 implies:

∀q, i : Pr
c
{Gq,i(c)} < ε3.

Applying a union bound over query positions, we get

∀q : Pr
c

{
∪µi=1Gq,i(c)

}
< µε3.

By definition of ε3-confounding

∀q : Pr
c
{q is ε3-confounding} < µε3.

Applying a standard averaging argument followed by a Markov bound

Pr
c

{
Pr
q
{q is ε3-confounding} > 1/20

}
< 20µε3

The complementary probabilities and events to the ones immediately above imply the claim.

32

Completing the analysis

We require

ε3 < min
{

ε

40µ
,
ε

80µ

}
because:

1. The first component in the min ensures that ε3 < δ/10 (recall that δ = ε/(4µ)). This bound gives us
a gap (between δ and δ/10) that helps us pump the prover in the “inner extraction loop”.

2. The second component will ensure that the fraction of useful commit phases is > ε/2−20µε3 > ε/4,
which we want, to ensure that ε′K (in the definition of PoK) is non-negligible.

We must verify that the upper bound on ε3 holds. Recall that ε3 < 6 · 3
√

1/|F| (from Claim B.2) and
ε = 2εpcp ≈ 10−6 (see Corollaries B.6 and B.8); also, µ is almost exactly 1000. Fortunately, at the field
size that Pantry works with (128 bits), 6 · 3

√
1/|F| < ε/(80µ), so the bound holds.

Analyzing the steps of the extractor. By Claim B.4, if the PoK premise (Pr{V accepts} > εK) holds,
the choice of commit phase in the extractor is useful with probability > ε/2− (20µε3) > ε/4; this is a
commit phase that is both auspicious and bounds the fraction of ε3-confounding queries, in the sense of
Claim B.9. From now on, we assume such a useful commit phase. By Corollary B.6, fc(·) is δ′-close to a
linear function that encodes a satisfying witness~z, for some δ′ that is < .03. Note that this δ′ is different
from the δ in some of the claims stated earlier.

Now fix t; consider iteration k. Look at query qr in this iteration. By definition of δ′-close, we
have Prqr{qr hits fc(·) where it is not linear} < .03, where the probability is taken over the coins that
generate qr. Also, by Corollary B.8, Prqr{qr is δ-weak} < 1 − (ε/4)1/ρ′ < .05. And we have 1/20 >
Prqr{qr is ε3-confounding} ≥ Prqr{qr is δ/10-confounding}. The first inequality comes from Claim B.9;
the second, from the bound on ε3 and the definition of confounding. Therefore, the probability (over the
random choice of qr and qs) that qr and qs both have the desirable properties (namely: hit fc(·) where
linear; strong; clear) is at least 1 − 2(.03 + .05 + .05) = 0.74. Call an iteration k in which this event
occurs “good”.

Next, consider the “inner loop” (the function extract_response), assuming the iteration is good.
We’ll speak of qr, but the same analysis applies to qs:

• Because qr is δ-strong, there is a query position i∗ for which the i∗ response is fc(qr), with probability
at least δ over the reverse sampling coins. Thus, the expected number of times decommit succeeds
when i = i∗ is ≥ δ · T2. Now we apply a Chernoff bound, using this form [61, Thm. 4.2]: Pr{X ≤
(1− a)E[X]} < e−a2·E[X]/2. We take E[X] ≥ δ · T2 and a ≥ 2/3. This implies that for T2 > 21/δ, the
probability in iteration k that position i∗ will not label fc(qr) a candidate is < (1/100). The probability
is over the coins used for reverse sampling in the j loop of iteration i∗.

