
The LOCAL attack: Cryptanalysis of the
authenticated encryption scheme ALE

Dmitry Khovratovich and Christian Rechberger

1 University of Luxembourg, dmitry.khovratovich@uni.lu
2 DTU, Denmark, crec@dtu.dk

Abstract. We show how to produce a forged (ciphertext,tag) pair for
the scheme ALE with data and time complexity of 2102 ALE encryptions
of short messages and the same number of authentication attempts. We
use a differential attack based on a local collision, which exploits the
availability of extracted state bytes to the adversary. Our approach allows
for a time-data complexity tradeoff, with an extreme case of a forgery
produced after 2119 attempts and based on a single authenticated mes-
sage. Our attack is further turned into a state recovery and a universal
forgery attack with a time complexity of 2120 verification attempts using
only a single authenticated 48-byte message.

1 Introduction

Cryptanalysis and design of authenticated encryption primitives are getting re-
newed interest, not least because of the CEASAR initiative [1]. Recently, at
DIAC 2012 and FSE 2013, a proposal named ALE was presented by Bogdanov et.
al [6]. ALE provides online single-pass encryption and authentication functional-
ity with optional processing of associated data in a single primitive. The design
borrows well tested ideas from Pelican-MAC [8] and the AES-based stream-
cipher LEX [3]. From an implementation point of view it is an attractive pro-
posal as it both lends itself to lightweight hardware implementation, and at the
same time offers very high speed software implementations on platforms with
AES instructions available.

The designers claim 128-bit security against state recovery, key recovery, or
forgery attacks, under the assumptions that nonces are not re-used. Our crypt-
analysis suggests that the security against forgery and state recovery attacks is
less than expected and claimed. Even though the designers limited the amount
of data that can be authenticated or both authenticated and encrypted to 245

bytes, our forgery attack will likely succeed. In fact, for a variant of our approach,
as little as 32 bytes of available data are enough. Forthermore our approach can
be extended to recover the full 256-bit internal state of ALE.

Our methods. We use differential cryptanalysis despite the designers’ intention of
making these attacks unlikely. Their motivation comes from the good properties
of the AES round function when iterated a few times, leading to very low bounds



for the probability of differential characteristics and differentials. Study of so-
called extinguishing differentials in the context of Pelican-MAC backs up this
analysis.

Our attack uses differentials of a particular type, called “local collisions”,
as they lead to the same tags for different plaintexts. These seem to have been
first used in the collision search of SHA-0 [7], and more recently in related-key
key-recovery attacks on AES-192 and AES-256 [4], and are also related to the
aforementioned extinguishing differentials from the security analysis of Pelican-
MAC [8]. However, as we discovered, using information that is leaked via the
ciphertext these local collisions can be constructed much faster than expected, in
turn leading to forgery attacks. Because of these properties, we call our method
the LOCAL method:“LOcal-Collision Amplification via Leakage”.

Outline of the paper and our results. We give a short introduction into the
state of the art in the authenticated encryption in Section 2. We also provide a
detailed description of ALE and discuss its similarities and differences to LEX.
Then we proceed with the description of our attack in Section 3. We show that
each encrypted message has many counterparts which yield the same tag with
probability from 2−119 to 2−102. Hence we can use a time-data tradeoff and
demonstrate the fastest attack when 2102 messages are available, and the slowest
with complexity 2119 when only a single message is available. In Section 4 we
turn this attack into a stronger attack, allowing for state recovery and hence
universal forgery. We discuss various repair strategies in Section 5 and conclude
that a version of ALE resistant to our attack would have to suffer about 30% in
performance.

2 Authenticated encryption schemes and ALE

It has been known for a while that the encryption modes CBC, CFB, and
CTR do not provide any sort of data integrity. Whenever a recipient of a ci-
phertext needs to check whether it was not modified by an adversary, a separate
mechanism is needed. A traditional way to authenticate the ciphertext is to com-
pute a message authentication code (MAC) of it, also called a tag. A secure way
to do it, known as Encrypt-then-MAC, is to produce a MAC on another key
and couple it with the ciphertext. A combination of a secure mode of operation
and a secure MAC yields a secure authenticated encryption scheme [2], which
provides

– Confidentiality (inability to distinguish the ciphertext from a random string);
– Ciphertext integrity (inability to find a valid pair (ciphertext, tag)).

