
Sequential Aggregate Signatures Made Shorter

Kwangsu Lee∗ Dong Hoon Lee† Moti Yung‡

Abstract

Sequential aggregate signature (SAS) is a special type of public-key signature that allows a signer to
add his signature into a previous aggregate signature in sequential order. In this case, since many public
keys are used and many signatures are employed and compressed, it is important to reduce the sizes of
signatures and public keys. Recently, Lee, Lee, and Yung (PKC 2013) proposed an efficient SAS scheme
with short public keys and proved its security without random oracles under static assumptions. In this
paper, we propose an improved SAS scheme that has a shorter signature size compared with that of Lee
et al.’s SAS scheme. Our SAS scheme is also secure without random oracles under static assumptions.
To achieve the improvement, we devise a new public-key signature scheme that supports multi-users
and public re-randomization. Compared with the SAS scheme of Lee et al., our SAS scheme employs
new techniques which allow us to reduce the size of signatures by increasing the size of the public keys
(obviously, since signature compression is at the heart of aggregate signature this is a further step in
understanding the aggregation capability of such schemes).

Keywords: Public-key signature, Aggregate signature, Sequential Aggregation, Multi-signature, Bilin-
ear map.

∗Korea University, Korea. Email: guspin@korea.ac.kr. This work was partially done while the author was at Columbia
University. Supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology
Research Center) support program (NIPA-2012-H0301-12-3007) supervised by the NIPA (National IT Industry Promotion Agency).

†Korea University, Korea. Email: donghlee@korea.ac.kr. Supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (No. 2010-0029121).

‡Google Inc. and Columbia University, USA. Email: moti@cs.columbia.edu.

1

1 Introduction

Aggregate signature is a relatively new type of public-key signature (PKS) that allows a signer to aggregate
different signatures generated by different signers on different messages into a short aggregate signature [6].
Aggregate signature has many applications like signing certificate chains, proxy signing, secure routing
protocols, and more. After the introduction of aggregate signature by Boneh, Gentry, Lynn, and Shacham
[6], many aggregate signature schemes were proposed by using bilinear groups [1,2,4,6,11,12,15,16,18,24]
and trapdoor permutations [7, 19, 21]. However, the security of many aggregate signature schemes was
proven in the random oracle model. The random oracle model was very successful to prove the security of
practical schemes, but the security proof in the random oracle model is not entirely sound [8] and schemes
in the standard model are needed. Standard model solutions for the cases of sequential aggregate signature
(introduced in [19]) [15, 16, 18, 24] (where signatures are aggregated in a sequence, as in applications like
certification chains), and synchronized aggregate signature (where all signers share a synchronized same
value, as introduced by [11]) [1] were given.

A sequential aggregate signature (SAS) scheme without random oracle assumption is what we concen-
trate on here, such a scheme was first proposed by Lu et al. [18], but the public-key size of this scheme is too
large since the scheme is based on the PKS scheme of Waters [25]. In public-key based aggregate signature,
reducing the size of public keys is very important since a verifier should retrieve all the public keys of signers
to check the validity of the aggregate signature, and needless to say the size of the aggregated signature is
important as well. The importance of constructing a SAS scheme with short public keys was addressed by
Lu et al. [18], but they left it as an interesting open problem. Schröder proposed the first SAS scheme with
short public keys based on the Camenisch-Lysyanskaya (CL) signature scheme [24], but it is only secure
under the interactive LRSW assumption. Recently, Lee et al. [16] proposed another SAS scheme with short
public keys based on the identity-based encryption (IBE) scheme of Lewko and Waters [17] and proved its
security without random oracles under static assumptions.

1.1 Our Contributions

In this paper, we revisit the SAS scheme of Lee et al. [16] and propose an improved SAS scheme with
shorter signature size. The proposed SAS scheme trades off signature for public-key size since the signature
size of our SAS scheme is shorter than that of Lee et al.’s SAS scheme by two group elements but the
public-key size of our SAS scheme is longer by two group elements. To construct the SAS scheme with
shorter signature size that supports sequential aggregation, we first propose a new PKS scheme and prove its
security without random oracles under static assumptions. Additionally, we propose a multi-signature (MS)
scheme with shorter signature size and shorter public parameters and prove its security without random
oracles under static assumptions.

We suggest new ideas, and technically speaking, we construct a PKS scheme that supports multi-users
and public re-randomization for a SAS scheme with shorter signature size. We start the construction from
the PKS scheme derived from the IBE scheme of Lewko and Waters [17] (as was done earlier). However,
this directly converted PKS scheme does not support multi-users and public re-randomization as pointed out
by Lee et al. [16] since the elements g,u,h ∈G cannot be published in the public key. Lee et al. solved this
problem by modifying the verification algorithm of the PKS scheme, but the size of signatures increased by
two group elements. In this paper, we solve this obstacle in a different way and publish gwcg

1 ,uwcu
1 ,hwch

1 ∈G
in the public key instead of publishing g,u,h ∈G to maintain the same size of signatures (loosely speaking,
we lift the verification parameters to the exponent). However, note that this method increases the size of
public keys by two group elements compared with that of Lee et al.’s scheme since additional group elements

2

should be published in the public key to make public gwcg
1 ,uwcu

1 ,hwch
1 .

1.2 Related Work

Aggregate Signature. The concept of aggregate signatures was introduced by Boneh et al. [6], and they
proposed the first aggregate signature scheme in bilinear groups. Their aggregate signature scheme is the
only unique one that supports full aggregation, but the security is proven in the random oracle model and
the verification algorithm requires l number of pairing where l is the number of signers in the aggregate
signature. To remedy this situation, other types of aggregate signatures were introduced.

Lysyanskaya et al. [19] introduced the concept of sequential aggregate signature (SAS) and proposed
a SAS scheme in trapdoor permutations. Lu et al. [18] proposed the first SAS scheme without random
oracles, but the size of public keys is very large. To reduce the size of public keys, SAS schemes with
short public key was proposed [15, 16, 24]. Recently, SAS schemes that do not require a verifier to check
the validity of the previous signature were proposed [7, 10]. Boldyreva et al. [4] proposed an identity-
based sequential aggregate signature scheme in bilinear groups and proved its security under an interactive
assumption. Recently Gerbush et al. [12] proposed a modified identity-based sequential aggregate signature
scheme in composite order bilinear groups and proved its security in the random oracle model under static
assumptions.

Gentry and Ramzan [11] introduced the concept of synchronized aggregate signature and proposed an
identity-based synchronized aggregate signature scheme in the random oracle model. Ahn et al. [1] proposed
an synchronized aggregate signature scheme and proved its security without random oracles. Recently, Lee
et al. [15] proposed a synchronized aggregate signature scheme with shorter aggregate signatures based on
the CL signature and proved its security in the random oracle model.

Multi-Signature. The concept of multi-signature (MS) was introduced by Itakura and Nakamura [14]. MS
is a special type of aggregate signatures where all signers generate signatures for the same message. Micali
et al. [20] defined the first formal security model of MS and proposed a MS scheme based on the Schnorr
signature. Boldyreva defined a general security model for multi-signatures and proposed a MS scheme in
bilinear groups that is secure in the random oracle model [3]. Lu et al. [18] proposed the first MS scheme
that is secure without random oracles by modifying their SAS scheme. Recently, Lee et al. [16] proposed a
MS scheme with short public parameters and proved its security without random oracles.

2 Preliminaries

In this section, we define asymmetric bilinear groups and introduce complexity assumptions in this bilinear
groups.

2.1 Asymmetric Bilinear Groups

Let G,Ĝ and GT be multiplicative cyclic groups of prime order p. Let g, ĝ be generators of G,Ĝ. The
bilinear map e : G× Ĝ→GT has the following properties:

1. Bilinearity: ∀u ∈G,∀v̂ ∈ Ĝ and ∀a,b ∈ Zp, e(ua, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g, ĝ such that e(g, ĝ) has order p, that is, e(g, ĝ) is a generator of GT .

3

We say that G,Ĝ,GT are bilinear groups with no efficiently computable isomorphisms if the group opera-
tions in G,Ĝ, and GT as well as the bilinear map e are all efficiently computable, but there are no efficiently
computable isomorphisms between G and Ĝ.

2.2 Complexity Assumptions

We employ three static assumptions in prime order (asymmetric) bilinear groups. Assumptions 1 and 2 were
introduced by Lewko and Waters [17], while Assumption 3 has been used extensively.

Assumption 1 (LW1) Let (p,G,Ĝ,GT ,e) be a description of the asymmetric bilinear group of prime order
p with the security parameter λ . Let g, ĝ be generators of G,Ĝ respectively. The assumption is that if the
challenge values

D = ((p,G,Ĝ,GT ,e),g,gb, ĝ, ĝa, ĝb, ĝab2
, ĝb2

, ĝb3
, ĝc, ĝac, ĝbc, ĝb2c, ĝb3c) and T

are given, no PPT algorithm B can distinguish T = T0 = ĝab2c from T = T1 = ĝd with more than a negligible
advantage. The advantage of B is defined as AdvA1

B (λ) =
∣∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣∣ where the
probability is taken over the random choice of a,b,c,d ∈ Zp.

Assumption 2 (LW2) Let (p,G,Ĝ,GT ,e) be a description of the asymmetric bilinear group of prime order
p. Let g, ĝ be generators of G,Ĝ respectively. The assumption is that if the challenge values

D = ((p,G,Ĝ,GT ,e),g,ga,gb,gc, ĝ, ĝa, ĝa2
, ĝbx, ĝabx, ĝa2x) and T

are given, no PPT algorithm B can distinguish T = T0 = gbc from T = T1 = gd with more than a negligible
advantage. The advantage of B is defined as AdvA2

B (λ) =
∣∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣∣ where the
probability is taken over the random choice of a,b,c,x,d ∈ Zp.

