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Abstract

In homomorphic encryption schemes, anyone can perform homomorphic operations, and therefore,
it is difficult to manage when, where and by whom they are performed. In addition, the property that
anyone can “freely” perform the operation inevitably means that ciphertexts are malleable, and it is
well-known that adaptive chosen ciphertext (CCA) security and the homomorphic property can never
be achieved simultaneously. In this paper, we show that CCA security and the homomorphic property
can be simultaneously handled in situations that the user(s) who can perform homomorphic operations
on encrypted data should be controlled/limited, and propose a new concept of homomorphic public-key
encryption, which we call keyed-homomorphic public-key encryption (KH-PKE). By introducing a secret
key for homomorphic operations, we can control who is allowed to perform the homomorphic operation.
To construct KH-PKE schemes, we introduce a new concept, transitional universal property, and present
a practical KH-PKE scheme from the DDH assumption. For ℓ-bit security, our DDH-based KH-PKE
scheme yields only ℓ-bit longer ciphertext size than that of the Cramer–Shoup PKE scheme.

Keywords: homomorphic public key encryption, CCA2 security, hash proof system

1 Introduction

1.1 Background and Motivation

In homomorphic encryption schemes, homomorphic operations can be performed on encrypted plaintexts
without decrypting the corresponding ciphertexts. Owing to this attractive property, several homomorphic
public key encryption (PKE) schemes have been proposed [15, 20, 33]. Furthermore, fully homomorphic
encryption (FHE) that allows a homomorphic operation with respect to any circuit, has recently been pro-
posed by Gentry [19]. This has had a resounding impact not only in the cryptographic research community,
but also in the business community. One of the reasons for such a big impact is that FHE is suitable for
ensuring security in cloud environments (e.g., encrypted data stored in a database can be updated without
any decryption procedure).
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Improvement in the security of homomorphic encryption will lead to wider deployment of cloud-type
applications, whereas the property that anyone can “freely” perform homomorphic operations inevitably
means that ciphertexts are malleable. Therefore, it is well-known that adaptive chosen ciphertext (CCA2)
security and the homomorphic property can never be achieved simultaneously. In other words, security is
sacrificed in exchange for the homomorphic property. Although several previous works (e.g., [2, 8, 21, 35, 36])
have attempted to construct homomorphic PKE schemes that offer security close to CCA2 security while
retaining the homomorphic property, these schemes only guarantee security at limited levels. Note that
not all functionalities of conventional homomorphic encryption are indispensable for real-world applications,
and therefore there is the possibility of realizing a desirable security level by appropriately selecting the
functionalities of conventional homomorphic encryption.

Here, we point out that the underlying cause of the incompatibility of CCA2 security and the homomor-
phic property, lies in the setting that any user can use the homomorphic property, and it is worth discussing
whether the free availability of homomorphic operations is an indispensable functionality in real-world appli-
cations. For example, consider the situation where some data encrypted by a homomorphic PKE scheme is
stored in a public database (e.g., public cloud computing environment) and it is modified by homomorphic
operations. If anyone can perform a homomorphic operation, then it is hard to reduce the risk of unexpected
changes to the encrypted data in the database in which resources are dynamically allocated. Even in a closed
environment (e.g., private cloud computing environment), we cannot rule out the possibility of unexpected
changes to a user’s data by any user who is authorized to access the database. Of course, it is possible to
protect such unexpected modification of encrypted data by setting access permissions of each user appropri-
ately. However, in cloud environments, security of outsourced data storages may not be assured. Therefore,
such access control functionality should be included in encrypted data itself.

From the above consideration, we see that the property that anyone can perform homomorphic operations
not only inhibits the realization of CCA2 security, but also introduces the problem of unexpected modification
of encrypted data.

1.2 Our Contribution

In this paper, we show that CCA2 security and the homomorphic property can be simultaneously handled
in situations that the user(s) who can perform homomorphic operations should be controlled. Specifically,
we propose a new concept of homomorphic PKE, which we call keyed-homomorphic public-key encryption
(KH-PKE), that has the following properties: (1) in addition to a conventional public/decryption key pair
(pk, skd), another secret key for the homomorphic operation (denoted by skh) is introduced, (2) homomorphic
operations cannot be performed without using skh, and (3) ciphertexts cannot be decrypted using only skh.
Interestingly, KH-PKE implies conventional homomorphic PKE, since the latter can be implemented by
publishing skh of KH-PKE.

To construct KH-PKE schemes, we introduce a new concept, transitional universal property, which can
be obtained from any diverse group system [13], and present a number of KH-PKE schemes through hash
proof systems (HPSs) [13].

Our Scenarios: Here we introduce situations that the user(s) who can perform homomorphic operations
should be controlled/limited. For example, in the situation where encrypted data is stored in a public
database, an owner of the data gives skh to the database manager, who updates the encrypted data after
authentication of users. No outsider can modify the encrypted data in the public database without having
skh. As another example, by considering skh, a counter can take over the role of aggregating an audience
survey, voting, and so on. An advantage of separating ballot-counting and ballot-aggregation is that it is
possible to reduce the aggregation costs of the counter and to collect the ballot results for individual areas,
groups, and communities. We can also consider an application of KH-PKE to prevent illegal distribution of
data. A content creator gives skh to a digital content provider and the provider embeds some data (e.g., a
water mark) for protecting the content against illegal copying, a certification for ownership of the content,
and/or a distribution route.
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Naive Construction and its Limitations: One might think that the functionality and the security of
KH-PKE can be achieved by using the following double encryption methodology: A ciphertext of an “inner”
CCA1 secure homomorphic PKE scheme is encrypted by an “outer” CCA2 secure PKE scheme, and the
decryption key of the CCA2 secure PKE scheme is used as skh. However, this naive construction is not
secure in the sense of our security definition. Taking into account the exposure of the homomorphic operation
key skh, an adversary can request skh to be exposed in our security definition. The adversary is allowed to
use the decryption oracle “even after the challenge phase”, just before the adversary requests skh. However,
no such decryption query is allowed in the CCA1 security of the underlying “inner” scheme, and therefore
it seems hard to avoid this problem.

Even if we turn a blind eye to the above problem, it is obvious that efficiency of the naive construction
is roughly equal to the total costs of the building block PKE schemes. On the other hand, the efficiency
of our KH-PKE instantiations is very close to the corresponding (non-keyed-homomorphic) PKE schemes
based on HPSs. In particular, the efficiency of our decisional Diffie-Hellman (DDH)-based KH-PKE scheme
is comparably efficient as the Cramer–Shoup PKE (CS) scheme [11], where for ℓ-bit security, our scheme
yields only ℓ-bit longer ciphertext size than that of the CS PKE scheme. Whereas the naive construction
yields at least 5ℓ-bit longer ciphertext size even if we choose the Kurosawa–Desmedt (KD) PKE scheme [29]
and the Cramer–Shoup lite PKE scheme [11] that seems the most efficient combination under the DDH
assumption. We give the comparison in Table 1 in Section 5.3.

To sum up, our construction is superior to the naive construction from both security and efficiency
perspectives.

Our Methodology: As a well-known result, CCA2-secure PKE can be constructed via a HPS [13] which
has two projective hash families as its internal structure: A universal2 projective hash and a smooth projective
hash. Also it is known that a weaker property of universal2, that is called universal1 property, was shown to
be useful for achieving CCA1-secure PKE [28], and universal1 property (and smooth property also) does not
contradict the homomorphic property. That is, our aim seems to be achieved if we can establish a switching
mechanism from universal2 to universal1. Moreover, we can simulate the decryption oracle even after the
challenge phase and after revealing skh since the simulator knows all secret keys in the security proof.

In this paper, we show such a mechanism, which we call transitional universal property, can be obtained
from any diverse group system [13], then we propose a generic construction of KH-PKE through HPSs.
Moreover, as an implication result, KH-PKE is implied by CPA-secure homomorphic PKE (with cyclic-
group ciphertext space) which implies diverse group systems [23].

Instantiations: In this paper, we present practical KH-PKE schemes from the DDH assumption and
the decisional composite residuosity (DCR) assumption, respectively. Other KH-PKE schemes based on
the decisional linear (DLIN) assumption from the Shacham HPS [37], and based on the decisional bilinear
Diffie-Hellman (DBDH) assumption from the Galindo-Villar HPS [17], and an identity-based analogue of
KH-PKE, called keyed-homomorphic identity-based encryption (KH-IBE) and its concrete construction from
the Gentry IBE scheme [18] will be given in the full version of this paper.

1.3 Related Work

Several previous works have attempted to construct homomorphic PKE schemes that provide security close
to CCA2 security, while retaining the homomorphic property. Canetti et al. [8] considered the notion of
replayable CCA (RCCA), which leaves a room for an adversary who is given two ciphertexts (C,C ′), to gain
information on whether C ′ was derived from C. (Modified RCCA notions have also been proposed [21, 35].)
In the RCCA security game, the decryption oracle given to an adversary is restricted in such a way that the
challenge ciphertext and ciphertexts derived from the challenge ciphertext cannot be queried to the oracle.
Similarly, in benignly-malleable (gCCA) security [2, 38], ciphertexts related to the challenge one cannot be
input to the decryption oracle. Therefore, RCCA and gCCA are strictly weaker notions than CCA2, and
may not be sufficient if the encryption scheme is used as a building block for higher level protocols/systems.
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In [36], Prabhakaran and Rosulek proposed homomorphic CCA (HCCA) security, where only the expected
operation, and no other operations, can be performed for any ciphertext. (Targeted malleability, which is
a similar concept to HCCA, was considered in [6].) In addition, they also showed that CCA2, gCCA, and
RCCA are special cases of HCCA. Note that HCCA does not handle the homomorphic property and CCA2
security simultaneously, since anyone can perform the homomorphic operation. Chase et al. [10] showed that
controlled-malleable non-interactive zero-knowledge can be used as a general tool for achieving RCCA and
HCCA security.

Embedding a ciphertext of homomorphic PKE into that of CCA2-secure PKE, was considered in [32, 5].
Note that their embedding encryption methods are nothing more than protecting a ciphertext of homomor-
phic PKE by that of CCA2 PKE, and therefore no homomorphic operation can be performed on embedded
ciphertexts. Meanwhile, in our KH-PKE, even after performing the homomorphic operation, a ciphertext is
still valid.

Barbosa and Farshim [3] proposed delegatable homomorphic encryption (DHE). The difference between
KH-PKE and DHE is that in DHE a trusted authority (TA) issues a token to control the capability to evaluate
circuits f over encrypted data M to untrusted evaluators. Furthermore, their security definitions of DHE
(input/output privacy (TA-IND-CPA) and evaluation security (IND-EVAL2)) do not allow an adversary to
access the decryption oracle and the evaluation oracle (the oracle for homomorphic operation) simultaneously.
We note that although Barbosa and Farshim defined verifiability (VRF-CCA2), where no homomorphic
operation can be performed without issuing a corresponding token, KH-CCA security for KH-PKE defined
in this paper guarantees a similar level of security, since if there exists an adversary that can perform the
homomorphic operation without using skh, then the adversary can break the KH-CCA security.

Following our work, Libert et al. [31] proposed a KH-PKE scheme for supporting threshold decryption
and publicly verifiable ciphertexts. They apply linearly homomorphic structure-preserving signatures [30]
to quasi-adaptive non-interactive zero-knowledge (QA-NIZK) proofs [25], propose QA-NIZK proofs with
unbounded simulation-soundness (USS), and construct a KH-PKE scheme by applying USS. Their KH-PKE
scheme (with multiplicative homomorphic operations) is secure under the DLIN assumption (and strong
unforgeability of the underlying one-time signature).

In the signature context, recently, Abe et al. [1] considered selective randomizability, where a strongly
unforgeable signature to be randomized with the help of a randomization token, and a randomizable signature
is still existentially unforgeable.

1.4 Differences from the Proceedings Version [16]

In the proceedings version [16], there were several bugs. Specifically, in the second last component π̂ of
a ciphertext of the generic construction (in [16, Fig. 1]) and that of the DDH-based construction (in [16,
Fig. 2]) could be malleable, which could lead to CCA attacks on the schemes. Furthermore, the evaluation
algorithms for these constructions were (although “correct” in terms of the functionality of KH-PKE) not
properly designed in the sense that in the CCA security game, the result of the “evaluation oracle” for
challenge ciphertext-dependent inputs could leak some information. Moreover, we did not properly state
the requirement of the second hash function (denoted by TCR2 in [16, Fig. 2]) used to “compress” the proof
value π̃ to reduce the ciphertext size.

We fix these bugs in the current version: First, we reconsider the proposed generic construction (in
Section 4): (1) the first proof value π̃ in the generic construction (in Fig. 1) is now made dependent on the
second proof value π̂, and (2) the evaluation algorithm Eval computes and “adds” a new ciphertext of 0.
These modifications enable us to prove our modified proposed constructions to be CCA secure.1 According to
these modifications, we do not have to newly define homomorphic transitional universal hash family. Instead,
we introduce transitional universal property of the pair of two HPSs. We also apply the similar modifications

1In the previous eprint version (20130618:085049 (posted 18-Jun-2013 08:50:49 UTC)), we considered the first modification
only, and therefore we achieved a weaker security which we call weak KH-CCA security, where no challenge-ciphertext-related
ciphertext is allowed to input the evaluation oracle. In this version, we can achieve KH-CCA security due to the second
modification.
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to our DDH-based scheme (in Section 5.3). We would like to emphasize that the modifications here do not
incur additional computational cost or increase of the ciphertext size for both of our constructions.

Second, we reconsider the condition of the function that is used to “compress” the proof value π̃ in our
DDH-based construction, and newly introduce the notion of smoothness for a function. This is a statistical
property that roughly ensures that the “min-entropy” of the output of a function (for uniformly random
input) is sufficiently high, and thus it is information-theoretically hard to guess the output of a function for
random inputs. We also show that natural cryptographic functions, a one-way function (OWF), an always
second-preimage resistant (aSec secure) hash function [34], and a key derivation function (KDF) [14], have
the property, and thus in practice we can use (an appropriate modification of) cryptographic hash functions
such as SHA-series).

2 Preliminaries

In this section, we review the basic notations and definitions related to HPSs (mostly following [13] but
slightly customized for our convenience).

Throughout this paper, PPT denotes probabilistic polynomial time. If n is a natural number, then
[n] = {1, . . . , n}. If D is a probability distribution (over some set), then [D] denotes its support, i.e.
[D] = {x|Prx′←D[x

′ = x] > 0}. Let X = {Xℓ}ℓ≥0 and Y = {Yℓ}ℓ≥0 be sequences of random variables
Xℓ and Yℓ, respectively, defined over a same finite set. As usual, we say that X and Y are statistically
(resp. computationally) indistinguishable if |Pr[A(Xℓ) = 1] − Pr[A(Yℓ) = 1]| is negligible in ℓ for any
computationally unbounded (resp. PPT) algorithm A. Furthermore, we say that X and Y are ϵ-close if the
statistical distance of Xℓ and Yℓ is at most ϵ = ϵ(ℓ). For a finite set Bℓ and its subset B′ℓ indexed (often
implicitly) by ℓ ≥ 0, we say that B′ℓ is approximately samplable relative to Bℓ, if there is a sequence of
random variables on Bℓ which is polynomial-time samplable and is statistically indistinguishable from the
uniform random variable on B′ℓ.

Projective Hash Families: Let X, Π, K, and S be finite non-empty sets, X ′ be a non-empty subset of
X, and L be a proper subset of X (i.e., L ⊂ X and L ̸= X). Furthermore, let H = {Hk : X → Π}k∈K
be a collection of hash functions indexed by k ∈ K, and α : K → S be a function. We say that H =
(H,K,X,X ′, L,Π, S, α) is a projective hash family for (X,X ′, L), if for all k ∈ K, the action of Hk on the
subset L is uniquely determined by α(k) ∈ S. When X ′ = X, we may omit the symbol X ′ in the notations
above.