• Now fix any position i ∈ [µ]. Call all field elements besides fc(qr) scrap. We wish to upper bound
the probability of the event (over the reverse sampling coins used in the j loop) that all scrap, together,
is decommitted more than (δ/3) · T2 times: this probability is an upper bound on the probability that
any field value is actually labeled a candidate (since if the scrap together does not clear the threshold,
then no element by itself does). qr is (δ/10)-clear, so the expected number of times that all scrap,
together, is decommitted is < (δ/10) · T2. We use this form of the Chernoff bound [61, Thm 4.3]:
Pr{X ≥ (1 + a)E[X]} < e−a2E[X]/4. For T2 ≥ 4.7/δ > (ln(100µ))/(2.5 · δ), an upper bound on the
event in question is 10−5.

• Now we can union bound over all µ query positions: the probability (over the reverse sampling coins
in extract_response) that any position has a scrap candidate is < µ · 10−5. Combining this with the
event that fc(qr) is not labeled a candidate, we get that fc(qr) is not returned from extract_response

33

with probability upper-bounded by 2/100. The same goes for fc(qs).

Now, if iteration k is good, and furthermore produces fc(qr) and fc(qs), then σ2 − σ1 = fc(qr + et)−
fc(qr) =~z · (qr + et)−~z · (qr) =~z · et = zt. Thus, in iteration k, the probability (over all of the randomness
that the algorithm used in the iteration: choice of qr, qs and reverse sampling in extract_response) of
outputting zt is greater than > 1 − 2(.03 + .05 + .05 + .02) = 7/10. Now we apply another Chernoff
bound, this time over the iterations k. For T1 > 3500, the probability that there are fewer than T1/2
instances of zt is < e−100.

Applying a union bound to all positions in the witness, the probability of not extracting the witness
(if we’re in a useful commit phase) is < n′ · e−100. Also, the probability of a useful commit phase is, as
stated above, greater than ε/4; furthermore, ε = 2 · εpcp (see page 31). Therefore, the probability (over
all of the extractor’s many coin flips) of producing a witness is at least

(
εpcp/2

)
·
(
1− n′ · e−100

)
, which

was what the lemma claimed.

Our analysis produced lower bounds for T1 and T2: T1 > 3500 and T2 > 80 billion. The extractor thus
has an appalling concrete cost: producing one component of a witness requires running the verifier-prover
decommit phase (including generating queries) 5 · 1017 times, and that’s only if the event of a useful
commit phase happened, which has probability ≥ ε/4 ≈ 2.5 · 10−7! Thus, the expected time to generate a
witness is 1024 times the effort required to run the decommit phase. Nevertheless, the extractor runs in
“polynomial time”, as required. (The quotation marks are because our analysis is not asymptotic; in an
asymptotic analysis, n′ would grow, the error terms would depend on n′, etc.)

Furthermore, the expected time to obtain a witness, though massive, is still far less than the expected
time to generate a hash collision, as Pantry uses a hash function with at least 180 bits of security (§7).
This gap is sufficient to generate the required contradictions in the proofs in Appendix A.

C An HMAC-based commitment
In Section 6, we explain that in order to enable applications where the prover’s state is private, we need
a commitment to bind the prover to the state while hiding it from the verifier. Ordinarily, we would use
a standard commitment scheme, such as Pedersen’s [67], which would guarantee binding with respect
to a computationally-bound prover along with information-theoretic hiding with respect to the verifier.
Because Pedersen’s protocol cannot be represented efficiently as constraints, we instead use a simple
scheme based on HMAC-SHA256, which also provides computational binding, but hiding that is only
computational. We present our scheme and prove its security here.

1. Setup(1n)→ CK
Setup takes a unary string of length n, a security parameter, and returns CK, a public commitment
key that is used to distinguish commitments based on this construction from other MACs generated
using HMAC-SHA256.

2. Commit(m, r)→ c, where c = HMAC-SHA256r(CK ||m) and r ←R {0, 1}512

Commit takes the message m and a randomly-chosen value r as input and returns a commitment c. r
can later be revealed to decommit.

3. Decommit(m′, r′, c)→
{

true if c = HMAC-SHA256r′(CK ||m′)
false otherwise

Decommit takes the purported message m′ and decommitment key r′ as input and recomputes the
HMAC-SHA256 to check whether it equals the received commitment c. If so, the commitment is
considered validly decommitted, and it is considered invalidly decommitted otherwise.