Assumption 3 (Decisional Bilinear Diffie-Hellman) Let (p,G,Ĝ,GT ,e) be a description of the asymmetric
bilinear group of prime order p. Let g, ĝ be generators of G,Ĝ respectively. The assumption is that if the
challenge values

D = ((p,G,Ĝ,GT ,e),g,ga,gb,gc, ĝ, ĝa, ĝb, ĝc) and T

are given, no PPT algorithm B can distinguish T = T0 = e(g, ĝ)abc from T = T1 = e(g, ĝ)d with more than a
negligible advantage. The advantage of B is defined as AdvA3

B (λ) =
∣∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣∣
where the probability is taken over the random choice of a,b,c,d ∈ Zp.

3 Public-Key Signature

In this section, we propose an efficient public-key signature (PKS) scheme with short public keys that
supports multi-users and public re-randomization, and prove its security without random oracles under static
assumption.

3.1 Definitions

The concept of PKS was introduced by Diffie and Hellman [9], and the first PKS scheme was proposed by
Rivest et al. [23] based on trapdoor permutations. In PKS, a signer first generates a public key and a private
key, and he keeps the private key himself and publishes the public key. The signer generates a signature on
a message by using the private key. A verifier can check the validity of the signature of the signer on the
message by using the signer’s public key. A PKS scheme is formally defined as follows:

4

Definition 3.1 (Public-Key Signature). A public key signature (PKS) scheme consists of three PPT algo-
rithms KeyGen, Sign, and Verify, which are defined as follows:

KeyGen(1λ). The key generation algorithm takes as input the security parameters 1λ , and outputs a public
key PK and a private key SK.

Sign(M,SK). The signing algorithm takes as input a message M and a private key SK, and outputs a
signature σ .

Verify(σ ,M,PK). The verification algorithm takes as input a signature σ , a message M, and a public key
PK, and outputs either 1 or 0 depending on the validity of the signature.

The correctness requirement is that for any (PK,SK) output by KeyGen and any M ∈M, we have that
Verify(Sign(M,SK),M,PK) = 1. We can relax this notion to require that the verification is correct with
overwhelming probability over all the randomness of the experiment.

The security model of PKS is defined as existential unforgeability under a chosen message attack (EUF-
CMA), and this was formally defined by Goldwasser et al. [13]. In this security model, an adversary adap-
tively can request a polynomial number of signatures on messages through the signing oracle, and he finally
outputs a forged signature on a message M∗. If the message M∗ was not queried to the signing oracle and
the forged signature is valid, then the adversary wins this game. The security of PKS is formally defined as
follows:

Definition 3.2 (Security). The security notion of existential unforgeability under a chosen message attack
is defined in terms of the following experiment between a challenger C and a PPT adversary A:

1. Setup: C first generates a key pair (PK,SK) by running KeyGen, and gives PK to A.

2. Signature Query: Then A, adaptively and polynomially many times, requests a signature query on
a message M under the challenge public key PK, and receives a signature σ generated by running
Sign.

3. Output: Finally, A outputs a forged signature σ∗ on a message M∗. C then outputs 1 if the forged
signature satisfies the following two conditions, or outputs 0 otherwise: 1) Verify(σ∗,M∗,PK) = 1
and 2) M∗ was not queried by A to the signing oracle.

The advantage of A is defined as AdvPKS
A = Pr[C = 1] where the probability is taken over all the random-

ness of the experiment. A PKS scheme is existentially unforgeable under a chosen message attack if all
PPT adversaries have at most a negligible advantage in the above experiment (for large enough security
parameter).

3.2 Design Principle

To construct a PKS scheme with short public keys that supports multi-users and public re-randomization,
we can derive a PKS scheme with short public keys from the IBE scheme in prime order groups of Lewko
and Waters [17] by applying the transformation of Naor [5] and representing the signature in G to reduce
the size of signatures. However, this PKS scheme does not support multi-users and public re-randomization
since the elements g,u,h∈G cannot be published in the public key. Lee et al. [16] solved this problem by re-
randomizing the verification elements of the signature verification algorithm, but the number of signatures
increased by two group elements, and our main issue here is further compression of the signature size.

5

To this end, we present another solution for the above problem that allows the elements g,u,h to be safely
published in the public key. In the PKS scheme of Lewko and Waters [17], if g,u,h ∈G are published in the
public key, then the simulator of the security proof can easily distinguish normal verification components
from semi-functional verification components of the signature verification algorithm for a forged signature
without the help of an adversary. Thus the simulator of Lewko and Waters sets the CDH value into the
elements g,u,h to prevent the simulator from creating these elements. Our idea for solving this problem is
to lift the published values into the exponent and publish gwcg

1 ,uwcu
1 ,hwch

1 that are additionally multiplied
with random elements instead of directly publishing g,u,h. In this case, the simulator can create these
elements since the random exponents cg,cu,ch can be used to cancel out the CDH value embedded in the
elements g,u,h. Additionally, the simulator cannot distinguish the changes of verification components for
the forged signature because of the added elements wcg

1 ,wcu
1 ,wch

1 . This solution does not increase the number
of group elements in the signatures, rather it increases the number of public keys since additional elements
wcg

2 ,wcg ,wcu
2 ,wcu ,wch

2 ,wch should be published.

3.3 Construction

Our PKS scheme in prime order bilinear groups is described as follows:

PKS.KeyGen(1λ): This algorithm first generates the asymmetric bilinear groups G,Ĝ of prime order p of
bit size Θ(λ). It chooses random elements g,w ∈ G and ĝ ∈ Ĝ. Next, it selects random exponents
ν ,φ1,φ2 ∈Zp and sets τ = φ1+νφ2. It also selects random exponents α,x,y∈Zp and sets u = gx,h =
gy, û = ĝx, ĥ = ĝy,w1 = wφ1 ,w2 = wφ2 . It outputs a private key SK = (α,g,u,h) and a public key by
selecting random values cg,cu,ch ∈ Zp as

PK =
(

gwcg
1 ,wcg

2 ,wcg , uwcu
1 ,wcu

2 ,wcu , hwch
1 ,wch

2 ,wch , w1,w2,w,

ĝ, ĝν , ĝ−τ , û, ûν , û−τ , ĥ, ĥν , ĥ−τ , Ω = e(g, ĝ)α
)
.

PKS.Sign(M,SK): This algorithm takes as input a message M ∈ Zp and a private key SK = (α,g,u,h) with
PK. It selects random exponents r,c1,c2 ∈ Zp and outputs a signature as

σ =
(

W1,1 = gα(uMh)rwc1
1 , W1,2 = wc1

2 , W1,3 = wc1 ,

W2,1 = grwc2
1 , W2,2 = wc2

2 , W2,3 = wc2
)
.

PKS.Rand(σ ′,M,PK): This algorithm takes as input a signature σ ′ = (W ′1,1, . . . ,W
′
2,3), a message M ∈ Zp

and a public key PK. It selects random exponents r,c1,c2 ∈ Zp and outputs a randomized signature as

σ =
(

W1,1 =W ′1,1 · ((uwcu
1)M(hwch

1))rwc1
1 ,

W1,2 =W ′1,2 · ((w
cu
2)Mwch

2)rwc1
2 , W1,3 =W ′1,3 · ((wcu)Mwch)rwc1 ,

W2,1 =W ′2,1 · (gwcg
1)rwc2

1 , W2,2 =W ′2,2 · (w
cg
2)rwc2

2 , W2,3 =W ′2,3 · (wcg)rwc2
)
.

PKS.Verify(σ ,M,PK): This algorithm takes as input a signature σ on a message M ∈ Zp under a public
key PK. It chooses a random exponent t ∈ Zp and computes verification components as

V1,1 = ĝt , V1,2 = (ĝν)t , V1,3 = (ĝ−τ)t ,

V2,1 = (ûMĥ)t , V2,2 = ((ûν)Mĥν)t , V2,3 = ((û−τ)Mĥ−τ)t .

Next, it verifies that ∏
3
i=1 e(W1,i,V1,i) ·∏3

i=1 e(W2,i,V2,i)
−1 ?

= Ωt . If this equation holds, then it outputs
1. Otherwise, it outputs 0.

6

If we implicitly sets c̃1 = cgα +(cuM + ch)r+ c1, c̃2 = cgr+ c2, then the randomized signature is also
correctly distributed as

W1,1 = gα(uMh)rwc̃1
1 , W1,2 = wc̃1

2 , W1,3 = wc̃1 ,

W2,1 = grwc̃2
1 , W2,2 = wc̃2

2 , W2,3 = wc̃2 .

3.4 Security Analysis

We prove the security of our PKS scheme without random oracles under static assumptions. To prove
the security, we use the dual system encryption technique of Lewko and Waters [17]. The dual system
encryption technique was originally developed to prove the full-model security of IBE and its extensions,
but it also can be used to prove the security of PKS by using the transformation of Naor [5]. Recently
Lee et al. [16] proved the security of their PKS scheme by using the dual system encryption technique,
and Gerbush et al. [12] developed the dual form signature technique that is a variation of the dual system
encryption technique to prove the security of theirs PKS schemes.

Theorem 3.3. The above PKS scheme is existentially unforgeable under a chosen message attack if As-
sumptions 1, 2, and 3 hold. That is, for any PPT adversary A, there exist PPT algorithms B1,B2,B3 such
that AdvPKS

A (λ)≤AdvA1
B1
(λ)+qAdvA2

B2
(λ)+AdvA3

B3
(λ) where q is the maximum number of signature queries

of A.

Proof. Before proving the security, we first define two additional algorithms for semi-functional types. For
the semi-functionality, we set f = gy f , f̂ = ĝy f where y f is a random exponent in Zp.

PKS.SignSF. The semi-functional signing algorithm first creates a normal signature using the private key.
Let (W ′1,1, . . . ,W

′
2,3) be the normal signature of a message M with random exponents r,c1,c2 ∈ Zp. It

selects random exponents sk,zk ∈ Zp and outputs a semi-functional signature as

σ =
(

W1,1 =W ′1,1 · (f−ν)skzk , W1,2 =W ′1,2 · f skzk , W1,3 =W ′1,3,

W2,1 =W ′2,1 · (f−ν)sk , W2,2 =W ′2,2 · f sk , W2,3 =W ′2,3
)
.