Let H = (H,K,X,X ′, L,Π, S, α) be a projective hash family, and let 0 ≤ ϵ ≤ 1. We recall the following
properties of a projective hash family: We say that H is ϵ-universal1 if for all s ∈ S, x ∈ X \ L, and π ∈ Π,
it holds that

Pr
k

$←K
[Hk(x) = π ∧ α(k) = s] ≤ ϵ · Pr

k
$←K

[α(k) = s] .

We say that H is ϵ-universal2 if for all s ∈ S, x, x∗ ∈ X \ L with x∗ ̸= x, and π, π∗ ∈ Π, it holds that

Pr
k

$←K
[Hk(x) = π ∧Hk(x

∗) = π∗ ∧ α(k) = s] ≤ ϵ · Pr
k

$←K
[Hk(x

∗) = π∗ ∧ α(k) = s] .

We say that H is ϵ-smooth if the following two distributions are ϵ-close:

{k $← K; x
$← X \ L : (α(k), x,Hk(x)) } and {k

$← K; x
$← X \ L; π $← Π : (α(k), x, π) } .

We also introduce a variant of the smoothness property: Suppose that Π is an abelian group (written in
additive form), and let Π′ be a subgroup of Π. In this case, we say that H is ϵ-smooth relative to (X ′,Π′),
if the following two distributions are ϵ-close:

{k $← K; x
$← X ′ \ L : (α(k), x,Hk(x)) } and {k

$← K; x
$← X ′ \ L; π $← Π′ : (α(k), x,Hk(x) + π) } .
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We note that, when Π′ = Π, the term Hk(x)+π in the latter probability distribution above can be replaced
with π, since now Hk(x) + π is also uniformly random over Π. Hence, the notion of smoothness relative to
(X ′,Π′) above is in fact a generalization of the smoothness.

If a projective hash family is ϵ-universal1 (resp. -universal2, -smooth) for a negligible ϵ, then we simply
call the projective hash family universal1 (resp. universal2, smooth). We note that the ϵ-universal2 property
implies the ϵ-universal1 property, by summing up the inequalities in the definition of the universal2 property
over all π∗ ∈ Π. We also show some relations between the smoothness property and the universal1 property.

Lemma 2.1. If a projective hash family H = (H,K,X,L,Π, S, α) is 0-smooth, then it is (1/|Π|)-universal1.

Proof. Since H is 0-smooth, the two distributions appearing in the definition of the smoothness for H are
identical. Therefore, for any x ∈ X \ L, s ∈ S and π ∈ Π, we have

Pr
k

$←K
[(α(k),Hk(x)) = (s, π)] = Pr

k
$←K ,π† $←Π

[(α(k), π†) = (s, π)] =
1

|Π|
· Pr
k

$←K
[α(k) = s] .

This implies that H is (1/|Π|)-universal1, as desired.

Lemma 2.2. If a projective hash family H = (H,K,X,L,Π, S, α) is ϵ-universal1, then it is ϵ′-smooth where
ϵ′ = (ϵ|Π| − 1)(|Π| − 1)/2. In particular, if a projective hash family H = (H,K,X,L,Π, S, α) is (1/|Π|)-
universal1, then it is 0-smooth.

Proof. First, we note that ϵ ≥ 1/|Π| by the definition of the ϵ-universal1 property. Since H is ϵ-universal1,
for any x ∈ X \ L, s ∈ S and π ∈ Π, we have

Pr
k

$←K , x† $←X\L
[(α(k), x†,Hk(x

†)) = (s, x, π)] =
1

|X \ L|
· Pr
k

$←K
[(α(k),Hk(x)) = (s, π)]

≤ ϵ

|X \ L|
· Pr
k

$←K
[α(k) = s] = ϵ · Pr

k
$←K , x† $←X\L

[(α(k), x†) = (s, x)] .

Since the right-hand side is independent of π, by summing up the inequality over all π ∈ Π except a fixed
π′ ∈ Π, we have

Pr
k

$←K , x† $←X\L
[(α(k), x†) = (s, x) ∧Hk(x

†) ̸= π′] ≤ (|Π| − 1)ϵ · Pr
k

$←K , x† $←X\L
[(α(k), x†) = (s, x)] ,

therefore

Pr
k

$←K , x† $←X\L
[(α(k), x†) = (s, x) ∧Hk(x

†) = π′]

≥ Pr
k

$←K , x† $←X\L
[(α(k), x†) = (s, x)]− (|Π| − 1)ϵ · Pr

k
$←K , x† $←X\L

[(α(k), x†) = (s, x)]

= (1− (|Π| − 1)ϵ) · Pr
k

$←K , x† $←X\L
[(α(k), x†) = (s, x)] .

By combining this inequality (where π′ is replaced with π) with the first inequality above, and by using the
relation Pr

k
$←K , x† $←X\L

[(α(k), x†) = (s, x)] = |Π| · Pr
k

$←K , x† $←X\L , π† $←Π
[(α(k), x†, π†) = (s, x, π)], we have

(|Π| − (|Π| − 1)|Π|ϵ) · Pr
k

$←K , x† $←X\L , π† $←Π

[(α(k), x†, π†) = (s, x, π)]

≤ Pr
k

$←K , x† $←X\L
[(α(k), x†, Hk(x

†)) = (s, x, π)] ≤ ϵ|Π| · Pr
k

$←K , x† $←X\L , π† $←Π

[(α(k), x†, π†) = (s, x, π)] ,
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therefore (since ϵ ≥ 1/|Π|)∣∣∣∣ Pr
k

$←K , x† $←X\L
[(α(k), x†,Hk(x

†)) = (s, x, π)]− Pr
k

$←K , x† $←X\L , π† $←Π

[(α(k), x†, π†) = (s, x, π)]

∣∣∣∣
≤ max{1− |Π|+ ϵ|Π|(|Π| − 1), ϵ|Π| − 1} · Pr

k
$←K , x† $←X\L , π† $←Π

[(α(k), x†, π†) = (s, x, π)] .

By summing up the inequality over all s ∈ S, x ∈ X \L and π ∈ Π, and by dividing it by two, the statistical
distance between the two distributions appearing in the definition of the smoothness for H is bounded by
max{1−|Π|+ϵ|Π|(|Π|−1), ϵ|Π|−1}/2. Note that 1−|Π|+ϵ|Π|(|Π|−1) = (ϵ|Π|−1)(|Π|−1). Now if |Π| = 1,
then we have ϵ = 1 since 1/|Π| ≤ ϵ ≤ 1, therefore (ϵ|Π| − 1)(|Π| − 1) = ϵ|Π| − 1 = 0. On the other hand, if
|Π| ≥ 2, then we have (ϵ|Π| − 1)(|Π| − 1) ≥ ϵ|Π| − 1, therefore max{1 − |Π| + ϵ|Π|(|Π| − 1), ϵ|Π| − 1}/2 =
(ϵ|Π| − 1)(|Π| − 1)/2. Hence, the claim holds.

Subset Membership Problems: A subset membership problem M specifies a collection of probabilistic
distribution {Iℓ}ℓ≥0 (indexed by a security parameter ℓ) over instance descriptions. An instance description
Λ[X,X ′, L,W,R] ∈ [Iℓ] specifies a non-empty set X and its non-empty subsets X ′, L ⊂ X, a non-empty
set W , and a binary relation R defined over X ×W with the property that an x ∈ X is in the subset L
if and only if there exists a “witness” ω ∈ W such that (x,w) ∈ R. When X ′ = X, we may simply write
Λ[X,L,W,R] instead of Λ[X,X ′, L,W,R]. Moreover, if these objects are clear from the context, we will just
write Λ to indicate an instance description.

We require that a subset membership problem M provides the following algorithms: (1) the instance
sampling algorithm takes as input 1ℓ, and returns Λ[X,X ′, L,W,R] ∈ [Iℓ] chosen according to Iℓ, and (2)

the subset sampling algorithm takes as input 1ℓ and an instance Λ[X,X ′, L,W,R] ∈ [Iℓ], and returns x
$← L

and a witness ω ∈ W for x. We say that a subset membership problem M = {Iℓ}ℓ≥0 is hard relative to X ′,
if the following two distributions are computationally indistinguishable:

{Λ← Iℓ;x
$← L : (Λ, x)} and {Λ← Iℓ;x

$← X ′ \ L : (Λ, x)} .

When X ′ = X, we simply say that M is hard.

Hash Proof System (HPS): Informally, a HPS is a special kind of (designated-verifier) non-interactive
zero-knowledge proof system for a subset membership problem M = {Iℓ}ℓ>0. A HPS has, as its internal
structure, a family of hash functions with the special projective property, and this projective hash family is
associated with each instance of the subset membership problems. Although HPS does not treat for all NP
languages, HPS leads to an efficient CCA2-secure PKE construction.

As in [13], we will occasionally introduce an arbitrary finite set E to extend the sets X, X ′ and L in
an instance Λ[X,X ′, L,W,R] ∈ [Iℓ] of M into X × E, X ′ × E and L × E. If E is not required (e.g., for
a smooth HPS in our construction of KH-PKE), then we omit E from the following algorithms. A HPS
P = (HPS.param,HPS.priv,HPS.pub), for M associates each instance Λ = Λ[X,X ′, L,W,R] of M with a
projective hash family H = (H,K,X × E,X ′ × E,L × E,Π, S, α), provides the following three efficient
algorithms:

1. The index sampling algorithm HPS.param takes an instance Λ as input, and returns k ∈ K and s ∈ S
such that α(k) = s.

2. The private evaluation algorithm HPS.priv takes Λ ∈ [Iℓ], k ∈ K and (x, e) ∈ X × E as input, and
returns π = Hk(x, e) ∈ Π.

3. The public evaluation algorithm HPS.pub takes Λ ∈ [Iℓ], s ∈ S, x ∈ L, e ∈ E, and a witness ω for x as
input, and returns π = Hk(x, e) ∈ Π.
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We say that P is ϵ-universal1 (resp. ϵ-universal2, ϵ-smooth) if for all ℓ > 0 and for all Λ ∈ [Iℓ], H is an
ϵ-universal1 (resp. ϵ-universal2, ϵ-smooth) projective hash family.

The following homomorphic property of hash proof systems is required in our proposed construction.

Definition 2.1 (Homomorphic Projective Hash Family). We say that a projective hash family H = (H,K,X×
E,X ′ × E,L× E,Π, S, α) is homomorphic, if X, E and Π are abelian groups (written in additive form), L
is a subgroup of X, and we have Hk(x1) +Hk(x2) = Hk(x1 + x2) for any k ∈ K and x1, x2 ∈ X. We also
say that a hash proof system P is homomorphic, if the underlying projective hash family is homomorphic.
(We note that X ′ is not required to be a subgroup of X.)

Diverse Group System and Derived Projective Hash Family: Here, we recall the definition of
diverse group systems introduced in [13], which were used to construct projective hash families. Let X,
L, and Π be abelian groups, where L is a proper subgroup of X, and Hom(X,Π) be the group of all
homomorphisms ϕ : X → Π. Let H be a subgroup of Hom(X,Π). Then G = (H, X, L,Π) is called a group
system. In addition, we say that G is diverse if for all x ∈ X \ L, there exists ϕ ∈ H such that ϕ(L) = ⟨0⟩,
but ϕ(x) ̸= 0.

We recall the projective hash family H = (H,K,X,L,Π, S, α) derived from a diverse group system G
([13, Definition 2]): The instance Λ = Λ[X,L,W,R] of the underlying subset membership problem satisfies

that W = (Z|L|)d and (x, (ω1, . . . , ωd)) ∈ R if and only if x =
∑d
i=1 ωigi, where {g1, . . . , gd} is a fixed

generating set of L. Let the elements of the subgroup H of Hom(X,Π) be indexed as H = {Hk | k ∈ K}
for a set K. Set S = Πd, and define α : K → S by α(k) = (ϕ(g1), . . . , ϕ(gd)), where ϕ = Hk. Note
that H is a homomorphic projective hash family because Hk(x) for x ∈ L is determined by α(k) such that

Hk(x) = ϕ(
∑d
i=1 ωigi) =

∑d
i=1 ωiϕ(gi). The following was shown by Cramer and Shoup [13, Theorem 2].

Lemma 2.3. The projective hash family H derived from a diverse group system G as above is 1/p̃-universal1,
where p̃ is the smallest prime dividing |X/L|.

3 Definition of KH-PKE

In this section, we give the formal definitions of the syntax and the security requirements of KH-PKE.

3.1 Syntax of KH-PKE

Definition 3.1 (Syntax of KH-PKE for homomorphic operation ⊙). LetM be a message space. We require
that for all M1,M2 ∈ M, it holds that M1 ⊙M2 ∈ M. A KH-PKE scheme KH-PKE = (KeyGen,Enc,Dec,
Eval) for homomorphic operation ⊙ consists of the following four algorithms:

KeyGen: This algorithm takes a security parameter 1ℓ (ℓ ∈ N) as input, and returns a public key pk, a
decryption key skd, and a homomorphic operation key skh.

Enc: This algorithm takes pk, and a message M ∈M as input, and returns a ciphertext C.

Dec: This algorithm takes skd and C as input, and returns M or ⊥.

Eval: This algorithm takes skh, two ciphertexts C1 and C2 as input, and outputs a ciphertext C or ⊥.

Note that the above definition for the evaluation algorithm Eval does not say anything about the homo-
morphic property, and its functionality is defined as a correctness requirement below. Let pk be a public key
generated by the KeyGen algorithm, and Cpk,M be the set of all ciphertexts of M ∈M under the public key
pk, i.e., Cpk,M = {C|∃r ∈ {0, 1}∗ s.t. C = Enc(pk,M ; r)}.

Definition 3.2 (Correctness). A KH-PKE scheme for homomorphic operation ⊙ is said to be correct if
for all (pk, skd, skh) ← KeyGen(1ℓ), the following two conditions are satisfied: (1) For all M ∈ M, and all
C ∈ Cpk,M , it holds that Dec(skd, C) = M . (2) For all M1,M2 ∈ M, all C1 ∈ Cpk,M1 , and all C2 ∈ Cpk,M2 ,
it holds that Eval(skh, C1, C2) ∈ Cpk,M1⊙M2 .
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We call the Eval algorithm commutative if an operation ⊙ is commutative, the distribution of Eval(skh, C1,
C2) and that of Eval(skh, C2, C1) are identical. In fact, our KH-PKE schemes proposed in the paper are all
commutative; for example, the homomorphic property of the DDH-based instantiation given in later section
corresponds to the group operation in a multiplicative cyclic group.

Next, we define the security notion for KH-PKE, which we call indistinguishability of message under
adaptive chosen ciphertext attacks (KH-CCA).

Definition 3.3 (KH-CCA). A KH-PKE scheme is said to be KH-CCA secure if for any PPT adversary A,
the advantage

AdvKH-CCA
KH-PKE,A(ℓ) =

∣∣Pr[(pk, skd, skh)← KeyGen(1ℓ);

(M∗0 ,M
∗
1 , State)← AO(find, pk); β

$← {0, 1};

C∗ ← Enc(pk,M∗β); β
′ ← AO(guess, State, C∗); β = β′]− 1

2

∣∣
is negligible in ℓ, where O consists of the three oracles Eval(skh, ·, ·), RevHK, and Dec(skd, ·) defined as
follows. Let D be a list which is set as D = {C∗} right after the challenge stage (D is set as ∅ in the find
stage).