34

Lemma C.1. The construction above, which we denote Π = (Setup, Commit, Decommit), is a correct,
computationally hiding, computationally binding commitment if (1) HMAC-SHA256 is a PRF and
(2) SHA-256 is a CRHF.

Proof. A commitment scheme is correct if Decommit(m, r, Commit(m, r)) = true for all m and r. One can
see that Π is correct because Decommit(m, r, c) = true when c = HMAC-SHA256r(CK ||m), which is
exactly what Commit(m, r) computes. The proofs of hiding and binding follow from Claims C.2 and C.3
respectively.

Claim C.2. If HMAC-SHA256 is a PRF,9 then Π is a computationally hiding commitment.

Proof. Computational hiding is defined with respect to the following game played by a probabilistic
polynomial time (PPT) adversary A:

1. The committer runs Setup(1n)→ CK
2. A picks two messages m0 and m1.
3. The committer chooses b←R {0, 1} and r ←R {0, 1}k, computes c = Commit(mb, r), and sends c to
A.10

4. A outputs b′ and wins if b′ = b.
Denote the probability (over the random choices of A and the committer) that A wins this game against
commitment scheme Π by Pr

{
BreakHidingA,Π(n) = 1

}
. We say that Π is computationally hiding if

ε(n)
def
= Pr

{
BreakHidingA,Π(n) = 1

}
− 1

2 is negligible.

To see why ε(n) must be negligible, we consider a variant of our scheme Π̃ = (S̃etup, C̃ommit, ˜Decommit)
where HMAC-SHA256r(CK ||m) is replaced by f (CK ||m) and f is a truly random function. In that case,
Pr
{

BreakHidingA,Π̃(n) = 1
}

= 1
2 and therefore,

ε(n) = Pr
{

BreakHidingA,Π(n) = 1
}
− Pr

{
BreakHidingA,Π̃(n) = 1

}
.

Now, suppose that we construct a PPT algorithm D that attempts to distinguish between HMAC-
SHA256 and f defined as follows.
1. D is given 1n along with an oracle O that is either HMAC-SHA256r, where r ←R {0, 1}512, or f .
2. D runs Setup(1n)→ CK andA(1n). WhenA provides two messages m0 and m1,D picks b←R {0, 1},

and returns c = O(CK ||mb) to A.
3. When A outputs b′, D returns 1 if b′ = b and 0 otherwise.

If O is HMAC-SHA256r, then A’s view when run as a subroutine of D is identical to A’s view when
playing the computational hiding game. Thus,

Pr
{
DHMAC-SHA256r (1n) = 1

}
= Pr

{
BreakHidingA,Π(n) = 1

}
where Pr

{
DHMAC-SHA256r (1n) = 1

}
is taken over r and D’s and A’s random choices, and similarly,

Pr
{
Df (1n) = 1

}
= Pr

{
BreakHidingA,Π̃(n) = 1

}
and so

ε(n) = Pr
{
DHMAC-SHA256r (1n) = 1

}
− Pr

{
Df (1n) = 1

}
.

If ε(n) were not negligible, then D would be able to distinguish between HMAC-SHA256 and f , violating
our assumption that HMAC-SHA256 is a PRF.

9Bellare shows that HMAC is a PRF if the underlying compression function is a PRF [12]. We assume that SHA-256 is a PRF
when its initialization vector is chosen randomly and kept secret.

10The value of k depends on the commitment scheme.

35

Claim C.3. If SHA-256 is a CRHF, then Π is a computationally binding commitment.

Proof. Computational binding is defined with respect to the following game played by a PPT adversary
A.

1. A runs Setup(1n)→ CK
2. A picks two messages m0 and m1 such that m0 6= m1 and two decommitment keys r0 and r1. A then

computes Commit(m0, r0)→ c0 and Commit(m1, r1)→ c1
3. A outputs CK, m0, m1, r0, r1, c0, and c1 and wins if c0 = c1.