PKS.VerifySF. The semi-functional verification algorithm first creates a normal verification components
using the public key. Let (V ′1,1, . . . ,V

′
2,3) be the normal verification components with a random ex-

ponent t ∈ Zp. It chooses random exponents sc,zc ∈ Zp and computes semi-functional verification
components as

V1,1 =V ′1,1, V1,2 =V ′1,2 · f̂ sc , V1,3 =V ′1,3 · (f̂−φ2)sc ,

V2,1 =V ′2,1, V2,2 =V ′2,2 · f̂ sczc , V2,3 =V ′2,3 · (f̂−φ2)sczc .

Next, it verifies that ∏
3
i=1 e(W1,i,V1,i) ·∏3

i=1 e(W2,i,V2,i)
−1 ?

= Ωt . If this equation holds, then it outputs
1. Otherwise, it outputs 0.

If the semi-functional verification algorithm is used to verify a semi-functional signature, then an additional
random element e(f , f̂)sksc(zk−zc) is left in the left part of the above verification equation. If zk = zc, then
the semi-functional verification algorithm succeeds. In this case, we say that the signature is nominally
semi-functional.

The security proof uses a sequence of games G0,G1,G2,G3: The first game G0 will be the original
security game and the last game G3 will be a game such that an adversary A has no advantage. Formally,
the hybrid games are defined as follows:

7

Game G0. This game is the original security game. In this game, the signatures that are given to A are
normal and the challenger use the normal verification algorithm PKS.Verify to check the validity of
the forged signature of A. Note that A can forge a normal signature or a semi-functional signature to
win this game since normal or semi-functional signatures are always verified in the normal verification
algorithm.

Game G1. This game is almost identical to G0 except that the challenger use the semi-functional verifica-
tion algorithm PKS.VerifySF to check the validity of the forged signature of A. Note that A should
forge a normal signature to win this game since semi-functional signatures cannot be verified in the
semi-functional verification algorithm.

Game G2. This game is the same as the G1 except that the signatures that are given to A will be semi-
functional. At this moment, the signatures are semi-functional and the challenger use the semi-
functional verification algorithm PKS.VerifySF to check the validity of the forged signature. Sup-
pose that A makes at most q signature queries. For the security proof, we define a sequence of hybrid
games G1,0, . . . ,G1,k, . . . ,G1,q where G1,0 = G1. In G1,k, a normal signature is given to A for all j-th
signature queries such that j > k and a semi-functional signature is given to A for all j-th signature
queries such that j ≤ k. It is obvious that G1,q is equal to G2.

Game G3. This final game differs from G2 in that the challenger always rejects the forged signature of A
by replacing the element Ω in the verification equation to a random element. Therefore, the advantage
of this game is zero since A cannot win this game.

To prove the security using the dual system encryption technique, we should show that it is hard for A
to forge a normal signature and a semi-functional signature. At first, from the indistinguishability between
G0 and G1, we obtain thatA can forge a normal signature with a non-negligible probability while he cannot
forge a semi-functional signature when only normal signatures are given to A. To finish the proof, we
additionally should show that it is hard for A to forge a normal signature. From the indistinguishability
between G1 and G2, we obtain that the probability of A to forge a normal signature does not change when
the signatures given to A are changed from a normal type to a semi-functional type. Finally, from the
indistinguishability between G2 and G3, we obtain that it is hard for A to forge a normal signature when
only semi-functional signatures are given to the adversary. Therefore, we have the unforgeability of the
adversary through the indistinguishability of hybrid games.

Let AdvG j
A be the advantage of A in G j for j = 0, . . . ,3. Let AdvG1,k

A be the advantage of A in G1,k

for k = 0, . . . ,q. It is clear that AdvG0
A = AdvPKS

A (λ), AdvG1,0
A = AdvG1

A , AdvG1,q
A = AdvG2

A , and AdvG3
A = 0.

From the following three lemmas, we prove that it is hard forA to distinguish Gi−1 from Gi under the given
assumptions. Therefore, we have that

AdvPKS
A (λ) = AdvG0

A +
2

∑
i=1

(
AdvGi

A −AdvGi
A
)
−AdvG3

A ≤
3

∑
i=1

∣∣AdvGi−1
A −AdvGi

A
∣∣

= AdvA1
B1
(λ)+

q

∑
k=1

AdvA2
B2
(λ)+AdvA3

B3
(λ).

This completes our proof.

Lemma 3.4. If Assumption 1 holds, then no polynomial-time adversary can distinguish between G0 and
G1 with non-negligible advantage. That is, for any adversary A, there exists a PPT algorithm B1 such that∣∣AdvG0

A −AdvG1
A
∣∣= AdvA1

B1
(λ).

8

Proof. The proof of this lemma is almost similar to the proof of Lemma 1 in [17] except that the public key is
generated differently and the proof is employed in the PKS setting. Suppose there exists an adversaryA that
distinguishes between G0 and G1 with non-negligible advantage. A simulator B1 that solves Assumption
1 using A is given: a challenge tuple D = ((p,G,Ĝ,GT ,e),k,kb, k̂, k̂a, k̂b, k̂ab2

, k̂b2
, k̂b3

, k̂c, k̂ac, k̂bc, k̂b2c, k̂b3c)

and T where T = T0 = k̂ab2c or T = T1 = k̂ab2c+d . Then B1 that interacts with A is described as follows:
B1 first chooses random exponents φ2,A,B,α ∈ Zp, random values yg,yu,yh,yw ∈ Zp. It computes w1 =
wφ1 = (kb)yw ,w2 = wφ2 = kywφ2 ,w = kyw by implicitly setting φ1 = b. It implicitly sets cg =−b/yw+c′g,cu =
−bA/yw + c′u,ch =−bB/yw + c′h,ν = a,τ = b+aφ2 and publishes a public key by selecting random values
c′g,c

′
u,c
′
h ∈ Zp as

gwcg
1 = kygw

c′g
1 , wcg

2 = (kb)−b2w
c′g
2 , wcg = (kb)−1wc′g ,

uwcu
1 = kyuwc′u

1 , wcu
2 = (kb)−b2Awc′u

2 , wcu = (kb)−Awc′u ,

hwch
1 = kyhwc′h

1 , wch
2 = (kb)−b2Bwc′h

2 , wch = (kb)−Bwc′h , w1, w2, w,

ĝ = k̂b2
k̂yg , ĝν = k̂ab2

(k̂a)yg , ĝ−τ = (k̂b3
(k̂b)yg(k̂ab2

)b2(k̂a)ygb2)−1,

û = (k̂b2
)Ak̂yu , ûν = (k̂ab2

)A(k̂a)yu , û−τ = ((k̂b3
)A(k̂b)yu(k̂ab2

)Ab2(k̂a)yub2)−1,

ĥ = (k̂b2
)Bk̂yh , ĥν = (k̂ab2

)B(k̂a)yh , ĥ−τ = ((k̂b3
)B(k̂b)yh(k̂ab2

)Bb2(k̂a)yhb2)−1,

Ω = (e(kb3
, k̂b) · e(kb2

, k̂)2yg · e(k, k̂)y2
g)α .

It implicitly sets g = kb2
kyg ,u = (kb2

)Akyu ,h = (kb2
)Bkyh , but it cannot create these elements since kb2

is
not given. Additionally, it sets f = k, f̂ = k̂ for the semi-functional signature and verification. A adap-
tively requests a signature for a message M. To response this sign query, B1 first selects random exponents
r,c′1,c

′
2 ∈ Zp. It implicitly sets c1 = −b(α +(AM +B)r)/yw + c′1,c2 = −br1/yw + c′2 and creates a normal

signature as

W1,1 = kygα+(yuM+yh)r(w1)
c′1 , W1,2 = (W1,3)

φ2 , W1,3 = (kb)−(α+(AM+B)r)wc′1 ,

W2,1 = kygr(w1)
c′2 , W2,2 = (W2,3)

φ2 , W2,3 = (kb)−rwc′2 .

Finally, A outputs a forged signature σ∗ = (W ∗1,1, . . . ,W
∗
2,3) on a message M∗ from A. To verify the forged

signature, B1 first chooses a random exponent t ∈ Zp and computes verification components by implicitly
setting t = c as

V1,1 = k̂b2c(k̂c)yg , V1,2 = T (k̂ac)yg , V1,3 = ((k̂b3c)(k̂bc)yg(T)φ2(k̂ac)ygφ2)−1,

V2,1 = (k̂b2c)AM∗+B(k̂c)yuM∗+yh , V2,2 = (T)AM∗+B(k̂ac)yuM∗+yh ,

V2,3 =
(
(k̂b3c)AM∗+B(k̂bc)yuM∗+yh(T)φ2(AM∗+B)(k̂ac)φ2(yuM∗+yh)

)−1
.

Next, it verifies that ∏
3
i=1 e(W ∗1,i,V1,i) ·∏3

i=1 e(W ∗2,i,V2,i)
−1 ?

= Ωt . If this equation holds, then it outputs 0.
Otherwise, it outputs 1.

To finish this proof, we show that the distribution of the simulation is correct. We first show that the
distribution using D,T0 = k̂ab2c is the same as G0. The public key is correctly distributed as

gwcg
1 = (kb2

kyg)(kbyw)−b/yw+c′g = kygw
c′g
1 ,

uwcu
1 = (kb2Akyu)(kbyw)−bA/yw+c′u = kyuwc′u

1 ,

hwch
1 = (kb2Bkyh)(kbyw)−bB/yw+c′h = kyhwc′h

1 .

9

The simulator cannot create g,u,h since kb2
is not given in the assumption, but it can create gwcg

1 ,uwcu
1 ,hwch

1
since cg,cu,ch can be used to cancel out kb2

. The signature is correctly distributed as

W1,1 = gα(uMh)rwc1
1 = (kb2+yg)α(k(b

2A+yu)Mkb2B+yh)r(kbyw)−b(α+(AM+B)r)/yw+c′1

= kygα+(yuM+yh)rwc′1
1 ,

W2,1 = gr(wb1)c2 = (kb2+yg)r(kbyw)−br/yw+c′2 = kygr(wb1)c′2 .