• The evaluation oracle Eval(skh, ·, ·): If RevHK has already been queried before, then this oracle is not
available. Otherwise, this oracle responds to a query (C1, C2) with the result of C ← Eval(skh, C1, C2).
In addition, if C ̸= ⊥ and either C1 ∈ D or C2 ∈ D, then the oracle updates the list by D ← D ∪ {C}.

• The homomorphic key reveal oracle RevHK: Upon a request, this oracle responds with skh. (This oracle
is available only once.)

• The decryption oracle Dec(skd, ·): This oracle is not available if A has queried to RevHK and A has
obtained the challenge ciphertext C∗. Otherwise, this oracle responds to a query C with the result of
Dec(skd, ·) if C ̸∈ D or returns ⊥ otherwise.

Here, let us remark on the definition of KH-CCA security. Throughout this paper, an adversary who has
skh is called an insider, whereas an adversary who does not have skh is called an outsider.

In case A does not query the RevHK oracle (i.e., A is an outsider), A is allowed to adaptively issue
decryption queries and evaluation queries of any ciphertexts. In particular, in order to capture the mal-
leability in the presence of the homomorphic operation, the Eval oracle allows the challenge ciphertext C∗ as
input. To avoid an unachievable security definition, the Dec oracle immediately answers ⊥ for “unallowable
ciphertexts” that are the results of a homomorphic operation for C∗ and any ciphertext of an adversary’s
choice. Such unallowable ciphertexts are maintained by the list D.

The situation that the Dec oracle does not answer for ciphertexts that are derived from the challenge
ciphertext C∗ might seem somewhat analogous to the definition of RCCA security [8]. However, there is
a critical difference between KH-CCA and RCCA: In the RCCA security game, the Dec oracle does not
answer if a ciphertext C satisfies Dec(skd, C) ∈ {M∗0 ,M∗1 }. That is, the functionality of the Dec oracle is
restricted regardless of the adversary’s strategy. On the other hand, in the KH-CCA security game, in case
an adversary selects the strategy that it does not submit C∗ to the Eval oracle, the restriction on the Dec
oracle is exactly the same as the CCA2 security for ordinary PKE scheme, and it is one of the adversary’s
possible strategies whether it submits C∗ to the Eval oracle, and thus the adversary has more flexibility than
in the RCCA game.

If an outsider A becomes an insider after A obtains the challenge ciphertext C∗, then A is not allowed
to issue a decryption query after obtaining skh via the RevHK oracle. In other words, A is allowed to issue a
decryption query until right before obtaining skh, even if C∗ is given to A. This restriction is again to avoid
a triviality. (If A obtains skh, A can freely perform homomorphic operations over the challenge ciphertexts,
and we cannot meaningfully define the “unallowable set” of ciphertexts.)
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Note that we can show that any KH-CCA secure PKE scheme satisfies CCA1 (thus CPA also) security
against an adversary who is given (pk, skh) in the setup phase. Showing this implication is possible mainly
due to the RevHK oracle that returns skh to an adversary, and the Dec oracle in the KH-CCA game. Here, we
explain how the implication of KH-CCA security to CCA1 security is proved. Let A be a CCA1 adversary.
Using A as a building block, we can construct a reduction algorithm B that attacks KH-CCA security, as
follows: First, B is firstly given pk. Then B asks the RevHK oracle to obtain skh, and runs A with input
(pk, skh). Wnen A sends a ciphertext C as a decryption query, B forwards C as B’s decryption query. After
A submits (M∗0 ,M

∗
1 ) as A’s challenge, B submits (M∗0 ,M

∗
1 ) as B’s challenge. Given the challenge ciphertext

C∗, B runs A with input C∗. When A terminates with output a guess bit, B uses what A outputs as its
guess for the challenge bit, and terminates. It is easy to see that B perfectly simulates the CCA1 game
for A. Therefore, B’s KH-CCA advantage equals A’s CCA1 advantage. This implies that if the scheme is
KH-CCA secure, then the scheme is CCA1 secure as well.

4 Generic Construction of KH-PKE

In this section, we describe the proposed generic construction of KH-PKE scheme from projective hash fami-
lies, and give the security proof. For the purpose, in Section 4.1, we introduce two “computationally secure”
variants of the notion of universal2 projective hash families. Then in Section 4.2, we give the description of
the generic construction. Then in Section 4.3, we prove the security of the proposed construction. We note
that all of the projective hash families used in our construction can be constructed from a diverse group
system [13]. Therefore, our proposed construction is fairly generic.

4.1 Computationally Universal2 Projective Hash Families

In our generic construction of KH-PKE, a “computationally secure” variant of the notion of universal2
projective hash families is utilized. Here we describe a formalization of the notion, which we call (first-uniform
or first-adaptive) computationally universal2 property. We note that the computationally universal2 property
for projective hash families introduced by Hofheinz and Kiltz [24] implies the first-uniform computationally
universal2 property in our sense, therefore our definition of the notion here covers wider situations than that
in the previous work.

First, we define the first-uniform version of the computationally universal2 property as follows:

Definition 4.1 (First-Uniform Computationally Universal2 Property). Let H = (H,K,X,X ′, L,Π, S, α) be
a projective hash family. We say that H is first-uniform computationally universal2 relative to X ′, if for any
oracle PPT adversary A with oracle Hash defined below, the probability that AHash wins the following game

(called the advantage of A and denoted by Adv
UComp.Univ2
A (ℓ)) is negligible in the security parameter ℓ, where

the game is as follows:

• First, the challenger generates k
$← K and x∗

$← X ′ \ L, and computes s = α(k) and π∗ = Hk(x
∗).

Then the challenger sends x∗, s and π∗ to the adversary A.

• During the game, the adversary can make queries Hash(x) to the oracle Hash adaptively, where x ∈ X.
The oracle returns ⊥ if the input x satisfies x ∈ X \ L, and returns Hk(x) if x ∈ L.

• Finally, the adversary outputs elements x ∈ X and π ∈ Π. We define that adversary wins if and only
if x ̸∈ L, x ̸= x∗ and Hk(x) = π.

We may omit the term “relative to X ′” above when X ′ = X. We also say that a hash proof system is first-
uniform computationally universal2, if the underlying projective hash family is first-uniform computationally
universal2.

The word “first-uniform” in the definition above means that, for the two inputs x∗ and x for the projective
hash Hk in the game, the first one x∗ is generated uniformly at random and the adversary cannot choose
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the first input. Secondly, we define the first-adaptive version of the computationally universal2 property as
follows, where the adversary can choose the first input for the projective hash:

Definition 4.2 (First-Adaptive Computationally Universal2 Property). Let H = (H,K,X,X ′, L,Π, S, α)
be a projective hash family. We say that H is first-adaptive computationally universal2, if for any oracle
PPT adversary A with oracle Hash defined below, the probability that AHash wins the following game (called

the advantage of A and denoted by Adv
AComp.Univ2
A (ℓ)) is negligible in the security parameter ℓ, where the

game is as follows:

• First, the challenger generates k
$← K and computes s = α(k). Then the challenger sends s to the

adversary A.

• During the game, the adversary can make queries Hash(x) to the oracle Hash adaptively, where x ∈ X.
The oracle returns ⊥ if the input x satisfies x ∈ X \ L, and returns Hk(x) if x ∈ L.

• At any time in the game decided by the adversary, the adversary has to submit an element x∗ ∈ X
to the challenger. Then the challenger returns π∗ = Hk(x

∗) to the adversary, regardless of whether
x∗ ∈ L or not.

• Finally, the adversary outputs elements x ∈ X and π ∈ Π. We define that adversary wins if and only
if x, x∗ ̸∈ L, x ̸= x∗ and Hk(x) = π.

We also say that a hash proof system is first-adaptive computationally universal2, if the underlying projective
hash family is first-adaptive computationally universal2.

Here we show the implication relations among the two computationally universal2 properties and the
original universal2 property. Namely, we have the followings.

Lemma 4.1. If a projective hash family H is universal2, then H is first-adaptive computationally universal2.

Proof. Suppose that H is ϵ-universal2 for negligible ϵ. Let A = (A1,A2) be a PPT adversary for the first-
adaptive computationally universal2 game for H, where A1 denotes the first part of A that takes 1ℓ and
s = α(k) as input and outputs the submitted element x∗ ∈ X as well as the internal state st, and A2 denotes
the second part of A that takes st and π∗ = Hk(x

∗) as input and outputs the elements x ∈ X and π ∈ Π.
Namely, we have

Adv
AComp.Univ2
A (ℓ)

= Pr
k

$←K
[(x∗, st)← AHash

1 (1ℓ, α(k)); (x, π)← AHash
2 (st, Hk(x

∗)) : x, x∗ ̸∈ L ∧ x ̸= x∗ ∧Hk(x) = π] .

This expression can be rewritten as

Adv
AComp.Univ2
A (ℓ)

=
∑
s∈S

∑
x,x∗∈X\L
x ̸=x∗

∑
π,π∗∈Π

Pr
k

$←K
[(x∗†, st)← AHash

1 (1ℓ, s); (x†, π†)← AHash
2 (st, π∗)

: x∗† = x∗ ∧ x† = x ∧ π† = π ∧Hk(x
∗) = π∗ ∧Hk(x) = π ∧ α(k) = s]

.

Now note that each of the algorithms A1 and A2 does not use any information on the key k except the
information on s = α(k), while the oracle Hash can be simulated (not efficiently, in general) without using k
(by exhaustively searching elements of L and witnesses for elements of L). This implies that, the expression
of the advantage of A is equal to

Adv
AComp.Univ2
A (ℓ)

=
∑
s∈S

∑
x,x∗∈X\L
x ̸=x∗

∑
π,π∗∈Π

(
Pr[(x∗†, st)← AHash

1 (1ℓ, s); (x†, π†)← AHash
2 (st, π∗) : x∗† = x∗ ∧ x† = x ∧ π† = π]

·Pr
k

$←K
[Hk(x

∗) = π∗ ∧Hk(x) = π ∧ α(k) = s]
) .
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Since H is ϵ-universal2, it follows that

Adv
AComp.Univ2
A (ℓ)

≤
∑
s∈S

∑
x,x∗∈X\L
x̸=x∗

∑
π,π∗∈Π

(
Pr[(x∗†, st)← AHash

1 (1ℓ, s); (x†, π†)← AHash
2 (st, π∗) : x∗† = x∗ ∧ x† = x ∧ π† = π]

·ϵ · Pr
k

$←K
[Hk(x

∗) = π∗ ∧ α(k) = s]
) .

The right-hand side is equal to

ϵ ·
∑
s∈S

∑
x,x∗∈X\L
x ̸=x∗

∑
π,π∗∈Π

Pr
k

$←K
[(x∗†, st)← AHash

1 (1ℓ, s); (x†, π†)← AHash
2 (st, π∗)

: x∗† = x∗ ∧ x† = x ∧ π† = π ∧Hk(x
∗) = π∗ ∧ α(k) = s]

= ϵ · Pr
k

$←K
[(x∗, st)← AHash

1 (1ℓ, α(k)); (x, π)← AHash
2 (st,Hk(x

∗)) : x, x∗ ̸∈ L ∧ x ̸= x∗]

≤ ϵ .

Hence we have Adv
AComp.Univ2
A (ℓ) ≤ ϵ which is negligible, as desired.

Lemma 4.2. Suppose that X ′ \L is approximately samplable relative to X. If a projective hash family H is
first-adaptive computationally universal2, then H is first-uniform computationally universal2 relative to X ′.

Proof. Let A be any PPT adversary for the first-uniform computationally universal2 game for H relative to
X ′. We construct an adversary A† for the first-adaptive computationally universal2 game for H as follows.
Given input 1ℓ and s for A†, the algorithm A† first samples an element x∗ ∈ X which is negligibly close
to the uniform distribution on X ′ \ L (this can be efficiently done since X ′ \ L is approximately samplable
relative to X), submits x∗ to the challenger in the first-adaptive computationally universal2 game, and
receives π∗ = Hk(x

∗) by the challenger. Then A† executes A with input (1ℓ, x∗, s, π∗), where A† simulates
the oracle HashU in the first-uniform computationally universal2 game in the following manner: For each
query x′ to HashU made dy A, A† makes a query x′ to HashA, receives its reply π

′ and then returns π′ to A
as the reply to the query. Finally, A† receives the output (x, π) by A, and outputs (x, π). We note that the
algorithm A† is PPT as well as A.

To evaluate the advantage of A†, we may assume without loss of generality that x∗ is a uniformly random
element of X ′ \ L, since the modification causes at most negligible change of the advantage of A†. In the
present case, the simulation by A† of the first-uniform computationally universal2 game for A is perfect, and

A† wins the game if and only if A wins. This implies that Adv
AComp.Univ2
A† (ℓ) = Adv

UComp.Univ2
A (ℓ), therefore

A† has non-negligible advantage whenever A has. Hence, the claim holds.

4.2 The Generic Construction

First, we summarize the primitives used in the generic construction. Let M = {Iℓ}ℓ≥0 be a subset member-
ship problem which specifies an instance description Λ = Λ[X,X ′, L,W,R] ∈ [Iℓ]. In our construction, we

use the following three projective hash families H, Ĥ and H̃, and the corresponding hash proof systems P,
P̂ and P̃ associated to M.

• H = (H,K,X,X ′, L,Π, S, α) is a homomorphic projective hash family which is smooth relative to
(X ′,Π′), and P = (HPS.param,HPS.priv,HPS.pub) is the corresponding hash proof system, associated
to the subset membership problem M. In particular, Π is an abelian group (written in additive form)
and Π′ is a subgroup of Π. Moreover, Π′ is approximately samplable relative to Π.

• Ĥ = (Ĥ, K̂,X,X ′, L, Π̂, Ŝ, α̂) is a homomorphic universal1 projective hash family, and P̂ = (ĤPS.param,

ĤPS.priv, ĤPS.pub) is the corresponding hash proof system associated to M.
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• H̃ = (H̃, K̃,X×Π×Π̂, X ′×Π×Π̂, L×Π×Π̂, Π̃, S̃, α̃) is a computationally or information-theoretically

universal2 projective hash family (see below for the detail), and P̃ = (H̃PS.param, H̃PS.priv, H̃PS.pub)
is the corresponding hash proof system.

We also introduce some additional assumptions on the objects above. For the purpose, we introduce an
auxiliary terminology:

Definition 4.3. Let Λ = Λ[X,X ′, L,W,R] be an instance description for M. We say that a positive integer
is a critical integer, if it is not coprime to |X| and is not a multiple of o(Λ), where o(Λ) denotes the least
common multiplier of the orders of elements of X ′ in the quotient group X/L.

Now we describe the additional assumptions mentioned above. Here we introduce three kinds of as-
sumptions, which have the following trade-off relations: The requirement for the HPS P̃ is weakened in the
direction Assumption I→ Assumption A→ Assumption U, while the other conditions is relaxed in the other
direction Assumption U → Assumption A → Assumption I. The reason of considering the three incompara-
ble assumptions is to cover several instantiations of the proposed generic construction under various settings
discussed in later sections. Now the three assumptions are as follows:

Assumption I: P̃ is (information-theoretically) universal2.

Assumption A: P̃ is first-adaptive computationally universal2, and X ′ \ L is approximately samplable
relative to X.

Assumption U: P̃ is first-uniform computationally universal2 relative toX
′×Π×Π̂, P̂ is smooth relative to

(X ′, Π̂), X ′ \L is approximately samplable relative to X, and Π′ = Π. Moreover, it is computationally
hard to find a critical integer from a given instance Λ of M (see Definition 4.3 for the terminology); it
can be efficiently checked whether a given integer is a critical integer or not; we have x + y ∈ X ′ for
any x ∈ X ′ \L and y ∈ L; and we have a ·x ∈ X ′ for any x ∈ X ′ \L and any integer a coprime to |X|.