Let the probability (over A’s random choices) that A wins this game against our scheme Π be
Pr
{

BreakBindingA,Π(n) = 1
}

. If this probability is negligible, then we can say that Π is computationally
binding.

To see why it must be negligible, we construct a PPT algorithm B that uses A in an attempt to find a
collision in SHA-256. B is defined as follows.

1. B is given 1n and runs A(1n).

2. When A outputs CK, m0, m1, r0, r1, c0, and c1, B constructs four messages:

a0 = (r0 ⊕ ipad) ||CK ||m0

b0 = (r0 ⊕ opad) ||SHA-256(a0)

a1 = (r1 ⊕ ipad) ||CK ||m1

b1 = (r1 ⊕ opad) ||SHA-256(a1),

where opad is a string of 64 0x5c bytes and ipad is a string of 64 0x36 bytes. If b0 6= b1, B outputs
m = b0 and m′ = b1. Otherwise, B outputs m = a0 and m′ = a1. B wins if SHA-256(m) =
SHA-256(m′) and m 6= m′.

A’s view when run as a subroutine of B is identical to A’s view when playing the computational bind-
ing game. Moreover, because HMAC-SHA256r(x) = SHA-256((r ⊕ opad) ||SHA-256((r ⊕ ipad) || x)),
B wins exactly when A would have won the computational binding game (i.e., when Commit(m0, r0) =
Commit(m1, r1) where m0 6= m1). Thus,

Pr
{

CollisionSHA-256
B (1n) = 1

}
= Pr

{
BreakBindingA,Π(n) = 1

}
where Pr

{
CollisionSHA-256

B (1n) = 1
}

is taken over B’s (really A’s) random choices. As a result, if the
probability that A wins the computational binding game were non-negligible, then the probability that B
finds a collision in SHA-256 would be as well, violating the assumption that SHA-256 is a CRHF.

D Applications and parameters
This appendix describes the configuration of our experimental evaluation (§8) in more detail.

D.1 Details of sample applications
Dot product. Computes the dot product between two integer arrays, each of length m. Each mapper gets a
chunk of the input vectors and computes a partial dot product, outputting an integer. Each reducer gets as
input a list of numbers, and sums it. Another reducer phase sums the sums.

Nucleotide substring search. Searches m nucleotides for length-d substring. Each mapper gets as input
a chunk of DNA and the same length-d substring; if a mapper finds a match, it outputs the position of the
match. Each reducer takes as input a list of locations and concatenates them.

36

Nearest neighbor search. The search takes as input a length-d target vector and a list of m vectors,
each of length d. Each mapper gets as input a subset of the search list of m vectors and the target vector.
A mapper computes the Euclidean distance between the target vector and each vector in the subset,
outputting a list of distances. Each reducer takes as input a list of Euclidean distances and computes the
minimum. Another reducer phases computes the minimum among these minimums.11

Covariance matrix. Computes the covariance matrix for m samples, each of dimension d. Each mapper
gets as input a subset of the samples and computes a d×d covariance matrix, for its samples. Each reducer
aggregates a set of these matrices, producing another d × d matrix. Then, a final reduce phase produces
the final covariance matrix.

SELECT, INSERT, and UPDATE. These queries do as their names imply. Our database has three indices,
and parameters are given in Figures 10 and 12.

Face matching. The prover stores a list of 928-bit fingerprints of faces and a threshold for each
fingerprint. The verifier supplies a fingerprint of 928 bits, and the prover indicates that there is a match if
and only if the Hamming distance between the input fingerprint and one of the faces in the list is below
the threshold for that fingerprint. This algorithm is based on the approach of Osadchy et al. [63].