It can create a normal signature since c1,c2 enable the cancellation of kb2
, but it cannot create a semi-

functional signature since ka is not given. The verification components are correctly distributed as

V1,1 = ĝt = (k̂b2+yg)c = k̂b2c(k̂c)yg , V1,2 = (ĝν)t = k̂(b
2+yg)ac = T0(k̂ac)yg ,

V1,3 = (ĝ−τ)t = (k̂(b
2+yg)(b+aφ2)c)−1 = ((k̂b3c)(k̂bc)yg(T0)

φ2(k̂ac)ygφ2)−1,

V2,1 = (uM∗h)t = (k(b
2A+yu)M∗kb2B+yh)c = (kb2c)AM∗+B(kc)yuM∗+yh ,

V2,2 = ((uν)M∗hν)t = (k(b
2A+yu)aM∗k(b

2B+yh)a)c = (T0)
AM∗+B(kac)yuM∗+yh ,

V2,3 = ((u−τ)M∗h−τ)t = ((k(b
2A+yu)(b+aφ2)M∗k(b

2B+yh)(b+aφ2))c)−1

= ((kb3c)AM∗+B(kbc)yuM∗+yh(T0)
φ2(AM∗+B)(kac)φ2(yuM∗+yh))−1.

We next show that the distribution of the simulation using D,T1 = k̂ab2c+d is the same as G1. We only
consider the distribution of the verification components since T is only used in the verification compo-
nents. The difference between T0 and T1 is that T1 additionally has k̂d . Thus V1,2,V1,3,V2,2,V2,3 that have
T in the simulation additionally have k̂d ,(k̂d)φ2 ,(k̂d)AM∗+B,(k̂d)φ2(AM∗+B) respectively. If we implicitly set
sc = d,zc = AM∗+B, then the verification components of the forged signature are semi-functional since
A and B are information-theoretically hidden to the adversary. We obtain Pr[B1(D,T0) = 0] = AdvG0

A and
Pr[B1(D,T1) = 0] = AdvG1

A from the above analysis. Thus, we can easily derive the advantage of B1 as

AdvA1
B1
(λ) =

∣∣Pr[B1(D,T0) = 0]−Pr[B1(D,T1) = 0]
∣∣= ∣∣AdvG0

A −AdvG1
A
∣∣.

Note that if A forge a semi-functional signature, then B1 can distinguish T by using the forged semi-
functional signature. However, if A forge a normal signature, then B1 cannot distinguish T since a normal
signature is always verified in the normal or semi-functional verification algorithms. This completes our
proof.

Lemma 3.5. If Assumption 2 holds, then no polynomial-time adversary can distinguish between G1 and
G2 with non-negligible advantage. That is, for any adversary A, there exists a PPT algorithm B2 such that∣∣AdvG1,k−1

A −AdvG1,k
A

∣∣= AdvA2
B2
(λ).

Proof. The proof of this lemma is almost same as the proof of Lemma 2 in [17] except that the proof
is employed in the PKS setting. Suppose there exists an adversary A that distinguishes between G1,k−1
and G1,k with non-negligible advantage. A simulator B2 that solves Assumption 2 using A is given: a
challenge tuple D = ((p,G,Ĝ,GT ,e),k,ka,kb,kc, k̂a, k̂a2

, k̂bx, k̂abx, k̂a2x) and T where T = T0 = kbc or T =
T1 = kbc+d . Then B2 that interacts with A is described as follows: B2 first selects random exponents
ν ,yτ ,A,B,α,yu,yh,yw ∈Zp. It computes w1 = wφ1 = ((kb)−νkakyτ)yw ,w2 = wφ2 = (kb)yw ,w = kyw by implic-
itly setting φ1 =−νb+(a+yτ),φ2 = b. It implicitly sets τ = a+yτ and publishes a public key by selecting

10

random values cg,cu,ch ∈ Zp as

gwcg
1 = kawcg

1 ,wcg
2 ,wcg , uwcu

1 = (ka)Akyuwcu
1 ,wcu

2 ,wcu ,

hwch
1 = (ka)Bkyhwch

1 ,wch
2 ,wch , w1,w2,w,

ĝ = k̂a, ĝν , ĝ−τ = (k̂a2
(k̂a)yτ)−1), û = (k̂a)Ak̂yu , ûν , û−τ = ((k̂a2

)A(k̂a)yu+Ayτ k̂yuyτ)−1,

ĥ = (k̂a)Bk̂yh , ĥν , ĥ−τ = ((k̂a2
)B(k̂a)yh+Byτ k̂yhyτ)−1, Ω = e(ka, k̂a)α .

Additionally, it sets f = k, f̂ = k̂ for the semi-functional signature and verification. A adaptively requests a
signature for a message M. If this is a j-th signature query, then B2 handles this query as follows:

• Case j < k : It creates a semi-functional signature by calling PKS.SignSF since it knows the tuple
(f−ν , f ,1) for the semi-functional signature.

• Case j = k : It selects random exponents r′,c′1,c
′
2 ∈ Zp and creates a signature by implicitly setting

r =−c+ r′, c1 = c(AM+B)/yw + c′1, c2 = c/yw + c′2 as

W1,1 = gα(kc)−(yuM+yh)(uMh)r′(T)−ν(AM+B)(kc)yτ (AM+B)wc′1
1 ,

W1,2 = (T)(AM+B)wc′1
2 , W1,3 = (kc)(AM+B)wc′1 ,

W2,1 = gr′(T)−ν(kc)yτ wc′2
1 , W2,2 = Twc′2

2 , W2,3 = kcwc′2 .

• Case j > k : It creates a normal signature by calling PKS.Sign since it knows the private key.

Finally, A outputs a forged signature σ∗ = (W ∗1,1, . . . ,W
∗
2,3) on a message M∗. To verify the forged signa-

ture, B2 first chooses a random exponent t ′ ∈ Zp and computes semi-functional verification components by
implicitly setting t = bx+ t ′, sc =−a2x, zc = AM∗+B as

V1,1 = k̂abx(k̂a)t ′ , V1,2 = (k̂abx)ν(k̂a)νt ′(k̂a2x)−1, V1,3 = (k̂abx)−yτ (ĝ−yτ)t ′ ,

V2,1 = (k̂abx)AM∗+B(k̂bx)yuM∗+yh(ûM∗ ĥ)t ′ ,

V2,2 = (k̂abx)(AM∗+B)ν(k̂bx)(yuM∗+yh)ν(ûM∗ ĥ)νt ′ ,

V2,3 = (k̂abx)−(AM∗+B)yτ (k̂abx)−(yuM∗+yh)(k̂bx)−(yuM∗+yh)yτ ((û−τ)M∗ ĥ−τ)t ′ .

Next, it verifies that ∏
3
i=1 e(W ∗1,i,V1,i) ·∏3

i=1 e(W ∗2,i,V2,i)
−1 ?

= e(ka, k̂abx)α · e(ka, k̂a)αt ′ . If this equation holds,
then it outputs 0. Otherwise, it outputs 1.

To finish the proof, we should show that the distribution of the simulation is correct. We first show
that the distribution of the simulation using D,T0 = kbc is the same as G1,k−1. The public key is correctly
distributed since the random blinding values yu,yh,yw,yv are used. The k-th signature is correctly distributed
as

W1,1 = gα(uMh)rwc1
1 = gα(k(aA+yu)MkaB+yh)−c+r′(kyw(−νb+a+yτ))c(AM+B)/yw+c′1

= gα(kc)−(yuM+yh)(uMh)r′(T)−nu(AM+B)(kc)yτ (AM+B)wc′1
1 ,

W1,2 = wc1
2 = (kywb)c(AM+B)/yw+c′1 = (T)(AM+B)wc′1

2 ,

W1,3 = wc1 = (kyw)c(AM+B)/yw+c′1 = (kc)(AM+B)wc′1 .

11

The semi-functional verification components are correctly distributed as

V2,1 = (ûM∗ ĥ)t = (k̂(aA+yu)M∗ k̂aB+yh)bx+t ′ = (k̂abx)AM∗+B(k̂bx)yuM∗+yh(ûM∗ ĥ)t ′ ,

V2,2 = ((ûν)M∗ ĥν)t f̂ sczc = (k̂(aA+yu)νM∗ k̂(aB+yh)ν)bx+t ′ k̂−a2x(AM∗+B)

= (k̂abx)(AM∗+B)ν(k̂bx)(yuM∗+yh)ν((ûν)M∗ ĥν)t ′(k̂a2x)−(AM∗+B),

V2,3 = ((û−τ)M∗ ĥ−τ)t(f̂−φ2)sczc = (k̂−(aA+yu)(a+yτ)M∗ k̂−(aB+yh)(a+yτ))bx+t ′ k̂−b(−a2x)(AM∗+B)

= (k̂abx)−(AM∗+B)yτ−(yuM∗+yh)(k̂bx)−(yuM∗+yh)yτ ((û−τ)M∗ ĥ−τ)t ′ .

The simulator can create the semi-functional verification components with only fixed zc = AM∗+B since
sc,sc enable the cancellation of k̂a2bx. Even though it uses the fixed zc, the distribution of zc is correct since
A,B are information theoretically hidden to A. We next show that the distribution of the simulation using
D,T1 = kbc+d is the same as G1,k. We only consider the distribution of the k-th signature since T is only used
in the k-th signature. The only difference between T0 and T1 is that T1 additionally has kd . The signature
components W1,1,W1,2, W2,1,W2,2 that have T in the simulation additionally have (kd)−ν(AM+B), (kd)(AM+B),
(kd)−ν , kd respectively. If we implicitly set sk = d,zk = AM +B, then the distribution of the k-th signature
is the same as G1,k except that the k-th signature is nominally semi-functional.