Using these building blocks, we construct a KH-PKE scheme as in Figure 1. Roughly, the homomorphic
smooth projective hash family H is used to hide a plaintext in a ciphertext. Moreover the universal property
of Ĥ and H̃ are used to detect the invalidity of ciphertexts, which leads to resistance against ciphertext
modification. However, the latter property looks contradictory to the homomorphic property that inherently
involves such modification. In order to manage to deal with these two properties consistently, we utilize the
following “transitional universal” property of the pair of Ĥ and H̃:

• If an adversary does not have the secret key of H̃ (which is the homomorphic key), then the (com-

putationally or information-theoretically) universal2 property of H̃ can be used to reject invalid input
ciphertexts for the decryption and the evaluation algorithms.

• On the other hand, if an adversary has obtained the secret key of H̃, then the evaluation algorithm
can update the values of Ĥ and H̃ by using the key for H̃ and the homomorphic property of Ĥ, while
the universal1 property of Ĥ (instead of the universal2 property of H̃ which is no longer available) can
be still used to reject invalid input ciphertexts for the decryption algorithm.

One might think that in the construction, H̃ is redundant, and thus is not necessary. However, this is not
true. Namely, if H̃ is removed, then the adversary can extract meaningful information from the Eval oracle
by submitting invalid ciphertexts, and therefore, the resulting scheme becomes insecure. In other words,
with the help of H̃, the Eval oracle can distinguish invalid ciphertexts from valid ones, and consequently, the
above attack is prevented.

Now we state the main theorem of the paper.

Theorem 4.1. Our construction above is KH-CCA-secure, if the subset membership problem M is hard
relative to X ′ ⊂ X, the hash proof systems P, P̂ and P̃ are as above, and one of Assumption I, Assumption
A and Assumption U above is satisfied.
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KeyGen(1ℓ) :
Pick Λ = Λ[X,X ′, L,W,R]← [Iℓ]

(k, s)← HPS.param(1ℓ,Λ)

(k̂, ŝ)← ĤPS.param(1ℓ,Λ)

(k̃, s̃)← H̃PS.param(1ℓ,Λ)
pk ← (s, ŝ, s̃)

skd ← (k, k̂, k̃); skh ← (k̃)
Return (pk, skd, skh)

Dec(skd, C) :

Parse skd as (k, k̂, k̃)
Parse C as (x, e, π̂, π̃)

π̂′ ← ĤPS.priv(1ℓ,Λ, k̂, x)

π̃′ ← H̃PS.priv(1ℓ,Λ, k̃, (x, e, π̂′))
If π̂ ̸= π̂′ or π̃ ̸= π̃′ then return ⊥
π ← HPS.priv(1ℓ,Λ, k, x)
Return M ← e− π

Enc(pk,M) (for M ∈M := Π′) :

Choose x
$← L and its witness ω ∈W

π ← HPS.pub(1ℓ,Λ, s, x, ω); e←M + π

π̂ ← ĤPS.pub(1ℓ,Λ, ŝ, x, ω)

π̃ ← H̃PS.pub(1ℓ,Λ, s̃, (x, e, π̂), ω)
Return C ← (x, e, π̂, π̃)

Eval(skh, C1, C2) :
Parse Cb as (xb, eb, π̂b, π̃b) for b = 1, 2

π̃′b ← H̃PS.priv(1ℓ,Λ, k̃, (xb, eb, π̂b)) for b = 1, 2
If π̃1 ̸= π̃′1 or π̃2 ̸= π̃′2 then return ⊥
Choose x0

$← L and its witness ω0 ∈W

e0 ← HPS.pub(1ℓ,Λ, s, x0, ω0)

π̂0 ← ĤPS.pub(1ℓ,Λ, ŝ, x0, ω0)
x← x0 + x1 + x2; e← e0 + e1 + e2
π̂ ← π̂0 + π̂1 + π̂2

π̃ ← H̃PS.priv(1ℓ,Λ, k̃, (x, e, π̂))
Return C ← (x, e, π̂, π̃)

Figure 1: The proposed KH-PKE construction from HPS.

Since all of the projective hash families used in our construction can be constructed from a diverse group
system, from the result of [23] (where CPA-secure homomorphic PKE (with cyclic-group ciphertext space)
implies diverse group systems), the following corollary is given.

Corollary 4.1. KH-CCA secure KH-PKE is implied by CPA-secure homomorphic PKE with cyclic-group
ciphertext space.

4.3 Security Proof

From now, we give a proof of Theorem 4.1. First, we show the correctness of the Eval algorithm. Suppose
that Eval receives validly generated ciphertexts C1 = (x1, e1, π̂1, π̃1) and C2 = (x2, e2, π̂2, π̃2) of plaintexts
M1 andM2, respectively. Then the algorithm first generates a triple (x0, e0, π̂0), which is identical to the first
three components of a ciphertext of plaintext 0 generated by the encryption algorithm. By the homomorphic
properties of H and Ĥ, by putting x = x0 + x1 + x2, e = e0 + e1 + e2 and π̂ = π̂0 + π̂1 + π̂2, we have

e = (0 +Hk(x0)) + (M1 +Hk(x1)) + (M2 +Hk(x2)) = (M1 +M2) +Hk(x) ,

π̂ = Ĥk̂(x0) + Ĥk̂(x1) + Ĥk̂(x2) = Ĥk̂(x) .

Therefore, (x, e, π̂) is identical to the first three components of a ciphertext of M1 +M2. This implies that
the output C = (x, e, π̂, π̃) of the evaluation algorithm is a valid ciphertext of M1 +M2, as desired.

Intuitively, the evaluation algorithm performs the homomorphic operation of C1, C2 and a random
ciphertext of 0. The reason of introducing the last random factor is to realize the following property, which
plays a key role in the security proof:

Lemma 4.3 (Source Ciphertext Hiding Property). Let (pk, skd, skh) ← KeyGen(1ℓ), M ∈ M, C1, C
′
1 ←

Enc(pk,M), and C2 be an arbitrary ciphertext. Then the output distributions of Eval(skh, C1, C2) and of
Eval(skh, C

′
1, C2) are identical.

Proof. In the argument above, since x0 is uniformly random on L and x1 ∈ L, x′ := x0 + x1 is uniformly
random on L as well and is independent of x1. Now we have e0 + e1 =M1 +Hk(x

′) and π̂0 + π̂1 = Ĥk̂(x
′),

therefore the distribution of (x, e, π̂) depends solely on M1 and is independent of x1. This implies that the
output distribution of the evaluation algorithm depends solely on M1 and is independent of the choice of
the ciphertext C1. Hence, the claim holds.
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Here we give an intuitive explanation of how the source ciphertext hiding property is used to prove the
security. A very brief outline of the security proof is the following: First we replace the valid challenge
ciphertext C∗ = (x∗, e∗, π̂∗, π̃∗), x∗ ∈ L, with an invalid one with x∗ ∈ X ′ \ L (owing to the hardness
of the subset membership problem M relative to X ′ ⊂ X). Secondly, we replace the second component
e∗ =M∗β +Hk(x

∗) (where M∗β denotes the challenge plaintext with challenge bit β) with π†+Hk(x
∗) where

π† ∈ Π is statistically close to the uniformly random element of Π′ (owing to the smoothness of H relative to
(X ′,Π′)). Then the resulting challenge ciphertext is not dependent onM∗β any longer, therefore any adversary
has negligible advantage, as desired. However, in the proof strategy, for the step where x∗ ∈ X ′ \ L and
e∗ =M∗β +Hk(x

∗), an adversary is allowed to make several evaluation queries with input ciphertexts which
are pairs of the (invalid) challenge ciphertext and any distinct valid ciphertext generated by the adversary.

Then the adversary can obtain many invalid ciphertexts legally, which involve values of H̃ for a large number
of inputs chosen from X \ L. In such a case, the universal2 property of H̃ is no longer enough to prevent
the adversary to make a decryption or an evaluation query with invalid input ciphertext(s) which has fourth

component being consistent to the value of H̃. Now the reply to the query sent to the adversary depends not
only on the public key α(k) for H but also on the secret key k, which prevents us to safely replace the choice
e∗ = M∗β + Hk(x

∗) of e∗ with e∗ = π† + Hk(x
∗) by utilizing the smoothness of H. In short, the problem

here is that the replies to the evaluation queries may in general depend on the challenge ciphertext (which
is switched from being valid to being invalid in the proof); this is the reason why, despite the similarity of
the construction of our proposed KH-PKE scheme to the Cramer–Shoup PKE scheme, a straightforward
extension of the original proof strategy for CCA security of the Cramer–Shoup scheme is not sufficient for
the proof for KH-CCA security of our scheme.

Our new idea to resolve the above-mentioned problem specific to KH-CCA security is the following: We
modify the KH-CCA security game in such a way that, when an evaluation query involves the challenge
ciphertext as input, the challenger first generates a fresh ciphertext (which we call “source ciphertext” in the
security proof) of the same plaintext as the challenge ciphertext, and then proceeds the remaining calculation
of the query by using the source ciphertext instead of the challenge ciphertext. In the starting case of the
proof where x∗ ∈ L, the source ciphertext hiding property implies that the output of the evaluation query
calculated from the source ciphertext is identical to that calculated from the challenge ciphertext, therefore
the modification of the game does not affect the advantage of the adversary. On the other hand, after the
modification of the game, when x∗ ∈ L is replaced with x∗ ∈ X ′ \ L as above, the challenge ciphertext
becomes invalid but each source ciphertext is kept valid. This prevents the adversary to obtain additional
invalid ciphertexts, involving values of H̃, by using the evaluation queries as above; this implies that the
universal2 property of H̃ is still sufficient to achieve the KH-CCA security. (In fact, we should also introduce
the replacement of the challenge ciphertext with a source ciphertext, not only for the cases of evaluation
queries involving the challenge ciphertext, but also for the cases that an evaluation query involves a ciphertext
related to the challenge ciphertext; see the proof of Theorem 4.1 below for the detail.)

Based on the discussion above, we start the proof of our main theorem.

Proof of Theorem 4.1. Let A be a PPT adversary against the KH-CCA security of our construction. Our
goal in the proof is to show that the advantage AdvKH-CCA

KH-PKE,A(ℓ) of A is negligible. First note that, since A
is of polynomial time, there exists a polynomial Q(ℓ) with the property that the total number of decryption
queries and evaluation queries made by A is not larger than Q(ℓ) for any security parameter ℓ.

We proceed the proof by using game-hopping from the original KH-CCA game to the ideal situation
that the challenge bit β is not used during the game; the advantage of the adversary becomes zero in the
latter case. The game-hopping below consists of three large parts; the preliminary part, the main part, and
the concluding part. In the proof, we say that a ciphertext is regular, if its first component belongs to L;
otherwise, we say that the ciphertext is irregular. Similar terminology is used for inputs for Hk, Ĥk̂ and

H̃k̃. Moreover, we say that a decryption query is regular (respectively, irregular), if its input ciphertext is
regular (respectively, irregular). We also say that an evaluation query is regular, if at least one of the two
input ciphertexts is either in the dictionary D or regular; otherwise, we say that the query is irregular. On
the other hand, let the term private information on the secret key for a projective hash family mean any
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information on the key except the corresponding public key.

Preliminary part of the game-hopping: At the beginning of the game-hopping for the proof, we start
with the KH-CCA game (Game pre-0). First we introduce the idea of replacing the challenge ciphertext
involved in each evaluation query with a fresh ciphertext, as mentioned before the proof (Game pre-1).
Then, in order to deal also with an extended situation where an output of the encryption algorithm Enc
becomes irregular, we use the private evaluation algorithms for hash proof systems P, P̂ and P̃ instead of
the public evaluation algorithms (Game pre-3). Moreover, for the case of Assumption U, we also introduce
an additional technical step of the game-hopping (Game pre-2) between Game pre-1 and Game pre-3, which
avoids a problem in later parts of the proof caused by certain evaluation queries related to critical integers
by automatically rejecting such queries. We formalize the preliminary part of the game-hopping as follows.

In the proof, let T
(i)
ℓ denote the event that Game i outputs 1.

Game pre-0: This game simulates the KH-CCA game with adversary A. We give a notational remark:
Let C∗ = (x∗, e∗, π̂∗, π̃∗) denote the challenge ciphertext, which is generated by C∗ ← Enc(pk,M∗β) where
(M∗0 ,M

∗
1 ) is the pair of challenge plaintexts and β ∈ {0, 1} is the challenge bit. We say that the challenger

rejects a query, if the reply to the query is ⊥. Then, the game outputs 1 if the guessing bit β′ output by the
adversary in the simulated KH-CCA game is equal to β, and outputs 0 otherwise.

We note that the complexity of the game is polynomial, and |Pr[T (pre-0)
ℓ ]− 1/2| = AdvKH-CCA

KH-PKE,A(ℓ).

Game pre-1: In comparison to Game pre-0, in guess stage, we introduce another auxiliary dictionary D′
and modify the rule for the challenger to reply to evaluation queries (C ′, C ′′) satisfying that at least one
of C ′ and C ′′ is listed in the original dictionary D and the query is not rejected (i.e., RevHK has not been
queried, and for any input ciphertext of the query that is not in D, its fourth component is consistent with
the value of H̃ calculated from the first three components; note that any ciphertext in D passes the test
by the definition of the algorithm Eval). When D = (C0, C1, . . . , Cκ) where C0 = C∗ and C1, . . . , Cκ were
added to D in this order, D′ is of the form ((D′1, D

′′
1 ), (D

′
2, D

′′
2 ), . . . , (D

′
κ, D

′′
κ)) where each of D′i and D

′′
i is

either a ciphertext with fourth component being consistent or an index in {0, 1, . . . , i − 1}. (We note that
D′ is empty at the beginning of the guess stage with D = (C∗).) Intuitively, the content of D′ means that
Ci was the reply to the evaluation query (D′i, D

′′
i ) where, if D

′
i or D

′′
i is an index j, then it is interpreted as

Cj .
Now we describe the modified rule for the challenger to reply to (κ+1)-th evaluation queries (C ′, C ′′) as

above, where D = (C0, C1, . . . , Cκ) and D′ = ((D′1, D
′′
1 ), (D

′
2, D

′′
2 ), . . . , (D

′
κ, D

′′
κ)). We call it the (κ + 1)-th

refreshing process in the sequel, and we also call the query (C ′, C ′′) the (κ+1)-th refreshing query. In

the process, the challenger first generates auxiliary ciphertexts C0
(κ+1) = C

∗(κ+1), C1
(κ+1), . . . , Cκ

(κ+1) as
follows:

• The challenger generates C
∗(κ+1) by C

∗(κ+1) ← Enc(pk,M∗β) instead of using C∗ itself, which we call
the source ciphertext for the refreshing process.

• For each i = 1, 2, . . . , κ, the challenger generates Ci
(κ+1) by using the algorithm Eval, where its first

(respectively, second) input is D′i (respectively, D
′′
i ) if D′i (respectively, D

′′
i ) is a ciphertext (i.e., not

an index), and it is Cj
(κ+1) if D′i (respectively, D

′′
i ) is an index j ∈ {0, 1, . . . , i− 1}.

Secondly, the challenger sets D′κ+1 to be C ′ if C ′ is not in the dictionary D, and to be an index i if C ′

is in D and i is the smallest index satisfying C ′ = Ci. The challenger also determines D′′κ+1 similarly by
using C ′′ instead of C ′. Thirdly, the challenger generates Cκ+1 by using the algorithm Eval, where its first
(respectively, second) input is D′κ+1 (respectively, D′′κ+1) if D

′
κ+1 (respectively, D′′κ+1) is a ciphertext, and it

is Ci
(κ+1) if D′κ+1 (respectively, D′′κ+1) is an index i ∈ {0, 1, . . . , κ}. Finally, the challenger adds Cκ+1 to D,

adds (D′κ+1, D
′′
κ+1) to D′ and gives Cκ+1 to the adversary as the reply to the evaluation query.