Tolling. The verifier is a toll collector, and the prover is a driver. The prover uses toll roads during a
month and maintains a private database of its own toll road usage. Whenever the prover passes a tolling
location, it adds a tuple to its database of the form (time, tolling location id, toll amount). The verifier
can randomly and unpredictably “spot check” the prover whenever it uses a tolling location by storing a
tuple of the same form in a separate database; the prover cannot tell whether it has been spot checked. At
the end of the month, the prover sends a commitment to its database to the verifier. The computation to
be verified takes as input the prover’s commitment to its database and the spot checks that the verifier
collected. The computation outputs REJECT if one of the spot checks does not have a “close matching
tuple” in the database (two tuples are a close match when the tolling location id and toll amount match
and when the difference in the times is less than a system parameter). Otherwise, the computation returns
the total cost of tolls incurred by the prover in that month.

Regression analysis. The verifier is a data analyst who, for example, would like to learn a model for the
effectiveness of a drug, based on a patient’s background and symptoms; the prover is a clinic. The prover
holds a list of patient records and sends a commitment to this data to the verifier. The computation takes as
input the prover’s commitment, a set of patient features to model, and a parameter k > 0. The computation
returns a linear function obtained by applying ridge regression [45] with regularization parameter k to all
patient records in the prover’s database; in the regression, the independent variables are the features, and
the dependent variable is patient recovery time. That is, the linear function produced by the computation
predicts a patient’s recovery time, as a function of the patient’s features, but does not reveal the details of
any particular patient record.

D.2 Parameters
For the experiments that use Zaatar, we configure the field F (recall that F = Fp) to have a prime modulus
of 128 bits. Zaatar uses ElGamal encryption (as part of step (3) in Section 2.2), and our experiments
presume 1024-bit keys [71]. For the experiments that use Pinocchio, we configure the field to have a prime
modulus of 254 bits. For Pinocchio’s pairing-based cryptography, we use a BN curve that provides 128
bits of security [11].

11This computation would be better named “nearest neighbor distance search”, as it returns the distance rather than the closest
vector; with minor changes (and few performance effects), the computation could return the distance and the nearest vector.

37

E Modeling
Below, we quantify the constants in the cost model in Figure 3. We run a set of microbenchmarks
to measure the costs of the basic operations (e.g., encryption, decryption, multiplication, etc.) on our
hardware platform (§8), and we use a detailed cost model from prior work [71] to estimate the constants.
The values are as follows:

Zaatar Pinocchio

c1 9 ns 9 ns
c2 77 µs 230 µs
c3 205 µs 6 ms
c4 4.8 µs 0.35 µs
c5 170 µs 243 µs
c6 1.5 µs 9.5 µs

Accuracy and assumptions. For applications that we use in Pantry, our end-to-end empirical results
are generally within 20% of their predictions, but for the prover, the empirics are smaller than predictions
of the cost model by up to a factor of 2. The primary reason for this deviation, as mentioned earlier, is
that Pantry’s applications include a large number of storage constraints (§8), and the values taken by the
variables in those constraints are much smaller than the prime modulus, p, which reduces the value of c5
for such applications.

Extensions for a more faithful model. One way to improve the accuracy of our simple cost model is to
make c5 depend on the relative number of bitwise operations and on the average number of bits in the
values taken by variables in the constraints of a computation.

38

Acknowledgments
We first learned of the folklore approach to verifying computations with state from motivating comments by Yuval
Ishai and an anonymous NDSS 2012 reviewer. Suggestions by Dan Boneh, Bryan Parno, Chris Peikert, and Shabsi
Walfish substantially strengthened this work. We thank Chris and Shabsi for patient explanations. Feedback and
comments from Sebastian Angel, Allen Clement, Josh Leners, David Mazières, Bryan Parno, Riad Wahby, Brent
Waters, Edmond L. Wong, George Candea (our shepherd), and the anonymous reviewers improved this draft. The
Texas Advanced Computing Center (TACC) at UT supplied computing resources. This work was supported by
AFOSR grant FA9550-10-1-0073; NSF grants 1040672, 1055057, and 1040083; a Sloan Fellowship; and an Intel
Early Career Faculty Award.