Apart from using two different constructions, this approach has one clear dis-
advantage: it uses two different keys, which puts additional burden on the end
user.



Since at least the year of 2000, cryptographers have tried to design an au-
thenticated encryption scheme, which would use a single key and would be at
least as efficient as Encrypt-then-MAC. The research went in two directions.
The first one deals with new modes of operation which use an arbitrary block
cipher. The ISO standards [13] GCM, CCM, and OCB are typical examples. The
patented OCB mode runs almost as fast as the counter encryption mode, which
yields the speed below one cycle per byte on modern CPUs if used with AES [11].
The second approach deals with dedicated AE schemes, such as Nessie submis-
sions like Helix or Sober-128, the eStream candidate Phelix, or Grain128a. Both
approaches typically use probabilistic encryption to achieve confidentiality, and
nonces are the usual source of randomness.

Modern authenticated encryption schemes are also able to authenticate so
called associated data (AD) without encrypting it [12]. A typical application
is Internet packets, whose contents are encrypted, whereas headers are not for
routing purposes, while they still should be bound to the encrypted data.

Syntax of authenticated encryption. It is customary to use the following syntax
for a nonce-based authenticated encryption scheme with associated data. The
encryption function E operates as follows:

E : K ×M×N ×A −→ C,

where K is the key space, M is the message (plaintext) space, N is the nonce
space, A is the associated data space, and C is the ciphertext space. The authen-
tication part of the ciphertext may be syntactically separated and called a tag
T ∈ T .

The decryption function decrypts valid ciphertexts into plaintexts, and in-
valid ciphertexts into an error (⊥):

D : K × C ×N ×A −→ M∪ {⊥}.

Security against forgery attacks comes from the inability of the computa-
tionally bounded adversary to produce a ciphertext that does not decrypt to
⊥.

Attack model. Though particular applications may have their own restrictions,
the security of the authenticated encryption scheme is defined with respect to
a quite powerful adversary [12]. She may ask almost arbitrary requests to en-
cryption and decryption oracles, with the main restriction that nonces do not
repeat in encryption requests (so called nonce-respective adversary). Usually, no
security is offered if the sender reuses the nonce. However, the receiver usually
does not have technical means to check whether the nonce has not been used
in another communication. Hence an adversary may ask to decrypt several tu-
ples (C,N,A) with the same nonce (authenticating herself to distinct receivers if
needed). A secure authenticated encryption scheme returns ⊥ even in this case.

It is said that the adversary can create a forgery, if she is able to submit a
tuple (C,N,A) to the decryption oracle such that



– It does not return ⊥.
– There have been no encryption request which contained N and A and re-

turned C.

This definition does not specify whether the adversary can choose the message
she wants to be authenticated. From the practical point of view, we say that the
adversary constructs a universal forgery if she indeed can choose the message at
her own, and an existential forgery if she can not.

Description of ALE

The authenticated encryption scheme ALE [6] is a dedicated scheme, which uses
components of the AES-128 block cipher.

AES. AES-128 operates on a 16-byte block, which is traditionally represented
as a matrix:

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Plaintext of AES-128 undergoes a sequence of 10 rounds, each preceded with
a subkey addition. One round consists of the following invertible transformations:

– SubBytes (SB) — nonlinear bytewise transformation. Each byte enters a so
called S-box (the same for the whole cipher). S-box has a maximal differential
probability of 2−6 (four conforming inputs), but the majority of differentials
have probability of either 2−7 or zero;

– ShiftRows (SR) — rotates row i in the array (counting from 0) by i positions
to the left;

– MixColumns (MC) — linear columnwise transformation. Invertible, has branch
number 5, i.e. two inputs differing in k bytes have outputs differing in at least
5− k bytes, and vice versa.