Finally, we show that A cannot distinguish the nominally semi-functional signature from the semi-
functional signature. The main idea of this is that A cannot request a signature for the forgery message
M∗ in the security model. Suppose there exists an unbounded adversary, then he can gather the values
zk = AM +B from the k-th signature and zc = AM∗+B from the forged signature. It is easy to show that
zk,zc look random to the unbounded adversary since f (M) = AM+B is pair-wise independent function and
A,B are information theoretically hidden to the adversary. We obtain Pr[B2(D,T0) = 0] = AdvG1,k−1

A and
Pr[B2(D,T1) = 0] = AdvG1,k

A from the above analysis. Thus, we can easily derive the advantage of B2 as

AdvA2
B2
(λ) =

∣∣Pr[B2(D,T0) = 0]−Pr[B2(D,T1) = 0]
∣∣= ∣∣AdvG1,k−1

A −AdvG1,k
A

∣∣.
This completes our proof.

Lemma 3.6. If Assumption 3 holds, then no polynomial-time adversary can distinguish between G2 and
G3 with non-negligible advantage. That is, for any adversary A, there exists a PPT algorithm B3 such that∣∣AdvG2

A −AdvG3
A
∣∣= AdvA3

B3
(λ).

Proof. The proof of this lemma is almost same as the proof of Lemma 3 in [17] except that the proof
is employed in the PKS setting. Suppose there exists an adversary A that distinguish G2 from G3 with
non-negligible advantage. A simulator B3 that solves Assumption 3 usingA is given: a challenge tuple D =
((p,G,Ĝ,GT ,e),k,ka,kb,kc, k̂, k̂a, k̂b, k̂c) and T where T = T0 = e(k, k̂)abc or T = T1 = e(k, k̂)d . Then B3 that
interacts with A is described as follows: B3 first chooses random exponents φ1,φ2,yg,x,y ∈ Zp and random
elements w∈G. It computes g = kyg ,u = gx,h = gy, ĝ = k̂yg , û = ĝx, ĥ = ĝy,w1 = wφ1 ,w2 = wφ2 . It implicitly
sets ν = a,τ = φ1 +aφ2,α = ab and publishes a public key by selecting random values cg,cu,ch ∈ Zp as

gwcg
1 ,wcg

2 ,wcg , uwcu
1 ,wcu

2 ,wcu , hwch
1 ,wch

2 ,wch , w1,w2,w,

ĝ, ĝν = (k̂a)yg , ĝ−τ = k̂−ygφ1(k̂a)−ygφ2 , û, ûν = (ĝν)x, û−τ = (ĝ−τ)x,

ĥ, ĥν = (ĝν)y, ĥ−τ = (ĝ−τ)y, Ω = e(ka, k̂b)y2
g .

12

Additionally, it sets f = k, f̂ = k̂ for the semi-functional signature and semi-functional verification. A
adaptively requests a signature for a message M. To respond to this query, B3 selects random exponents
r,c1,c2,sk,z′k ∈ Zp and creates a semi-functional signature by implicitly setting zk = byg/sk + z′k as

W1,1 = (uMh)rwc1
1 (ka)−skz′k , W1,2 = wc1

2 (kb)ygkskz′k , W1,3 = wc1 ,

W2,1 = grwc2
1 (ka)−sk , W2,2 = wc2

2 ksk , W2,3 = wc2 .

It can only create a semi-functional signature since sk,zk enables the cancellation of kab. Finally, A outputs
a forged signature σ∗ = (W ∗1,1, . . . ,W

∗
2,3) on a message M∗. To verify the forged signature, B3 first chooses

random exponents s1,s2,s′c,z
′
c ∈ Zp and computes semi-functional verification components by implicitly

setting t = c, sc =−acyg + s′c, zc =−acyg(xM∗+ y)/sc + z′c/sc as

V1,1 = (k̂c)yg , V1,2 = k̂s′c , V1,3 = (k̂c)−ygφ1 k̂−φ2s′c ,

V2,1 = (k̂c)yg(xM∗+y), V2,2 = k̂z′c , V2,3 = (k̂c)−ygφ1(xM∗+y)k̂−φ2z′c .

Next, it verifies that ∏
3
i=1 e(W ∗1,i,V1,i) ·∏3

i=1 e(W ∗2,i,V2,i)
−1 ?

= (T)y2
g . If this equation holds, then it outputs 0.

Otherwise, it outputs 1.

To finish the proof, we first show that the distribution of the simulation using D,T = e(k, k̂)abc is the
same as G2. The public key is correctly distributed since the random values yg,x,y,cg,cu,ch are used. The
semi-functional signature is correctly distributed as

W1,1 = gα(uMh)rwc1
1 (f−ν)skzk = kygab(uMh)rwc1

1 (k−a)sk(byg/sk+z′k)

= (uMh)rwc1
1 (ka)−skz′k .

The simulator can only create a semi-functional signature since zk = byg/sk + z′k enables the cancellation of
kab. The semi-functional verification components are correctly distributed as

V1,1 = ĝt = (k̂yg)c = (k̂c)yg ,

V1,2 = (ĝν)t f̂ sc = (k̂yga)ck̂−acyg+s′c = k̂s′c ,

V1,4 = (ĝ−τ)t(f̂−φ2)sc = (k̂−yg(φ1+aφ2))ck̂−φ2(−acyg+s′c) = (k̂c)−ygφ1 k̂−φ2s′c ,

V2,1 = (ûM∗ ĥ)t = (k̂yg(xM∗+y))c = (k̂c)yg(xM∗+y),

V2,2 = (ûνM∗ ĥν)t f̂ sczc = (k̂yga(xM∗+y))ck̂−acyg(xM∗+y)+z′c = k̂z′c ,

V2,3 = (û−τM∗ ĥ−τ)t(f̂−φ2)sczc = (k̂−yg(φ1+aφ2)(xM∗+y))c(k̂−φ2)−acyg(xM∗+y)+z′c

= (k̂c)−ygφ1(xM∗+y)k̂−φ2z′c ,

Ω
t = e(g, ĝ)αt = e(k, k̂)y2

gabc = (T0)
y2

g .

We next show that the distribution of the simulation using D,T1 = e(k, k̂)d is almost the same as G3. It is
obvious that the signature verification for the forged signature always fails if T1 = e(k, k̂)d is used except with
1/p probability since d is a random value in Zp. We obtain Pr[B3(D,T0) = 0] = AdvG2

A and Pr[B3(D,T1) =

0] = AdvG3
A from the above analysis. Thus, we can easily derive the advantage of B3 as

AdvA3
B3
(λ) =

∣∣Pr[B3(D,T0) = 0]−Pr[B3(D,T1) = 0]
∣∣= ∣∣AdvG2

A −AdvG3
A
∣∣.

Note that ifA forge a normal signature, then B3 can distinguish T by using the forged normal signature.
However, ifA forge a semi-functional signature, then B3 cannot distinguish T since the verification of B3 by
using the semi-functional verification components always fails except negligible probability. This completes
our proof.

13

4 Sequential Aggregate Signature

In this section, we propose an efficient sequential aggregate signature (SAS) scheme with short public keys
and prove its security without random oracles.

4.1 Definitions

The concept of SAS was introduced by Lysyanskaya et al. [19]. In SAS, all signers first generate public keys
and private keys, and then publishes their public keys. To generate a sequential aggregate signature, a signer
may receive an aggregate-so-far from a previous signer, and creates a new aggregate signature by adding his
signature to the aggregate-so-far in sequential order. After that, the signer may send the aggregate signature
to a next signer. A verifier can check the validity of the aggregate signature by using the pubic keys of all
signers in the aggregate signature. A SAS scheme is formally defined as follows:

Definition 4.1 (Sequential Aggregate Signature). A sequential aggregate signature (SAS) scheme consists
of four PPT algorithms Setup, KeyGen, AggSign, and AggVerify, which are defined as follows:

Setup(1λ). The setup algorithm takes as input a security parameter 1λ and outputs public parameters PP.

KeyGen(PP). The key generation algorithm takes as input the public parameters PP, and outputs a public
key PK and a private key SK.

AggSign(AS′,M,PK,M,SK). The aggregate signing algorithm takes as input an aggregate-so-far AS′ on
messages M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl), a message M, and a private key
SK, and outputs a new aggregate signature AS.

AggVerify(AS,M,PK). The aggregate verification algorithm takes as input an aggregate signature AS
on messages M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl), and outputs either 1 or 0
depending on the validity of the sequential aggregate signature.

The correctness requirement is that for each PP output by Setup, for all (PK,SK) output by KeyGen,
any M, we have that AggVerify(AggSign(AS′,M′,PK′,M,SK),M′||M,PK′||PK) = 1 where AS′ is a valid
aggregate-so-far signature on messages M′ under public keys PK′.

A trivial SAS scheme can be constructed from a PKS scheme by concatenating each signer’s signature
in sequential order, but the size of aggregate signature is proportional to the size of signers. Therefore, a
non-trivial SAS scheme should satisfy the signature compactness property that requires the size of aggregate
signature to be independent of the size of signers.

The security model of SAS was defined by Lysyanskaya et al. [19], but we use the security model of Lu
et al. [18] that requires for an adversary to register the key-pairs of other signers except the target signer,
namely the knowledge of secret key (KOSK) setting or the proof of knowledge (POK) setting. In this
security model, an adversary first given the public key of a target signer. After that, the adversary adaptively
requests a certification for a public key by registering the key-pair of other signer, and he adaptively requests
a sequential aggregate signature by providing a previous aggregate signature to the signing oracle. Finally,
the adversary outputs a forged sequential aggregate signature on messages under public keys. If the forged
sequential signature satisfies the conditions of the security model, then the adversary wins the security game.
The security model of SAS is formally defined as follows:

Definition 4.2 (Security). The security notion of existential unforgeability under a chosen message attack
is defined in terms of the following experiment between a challenger C and a PPT adversary A:

14

1. Setup: C first initializes a certification list CL as empty. Next, it runs Setup to obtain public parame-
ters PP and KeyGen to obtain a key pair (PK,SK), and gives PK to A.

2. Certification Query: A adaptively requests the certification of a public key by providing a key pair
(PK,SK). Then C adds the key pair (PK,SK) to CL if the key pair is a valid one.