For Pantry’s source code: http://cs.utexas.edu/pepper

References
[1] Cassandra CQL. http://cassandra.apache.org/doc/cql/CQL.html.
[2] High-speed software implementation of the optimal Ate pairing over Barreto-Naehrig curves.

https://github.com/herumi/ate-pairing.
[3] leveldb – a fast and lightweight key/value database library by Google.

https://code.google.com/p/leveldb/.
[4] M. Ajtai. Generating hard instances of lattice problems. In ACM Symposium on the Theory of Computing

(STOC), pages 99–108, May 1996.
[5] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@home: An experiment in

public-resource computing. Communications of the ACM (CACM), 45(11):56–61, Nov. 2002.
[6] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of

approximation problems. Journal of the ACM, 45(3):501–555, May 1998.
[7] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM,

45(1):70–122, Jan. 1998.
[8] M. J. Atallah and K. B. Frikken. Securely outsourcing linear algebra computations. In ACM Symposium on

Information, Computer and Communications Security (ASIACCS), pages 48–59, Apr. 2010.
[9] L. Babai. Trading group theory for randomness. In ACM Symposium on the Theory of Computing (STOC),

pages 421–429, May 1985.
[10] B. Barak and O. Goldreich. Universal arguments and their applications. SIAM Journal on Computing,

38(5):1661–1694, 2008.
[11] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In Selected Areas in

Cryptography (SAC), 2006.
[12] M. Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In CRYPTO, 2006.
[13] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In IACR

International Cryptology Conference (CRYPTO), pages 1–15, 1996.
[14] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions from RAMs to delegatable succinct

constraint satisfaction problems. In Innovations in Theoretical Computer Science (ITCS), pages 401–414, Jan.
2013.

[15] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C: Verifying program
executions succinctly and in zero knowledge. In IACR International Cryptology Conference (CRYPTO), pages
90–108, Aug. 2013.

[16] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets. In IACR
International Cryptology Conference (CRYPTO), pages 111–131, Aug. 2011.

[17] J.-L. Beuchat, J. E. G. Diaz, S. Mitsunari, E. Okamoto, F. Rodriguez-Henriquez, and T. Teruya. High-speed
software implementation of the optimal Ate pairing over Barreto-Naehrig curves. Cryptology ePrint Archive,
Report 2010/354, June 2010. http://eprint.iacr.org/.

[18] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again. In Innovations in Theoretical Computer Science
(ITCS), pages 326–349, Jan. 2012.

[19] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping for SNARKs and
proof-carrying data. In ACM Symposium on the Theory of Computing (STOC), pages 111–120, June 2013.

39

http://cs.utexas.edu/pepper
http://cassandra.apache.org/doc/cql/CQL.html
https://github.com/herumi/ate-pairing
https://code.google.com/p/leveldb/
http://eprint.iacr.org/

[20] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive arguments via linear
interactive proofs. In IACR Theory of Cryptography Conference (TCC), pages 315–333, Mar. 2013.

[21] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories. In
Symposium on Foundations of Computer Science (FOCS), pages 90–99, Oct. 1991.

[22] D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), pages 149–168,
May 2011.

[23] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge. Journal of Computer and
System Sciences, 37(2):156–189, Oct. 1988.

[24] B. Braun. Compiling computations to constraints for verified computation. UT Austin Honors thesis
HR-12-10, Dec. 2012.

[25] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish. Verifying computations with state.
In ACM Symposium on Operating Systems Principles (SOSP), pages 341–357, Nov. 2013.

[26] R. Canetti, B. Riva, and G. Rothblum. Practical delegation of computation using multiple servers. In ACM
Conference on Computer and Communications Security (CCS), pages 445–454, Oct. 2011.

[27] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM Transactions on
Computer Systems (TOCS), 20(4):398–461, Nov. 2002.

[28] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with streaming interactive
proofs. In Innovations in Theoretical Computer Science (ITCS), pages 90–112, Jan. 2012.