The last tenth round lacks MixColumns but is followed by another subkey ad-
dition.

The key schedule of AES-128 is a lightweight transformation that produce
subkeys in an invertible way.

ALE. ALE encrypts plaintexts up to 245 bytes long. The nonces and keys are
128-bit strings. The encryption proceeds as follows (Figure 1). During the ini-
tialization phase the 128-bit none N is encrypted on the 128-bit master key K
to produce the temporary key K1. The zero 128-bit string is encrypted on K to
produce the temporary state S1. The state S1 is then encrypted on K1 with 10
AES rounds. The last subkey of the latter encryption is denoted by K2.

The associated data is appropriately padded and split into 16-byte blocks.
The associated data phase alternates injecting the AD blocks into the state with



AES AES

Extended key scheduleAES

0

N

K

K

A1

AES
4 rounds

AES
4 rounds

AES
4 rounds

A2 Ar

Extended key schedule

M1

AES
4 rounds

leak

C1

M2

AES
4 rounds

leak

C2

AES
4 rounds

leak

Mt

AES
4 rounds

leak

Ct

AES
4 rounds

AES

K

T

Initialization phase Associated data phase

Message processing phase

01127

K1

S1

K2

Fig. 1. Outline of authenticated encryption scheme ALE for messages multiple
of block length.

encrypting the state with 4 AES rounds. The AD blocks are 16 bytes long and
are simply xored into the internal state. The encryption subkeys are taken from
the AES key schedule algorithm applied to K2 and extended for as many rounds
as needed (the original paper is a bit vague on the details, and we’ll return to
this issue in Section 4). This process continues in the message processing phase.

The message is partitioned into 16-byte blocks. For the sake of simplicity, we
consider only the case where the message byte length is a multiple of 16. Then the
message processing phase alternates groups of four leaking rounds with message
block injections. Every odd round the scheme extracts bytes 0, 2, 8, 10, and
every even round it extracts bytes 4, 6, 12, 14. The bytes are extracted after the
SubBytes operation.

A message block is xored to the internal state and is simultaneously xored
to the last 16 bytes extracted, which forms a new block of ciphertext C. After
the full message is processed, the scheme encrypts the state with four rounds
using the previous subkeys, xors 0x70 to byte 0, and encrypts the state again
with the key K for the full 10 rounds of AES-128. The result is declared the
authentication tag T .

Security claims. ALE designers claim the following: “Any forgery attack not
involving key recovery/internal state recovery has a success probability at most
2−128”.



Differences between LEX and ALE and design weaknesses. ALE inherited a
lot from the stream cipher LEX [3], which generates the keystream also by out-
putting specific bytes of the AES internal state. There are two crucial differences
between them apart of the authentication option: first, LEX uses the same key
in all his 10-group rounds, and second, LEX does not feed any data to the inter-
nal state. The former property led to distinguishing attacks on LEX based on
colliding states [9]. Distinct keys in ALE make these attacks irrelevant.

However, the latter difference actually weakens the design, as the attacker is
now able to manipulate the internal state, whose contents he has just observed
via leakage. Even though the extracted bytes and the message injections are
separated by subkey additions, the differential analysis bypasses this counter-
measure, as we see below.

3 Forgery Attack

Outline. In this section we demonstrate a forgery attack on ALE. Our goal is to
produce a fresh tuple (C,N,A) that does not decrypt to ⊥ (here C includes the
tag T ). An adversary first asks for the encryption of some messages, and then
attempts to forge the tag by modifying ciphertexts. Even though nonces repeat
in forgery attempts, they do not repeat in encryption requests. Therefore, our
attack operates in a standard model.

Attack overview. The attack proceeds as follows. We ask for the encryption of a
message M = (M1,M2):

EK(M,N,A) = C.

We do not care about the message contents, the nonce, and the associated data,
so the attack can be entirely known-plaintext as long as the plaintexts are at least
two blocks long. Then we attempt to construct a pair of differences∆ = (∆1, ∆2),
which yields a local collision in ALE if being applied to (M1,M2), meaning that
the two differences compensate each other. If the local collision property holds,
the authentication tag remains the same, and ciphertext is simply xored with
∆C = (∆1, ∆2, 0

128):
DK(C ⊕∆C , N,A) = M.