By the source ciphertext hiding property, the distributions of C1
(κ+1), . . . , Cκ

(κ+1) are identical to those
of C1, . . . , Cκ. Therefore, by the source ciphertext hiding property again, the distribution of Cκ+1 in the
modified rule is identical to that of Cκ+1 in the original rule. This implies that the distribution of the

adversary’s view is identical in the two cases, therefore we have Pr[T
(pre-1)
ℓ ] = Pr[T

(pre-0)
ℓ ]. We note that the
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(time and memory) complexity of this game is still polynomial, since the number of evaluation queries made
by A is bounded by the polynomial Q(ℓ) and the complexity of each refreshing process is linear in κ.

Game pre-2: Before describing the game, we introduce some auxiliary definitions. First, for the dictionary
D = (C0 = C∗, C1, . . . , Cκ) and a ciphertext C, we define ιD(C) = h if C ∈ D and h is the smallest index
with C = Ch, and ιD(C) = ⊥ if C ̸∈ D. Secondly, for an index h ∈ {0, 1, . . . , κ}, we define a positive integer
λD(h) in the following manner: We set λD(0) = 1, and for h > 0, if Ch was the reply to an evaluation query
(C ′, C ′′) where either C ′ or C ′′ was in D, then we set λD(h) = λ′ + λ′′ where λ′ = λD(ιD(C

′)) if C ′ ∈ D
and λ′ = 0 if C ′ ̸∈ D, and λ′′ is similarly defined by using C ′′ instead of C ′. Intuitively, the integer λD(h)
indicates how many copies of the challenge ciphertext C∗ were added in the calculation of the ciphertext Ch
in D.

Based on the definition, in the case of Assumption U, we modify Game pre-1 in such a way that any
evaluation query (C ′, C ′′) satisfying the condition for a refreshing query and that C ′ ∈ D, C ′′ ∈ D and
λD(ιD(C

′)) + λD(ιD(C
′′)) is a critical integer is always rejected (we call such a query a critical query); in

the sequel, we regard each critical query as being not a refreshing query, in other words, the term “refreshing
query” does not involve a critical query. On the other hand, in the cases of Assumption I and Assumption
A, we define the game to be the same as Game pre-1.

By the definition, we have Pr[T
(pre-2)
ℓ ] = Pr[T

(pre-1)
ℓ ] in the cases of Assumption I and Assumption A,

while in the case of Assumption U, the difference |Pr[T (pre-2)
ℓ ]− Pr[T

(pre-1)
ℓ ]| will be evaluated owing to the

hardness of finding a critical integer included in the Assumption U; details will be discussed later. We note
that the complexity of the game is polynomial (in the case of Assumption U, this is due to the efficiency of
deciding whether a given integer is a critical integer or not).

Game pre-3: Recall that, in the algorithm Enc, values of H, Ĥ and H̃ are computed by using the public
evaluation algorithms of P, P̂ and P̃, respectively, and a witness of a chosen element of L. In the game, we
modify Game pre-2 in such a way that the challenger executes all of the algorithms Enc by using the private
evaluation algorithms of P, P̂ and P̃ and the secret keys, where witnesses of elements of L are not required
any longer. To avoid confusion, we write the modified version of Enc by Enc′ from now. Since the modification

does not change the output distributions of the encryption algorithms, we have Pr[T
(pre-3)
ℓ ] = Pr[T

(pre-2)
ℓ ].

We note that the complexity of the game is still polynomial.

Main part of the game-hopping: In Game pre-3, the source ciphertexts in the refreshing queries have been
made fresh and their first components have been made independent of the challenge ciphertext. Owing to this,
now the replacement of the first component x∗ ∈ L of the challenge ciphertext with x∗ ∈ X ′ \ L performed
in the following game-hopping does not affect the behaviors of the refreshing queries, as desired. However,
as a trade-off, now not only the challenge ciphertext but also the source ciphertexts involve information
on M∗β , hence information on the challenge bit β. From now, we proceed the game-hopping to remove the
information on β from the source ciphertexts one by one. The process is performed by the following sequence
of Games 0, 1, . . . , Q(ℓ), where Game 0 is identical to Game pre-3:

Game κ (0 ≤ κ ≤ Q(ℓ)): In comparison to Game pre-3, the constructions of the source ciphertexts C
∗(κ′)

in the first κ refreshing processes, 1 ≤ κ′ ≤ κ (or, when there are only less than κ refreshing processes, the
source ciphertexts in all those refreshing processes) are modified as follows: The second component e∗(κ

′) of

C
∗(κ′) is chosen as e∗(κ

′) ← π† +HPS.priv(1ℓ,Λ, k, x∗(κ
′)), instead of e∗(κ

′) ←M∗β +HPS.priv(1ℓ,Λ, k, x∗(κ
′))

as in the algorithm Enc′, where x∗(κ
′) is the first component of C

∗(κ′) and π† ∈ Π is chosen independently of
β according to the probability distribution (specified by the assumption that Π′ is approximately samplable
relative to Π) which is negligibly close to the uniform distribution on Π′. We note that the complexity of
the game is polynomial.

In order to evaluate the differences of probabilities Pr[T
(κ)
ℓ ] between these games later, we introduce the

following subdivision of the game sequence that connects each Game (κ−1) to Game κ. The main strategy is

as follows: We replace the first component x∗(κ) ∈ L of the source ciphertext C
∗(κ) with x∗(κ) ∈ X ′ \L owing

to the hardness of the subset membership problem M (SubGame κ.1), and then the second component e∗(κ)
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of C
∗(κ) is chosen as e∗(κ) ← π† + HPS.priv(1ℓ,Λ, k, x∗(κ)) instead of e∗(κ) ← M∗β + HPS.priv(1ℓ,Λ, k, x∗(κ))

owing to the smoothness of H (SubGame κ.4). In order to utilize the smoothness of H, we should guarantee
that the private information on the key k for H is not used at any other step. For the purpose, before utilizing
the smoothness of H, we modify the game in such a way that all queries involving irregular ciphertexts are
automatically rejected, owing to the universal properties of Ĥ and H̃ (SubGame κ.2 and SubGame κ.3).
Moreover, after the replacement of the choice of e∗(κ) as above, we restore the modifications introduced
in SubGame κ.1 to SubGame κ.3 to the original situation (SubGame κ.5 to SubGame κ.7) The precise
description is as follows:

SubGame κ.1: In the game, we modify the construction in Game (κ − 1) of the source ciphertext C
∗(κ)

in the following manner: For the source ciphertext C
∗(κ) = (x∗(κ), e∗(κ), π̂∗(κ), π̃∗(κ)) originally generated

by C
∗(κ) ← Enc′(M∗β), the first component x∗(κ) is chosen uniformly at random from X ′ \ L instead of L.

Moreover, we modify the game further in such a way that the uniformly random element x∗(κ) ∈ X ′ \ L is
given as a part of the input for the game, instead of being chosen by the challenger. (When there are only
less than κ refreshing processes, we interpret the situation in such a way that an element x∗(κ) ∈ X ′ \ L is
given as a part of the input for the game but it is actually not used during the game.)

We note that now x∗(κ) is a part of the input for the game, therefore the uniformly random choice of
x∗(κ) ∈ X ′\L (which may be inefficient in general) is performed at outside of the game. Hence, the complexity

of the game is polynomial as well as Game (κ−1). Now we can bound the difference |Pr[T (κ.1)
ℓ ]−Pr[T (κ− 1)

ℓ ]|
owing to the hardness of the subset membership problem M; we will give a detailed argument later.

SubGame κ.2: In the game, we modify SubGame κ.1 in the following manner: In algorithms Enc′, Dec
and Eval, the challenger computes the values of H, Ĥ and H̃ for regular inputs by first finding a witness
ω for the first component of the input (which is an element of L) by an exhaustive search and then using
the public evaluation algorithms and the witness ω instead of the private evaluation algorithms. To avoid
confusion, we write the resulting algorithms after the modification by Enc′′, Dec′′ and Eval′′, respectively.

Now the projective property of the projective hash family implies that the computed value is not changed

by the modification, therefore we have Pr[T
(κ.2)
ℓ ] = Pr[T

(κ.1)
ℓ ]. Here we emphasize that, despite the com-

plexity of the challenger in the game is in general not polynomial, the complexity of the adversary A alone
is still polynomial.

SubGame κ.3: In comparison to SubGame κ.2, in the game, we modify the rule to decide in which case
the challenger rejects each decryption or evaluation query made by A in such a way that any irregular query
is automatically rejected (while the rule for regular queries is the same as SubGame κ.2). From now, we
refer to the new rule as the enhanced rejection rule, while we refer to the original rule as the original
rejection rule.

In the game, the complexity of the adversary alone is still polynomial. The difference Pr[T
(κ.3)
ℓ ]−Pr[T (κ.2)

ℓ ]

can be evaluated owing to the computationally or information-theoretically universal properties of Ĥ and
H̃. In fact, in order to carefully analyze the behaviors of the games, we will introduce further subdivision
of the game-hopping, SubSubGames κ.3.0 to κ.3.Q(ℓ) that connect SubGame κ.2 to SubGame κ.3, where
the rejection rule for one query is replaced at each step of the subdivided game-hopping. Details will be
described later.

SubGame κ.4: In the game, we modify the construction in SubGame κ.3 of the source ciphertext C
∗(κ) =

(x∗(κ), e∗(κ), π̂∗(κ), π̃∗(κ)) in the κ-th refreshing process as follows: The second component e∗(κ) is chosen
as e∗(κ) ← π† + HPS.priv(1ℓ,Λ, k, x∗(κ)), instead of e∗(κ) ← M∗β + HPS.priv(1ℓ,Λ, k, x∗(κ)) as in SubGame

κ.3, where π† ∈ Π is chosen independently of β according to the probability distribution (specified by
the assumption that Π′ is approximately samplable relative to Π) which is negligibly close to the uniform
distribution on Π′. (When there are only less than κ refreshing processes, we define SubGame κ.4 to be
identical to SubGame κ.3.)

We can show that, the private information on the key k for H is not used in SubGame κ.3 except the
computation of e∗(κ) = M∗β + HPS.priv(1ℓ,Λ, k, x∗(κ)), and the smoothness of H relative to (X ′,Π′) implies
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that the difference |Pr[T (κ.4)
ℓ ] − Pr[T

(κ.3)
ℓ ]| is negligible. A detailed argument will be given later. We note

that, in the game, the complexity of the adversary alone is polynomial, but the complexity of the whole
game is not polynomial in general.

SubGame κ.5: In the game, to cancel the modification performed by SubGame κ.3, we restore the enhanced
rejection rules for decryption and evaluation queries in SubGame κ.4 to the original rejection rules.

In the same way as SubGame κ.3, the difference Pr[T
(κ.5)
ℓ ] − Pr[T

(κ.4)
ℓ ] can be evaluated owing to the

computationally or information-theoretically universal properties of Ĥ and H̃. We will introduce further
subdivision of the game-hopping, SubSubGames κ.5.0 to κ.5.Q(ℓ) that connect SubGame κ.4 to SubGame
κ.5, where the rejection rule for one query is restored at each step. Details will be described later. We note
that, in the game, the complexity of the adversary alone is polynomial, but the complexity of the whole
game is still not polynomial in general.

SubGame κ.6: In the game, to cancel the modification performed by SubGame κ.2, we restore the algo-
rithms Enc′′, Dec′′ and Eval′′ used in SubGame κ.5 by the challenger to the algorithms Enc′, Dec and Eval,
respectively.

In the same way as SubGame κ.2, the projective property of the projective hash family implies again

that Pr[T
(κ.6)
ℓ ] = Pr[T

(κ.5)
ℓ ]. Now we note that the complexity of the whole game (not only of the adversary

alone) becomes polynomial again, as well as SubGame κ.1.

SubGame κ.7: In the game, to cancel the modification performed by SubGame κ.1, we restore the choice
of x∗(κ) in SubGame κ.6 in such a way that it is chosen uniformly at random from L instead of X ′ \ L.
Moreover, now x∗(κ) is chosen by the challenger when the source ciphertext C

∗(κ) is generated, instead of
the way in SubGame κ.6 where x∗(κ) is given as a part of the input for the game.

We note that the resulting game is the same as Game κ, as desired. Moreover, since the complexity
of SubGame κ.6 is polynomial as mentioned above, in the same way as SubGame κ.1, we can bound the

difference |Pr[T (κ.7)
ℓ ]−Pr[T

(κ.6)
ℓ ]| owing to the hardness of the subset membership problem M. We will give

a detailed argument later.

Concluding part of the game-hopping: In Game Q(ℓ) (the last game in the main part of the game-
hopping above), the challenge ciphertext C∗ involves information on the challenge bit β, while the source
ciphertexts do not involve information on β any longer. Finally, we proceed the game-hopping to remove the
remaining information on β from the challenge ciphertext, which makes the behavior of the game completely
independent of β, hence makes the advantage of the adversary zero. The process is similar to SubGames κ.1
to κ.4 above to remove the information on β from the source ciphertext in the κ-th refreshing process. The
precise description is as follows:

Game con-1: In the game, we modify the construction in Game Q(ℓ) of the challenge ciphertext C∗ =
(x∗, e∗, π̂∗, π̃∗), which is originally generated by C∗ ← Enc′(M∗β), in such a way that x∗ is chosen uniformly
at random from X ′ \L instead of L. Moreover, we modify the game further in such a way that the uniformly
random element x∗ ∈ X ′ \ L is given as a part of the input for the game, instead of being chosen by the
challenger.

In the same way as SubGame κ.1 above, the complexity of the game is polynomial, and we can bound

the difference |Pr[T (con-1)
ℓ ] − Pr[T

(Q(ℓ))
ℓ ]| owing to the hardness of the subset membership problem M; we

will give a detailed argument later.

Game con-2: In the same way as SubGame κ.2 above, in the game, we modify Game con-1 by replacing
the algorithms Enc′, Dec and Eval used by the challenger with algorithms Enc′′, Dec′′ and Eval′′, respectively.

Now the projective property of the projective hash family implies that Pr[T
(con-2)
ℓ ] = Pr[T

(con-1)
ℓ ]. We

note that the complexity of the adversary alone is still polynomial in the game.

Game con-3: In the same way as SubGame κ.3 above, in the game, we modify Game con-2 by replacing
the original rejection rules for decryption and evaluation queries with the enhanced rejection rules.

Now the difference Pr[T
(con-3)
ℓ ]−Pr[T (con-2)

ℓ ] can be evaluated owing to the computationally or information-

theoretically universal properties of Ĥ and H̃. In fact, in the same way as SubGame κ.3, we will introduce
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SubGames con-3.0 to con-3.Q(ℓ) that connect Game con-2 to Game con-3, where the rejection rule for one
query is replaced at each step. Details will be described later.

Game con-4: Finally, in the game, we modify the construction in Game con-3 of the challenge ci-
phertext C∗ = (x∗, e∗, π̂∗, π̃∗) in the following manner: The second component e∗ is chosen as e∗ ←
π† + HPS.priv(1ℓ,Λ, k, x∗), instead of e∗ ← M∗β + HPS.priv(1ℓ,Λ, k, x∗) as in Game con-3, where π† ∈ Π
is chosen independently of β according to the probability distribution (specified by the assumption that Π′

is approximately samplable relative to Π) which is negligibly close to the uniform distribution on Π′.
We can show that, in the same way as SubGame κ.4 above, the private information on the key k for H is

not used in Game con-3 except the computation of e∗ =M∗β+HPS.priv(1ℓ,Λ, k, x∗), and the smoothness of H

relative to (X ′,Π′) implies that the difference |Pr[T (con-4)
ℓ ]−Pr[T

(con-3)
ℓ ]| is negligible. A detailed argument

will be given later.