3. Signature Query: A adaptively requests a sequential aggregate signature (by providing an aggregate-
so-far AS′ on messages M′ under public keys PK′), on a message M to sign under the challenge public
key PK, and receives a sequential aggregate signature AS.

4. Output: Finally (after a sequence of the above queries), A outputs a forged sequential aggregate
signature AS∗ on messages M∗ under public keys PK∗. C outputs 1 if the forged signature satisfies the
following three conditions, or outputs 0 otherwise: 1) AggVerify(AS∗,M∗,PK∗) = 1, 2) The challenge
public key PK must exists in PK∗ and each public key in PK∗ except the challenge public key must
be in CL, and 3) The corresponding message M in M∗ of the challenge public key PK must not have
been queried by A to the sequential aggregate signing oracle.

The advantage ofA is defined as AdvSAS
A = Pr[C = 1] where the probability is taken over all the randomness

of the experiment. A SAS scheme is existentially unforgeable under a chosen message attack if all PPT
adversaries have at most a negligible advantage in the above experiment.

4.2 Construction

To construct a SAS scheme from a PKS scheme, the PKS scheme should support multi-users by sharing
some elements among all signers and the randomness of signatures should be sequentially aggregated to a
single value. We can employ the randomness reuse method of Lu et al. [18] to aggregate the randomness
of signatures. To apply the randomness reuse method, we should re-randomize the aggregate signature to
prevent a forgery attack. Thus we build on the PKS scheme of the previous section that supports multi-users
and public re-randomization to construct a SAS scheme.

The SAS scheme in prime order bilinear groups is described as follows:

SAS.Setup(1λ): This algorithm first generates the asymmetric bilinear groups G,Ĝ of prime order p of
bit size Θ(λ). It chooses random elements g,w ∈ G and ĝ ∈ Ĝ. Next, it selects random exponents
ν ,φ1,φ2 ∈ Zp and sets τ = φ1 +νφ2, w1 = wφ1 ,w2 = wφ2 . It publishes public parameters by selecting
a random value cg ∈ Zp as

PP =
(

gwcg
1 ,wcg

2 ,wcg , w1,w2,w, ĝ, ĝν , ĝ−τ , Λ = e(g, ĝ)
)
.

SAS.KeyGen(PP): This algorithm takes as input the public parameters PP. It selects random exponents
α,x,y∈Zp and sets û= ĝx, ĥ= ĝy. It outputs a private key SK = (α,x,y) and a public key by selecting
random values c′u,c

′
h ∈ Zp as

PK =
(

uwcu
1 = (gwcg

1)xwc′u
1 ,wcu

2 = (wcg
2)xwc′u

2 ,wcu = (wcg)xwc′u
2 ,

hwch
1 = (gwcg

1)ywc′u
1 ,wch

2 = (wcg
2)ywc′u

2 ,wch = (wcg)ywc′u
2 ,

û, ûν = (ĝν)x, û−τ = (ĝ−τ)x, ĥ, ĥν = (ĝν)y, ĥ−τ = (ĝ−τ)y, Ω = Λ
α
)
.

15

SAS.AggSign(AS′,M′,PK′,M,SK): This algorithm takes as input an aggregate-so-far AS′ = (S′1,1, . . . ,S
′
2,3)

on messages M′=(M1, . . . ,Ml−1) under public keys PK′=(PK1, . . . ,PKl−1) where PKi =(uiw
cu,i
1 , . . . ,Ωi),

a message M ∈ Zp, a private key SK = (α,x,y) with PK = (uwcu
1 , . . . ,Ω) and PP. It first checks the

validity of AS′ by calling SAS.AggVerify(AS′,M′,PK′). If AS′ is not valid, then it halts. If the pub-
lic key PK of SK does already exist in PK′, then it halts. Next, it computes a temporal aggregate
signature as

T S =
(

S1,1 = S′1,1(gwcg
1)α(S′2,1)

xM+y, S1,2 = S′1,2(w
cg
2)α(S′2,2)

xM+y, S1,3 = S′1,3(w
cg)α(S′2,3)

xM+y,

S2,1 = S′2,1, S2,2 = S′2,2, S2,3 = S′2,3
)
.

Finally it output a re-randomized aggregate signature AS by running SAS.AggRand(T S,M,PK,PP)
where M = M′||M and PK = PK′||PK.

SAS.AggRand(AS′,M′,PK′,PP): This algorithm takes as input an aggregate signature AS′=(S′1,1, . . . ,S
′
2,3)

on messages M′=(M1, . . . ,Ml) under public keys PK′=(PK1, . . . ,PKl) where PKi =(uiw
cu,i
1 , . . . ,Ωi),

and PP. Next, it selects random exponents r,c1,c2 ∈Zp and outputs a randomized aggregate signature
as

AS =
(

S1,1 = S′1,1 ·
l

∏
i=1

((uiw
cu,i
1)Mi(hiw

ch,i
1))rwc1

1 , S1,2 = S′1,2 ·
l

∏
i=1

((wcu,i
2)Mi(wch,i

2))rwc1
2 ,

S1,3 = S′1,3 ·
l

∏
i=1

((wcu,i)Mi(wch,i))rwc1 ,

S2,1 = S′2,1 · (gwcg
1)rwc2

1 , S2,2 = S′2,2 · (w
cg
2)rwc2

2 , S2,3 = S′2,3 · (wcg)rwc2
)
.

SAS.AggVerify(AS,M,PK): This algorithm takes as input a sequential aggregate signature AS on messages
M= (M1, . . . ,Ml) under public keys PK= (PK1, . . . ,PKl) where PKi = (uiw

cu,i
1 , . . . ,Ωi). It first checks

that any public key does not appear twice in PK and that any public key in PK has been certified. If
these checks fail, then it outputs 0. If l = 0, then it outputs 1 if S1,1 = · · · = S2,3 = 1, 0 otherwise. It
chooses a random exponent t ∈ Zp and computes verification components as

C1,1 = ĝt , C1,2 = (ĝν)t , C1,3 = (ĝ−τ)t ,

C2,1 =
l

∏
i=1

(ûMi
i ĥi)

t , C2,2 =
l

∏
i=1

((ûν
i)

Mi ĥν
i)

t , C2,3 =
l

∏
i=1

((û−τ

i)Mi ĥ−τ

i)t .

Next, it verifies that ∏
3
i=1 e(S1,i,C1,i) ·∏3

i=1 e(S2,i,C2,i)
−1 ?

= ∏
l
i=1 Ωt

i . If this equation holds, then it
outputs 1. Otherwise, it outputs 0.

Let r′,c′1,c
′
2 be the randomness of an aggregate-so-far. If we implicitly sets r̃ = r′+ r, c̃1 = c′1 + cgαl +

∑
l
i=1(cu,iMi + ch,i)r+ c1, c̃2 = c′2 + cgr+ c2, then the aggregate signature is correctly distributed as

S1,1 =
l

∏
i=1

gαi
l

∏
i=1

(uMi
i hi)

r̃wc̃1
1 , S1,2 = wc̃1

2 , S1,3 = wc̃1 ,

S2,1 = gr̃wc̃2
1 , S2,2 = wc̃2

2 , S2,3 = wc̃2 .

16

4.3 Security Analysis

Theorem 4.3. The above SAS scheme is existentially unforgeable under a chosen message attack if the PKS
scheme is existentially unforgeable under a chosen message attack. That is, for any PPT adversaryA for the
above SAS scheme, there exists a PPT algorithm B for the PKS scheme such that AdvSAS

A (λ)≤ AdvPKS
B (λ).

Proof. The security proof of this theorem is similar to that of Lu et al. [18]. That is, a simulator can simulate
the generation of aggregate signatures since the verification algorithm of aggregate signatures does not check
the order of aggregation and the simulator knows the private keys of other signers except the target signer.
To extract a forged PKS signature from the forged aggregate signature, the simulator uses the knowledge of
private keys of other signers.

Suppose there exists an adversaryA that forges the above SAS scheme with non-negligible advantage ε .
A simulatorB that forges the PKS scheme is first given: a challenge public key PKPKS =(gwcg

1 ,wcg
2 ,wcg ,uwcu

1 ,
. . . ,wch ,w1,w2,w, ĝ, ĝν , ĝ−τ , û, . . . , ĥ−τ ,Ω). Then B that interacts withA is described as follows: B first con-
structs PP = (gwcg

1 ,wcg
2 ,wcg ,w1,w2,w, ĝ, ĝν , ĝ−τ ,Λ) by computing Λ = e(gwcg

1 , ĝ) ·e(wcg
2 , ĝν) ·e(wcg , ĝ−τ) =

e(g, ĝ) and PK∗ = (uwcu
1 , . . . ,wch , û, . . . , ĥ−τ ,Ω) from PKPKS. Next, it initializes a certification list CL as

an empty one and gives PP and PK∗ to A. A may adaptively requests certification queries or sequen-
tial aggregate signature queries. If A requests the certification of a public key by providing a public key
PKi = (uiw

cu,i
1 , . . . ,Ωi) and its private key SKi = (αi,xi,yi), then B checks the private key and adds the key

pair (PKi,SKi) to CL. IfA requests a sequential aggregate signature by providing an aggregate-so-far AS′ on
messages M′ = (M1, . . . ,Ml−1) under public keys PK′ = (PK1, . . . ,PKl−1), and a message M to sign under
the challenge private key of PK∗, then B proceeds the aggregate signature query as follows:

1. It first checks that the signature AS′ is valid and that each public key in PK′ exits in CL.

2. It queries its signing oracle that simulates PKS.Sign on the message M for the challenge public key
PK∗ and obtains a signature σ .

3. For each 1≤ i≤ l−1, it constructs an aggregate signature on message Mi using SAS.AggSign since it
knows the private key that corresponds to PKi. The result signature is an aggregate signature for mes-
sages M′||M under public keys PK′||PK∗ since this scheme does not check the order of aggregation.
It gives the result signature AS to A.