If it does not hold, we repeat the procedure for another difference or another
message, as explained below.

The designers of ALE supposedly ruled out such an attack, since the group
of four rounds of AES between the message injection benefits from the wide
trail strategy. The latter concept enables to prove that any 4-round differential
trail activates at least 25 S-boxes, which yields the maximum probability of
2−25·6 = 2−150. It should make any differential event, including the local collision,
highly unlikely. However, this idea does not take into account the fact that as
many as 16 bytes from the internal states have been extracted during these four
rounds. Since they are known to the adversary, he can select the differential trail
so that it has higher probability than the wide trail strategy offers. A differential
trail is easily converted to a verification attempt.



Attack details. First we note that the extracted bytes are the S-box outputs
(the inputs would work too). Hence whenever a trail activates an S-box whose
value is extracted, the difference propagation is deterministic in this S-box, and
it does not add a factor to the total probability. Thus we attempt to find a trail
that has low weight and this weight consists of as many “extraction” S-boxes as
possible.

We did not do an exhaustive search for all low-weight trails, but the following
round weights are good enough for our purposes:

16
SR,MC−−−−−→ 4

SR,MC−−−−−→ 1
SR,MC−−−−−→ 4

SR,MC−−−−−→ 16.

The optimal layout for active S-boxes is to be determined, but the one at Figure 2
is good enough, as only 17 active S-boxes out of 25 add a factor to the probability.

SR

MC
AK,SB

SR

MC
AK,SB

∆1

SR

MC
AK,SB

SR

MC
AK

AK,SB

∆2

#1 #2 #3 #4

Fig. 2. Differential trail for a local collision: overview. Orange cells are active
extraction S-boxes, violet cells are the other active S-boxes.

These trails can be constructed online very quickly in the start-from-the-
middle framework. We select a random difference in state #3 and expand it
in both directions. Whenever we encounter extraction S-boxes or MixColumns,
the difference evolves deterministically. For each active non-extraction S-box
we select an output difference so that the differential probability equals the
maximum 2−6. Eventually we obtain values of ∆1 and ∆2. Hence for every
extraction tuple it is easy to obtain a differential trail that holds with probability
2−17·6 = 2−102.

Therefore, for each encrypted 2-block message we can construct a counterpart
that yields the same authentication tag with probability 2−102. Hence we can
construct a forgery for ALE with complexity of 2102 ALE encryptions of two-
block messages and 2102 verification attempts. While it is enough to constitute
a weakness in ALE, the data complexity should be reduced further to match the
design restrictions.

Reducing the data complexity. The specification [6] requires that no more than
240 2-block messages be authenticated with a single key. In order to match this
condition, we use a simple tradeoff by allowing some r ≤ 17 S-boxes in a trail
to have non-maximal differential probability. Instead of one choice per S-box,



we now have 27 choices per non-optimal S-box, and hence many more trails for
the same message. The value r = 8 yields

(
17
8

)
256 ≈ 270.5 trails with probability

2−110. Hence we can use 240 plaintexts to generate 2110.5 verification attempts
with the total attack probability close to 1. By further increasing r we can work
with very low data complexity up to the extreme case of one message block,
where we have to use all the degrees of freedom in each S-box so that the attack
complexity increases to 27·17 = 2119.

The memory complexity of our attack is negligible, as we store only several
AES internal states and the S-box difference distribution table.

4 Turning the forgery into a state recovery attack

The fact that the forgery from above is the result of a differential attack reveals
much information about the internal state. Indeed, as long as the differential trail
holds, each active S-boxes takes at most 4 possible values (2 if the probability
is 2−7). Hence we obtain at least 116 bits of information about the state #1.
This may seem insufficient to fully recover the state and the key, as they take
256 bits altogether.