In Game con-4, the information on the challenge bit β is not used during the game, which implies that

Pr[T
(con-4)
ℓ ] = 1/2. This is the goal of the game-hopping. Then we have

AdvKH-CCA
KH-PKE,A(ℓ) = |Pr[T

(pre-0)
ℓ ]− 1/2| = |Pr[T (pre-0)

ℓ ]− Pr[T
(con-4)
ℓ ]| .

Now, since we have mentioned that the differences for some steps of the game-hopping are zero, we have

Pr[T
(pre-0)
ℓ ]− Pr[T

(con-4)
ℓ ]

=
(
Pr[T

(pre-1)
ℓ ]− Pr[T

(pre-2)
ℓ ]

)
+

Q(ℓ)∑
κ=1

((
Pr[T

(κ− 1)
ℓ ]− Pr[T

(κ.1)
ℓ ]

)
+
(
Pr[T

(κ.2)
ℓ ]− Pr[T

(κ.3)
ℓ ]

)
+
(
Pr[T

(κ.3)
ℓ ]− Pr[T

(κ.4)
ℓ ]

)
+
(
Pr[T

(κ.4)
ℓ ]− Pr[T

(κ.5)
ℓ ]

)
+
(
Pr[T

(κ.6)
ℓ ]− Pr[T

(κ)
ℓ ]

))
+
(
Pr[T

(Q(ℓ))
ℓ ]− Pr[T

(con-1)
ℓ ]

)
+
(
Pr[T

(con-2)
ℓ ]− Pr[T

(con-3)
ℓ ]

)
+
(
Pr[T

(con-3)
ℓ ]− Pr[T

(con-4)
ℓ ]

)
= δ1 + δ2 + δ3 + δ4 ,

where
δ1 = Pr[T

(pre-1)
ℓ ]− Pr[T

(pre-2)
ℓ ] ,

δ2 =

Q(ℓ)∑
κ=1

((
Pr[T

(κ− 1)
ℓ ]− Pr[T

(κ.1)
ℓ ]

)
+
(
Pr[T

(κ.6)
ℓ ]− Pr[T

(κ)
ℓ ]

))
+
(
Pr[T

(Q(ℓ))
ℓ ]− Pr[T

(con-1)
ℓ ]

)
,

δ3 =

Q(ℓ)∑
κ=1

((
Pr[T

(κ.2)
ℓ ]− Pr[T

(κ.3)
ℓ ]

)
+
(
Pr[T

(κ.4)
ℓ ]− Pr[T

(κ.5)
ℓ ]

))
+

(
Pr[T

(con-2)
ℓ ]− Pr[T

(con-3)
ℓ ]

)
,

δ4 =

Q(ℓ)∑
κ=1

(
Pr[T

(κ.3)
ℓ ]− Pr[T

(κ.4)
ℓ ]

)
+
(
Pr[T

(con-3)
ℓ ]− Pr[T

(con-4)
ℓ ]

)
.

From now, we evaluate the quantities δ1, δ2, δ3 and δ4 above.

Evaluation of δ1: We note that δ1 = 0 for the cases of Assumption I and Assumption A. On the other
hand, for the case of Assumption U, we divide the game-hopping from Game pre-1 to pre-2 by introducing
the following subdivision:

SubGame pre-2.κ (0 ≤ κ ≤ Q(ℓ)): In the game, we modify Game pre-1 in such a way that, in the first κ
evaluation queries (C ′, C ′′) (or, when the number of evaluation queries is less than κ, in all of the evaluation
queries), the challenger rejects the query if the query satisfies the condition for a refreshing query and it
is a critical query. Note that SubGame pre-2.0 and SubGame pre-2.Q(ℓ) are the same as Game pre-1 and
Game pre-2, respectively. Note also that the the complexity of the game is polynomial, by the efficiency of
deciding whether a given integer is a critical integer or not (see Assumption U).
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For each 1 ≤ κ ≤ Q(ℓ), let R
(pre-2.κ)
ℓ denote the event that, in SubGame pre-2.κ, the κ-th evaluation

query (exists and) is a critical query. Since SubGame pre-2.(κ−1) and SubGame pre-2.κ are identical unless

the κ-th evaluation query it is a critical query, we have |Pr[T (pre-2.(κ− 1))
ℓ ] − Pr[T

(pre-2.κ)
ℓ ]| ≤ Pr[R

(pre-2.κ)
ℓ ],

therefore |δ1| = |Pr[T (pre-1)
ℓ ]−Pr[T (pre-2)

ℓ ]| ≤
∑Q(ℓ)
κ=1 Pr[R

(pre-2.κ)
ℓ ] by the triangle inequality. Now, to evaluate

the right-hand side, we introduce the following auxiliary adversary A1 finding a critical integer:

1. Given input 1ℓ and Λ for A1, first A1 chooses a game uniformly at random from the Q(ℓ) Games
pre-2.1 to pre-2.Q(ℓ).

2. When Game pre-2.κ, 1 ≤ κ ≤ Q(ℓ), is chosen, A1 simulates Game pre-2.κ with input (1ℓ,Λ) for
the game. In the case that the κ-th evaluation query (C ′, C ′′) is critical, A1 outputs λD(ιD(C

′)) +
λD(ιD(C

′′)) which is a critical integer. Otherwise, A1 outputs 1.

By the definition, A1 is PPT, and the advantage AdvA1 of A1 (that is, the probability that A1 output a
critical integer) satisfies that

AdvA1 =
1

Q(ℓ)

Q(ℓ)∑
κ=1

Pr[R
(pre-2.κ)
ℓ ]

(we note that 1 is never a critical integer by the definition). This implies that |δ1| ≤ Q(ℓ)AdvA1 , while
AdvA1 is negligible since finding a critical integer is hard by Assumption U. Hence, |δ1| is negligible as well.

Evaluation of δ2: In order to evaluate the quantity δ2, we introduce the following auxiliary distinguisher
A2 for the subset membership problem M relative to X ′:

1. Given input 1ℓ and (Λ, x†) for A2, where we have either x
† ∈ L or x† ∈ X ′\L, first A2 chooses a pair of

games uniformly at random from the 2(ℓ) + 1 pairs (Game (κ− 1), SubGame κ.1) with 1 ≤ κ ≤ Q(ℓ),
(SubGame κ.6,Game κ) with 1 ≤ κ ≤ Q(ℓ), and (Game Q(ℓ),Game con-1).

2. In the case that the pair (Game (κ− 1), SubGame κ.1) was chosen, A2 executes SubGame κ.1 with
input 1ℓ, Λ and x∗(κ) = x†. (By the definition of the games, the behavior of the game inside A2

becomes identical to Game (κ − 1) and SubGame κ.1 if x† ∈ L and x† ∈ X ′ \ L, respectively.) Then
A2 outputs the output bit of the game.

3. In the case that the pair (SubGame κ.6,Game κ) was chosen, A2 executes SubGame κ.6 with input
1ℓ, Λ and x∗(κ) = x†. (By the definition of the games, the behavior of the game inside A2 becomes
identical to Game κ and SubGame κ.6 if x† ∈ L and x† ∈ X ′ \ L, respectively.) Then A2 outputs the
opposite bit to the output bit of the game; that is, A2 outputs 1− b if the game inside A2 outputs b.

4. In the case that the pair (Game Q(ℓ),Game con-1) was chosen, A2 executes Game con-1 with input 1ℓ,
Λ and x∗ = x†. (By the definition of the games, the behavior of the game inside A2 becomes identical
to Game Q(ℓ) and Game con-1 if x† ∈ L and x† ∈ X ′ \ L, respectively.) Then A2 outputs the output
bit of the game.

We note that A2 is PPT. By the definition of A2, we have

Pr[1← A2 | x† ∈ L] =
1

2Q(ℓ) + 1

Q(ℓ)∑
κ=1

(
Pr[T

(κ−1)
ℓ ] + (1− Pr[T

(κ)
ℓ ])

)
+ Pr[T

(Q(ℓ))
ℓ ]


and

Pr[1← A2 | x† ∈ X ′ \ L] =
1

2Q(ℓ) + 1

Q(ℓ)∑
κ=1

(
Pr[T

(κ.1)
ℓ ] + (1− Pr[T

(κ.6)
ℓ ])

)
+ Pr[T

(con-1)
ℓ ]

 ,
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therefore

Pr[1← A2 | x† ∈ L]− Pr[1← A2 | x† ∈ X ′ \ L]

=
1

2Q(ℓ) + 1

Q(ℓ)∑
κ=1

(
Pr[T

(κ−1)
ℓ ]− Pr[T

(κ)
ℓ ]− Pr[T

(κ.1)
ℓ ] + Pr[T

(κ.6)
ℓ ]

)
+ Pr[T

(Q(ℓ))
ℓ ]− Pr[T

(con-1)
ℓ ]


=

δ2
2Q(ℓ) + 1

.

Hence we have
|δ2| = (2Q(ℓ) + 1)AdvM,A2

(ℓ) ,

where AdvM,A2(ℓ) = |Pr[1← A2 | x† ∈ L]− Pr[1← A2 | x† ∈ X ′ \ L]| denotes the advantage of A2 for the
subset membership problem M relative to X ′. Moreover, by the assumption that M is hard relative to X ′,
AdvM,A2(ℓ) is negligible. Hence, |δ2| is negligible as well.

Evaluation of δ3: From now, we evaluate the quantity δ3. For the purpose, first we divide the game-hopping
from SubGame κ.2 to κ.3 for each 1 ≤ κ ≤ Q(ℓ) by introducing the following subdivision:

SubSubGame κ.3.ρ (0 ≤ ρ ≤ Q(ℓ)): In comparison to SubGame κ.2, in the game, we replace the original
rejection rules for the first ρ decryption or evaluation queries (or, when the total number of decryption queries
and evaluation queries is less than ρ, the original rejection rules for all of the decryption and evaluation
queries) with the enhanced rejection rules. Note that SubSubGame κ.3.0 and SubSubGame κ.3.Q(ℓ) are the
same as SubGame κ.2 and SubGame κ.3, respectively.

Let R
(κ.3.ρ)
ℓ denote the event in SubSubGame κ.3.ρ that the ρ-th query (exists and) is rejected by the

enhanced rejection rule but is not rejected by the original rejection rule. Then we have |Pr[T (κ.3.(ρ− 1))
ℓ ] −

Pr[T
(κ.3.ρ)
ℓ ]| ≤ Pr[R

(κ.3.ρ)
ℓ ], therefore |Pr[T (κ.2)

ℓ ]− Pr[T
(κ.3)
ℓ ]| ≤

∑Q(ℓ)
ρ=1 Pr[R

(κ.3.ρ)
ℓ ] by the triangle inequality.

Now, to evaluate the right-hand side, we prove the following properties.

Claim 1. In SubSubGame κ.3.ρ, the replies to the first ρ queries are independent of the private information
on the keys for H, Ĥ and H̃, except the reply to the κ-th refreshing query which depends (if the κ-th
refreshing query is ρ-th or earlier query) on one value of the private evaluation algorithm for each of these
projective hash families. Moreover, the replies to the evaluation queries (which are not rejected) among the
first ρ queries and the ciphertexts in D at the end of the ρ-th query are regular ciphertexts, except (if the
κ-th refreshing query is ρ-th or earlier query) the ciphertext added to D at the κ-th refreshing process that
is the reply to the κ-th refreshing query.

More precisely, when the κ-th refreshing query is the ρ-th or earlier query, let D = (C0 = C∗, C1, . . . , Cκ)
and D′ = ((D′1, D

′′
1 ), . . . , (D

′
κ, D

′′
κ)) be the two dictionaries after the κ-th refreshing query, let C0

(κ), C1
(κ),

. . . , Cκ
(κ) be the ciphertexts calculated in the κ-th refreshing process (hence C0

(κ) is the source ciphertext

C
∗(κ) = (x∗(κ), e∗(κ), π̂∗(κ), π̃∗(κ)) and Cκ

(κ) = Cκ), and put Cκ′ (κ) = (xκ′ , eκ′ , π̂κ′ , π̃κ′) for each κ′ =
0, 1, . . . , κ. Then for each κ′, we have:

• xκ′ is the sum of λD(κ
′) · x∗(κ), an integer linear combination of elements of L independent of x∗(κ),

and an integer linear combination of the first components of ciphertexts D′i and D′′i (i.e., those D′i
and D′′i are not indices) listed in D′ with 1 ≤ i ≤ κ′. Hence, xκ′ − λD(κ′) · x∗(κ) is an element of L
independent of x∗(κ).

• eκ′ is the sum of λD(κ
′) · e∗(κ), an integer linear combination of elements of the form Hk(x) with x ∈ L

being independent of x∗(κ), and an integer linear combination of the second components of ciphertexts
D′i and D

′′
i listed in D′ with 1 ≤ i ≤ κ′.

• For any ciphertext C = (x, e, π̂, π̃), we define ∆̂(C) = π̂ − Ĥk̂(x). Then, ∆̂(Cκ′ (κ)) is an integer linear

combination of ∆̂(D′i) and ∆̂(D′′i ) for ciphertexts D
′
i and D

′′
i listed in D′ with 1 ≤ i ≤ κ′. Moreover,

the calculation of these ∆̂(D′i) and ∆̂(D′′i ) from given the D′i and D′′i is independent of the private

information on the key k̂ for Ĥ.
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• We have π̃κ′ = H̃k̃(xκ′ , eκ′ , π̂κ′).

Proof of Claim 1. We proceed the proof by induction on ρ, where the starting case ρ = 0 is trivial. We
suppose that ρ > 0, and we focus on the ρ-th query. First, for the case that the query is a decryption query
C = (x, e, π̂, π̃), by the enhanced rejection rule, the query is always rejected if x ∈ X \L. On the other hand,
if x ∈ L, then for replying to the query, the challenger may compute the values of projective hashes for x
and (x, e, π̂) in the algorithm Dec′′, but it is done by using the public evaluation algorithms (rather than the
private ones) since x ∈ L. Hence, the reply to the query is indeed independent of the private information on
the keys.

Secondly, we consider the case that the query is an evaluation query (C ′, C ′′) with C ′ = (x′, e′, π̂′, π̃′)
and C ′′ = (x′′, e′′, π̂′′, π̃′′). In the enhanced rejection rule, the query is always rejected if it is irregular. From
now, we suppose that the query is regular. Now if C ′ ̸∈ D and C ′′ ̸∈ D, then we have x′, x′′ ∈ L. In this
case, for replying to the query, the challenger may compute the values of projective hashes for (x′, e′, π̂′) and
(x′′, e′′, π̂′′) in the algorithm Eval′′, but it is done by using the public evaluation algorithms (rather than the
private ones) since x′, x′′ ∈ L. Hence, the reply to the query is indeed independent of the private information
on the keys in this case. Moreover, if the query is not rejected, then the first component of the ciphertext
that is the reply to the query is x′ + x′′ ∈ L, as desired.

From now, we consider the remaining case that either C ′ or C ′′ is in D. If RevHK has been queried
before, then the query is rejected. If we are in the case of Assumption U and the ρ-th query is a critical
query, then the query is rejected due to the definition of Game pre-2. We suppose from now that RevHK
has not been queried and (for the case of Assumption U) the ρ-th query is not a critical query. If C ′ ̸∈ D
and π̃′ ̸= H̃k̃(x

′, e′, π̂′) (note that the condition can be checked in Eval′′ without the private information on
the key, since now x′ ∈ L), then the query is rejected. The same holds for C ′′ instead of C ′. In these cases,
the reply to the query is indeed independent of the private information of the keys. Therefore, it suffices to
consider the remaining case; now the ρ-th query is the κ†-th refreshing query for some κ†.