Finally,A outputs a forged aggregate signature AS∗ = (S∗1,1, . . . ,S
∗
2,3) on messages M∗ = (M1, . . . ,Ml) under

public keys PK∗ = (PK1, . . . ,PKl) for some l. Without loss of generality, we assume that PK1 = PK∗. B
proceeds as follows:

1. B first checks the validity of AS∗ by using SAS.AggVerify. Additionally, the forged signature should
not be trivial: the challenge public key PK∗ must be in PK∗, and the message M1 must not be queried
by A to the signature query oracle.

2. For each 2 ≤ i ≤ l, it parses PKi = (uiw
cu,i
1 , . . . ,Ωi) from PK∗, and it retrieves the private key SKi =

(αi,xi,yi) of PKi from CL. It then computes

W1,1 = S∗1,1
l

∏
i=2

(
gα j(S∗2,1)

xiMi+yi
)−1

, W1,2 = S∗1,2
l

∏
i=2

(
(S∗2,2)

xiMi+yi
)−1

, W1,3 = S∗1,3
l

∏
i=2

(
(S∗2,3)

xiMi+yi
)−1

,

W2,1 = S∗2,1, W2,2 = S∗2,2, W2,3 = S∗2,3.

17

3. It outputs σ = (W1,1, . . . ,W2,3) as a non-trivial forgery of the PKS scheme since it did not make a
signing query on M1.

The public parameters and the public key are correctly distributed, and the sequential aggregate signa-
tures are also correctly distributed since this scheme does not check the order of aggregation. The result
signature σ = (W1,1, . . . ,W2,3) of the simulator is a valid PKS signature on the message M1 under the public
key PK∗ since it satisfies the following equation:

3

∏
i=1

e(W1,i,V1,i) ·
3

∏
i=1

e(W2,i,V2,i)
−1

= e(S∗1,1, ĝ
t) · e(S∗1,2, ĝνt) · e(S∗1,4, ĝ−τt) · e(

l

∏
i=2

gαi , ĝt)−1·

e(S∗2,1,
l

∏
i=2

(ûMi
i ĥi)

t)−1 · e(S∗2,2,
l

∏
i=2

(ûMi
i ĥi)

νt)−1 · e(S∗2,3,
l

∏
i=2

(ûMi
i ĥi)

−τt)−1·

e(S∗2,1,(û
M1 ĥ)t)−1 · e(S∗2,2,(ûM1 ĥ)νt)−1 · e(S∗2,3,(ûM1 ĥ)−τt)−1

= e(S∗1,1,C1,1) · e(S∗1,2,C1,2) · e(S∗1,3,C1,3) · e(
l

∏
i=2

gαi , ĝt)−1·

e(S∗2,1,
l

∏
i=1

(ûMi
i ĥi)

t)−1 · e(S∗2,2,
l

∏
i=1

(ûMi
i ĥi)

νt)−1 · e(S∗2,3,
l

∏
i=1

(ûMi
i ĥi)

−τt)−1·

=
3

∏
i=1

e(S∗1,i,C1,i) ·
3

∏
i=1

e(S∗2,i,C2,i)
−1 · e(

l

∏
i=2

gαi , ĝt)−1 =
l

∏
i=1

Ω
t
i ·

l

∏
i=2

Ω
−t
i = Ω

t
1

where δi = xiMi + yi and s̃2 = ∑
l
i=2(xiMi + yi)s1 + s2. This completes our proof.

5 Multi-Signature

In this section, we propose an efficient multi-signature (MS) scheme and prove its security without random
oracles.

5.1 Definitions

Multi-Signature (MS) can be regarded as a special kind of PKAS such that different signatures generated by
different signer on the same message are combined as a short multi-signature. Thus MS scheme consists of
four algorithms of PKS scheme and additionally two algorithms Combine and MultiVerify for combining
a multi-signature and verifying a multi-signature. In MS, each signer generates a public key and a private
key, and he can generate an individual signature on a message by using his private key. To generate a multi-
signature, anyone can combine individual signature of different signers on the same message. A verifier
can check the validity of the multi-signature by using the public keys of signers. A MS scheme is formally
defined as follows:

Definition 5.1 (Multi-Signature). A multi-signature (MS) scheme consists of six PPT algorithms Setup,
KeyGen, Sign, Verify, Combine, and MultVerify, which are defined as follows:

Setup(1λ): The setup algorithm takes as input a security parameter λ , and outputs public parameters PP.

18

KeyGen(PP): The key generation algorithm takes as input the public parameters PP, and outputs a public
key PK and a private key SK.

Sign(M,SK): The signing algorithm takes as input a message M, and a private key SK. It outputs a
signature σ .

Verify(σ ,M,PK): The verification algorithm takes as input a signature σ on a message M under a public
key PK, and outputs either 1 or 0 depending on the validity of the signature.

Combine(σ ,M,PK): The combining algorithm takes as input signatures σ on a message M under public
keys PK = (PK1, . . . ,PKl), and outputs a multi-signature MS.

MultVerify(MS,M,PK): The multi-verification algorithm takes as input a multi-signature MS on a mes-
sage M under public keys PK = (PK1, . . . ,PKl), and outputs either 1 or 0 depending on the validity
of the multi-signature.

The correctness requirement is that for each PP output by Setup(1λ), for all (PK,SK) output by KeyGen(PP),
and any M, we have that Verify(Sign(M,SK),M,PK) = 1 and for each σ on message M under public keys
PK, MultVerify(Combine(σ ,M,PK),M,PK) = 1.

The security model of MS was defined by Micali et al. [20], but we use the security model of Boldyreva
[3] that requires for an adversary to register the key-pairs of other signers except the target signer, namely
the knowledge of secret key (KOSK) setting or the proof of knowledge (POK) setting. In this security
model, an adversary first given the public key of a target signer. After that, the adversary adaptively requests
a certification for a public key by registering the key-pair of other signer, and he adaptively requests a
signature for the target signer on a message. Finally, the adversary outputs a forged multi-signature on a
message M∗ under public keys. If the forged multi-signature satisfies the conditions of the security model,
then the adversary wins the security game. The security model of MS is formally defined as follows:

Definition 5.2 (Security). The security notion of existential unforgeability under a chosen message attack
is defined in terms of the following experiment between a challenger C and a PPT adversary A:

1. Setup: C first initialize the certification list CL as empty. Next, it runs Setup to obtain public parame-
ters PP and KeyGen to obtain a key pair (PK,SK), and gives PP,PK to A.

2. Certification Query: A adaptively requests the certification of a public key by providing a key pair
(PK,SK). C adds the key pair (PK,SK) to CL if the private key is a valid one.

3. Signature Query: A adaptively requests a signature by providing a message M to sign under the
challenge public key PK, and receives a signature σ .

4. Output: Finally, A outputs a forged multi-signature MS∗ on a message M∗ under public keys PK∗.
C outputs 1 if the forged signature satisfies the following three conditions, or outputs 0 otherwise: 1)
MultVerify(MS∗,M∗,PK∗) = 1, 2) The challenge public key PK must exists in PK∗ and each public
key in PK∗ except the challenge public key must be in CL, and 3) The message M∗ must not have been
queried by A to the signing oracle.

The advantage of A is defined as AdvMS
A = Pr[C = 1] where the probability is taken over all the randomness

of the experiment. A MS scheme is existentially unforgeable under a chosen message attack if all PPT
adversaries have at most a negligible advantage in the above experiment.

19

5.2 Construction

To construct a MS scheme from a PKS scheme, the PKS scheme should support multi-user settings and
the randomness aggregation method. If the elements gwcg

1 ,uwcu
1 ,hwch

1 of the PKS scheme are shared among
all signers, then we can construct a MS scheme from the PKS scheme since the random exponent for the
public-key and the randomness for the signature are placed in different positions. Note that it is not required
for a signer to publicly re-randomize the multi-signature since each signer selects an independent random
value.

Our MS scheme in prime order bilinear groups is described as follows:

MS.Setup(1λ): This algorithm first generates the asymmetric bilinear groups G,Ĝ of prime order p of
bit size Θ(λ). It chooses random elements g,w ∈ G and ĝ ∈ Ĝ. Next, it selects random exponents
ν ,φ1,φ2 ∈ Zp and sets τ = φ1 +νφ2, w1 = wφ1 ,w2 = wφ2 . It selects random exponents x,y ∈ Zn and
computes u = gx,h = gy, û = ĝx, ĥ = ĝy. It publishes public parameters by selecting random values
cg,cu,ch ∈ Zp as

PP =
(

gwcg
1 ,wcg

2 ,wcg , uwcu
1 ,wcu

2 ,wcu , hwch
1 ,wch

2 ,wch , w1,w2,w,

ĝ, ĝν , ĝ−τ , û, ûν , û−τ , ĥ, ĥν , ĥ−τ , Λ = e(g, ĝ)
)
.

MS.KeyGen(PP): This algorithm takes as input the public parameters PP. It selects a random exponent
α ∈ Zp and computes Ω = Λα . Then it outputs a private key SK = α and a public key as PK = Ω.

MS.Sign(M,SK): This algorithm takes as input a message M ∈ Zp and a private key SK = α . It selects
random exponents r,c1,c2 ∈ Zp and outputs a signature as

σ =
(

W1,1 = (gwcg
1)α((uwcu

1)M(hwch
1))rwc1

1 ,

W1,2 = (wcg
2)α((wcu

2)Mwch
2)rwc1

2 , W1,3 = (wcg)α((wcu)Mwch)rwc1 ,

W2,1 = (gwcg
1)rwc2

1 , W2,2 = (wcg
2)rwc2

2 , W2,3 = (wcg)rwc2
)
.

MS.Verify(σ ,M,PK): This algorithm takes as input a signature σ on a message M under a public key PK.
It chooses a random exponent t ∈ Zp and computes verification components as

V1,1 = ĝt ,V1,2 = (ĝν)t ,V1,3 = (ĝ−τ)t ,

V2,1 = (ûMĥ)t ,V2,2 = ((ûν)Mĥν)t ,V2,3 = ((û−τ)Mĥ−τ)t .

Next, it verifies that ∏
3
i=1 e(W1,i,V1,i) ·∏3

i=1 e(W2,i,V2,i)
−1 ?

= Ωt . If this equation holds, then it outputs
1. Otherwise, it outputs 0.