However, we note that the local collision attack can be repeated for the same
message but another pair of blocks (Figure 3). Assume that we have mounted
the forgery attack with local a collision based on blocks (M2,M3), whereas the
first block is M1. Then we attempt to construct another local collision based
on blocks (M1,M2) with a trail of the following form (again, SB and AK are
omitted):

4
SR,MC−−−−−→ 1

SR,MC−−−−−→ 4
SR,MC−−−−−→ 16

SR,MC−−−−−→ 16

As soon as we construct the second forged ciphertext, we obtain information
about the internal state in the last round where all S-boxes are active. Having
4 S-boxes extracted, we obtain 12 · 7 + 4 · 8 = 116 bits of information — the
same as for the first local collision. Let us guess the unknown 12 bits in both
fully active states and recompute the states towards the injection of M2. Let us
denote the subkeys encompassing the injection of M2 by Ka and Kb. Then we
obtain the following equation:

C0 ⊕Ka ⊕M2 ⊕Kb = C1,

where C0 and C1 are known constants. Hence we obtain the value Ka ⊕Kb.
The original specification says that Kb is derived from Kb by applying an

AES key schedule round with a specific constant:

Kb[0 . . . 3] = F (Ka[12 . . . 15])⊕Ka[0 . . . 3];

Kb[4 . . . 7] = Kb[0 . . . 3]⊕Ka[4 . . . 7];

Kb[8 . . . 11] = Kb[4 . . . 7]⊕Ka[8 . . . 11];

Kb[12 . . . 15] = Kb[8 . . . 11]⊕Ka[12 . . . 15].



M2

Ka Ka

SR

MC

State recovered
in the second forgery

SB
C0 C1

State recovered
in the first forgery

M2M1

M3M2
First forgery

Second forgery

State recovery

Fig. 3. Outline of the state recovery attack on ALE.

where F is an invertible nonlinear function, and K[x..y] is a tuple of the key
state bytes from x till y included.

It is easy to see that we can derive Kb[0 . . . 11] and F (Ka[12 . . . 15]) from
Ka⊕Kb, which easily yields the full Kb. Since the key schedule is invertible, we
can recover all the subkeys used in ALE. Furthermore, we obtain S1 = EK(0)
and K1 = EK(N), where K is the master key and N is the nonce. While we
can not recover the master key, we have got enough information to encrypt and
authenticate any message with nonce N .

Attack complexity. From Section 3 we have that the first local collision can
be obtained in time from 2102 to 2119, depending on the amount of available
data (Section 3). However, for the second collision we are restricted to the same
message. Hence we have to test possible differential trails one by one till we find
one that yields the local collision. The complexity of this step is equal to that of
the forgery attack with a single message — 2119. As soon as both local collisions
are constructed, the state recovery takes negligible time, as we only have to test
224 state values conforming to the active S-boxes. The memory complexity is
also negligible. The total time complexity equals 2120 forgery attempts of 48-
byte messages.

5 Strengthening ALE

It is a natural question if ALE can be strengthened to prevent our attack. One
may think that using five AES rounds would be enough, with the last round not
extracting any values. Indeed, our trail would expand to a fully active state in



the final round. However, there is a 5-round trail with only 26 active S-boxes, of
which 8 ones are extracted:

1
SR,MC−−−−−→ 4

SR,MC−−−−−→ 16
SR,MC−−−−−→ 4

SR,MC−−−−−→ 1
SR,MC−−−−−→ 4.

The total probability of the trail hence decreases to 2−110 (see Figure 4 for illus-
tration). However, much fewer trails can be built for a single message. For each
particular truncated differential trail we estimate with the rebound technique
that for each set of extracted values there are 214 valid trails. Hence the data
complexity would be about 296. By playing with the trail layout and by adding
one more active S-box we can further reduce it to about 280. Even though it
violates the data restriction, the security margin seems to be quite thin. Adding
one more round seem to solve the problem completely, as the best trail seems to
have 22 active non-extracted S-boxes. Hence we believe that at least 6 rounds
are required to counteract our attack.

SR

MC
AK,SB

SR

MC
AK,SB

∆1

SR

MC
AK

AK,SB

∆2

#1 #2 #3

SR

MC
AK,SB

#5#4

SR

MC
AK,SB

Fig. 4. Local collision trail for a 5-round variant of ALE.