Let D = (C0 = C∗, C1, . . . , Cκ†−1) and D′ = ((D′1, D
′′
1 ), . . . , (D

′
κ†−1, D

′′
κ†−1)) be the two dictionaries

before the κ†-th refreshing query, which satisfy the conditions in the claim by the induction hypothesis.
Let Cκ† be the ciphertext which is the reply to the query and is added to D at the end of the query, and

let (D′κ† , D
′′
κ†) be the object added to D′ at the end of the query. Let C0

(κ†), C1
(κ†), . . . , Cκ†

(κ†) be the

ciphertexts calculated in the κ†-th refreshing process, hence C0
(κ†) = C

∗(κ†) and Cκ†
(κ†) = Cκ† . We note

that, any object D′i or D′′i , 1 ≤ i ≤ κ† − 1, in D′ which is a ciphertext (i.e., not an index) is an input
ciphertext (which was not in D) for some previous evaluation query which was not rejected, therefore it is a
regular ciphertext by the enhanced rejection rule. On the other hand, since any of C ′ and C ′′ which is not
in D is regular as discussed above, it follows that any of D′κ† and D′′κ† which is a ciphertext is also regular.

From now, we first consider the case κ† ̸= κ. We show that all the ciphertexts appearing in the κ†-th
refreshing process are regular, therefore Cκ† is also regular and the calculation of Cκ† does not use the

private information on the keys for H, Ĥ and H̃, as desired. The claim for C0
(κ†) = C

∗(κ†) follows from

the construction C
∗(κ†) ← Enc′′(M∗β) (recall that κ

† ̸= κ). On the other hand, for 1 ≤ i ≤ κ†, Ci
(κ†) is the

output of Eval′′ with inputs being either a ciphertext listed in D′ or the ciphertext Cj(κ
†) for some 0 ≤ j < i.

By the induction on i and the argument in the previous paragraph, both of the two input ciphertexts for

the Eval′′ are regular, therefore Ci
(κ†) is also regular and the calculation of Ci

(κ†) does not use the private
information on the keys, as desired. Hence, the claim holds for the present case κ† ̸= κ.

Finally, we consider the case κ† = κ. We prove the second paragraph in the statement of the claim by
induction on κ′ = 0, 1, . . . , κ. For the case κ′ = 0, since λD(0) = 1 and C0

(κ) = C
∗(κ), the claim follows from

the construction of C
∗(κ) in the κ-th refreshing process. We suppose that κ′ > 0. We divide the proof into

the following three cases:

• Suppose that D′κ′ is an index h′ ∈ {0, 1, . . . , κ′ − 1} and D′′κ′ is an index h′′ ∈ {0, 1, . . . , κ′ − 1}. In

this case, by the definition of the algorithm Eval′′, for elements x
$← L and e = Hk(x), we have
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xκ′ = xh′ + xh′′ + x, eκ′ = eh′ + eh′′ + e,

∆̂(Cκ′
(κ)) = π̂κ′ − Ĥk̂(xκ′) = π̂h′ + π̂h′′ + Ĥk̂(x)− Ĥk̂(xh′)− Ĥk̂(xh′′)− Ĥk̂(x)

= ∆̂(Ch′
(κ)) + ∆̂(Ch′′

(κ))

since Ĥ is homomorphic, and π̃κ′ = H̃k̃(xκ′ , eκ′ , π̂κ′) (we note that the fourth components of Ch′ (κ)

and Ch′′ (κ) are both consistent by the induction hypothesis, therefore the checks in Eval′′ using the
projective hash H̃ are now always passed). Then, since λD(κ

′) = λD(h
′) + λD(h

′′) by the definition,
the induction hypothesis for Ch′ (κ) and Ch′′ (κ) implies that the claim here also holds for the Cκ′ (κ).

• Suppose that D′κ′ is an index h′ ∈ {0, 1, . . . , κ′ − 1} and D′′κ′ = (x†, e†, π̂†, π̃†) is a ciphertext. In

this case, by the definition of the algorithm Eval′′, for elements x
$← L and e = Hk(x), we have

xκ′ = xh′ + x† + x, eκ′ = eh′ + e† + e,

∆̂(Cκ′
(κ)) = π̂κ′ − Ĥk̂(xκ′) = π̂h′ + π̂† + Ĥk̂(x)− Ĥk̂(xh′)− Ĥk̂(x

†)− Ĥk̂(x)

= ∆̂(Ch′
(κ)) + ∆̂(D′′κ′)

since Ĥ is homomorphic, and π̃κ′ = H̃k̃(xκ′ , eκ′ , π̂κ′) (we note that the fourth components of Ch′ (κ)

and D′′κ′ are both consistent by the induction hypothesis, therefore the checks in Eval′′ using the

projective hash H̃ are now always passed). Then, since λD(κ
′) = λD(h

′) by the definition, the induction
hypothesis for Ch′ (κ) implies that the claim here also holds for the Cκ′ (κ).

• Suppose that D′κ′ is a ciphertext and D′′κ′ is an index. In the case, the symmetry implies that the claim
holds by the same argument as the previous case.

Hence, the second paragraph in the statement of the claim holds for any of the three cases.
Finally, by the result above, for the second component eκ of Cκ, since e

∗(κ) = M∗β + Hk(x
∗(κ)), only

the element, among the elements needed to compute eκ, which may require the private information on the
keys is the value Hk(x

∗(κ)) of the projective hash H with key k. For the third component π̂κ of Cκ, only

the element, among the elements needed to compute π̂κ = Ĥk̂(xκ) + ∆̂(Cκ), which may require the private

information on the keys is the value Ĥk̂(xκ) of the projective hash Ĥ with key k̂. Moreover, it is obvious that

the computation of the fourth component π̃κ = H̃k̃(xκ, eκ, π̂κ) consists of only one computation of a value

of the projective hash H̃ with key k̃ that may require the private information on the keys. This completes
the proof of the claim.

Claim 2. In SubSubGame κ.3.ρ, suppose that the κ-th refreshing query is ρ-th or earlier query and
Cκ = (xκ, eκ, π̂κ, π̃κ) is the reply to the κ-th refreshing query. Then, for the case of Assumption U, if λD(κ)
is not a multiple of o(Λ) (see Definition 4.3 for the definition of o(Λ)), then both λD(κ) · x∗(κ) and xκ are
uniformly random over X ′ \ L; otherwise, both λD(κ) · x∗(κ) and xκ are always in L.

Proof of Claim 2. First, we consider the case that λD(κ) is a multiple of o(Λ). By the definition of o(Λ),
λD(κ) is a multiple of the order of x∗(κ) in the quotient group X/L, therefore we have λD(κ) · x∗(κ) ∈ L.
Since xκ − λD(κ) · x∗(κ) ∈ L by Claim 1, it follows that xκ ∈ L, as desired.

Secondly, we consider the other case that λD(κ) is not a multiple of o(Λ). Recall that any critical query
is rejected owing to the definition of Game pre-2; therefore, λD(h) is not a critical integer for any index h
by induction on h. By the definition of critical integers, it follows that λD(κ) is coprime to |X|. Therefore,
there is an integer λ′ satisfying that λD(κ)λ

′ ≡ 1 mod |X|, which is also coprime to |X|. This relation
implies that the multiplications by λD(κ) and by λ′ define two mappings X → X which are inverses of each
other. Moreover, each of the mappings maps L to L since L is a subgroup of X, while by Assumtion U,
it maps X ′ \ L to X ′. This implies that the multiplication by λD(κ) defines a bijection X ′ \ L → X ′ \ L,
therefore λD(h) · x∗(κ) is uniformly random over X ′ \L as well as x∗(κ). On the other hand, by Assumption
U, for any y ∈ L, the addition by y defines a bijection X ′ \ L→ X ′ \ L (since L is a subgroup of X). Since
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xκ − λD(κ) · x∗(κ) is an element of L independent of x∗(κ) by Claim 1, it follows that xκ is also uniformly
random over X ′ \ L, as desired. This completes the proof of Claim 2.

Before evaluating the quantities Pr[R
(κ.3.ρ)
ℓ ], we also introduce subdivision of the game-hopping from

SubGame κ.4 to SubGame κ.5 for 1 ≤ κ ≤ Q(ℓ) and subdivision of the game-hopping from Game con-2 to
Game con-3 in a similar way:

SubSubGame κ.5.ρ (0 ≤ ρ ≤ Q(ℓ)): In comparison to SubGame κ.4, in the game, we replace the
enhanced rejection rules for the (Q(ℓ)+ 1− ρ)-th or later queries with the original rejection rules. Note that
SubSubGame κ.5.Q(ℓ) and SubSubGame κ.5.0 are the same as SubGame κ.4 and SubGame κ.5, respectively.

SubGame con-3.ρ (0 ≤ ρ ≤ Q(ℓ)): In comparison to Game con-2, in the game, we replace the original
rejection rules for the first ρ queries with the enhanced rejection rules. Note that SubGame con-3.ρ and
SubGame con-3.Q(ℓ) are the same as Game con-2 and Game con-3, respectively.

Now we note that each SubSubGame κ.5.ρ satisfies properties similar to Claim 1 and Claim 2 above,
where the (Q(ℓ) + 1− ρ)-th query plays the role of the ρ-th query in the original Claim 1 and Claim 2. On
the other hand, for each SubGame con-3.ρ, an argument similar to Claim 1 implies the following property:

Claim 3. In SubGame con-3.ρ, the replies to the first ρ queries are independent of the private information
on the keys for the projective hash families H, Ĥ and H̃. Moreover, the replies to the evaluation queries
(which are not rejected) among the first ρ queries and the ciphertexts in D at the end of the ρ-th query
are regular ciphertexts, except the challenge ciphertext C∗ in D which depends on one value of the private
evaluation algorithm for each of these projective hash families.

Let R
(κ.5.ρ)
ℓ denote the event in SubSubGame κ.5.ρ that the (Q(ℓ)+1−ρ)-th query (exists and) is rejected

by the enhanced rejection rule but is not rejected by the original rejection rule. Similarly, let R
(con-3.ρ)
ℓ denote

the event in SubGame con-3.ρ that the ρ-th query (exists and) is rejected by the enhanced rejection rule but is
not rejected by the original rejection rule. Then an argument similar to the case of SubSubGame κ.3.ρ implies

that |Pr[T (κ.4)
ℓ ]− Pr[T

(κ.5)
ℓ ]| ≤

∑Q(ℓ)
ρ=1 Pr[R

(κ.5.ρ)
ℓ ] and |Pr[T (con-2)

ℓ ]− Pr[T
(con-3)
ℓ ]| ≤

∑Q(ℓ)
ρ=1 Pr[R

(con-3.ρ)
ℓ ].

In order to evaluate the quantities Pr[R
(κ.3.ρ)
ℓ ], Pr[R

(κ.5.ρ)
ℓ ] and Pr[R

(con-3.ρ)
ℓ ], we introduce further the

following events:

• We define R
⟨1⟩
ℓ

(κ.3.ρ) to be the event in SubSubGame κ.3.ρ that the ρ-th query is a decryption query
C with C = (x, e, π̂, π̃) and is in the find stage, RevHK has been queried before the ρ-th query, x ̸∈ L
and π̂ = Ĥk̂(x). In a similar manner, we also define the events R

⟨1⟩
ℓ

(κ.5.ρ) (where we focus on the

(Q(ℓ) + 1− ρ)-th query instead of the ρ-th query) and R
⟨1⟩
ℓ

(con-3.ρ).

• We define R
⟨2⟩
ℓ

(κ.3.ρ) to be the event in SubSubGame κ.3.ρ that the ρ-th query is a decryption query

C with C = (x, e, π̂, π̃), RevHK has not been queried before the ρ-th query, x ̸∈ L, π̃ = H̃k̃(x, e, π̂), and
either the ρ-th query is before the κ-th refreshing query, or the ρ-th query is after the κ-th refreshing
query and the reply Cκ to the κ-th refreshing query is a regular ciphertext. In a similar manner, we

also define the event R
⟨2⟩
ℓ

(κ.5.ρ), where we focus on the (Q(ℓ) + 1 − ρ)-th query instead of the ρ-th

query. Moreover, we also define R
⟨2⟩
ℓ

(con-3.ρ) to be the event in SubGame con-3.ρ that the ρ-th query is
a decryption query C with C = (x, e, π̂, π̃) and is in the find stage, RevHK has not been queried before

the ρ-th query, x ̸∈ L and π̃ = H̃k̃(x, e, π̂).

• We define R
⟨3⟩
ℓ

(κ.3.ρ) to be the event in SubSubGame κ.3.ρ that the ρ-th query is an evaluation query
(C ′, C ′′) with C ′ = (x′, e′, π̂′, π̃′) ̸∈ D, RevHK has not been queried before the ρ-th query, x′ ̸∈ L,

π̃′ = H̃k̃(x
′, e′, π̂′), and either the ρ-th query is the κ-th refreshing query or before the κ-th refreshing

query, or the ρ-th query is after the κ-th refreshing query and the reply to the κ-th refreshing query is

a regular ciphertext. In a similar manner, we also define the event R
⟨3⟩
ℓ

(κ.5.ρ), where we focus on the

(Q(ℓ)+1− ρ)-th query instead of the ρ-th query. Moreover, we also define R
⟨3⟩
ℓ

(con-3.ρ) to be the event
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in SubGame con-3.ρ that the ρ-th query is an evaluation query (C ′, C ′′) with C ′ = (x′, e′, π̂′, π̃′) and

is in the find stage, RevHK has not been queried before the ρ-th query, x′ ̸∈ L and π̃′ = H̃k̃(x
′, e′, π̂′).

• We define the events R
⟨4⟩
ℓ

(κ.3.ρ), R
⟨4⟩
ℓ

(κ.5.ρ) and R
⟨4⟩
ℓ

(con-3.ρ) in a way similar to the events R
⟨3⟩
ℓ above,

where we focus on the second part C ′′ ̸∈ D of the input for the evaluation query instead of the first
part C ′.

• We define R
⟨5⟩
ℓ

(κ.3.ρ) to be the event in SubSubGame κ.3.ρ that the ρ-th query is a decryption query C
with C = (x, e, π̂, π̃) ̸∈ D and is after the κ-th refreshing query, RevHK has not been queried before the

ρ-th query, x ̸∈ L, π̃ = H̃k̃(x, e, π̂), and the reply to the κ-th refreshing query is an irregular ciphertext.

In a similar manner, we also define the event R
⟨5⟩
ℓ

(κ.5.ρ), where we focus on the (Q(ℓ)+1− ρ)-th query

instead of the ρ-th query. Moreover, we also define R
⟨5⟩
ℓ

(con-3.ρ) to be the event in SubGame con-3.ρ
that the ρ-th query is a decryption query C with C = (x, e, π̂, π̃) ̸∈ D and is in the guess stage, RevHK

has not been queried before the ρ-th query, x ̸∈ L and π̃ = H̃k̃(x, e, π̂).

• We define R
⟨6⟩
ℓ

(κ.3.ρ) to be the event in SubSubGame κ.3.ρ that the ρ-th query is an evaluation query
(C ′, C ′′) with C ′ = (x′, e′, π̂′, π̃′) ̸∈ D, the ρ-th query is after the κ-th refreshing query, RevHK has not

been queried before the ρ-th query, x′ ̸∈ L, π̃′ = H̃k̃(x
′, e′, π̂′), and the reply to the κ-th refreshing query

is an irregular ciphertext. In a similar manner, we also define the event R
⟨6⟩
ℓ

(κ.5.ρ), where we focus on the

(Q(ℓ)+1− ρ)-th query instead of the ρ-th query. Moreover, we also define R
⟨6⟩
ℓ

(con-3.ρ) to be the event
in SubGame con-3.ρ that the ρ-th query is an evaluation query (C ′, C ′′) with C ′ = (x′, e′, π̂′, π̃′) ̸∈ D,
the ρ-th query is in the guess stage, RevHK has not been queried before the ρ-th query, x′ ̸∈ L and
π̃′ = H̃k̃(x

′, e′, π̂′).