[29] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-damgård revisited: how to construct a hash
function. In IACR International Cryptology Conference (CRYPTO), pages 430–448, Aug. 2005.

[30] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. In Symposium on
Operating Systems Design and Implementation (OSDI), pages 107–113, Dec. 2004.

[31] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic third-party data publication. In Data and
Application Security: Development and Directions, pages 101–112. Springer, 2002.

[32] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix computations, with
applications. In ACM Conference on Computer and Communications Security (CCS), pages 501–512, May
2012.

[33] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure distributed read-only file system. In Symposium on
Operating Systems Design and Implementation (OSDI), pages 1–24, Oct. 2000.

[34] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas. Caches and hash trees for efficient memory
integrity verification. In IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 295–306, Feb. 2003.

[35] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to
untrusted workers. In IACR International Cryptology Conference (CRYPTO), pages 465–482, Aug. 2010.

[36] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs without
PCPs. In Annual International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 626–645, May 2013.

[37] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In
ACM Symposium on the Theory of Computing (STOC), pages 99–108, June 2011.

[38] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: securing remote untrusted storage. In Network
and Distributed System Security Symposium (NDSS), pages 131–145, Feb. 2003.

[39] O. Goldreich. Foundations of Cryptography: II Basic Applications. Cambridge University Press, 2004.
[40] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice problems. Electronic

Colloquium on Computational Complexity (ECCC), TR96-042:236–241, 1996.
[41] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive proofs for muggles. In

ACM Symposium on the Theory of Computing (STOC), pages 113–122, May 2008.
[42] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM

Journal on Computing, 18(1):186–208, 1989.
[43] P. Golle and I. Mironov. Uncheatable distributed computations. In RSA Conference, pages 425–440, Apr.

2001.
[44] N. Hardy. The Confused Deputy: (or why capabilities might have been invented). ACM SIGOPS Operating

Systems Review, 22(4):36–38, Oct. 1988.
[45] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.

40

Technometrics, 12(1):55–67, 1970.
[46] Y. Ishai. Personal communication, June 2012.
[47] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments without short PCPs. In IEEE Conference on

Computational Complexity (CCC), pages 278–291, June 2007.
[48] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: scalable secure file sharing on

untrusted storage. In Conference on File and Storage Technologies (FAST), pages 29–42, Mar. 2003.
[49] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall / CRC Press, 2007.
[50] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In ACM Symposium

on the Theory of Computing (STOC), pages 723–732, May 1992.
[51] H. M. Levy. Capability-Based Computer Systems. Digital Press, 1984.
[52] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Secure untrusted data repository (SUNDR). In Symposium

on Operating Systems Design and Implementation (OSDI), pages 121–136, Dec. 2004.
[53] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. Journal of

the ACM, 39(4):859–868, 1992.
[54] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted database system on untrusted storage.

In Symposium on Operating Systems Design and Implementation (OSDI), pages 135–150, Oct. 2000.
[55] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure two-party computation system. In USENIX

Security, pages 287–302, Aug. 2004.
[56] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–213, Oct. 1998.
[57] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A general model for

authenticated data structures. Algorithmica, 39(1):21–41, Jan. 2004.
[58] R. C. Merkle. A digital signature based on a conventional encryption function. In IACR International

Cryptology Conference (CRYPTO), pages 369–378, Aug. 1987.
[59] D. Micciancio and O. Regev. Lattice-based cryptography. In D. J. Bernstein and J. Buchmann, editors,

Post-quantum Cryptography, pages 147–191. Springer, 2008.
[60] F. Monrose, P. Wycko, and A. D. Rubin. Distributed execution with remote audit. In Network and Distributed

System Security Symposium (NDSS), pages 103–113, Feb. 1999.
[61] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
[62] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft. Privacy-preserving ridge

regression on hundreds of millions of records. In IEEE Symposium on Security and Privacy, pages 334–348,
May 2013.

[63] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI – a system for secure face identification. In
IEEE Symposium on Security and Privacy, pages 239–254, May 2010.