MS.Combine(σ ,M,PK): This algorithm takes as input signatures σ = (σ1, . . . ,σl) on a message M under
public keys PK = (PK1, . . . ,PKl) where PKi = Ωi. It first checks the validity of each signature σi =
(W i

1,1, . . . ,W
i
2,3) by calling MS.Verify(σi,M,PKi). If any signature is invalid, then it halts. It then

outputs a multi-signature for a message M as

MS =
(

S1,1 =
l

∏
i=1

W i
1,1, S1,2 =

l

∏
i=1

W i
1,2, S1,3 =

l

∏
i=1

W i
1,3,

S2,1 =
l

∏
i=1

W i
2,1, S2,2 =

l

∏
i=1

W i
2,2, S2,3 =

l

∏
i=1

W i
2,3

)
.

20

MS.MultVerify(MS,M,PK): This algorithm takes as input a multi-signature MS on a message M under
public keys PK= (PK1, . . . ,PKl) where PKi =Ωi. It chooses a random exponent t ∈Zp and computes
verification components as

V1,1 = ĝt ,V1,2 = (ĝν)t ,V1,3 = (ĝ−τ)t ,

V2,1 = (ûMĥ)t ,V2,2 = ((ûν)Mĥν)t ,V2,3 = ((û−τ)Mĥ−τ)t .

Next, it verifies that ∏
3
i=1 e(S1,i,V1,i) ·∏3

i=1 e(S2,i,V2,i)
−1 ?

= ∏
l
i=1 Ωt

i . If this equation holds, then it
outputs 1. Otherwise, it outputs 0.

5.3 Security Analysis

Theorem 5.3. The above MS scheme is existentially unforgeable under a chosen message attack if the PKS
scheme is existentially unforgeable under a chosen message attack. That is, for any PPT adversaryA for the
above MS scheme, there exists a PPT algorithm B for the PKS scheme such that AdvMS

A (λ)≤ AdvPKS
B (λ).

Proof. Suppose there exists an adversary A that forges the above MS scheme with a non-negligible advan-
tage ε . A simulator B that forges the PKS scheme is given: a challenge public key PKPKS = (gwcg

1 , . . . ,Λ,Ω).
Then B that interacts with A is described as follows: B first constructs PP = (gwcg

1 , . . . ,Λ) by computing
Λ = e(gwcg

1 , ĝ) ·e(wcg
2 , ĝν) ·e(wcg , ĝ−τ) = e(g, ĝ) and PK∗ = Ω from PKPKS. Next, it initialize a certification

list CL as an empty one and gives PP and PK∗ to A. A may adaptively request certification queries or
signature queries. If A requests the certification of a public key by providing a public key PKi = Ωi and
its private key SKi = αi, then B checks the key pair and adds (PKi,SKi) to CL. If A requests a signature
by providing a message M to sign under the challenge private key of PK∗, then B queries its signing oracle
that simulates PKS.Sign on the message M for the challenge public key PK∗, and gives the signature to
A. Finally, A outputs a forged multi-signature MS∗ = (S∗1,1, . . . ,S

∗
2,3) on a message M∗ under public keys

PK∗ = (PK1, . . . ,PKl) for some l. Without loss of generality, we assume that PK1 = PK∗. B proceeds as
follows:

1. B first check the validity of MS∗ by calling MS.MultVerify. Additionally, the forged signature should
not be trivial: the challenge public key PK∗ must be in PK∗, and the message M must not be queried
by A to the signing oracle.

2. For each 2≤ i≤ l, it parses PKi = Ωi from PK∗, and it retrieves the private key SKi = gαi of PKi from
CL. It then computes

W1,1 = S∗1,1 ·
l

∏
i=2

(
gαi

)−1
, W1,2 = S∗1,2, W1,3 = S∗1,3,

W2,1 = S∗2,1, W2,2 = S∗2,2, W2,3 = S∗2,3.

3. It outputs σ = (W1,1, . . . ,W2,3) as a non-trivial forgery of the PKS scheme since it did not make a
signing query on M1.

To finish the proof, we first show that the distribution of the simulation is correct. It is obvious that the
public parameters, the public key, and the signatures are correctly distributed. Next we show that the output

21

signature σ = (W1,1, . . . ,W2,3) of the simulator is a valid signature for the PKS scheme on the message M1
under the public key PK∗ since it satisfies the following equation

3

∏
i=1

e(W1,i,V1,i) ·
3

∏
i=1

e(W2,i,V2,i)
−1

=
3

∏
i=1

e(S∗1,i,V1,i) ·
3

∏
i=1

e(S∗2,i,V2,i)
−1 · e(

l

∏
i=2

gαi , ĝ)−1 =
l

∏
i=1

Ω
t
i ·

l

∏
i=2

Ω
−t
i = Ω

t
1.

This completes our proof.

5.4 Discussions

Removing the Proof of Knowledge. In our MS scheme, an adversary should prove that he knows the
private key of other signer by using a zero-knowledge proof system. Ristenpart and Yilek showed that some
MS schemes can be proven in the proof of possession (POP) setting instead of the POK setting [22]. Our
MS scheme also can be proven in the POP setting by using their technique. That is, if our MS scheme is
incorporated with a POP scheme that uses a different hash function, and the adversary submits a signature
on the private key of other signer as the proof of possession, then the security of our scheme is also achieved.
In the security proof, a simulator cannot extract the private key element gα from the signature of the POP
scheme, but he can extract other values gαwc′

1 ,w
c′
2 ,w

c′ and these values are enough for the security proof.

6 Conclusion

In this paper, we improved the SAS scheme of Lee et al. [16] by reducing the size of aggregate signatures
and similarly proved its security without random oracles under static assumptions. To reduce the size of
signatures, we first devised a PKS scheme that supports multi-users and public re-randomization and proved
its security using the dual system encryption technique. The proposed SAS scheme of this paper trades off
signature size against public-key size compared with the scheme of Lee et al. since the signature size of
our scheme decreases by two group elements but the public-key size increases by two group elements (but
signatures are many and a public key is published once). Our techniques include lifting and randomization
of verification parameters used in the previous scheme.

References

[1] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized aggregate signatures: new
definitions, constructions and applications. In ACM Conference on Computer and Communications
Security, pages 473–484, 2010.

[2] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures. In
Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP, volume 4596
of Lecture Notes in Computer Science, pages 411–422. Springer, 2007.

[3] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-
diffie-hellman-group signature scheme. In Yvo Desmedt, editor, Public Key Cryptography, volume
2567 of Lecture Notes in Computer Science, pages 31–46. Springer, 2003.

22

[4] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing. Cryptology ePrint
Archive, Report 2007/438, 2010. http://eprint.iacr.org/2007/438.

[5] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian,
editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

[6] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted sig-
natures from bilinear maps. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in
Computer Science, pages 416–432. Springer, 2003.

[7] Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential aggregate signatures with lazy verifi-
cation from trapdoor permutations - (extended abstract). In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT, volume 7658 of Lecture Notes in Computer Science, pages 644–662. Springer, 2012.

[8] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J. ACM,
51(4):557–594, 2004.

[9] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976.

[10] Marc Fischlin, Anja Lehmann, and Dominique Schröder. History-free sequential aggregate signatures.
In Ivan Visconti and Roberto De Prisco, editors, SCN, volume 7485 of Lecture Notes in Computer
Science, pages 113–130. Springer, 2012.

[11] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography, volume 3958 of Lecture
Notes in Computer Science, pages 257–273. Springer, 2006.

[12] Michael Gerbush, Allison B. Lewko, Adam O’Neill, and Brent Waters. Dual form signatures: An
approach for proving security from static assumptions. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT, volume 7658 of Lecture Notes in Computer Science, pages 25–42. Springer, 2012.

[13] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[14] Kazuharu Itakura and Katsuhiro Nakamura. A public-key cryptosystem suitable for digital multisig-
natures. NEC Research & Development, (71):1–8, 1983.

[15] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Aggregating cl-signatures revisited: Extended
functionality and better efficiency. Cryptology ePrint Archive, Report 2012/562, 2012. http:
//eprint.iacr.org/2012/562.

[16] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Sequential aggregate signatures with short public
keys: Design, analysis and implementation studies. In Kaoru Kurosawa and Goichiro Hanaoka, edi-
tors, Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 423–442.
Springer, 2013.

[17] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure hibe
with short ciphertexts. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer
Science, pages 455–479. Springer, 2010.

23

http://eprint.iacr.org/2007/438
http://eprint.iacr.org/2012/562
http://eprint.iacr.org/2012/562

[18] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate
signatures and multisignatures without random oracles. In Serge Vaudenay, editor, EUROCRYPT,
volume 4004 of Lecture Notes in Computer Science, pages 465–485. Springer, 2006.

[19] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate signa-
tures from trapdoor permutations. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT,
volume 3027 of Lecture Notes in Computer Science, pages 74–90. Springer, 2004.

[20] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: extended
abstract. In Michael K. Reiter and Pierangela Samarati, editors, ACM Conference on Computer and
Communications Security, pages 245–254. ACM, 2001.

[21] Gregory Neven. Efficient sequential aggregate signed data. In Nigel P. Smart, editor, EUROCRYPT,
volume 4965 of Lecture Notes in Computer Science, pages 52–69. Springer, 2008.

[22] Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession: Securing multiparty signatures
against rogue-key attacks. In Moni Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in
Computer Science, pages 228–245. Springer, 2007.

[23] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[24] Dominique Schröder. How to aggregate the cl signature scheme. In Vijay Atluri and Claudia Dı́az,
editors, ESORICS, volume 6879 of Lecture Notes in Computer Science, pages 298–314. Springer,
2011.

[25] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer, 2005.

24

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Asymmetric Bilinear Groups
	Complexity Assumptions

	Public-Key Signature
	Definitions
	Design Principle
	Construction
	Security Analysis

	Sequential Aggregate Signature
	Definitions
	Construction
	Security Analysis

	Multi-Signature
	Definitions
	Construction
	Security Analysis
	Discussions

	Conclusion