Another countermeasure could be to decrease the number of extracted bytes.
If only 3 bytes are extracted at each round, so that 12 bytes are injected, it
might be difficult to construct a trail that yields a local collision. A much more
elaborate analysis is needed to investigate this option. Still, it would give quite
a penalty on the performance, but not that big as using 6 rounds instead of 4.

A third countermeasure could be to introduce key information into the round
transformations which the aim to separate the leaked bytes from the S-boxes
before and after the leak, as this has been done in ASC-1 [10]. This would
affect the performance only very moderately, however depending on how exactly
this key information would be derived, guess-and-determine extensions of the
LOCAL approach would need to be considered as well.

6 Conclusion

We have demonstrated how to construct forgeries for ALE within the security
claim limits. We show that the mere weight of a differential trail is a poor measure
of the scheme resistance to differential attack as long as the values of active S-
boxes are partially extracted or leaked. By choosing the trail values according
to the extracted bytes, we can amplify its probability and eventually construct a



forgery using 245 encrypted messages and 2110 time. The inability of the receiver
in a general case to avoid the nonce reuse enables us to reconstruct the internal
state of the encryption out of two forgeries on the same message, which in turn
leads to the universal forgery attack. One can hence say that ALE, similarly to
GCM, has high reforgeability [5].

We have also proposed several ways to strengthen ALE against our attack,
which include a larger number of rounds and a different leakage scheme.

Model Data Verification attempts Memory Security claim

Forgery

2102 2102 negl. not violated

Known plaintexts 240 2110 negl. violated

1 2119 negl. violated

1 1 negl. violated, success rate 2−119

State recovery, universal forgery

Known plaintexts 1 2120 negl. violated

Table 1. Summary of attacks on ALE

References

1. http://competitions.cr.yp.to/caesar.html.
2. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Rela-

tions among notions and analysis of the generic composition paradigm. In ASI-
ACRYPT’00, volume 1976 of Lecture Notes in Computer Science, pages 531–545.
Springer, 2000.

3. Alex Biryukov. The design of a stream cipher LEX. In Selected Areas in Cryptogra-
phy’06, volume 4356 of Lecture Notes in Computer Science, pages 67–75. Springer,
2006.

4. Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full
AES-192 and AES-256. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2009.

5. John Black and Martin Cochran. MAC reforgeability. In Orr Dunkelman, editor,
FSE, volume 5665 of Lecture Notes in Computer Science, pages 345–362. Springer,
2009.

6. Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vincent Rijmen, and
Elmar Tischhauser. ALE: AES-based lightweight authenticated encryption. In
FSE’13, to appear, 2013.

7. Florent Chabaud and Antoine Joux. Differential collisions in SHA-0. In
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 56–71.
Springer, 1998.

http://competitions.cr.yp.to/caesar.html


8. Joan Daemen and Vincent Rijmen. The Pelican MAC Function. IACR Cryptology
ePrint Archive, 2005:88, 2005.

9. Orr Dunkelman and Nathan Keller. A new attack on the LEX stream cipher.
In ASIACRYPT’08, volume 5350 of Lecture Notes in Computer Science, pages
539–556. Springer, 2008.

10. Goce Jakimoski and Samant Khajuria. ASC-1: An authenticated encryption
stream cipher. In Selected Areas in Cryptography’11, volume 7118 of Lecture Notes
in Computer Science, pages 356–372. Springer, 2011.

11. Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In FSE’11, volume 6733 of Lecture Notes in Computer Science,
pages 306–327. Springer, 2011.

12. Phillip Rogaway. Authenticated-encryption with associated-data. In ACM Con-
ference on Computer and Communications Security’02, pages 98–107, 2002.

13. ISO/IEC 19772 JTC 1 SC 27. Information technology – Security techniques –
Authenticated encryption, 2009.


	The LOCAL attack: Cryptanalysis of the authenticated encryption scheme ALE
	Dmitry Khovratovich and Christian Rechberger