[64] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In IACR Theory of
Cryptography Conference (TCC), pages 222–242, Mar. 2013.

[65] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly practical verifiable computation. In IEEE
Symposium on Security and Privacy, pages 238–252, May 2013.

[66] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust in Modern Computers. Springer, 2011.
[67] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In IACR

International Cryptology Conference (CRYPTO), pages 129–140, Aug. 1991.
[68] R. A. Popa, H. Balakrishnan, and A. Blumberg. VPriv: Protecting privacy in location-based vehicular services.

In USENIX Security, pages 335–350, Aug. 2009.
[69] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying integrity and

guaranteeing execution of code on legacy platforms. In ACM Symposium on Operating Systems Principles
(SOSP), pages 1–16, Oct. 2005.

[70] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and unconditional verification of remote
computations. In Workshop on Hot Topics in Operating Systems (HotOS), May 2011.

[71] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish. Resolving the conflict between generality
and plausibility in verified computation. In European Conference on Computer Systems (EuroSys), pages
71–84, Apr. 2013.

[72] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making argument systems for outsourced
computation practical (sometimes). In Network and Distributed System Security Symposium (NDSS), Feb.
2012.

[73] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking proof-based verified

41

computation a few steps closer to practicality. In USENIX Security, pages 253–268, Aug. 2012.
[74] H. Shacham and B. Waters. Compact proofs of retrievability. In ASIACRYPT, pages 90–107, Dec. 2008.
[75] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, Oct. 1992.
[76] R. Sion. Query execution assurance for outsourced databases. In International Conference on Very Large

Databases (VLDB), pages 601–612, Aug. 2005.
[77] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In IACR International Cryptology

Conference (CRYPTO), pages 71–89, Aug. 2013.
[78] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable computation with massively parallel

interactive proofs. In USENIX HotCloud Workshop, June 2012.
[79] B. Thompson, S. Haber, W. G. Horne, T. Sander, and D. Yao. Privacy-preserving computation and verification

of aggregate queries on outsourced databases. In Privacy Enhancing Technologies Symposium, pages
185–201, Aug. 2009.

[80] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for interactive verifiable computation.
In IEEE Symposium on Security and Privacy, pages 223–237, May 2013.

[81] C. Wang, K. Ren, and J. Wang. Secure and practical outsourcing of linear programming in cloud computing.
In IEEE International Conference on Computer Communications (INFOCOM), pages 820–828, Apr. 2011.

[82] S. Zahur and D. Evans. Circuit structures for improved efficiency of security and privacy tools. In IEEE
Symposium on Security and Privacy, pages 493–507, May 2013.

[83] L. Zhou. Personal communication, Oct. 2012.

42

	1 Introduction
	2 Pantry's base: Zaatar and Pinocchio
	2.1 Overview of Zaatar and Pinocchio
	2.2 Zaatar and Pinocchio in more detail
	2.3 Amortization, guarantees, and costs
	2.4 Expressiveness

	3 Storage model and primitives in Pantry
	3.1 Verifiable blocks: overview
	3.2 Verifiable blocks: details and costs
	3.3 Guarantees and non-guarantees

	4 Verifiable MapReduce
	5 Verifiable data structures
	5.1 Verifiable RAM
	5.2 Search tree
	5.3 Verifiable database queries
	5.4 Compromises and limitations

	6 Private prover state
	7 Implementation details
	8 Evaluation
	8.1 Overhead and its sources
	8.2 All is not lost

	9 Related work
	10 Discussion, limitations, and conclusion
	A Pantry's correctness
	A.1 Setup and definition of proof-of-knowledge
	A.2 V rejects incorrect outputs
	A.3 Remote state

	B Zaatar and proof-of-knowledge
	B.1 Preliminaries
	B.2 The extraction procedure
	B.3 Analysis of the extractor

	C An HMAC-based commitment
	D Applications and parameters
	D.1 Details of sample applications
	D.2 Parameters

	E Modeling