• We define the events R
⟨7⟩
ℓ

(κ.3.ρ), R
⟨7⟩
ℓ

(κ.5.ρ) and R
⟨7⟩
ℓ

(con-3.ρ) in a way similar to the events R
⟨6⟩
ℓ above,

where we focus on the second part C ′′ ̸∈ D of the input for the evaluation query instead of the first
part C ′.

By the definitions of the events, we have Pr[R
(κ.3.ρ)
ℓ ] ≤

∑7
i=1 Pr[R

⟨i⟩
ℓ

(κ.3.ρ)], and similar inequalities hold

for R
(κ.5.ρ)
ℓ and R

(con-3.ρ)
ℓ . Therefore, we have

|δ3| ≤
7∑
i=1

Q(ℓ)∑
ρ=1

Q(ℓ)∑
κ=1

(
Pr[R

⟨i⟩
ℓ

(κ.3.ρ)] + Pr[R
⟨i⟩
ℓ

(κ.5.ρ)]
)
+ Pr[R

⟨i⟩
ℓ

(con-3.ρ)]

 .

We evaluate the quantities in the right-hand side of the inequality. Here, we put ρ = ρ for the case of events

R
(κ.3.ρ)
ℓ and R

(con-3.ρ)
ℓ , and ρ = Q(ℓ) + 1− ρ for the case of events R

(κ.5.ρ)
ℓ .

For the events R
⟨1⟩
ℓ , Claim 1 and Claim 3 imply that the probability that x ̸∈ L but Ĥk̂(x) = π̂ as in the

event is bounded by a negligible value common to all κ and ρ owing to the universal1 property of Ĥ, since

the private information on k̂ is not used in the game before the ρ-th query. Hence, the sum of Pr[R
⟨1⟩
ℓ

(κ.3.ρ)],

Pr[R
⟨1⟩
ℓ

(κ.5.ρ)] and Pr[R
⟨1⟩
ℓ

(con-3.ρ)] over all κ and ρ is negligible.
For the case of Assumption I, a similar argument based on Claim 1 and Claim 3 implies that the sum

of Pr[R
⟨i⟩
ℓ

(κ.3.ρ)], Pr[R
⟨i⟩
ℓ

(κ.5.ρ)] and Pr[R
⟨i⟩
ℓ

(con-3.ρ)] over all i ∈ {2, 3, 4}, κ and ρ is negligible owing to the

universal1 property of H̃, since the private information on k̃ is not used in the game before the ρ-th query.

Similarly, Claim 1 and Claim 3 imply that the sum of Pr[R
⟨i⟩
ℓ

(κ.3.ρ)], Pr[R
⟨i⟩
ℓ

(κ.5.ρ)] and Pr[R
⟨i⟩
ℓ

(con-3.ρ)] over

all i ∈ {5, 6, 7}, κ and ρ is negligible owing to the universal2 property of H̃, since the private information

on k̃ is not used in the game before the ρ-th query except for the computation of the fourth component of

the reply to the κ-th refreshing query (for the case of events R
⟨i⟩
ℓ

(κ.3.ρ) and R
⟨i⟩
ℓ

(κ.5.ρ)) or the computation

of the fourth component of the challenge ciphertext (for the case of event R
⟨i⟩
ℓ

(con-3.ρ)). Summarizing, |δ3| is
negligible for the case of Assumption I.
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From now, we consider the other cases of Assumption A and Assumption U. In these cases, we reduce the

evaluation of the probabilities Pr[R
⟨i⟩
ℓ

(κ.3.ρ)], Pr[R
⟨i⟩
ℓ

(κ.5.ρ)] and Pr[R
⟨i⟩
ℓ

(con-3.ρ)] for 2 ≤ i ≤ 7 to evaluation of
the advantage of some adversary for the security game of the first-adaptive or first-uniform computationally
universal2 property for H̃. Let Hash denote the oracle in the security game for H̃. The adversary will

be defined in such a way that it simulates the underlying games for the events R
⟨i⟩
ℓ

(κ.3.ρ), R
⟨i⟩
ℓ

(κ.5.ρ) and

R
⟨i⟩
ℓ

(con-3.ρ) (which we call an internal game). Here we note that, for the internal game, the behavior of the
decryption oracle under the enhanced rejection rule can be efficiently simulated by using Hash, secret key
k for H and secret key k̂ for Ĥ; it can be checked whether the query is regular or not by an oracle query
to Hash (note that Hash replies ⊥ if and only if the first component of the input to the oracle is in X \ L),
and the value of H̃ for any regular input can be obtained by querying it to Hash. Similarly, Claim 1 and
Claim 3 imply that the behavior of the evaluation oracle under the enhanced rejection rule can be efficiently

simulated by using Hash, k and k̂ except for the κ-th refreshing process for the case of events R
⟨i⟩
ℓ

(κ.3.ρ)

and R
⟨i⟩
ℓ

(κ.5.ρ) (we note that, in any refreshing process under the enhanced rejection rule, every ciphertext

appearing during the process has its fourth component being consistent with the value of H̃ for the first three
components, therefore the consistency checks using H̃ during the process can be omitted). The computation

of the challenge ciphertext for the case of events R
⟨i⟩
ℓ

(κ.3.ρ) and R
⟨i⟩
ℓ

(κ.5.ρ) can be efficiently simulated by

using Hash, k and k̂ as well. In the argument below, we say that the adversary aborts the game, to mean
the following situation:

• For the case of Assumption A, the adversary submits (0, 0, 0) ∈ X ×Π× Π̂ to the challenger unless an

element has been submitted, and then outputs ((0, 0, 0), 0) ∈ (X ×Π× Π̂)× Π̃.

• For the case of Assumption U, the adversary outputs ((0, 0, 0), 0) ∈ (X ×Π× Π̂)× Π̃.

Hence, when the adversary aborts the game, it never wins the security game for H̃.
Based on the argument above, first, in order to evaluate the probabilities for 2 ≤ i ≤ 4, we define an

adversary A3,1 for the security game for H̃ as follows:

Adversary A3,1: First, we specify the input for A3,1 as follows:

• For the case of Assumption A, the input for A3,1 is a public key s̃ = α̃(k̃) corresponding to a key k̃ for

H̃, as well as the underlying parameters 1ℓ and Λ = Λ[X,X ′, L,W,R].

• For the case of Assumption U, the input for A3,1 is a public key s̃ = α̃(k̃) corresponding to a key k̃ for

H̃, a uniformly random element (x∗∗, e∗∗, π̂∗∗) of (X ′\L)×Π×Π̂ and the value π∗∗ = Ĥk̂(x
∗∗, e∗∗, π̂∗∗),

as well as the underlying parameters 1ℓ and Λ = Λ[X,X ′, L,W,R].

Given the input as above, the adversary first generates the keys k, k̂, s = α(k) and ŝ = α̂(k̂) by

using HPS.param(1ℓ,Λ) and ĤPS.param(1ℓ,Λ). Secondly, the adversary chooses an internal game from Sub-
SubGame κ.3.ρ, SubSubGame κ.5.ρ (for 1 ≤ κ ≤ Q(ℓ) and 1 ≤ ρ ≤ Q(ℓ)) and SubGame con-3.ρ (for
1 ≤ ρ ≤ Q(ℓ)), (2Q(ℓ) + 1)Q(ℓ) candidates in total, and the adversary chooses a mode from dec, eval1 and
eval2. Then the adversary performs the followings:

• For the case that SubSubGame κ.3.ρ was chosen as the internal game, the adversary chooses an element
x∗(κ) ∈ X ′ \ L uniformly at random, and simulates the internal game until the ρ-th query. Here, if
RevHK is queried in the internal game, then the adversary aborts the game. On the other hand,
by using Hash, k and k̂ as discussed above, the adversary simulates the decryption oracle before the
ρ-th query, the evaluation oracle before the ρ-th query except for the κ-th refreshing query, and the
computation of the challenge ciphertext. Moreover, the adversary simulates the κ-th refreshing process
in the following manner:

– The adversary computes the first three components of the reply Cκ = (xκ, eκ, π̂κ, π̃κ) to the κ-th

refreshing query by using the element x∗(κ) as above, the key k for H and the key k̂ for Ĥ.
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– Then the adversary queries (xκ, eκ, π̂κ) to Hash and receives the reply. Now, the adversary aborts

the game if the reply by Hash is ⊥; while, if the reply by Hash is an element of Π̃, then the
adversary sets π̃ to be the reply by Hash.

Finally, if the internal game ends until the ρ-th query is performed, then the adversary aborts the
game. For the other case, at the ρ-th query in the internal game, for the case of Assumption A, the
adversary chooses x∗∗ ∈ X ′ \ L, e∗∗ ∈ Π and π̂∗∗ ∈ Π̂ uniformly at random and submits (x∗∗, e∗∗, π̂∗∗)

to the challenger of the security game for H̃. Then the adversary performs as follows:

– In the case that the mode dec was chosen, the adversary aborts the game unless the ρ-th query
is a decryption query. On the other hand, for the case that the ρ-th query is a decryption query
C = (x, e, π̂, π̃), if C ∈ D, then the adversary aborts the game; while if C ̸∈ D, then the adversary

outputs (x, e, π̂) ∈ X ×Π× Π̂ and π̃ ∈ Π̃.

– In the case that the mode eval1 was chosen, the adversary aborts the game unless the ρ-th query
is an evaluation query. On the other hand, for the case that the ρ-th query is an evaluation query
(C ′, C ′′) with C ′ = (x′, e′, π̂′, π̃′), if C ′ ∈ D, then the adversary aborts the game; while if C ′′ ̸∈ D,
then the adversary outputs (x′, e′, π̂′) ∈ X ×Π× Π̂ and π̃′ ∈ Π̃.

– In the case that the mode eval2 was chosen, the adversary aborts the game unless the ρ-th query
is an evaluation query. On the other hand, for the case that the ρ-th query is an evaluation query
(C ′, C ′′) with C ′′ = (x′′, e′′, π̂′′, π̃′′), if C ′′ ∈ D, then the adversary aborts the game; while if

C ′′ ̸∈ D, then the adversary outputs (x′′, e′′, π̂′′) ∈ X ×Π× Π̂ and π̃′′ ∈ Π̃.

• For the case that SubSubGame κ.5.ρ was chosen, the adversary performs in a similar manner to the
case of SubSubGame κ.3.ρ above by simulating SubSubGame κ.5.ρ, where the (Q(ℓ)+ 1− ρ)-th query
in the present case plays the role of the ρ-th query in the case of SubSubGame κ.3.ρ.

• For the case that SubGame con-3.ρ was chosen, the adversary performs in a similar manner to the case
of SubSubGame κ.3.ρ above by simulating SubGame con-3.ρ. Here, the differences from the previous
case are the followings: For the simulation of a refreshing process, the adversary performs as in the
case κ′ ̸= κ of the description above. On the other hand, if the challenge phase comes before the ρ-th
query, then the adversary aborts the game.

By the construction of the adversary A3,1, when SubSubGame κ.3.ρ and the mode dec (respectively, eval1 and

eval2) are chosen, A3,1 wins the security game for H̃ if and only if the event R
⟨i⟩
ℓ

(κ.3.ρ) for i = 2 (respectively,

i = 3 and i = 4) occurs in the internal game and (x∗∗, e∗∗, π̂∗∗) is different from the first part (in X×Π× Π̂)
of the output by A3,1 (note that, when the κ-th refreshing query is before the ρ-th query, the condition that
the reply to the κ-th refreshing query is a regular ciphertext is guaranteed by the property that the oracle

Hash in the simulation of the κ-th refreshing process does not reply ⊥). The same holds for R
⟨i⟩
ℓ

(κ.5.ρ) and

R
⟨i⟩
ℓ

(con-3.ρ) instead of R
⟨i⟩
ℓ

(κ.3.ρ). Since the probability that the uniformly random (x∗∗, e∗∗, π̂∗∗) coincides
with the first part of the output of A3,1 (which is independent of (x∗∗, e∗∗, π̂∗∗)) is negligible (note that
1/|X ′ \L| is negligible, since otherwise the subset membership problem M becomes not hard relative to X ′),
the advantage AdvA3,1 of A3,1 satisfies that the difference∣∣∣∣∣∣AdvA3,1 −

1

3 ·Q′
4∑
i=2

Q(ℓ)∑
ρ=1

Q(ℓ)∑
κ=1

(
Pr[R

⟨i⟩
ℓ

(κ.3.ρ)] + Pr[R
⟨i⟩
ℓ

(κ.5.ρ)]
)
+ Pr[R

⟨i⟩
ℓ

(con-3.ρ)]

∣∣∣∣∣∣ ,

where Q′ = (2Q(ℓ) + 1)Q(ℓ), is negligible. Moreover, only the steps in A3,1 that may be not efficient are to
choose some elements of X ′ \L uniformly at random. Owing to the assumption that X ′ \L is approximately
samplable relative to X, we define A′3,1 by replacing the uniform distribution on X ′ \ L sampled in A3,1

with an efficiently samplable distribution on X with negligible statistical distance. Then |AdvA′
3,1
−AdvA3,1 |

is negligible, while AdvA′
3,1

is negligible since A′3,1 is PPT. By these arguments, it follows (since Q′ is a
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polynomial) that the sum of Pr[R
⟨i⟩
ℓ

(κ.3.ρ)], Pr[R
⟨i⟩
ℓ

(κ.5.ρ)] and Pr[R
⟨i⟩
ℓ

(con-3.ρ)] for all i ∈ {2, 3, 4}, κ and ρ is
negligible as well.

Secondly, in order to evaluate the probabilities Pr[R
⟨i⟩
ℓ

(κ.3.ρ)], Pr[R
⟨i⟩
ℓ

(κ.5.ρ)] and Pr[R
⟨i⟩
ℓ

(con-3.ρ)] for i ∈
{5, 6, 7}, we define an adversary A3,2 for the security game for H̃ as follows:

Adversary A3,2: The basic construction of A3,2 is similar to A3,1; here we only describe the differences
from the construction of A3,1. First, the adversary omits the submission of (x∗∗, e∗∗, π̂∗∗) which the previous
adversary A3,1 performs for the case of Assumption A. Secondly, for the case of SubSubGame κ.3.ρ, the
simulation of the κ-th refreshing process is now performed as follows:

• To compute the reply Cκ = (xκ, eκ, π̂κ, π̃κ) to the κ-th refreshing query, the adversary first computes
xκ from the given x∗(κ) and the integer λD(κ) as in Claim 1. Namely, xκ is the sum of λD(κ) · x∗(κ)
and an element of L independent of x∗(κ).

• The adversary computes eκ as in Claim 1. Namely, eκ is the sum of λD(κ) · (M∗β + Hk(x
∗(κ))) =

λD(κ) · M∗β + Hk(λD(κ) · x∗(κ)), an integer linear combination of elements Hk(x) for some x ∈ L

independent of x∗(κ), and an integer linear combination of the second components of ciphertexts listed
in D′.

• The adversary computes π̂κ as in Claim 1. Namely, π̂κ = Ĥk̂(xκ)+∆̂(Cκ) and ∆̂(Cκ) is computed with-

out the private information on k̂ as an integer linear combination of ∆̂(D′h) and ∆̂(D′′h) for ciphertexts
D′h and D′′h listed in D′.

• Then the adversary queries (xκ, eκ, π̂κ) to Hash. If the reply by Hash is not ⊥, then the adversary
aborts the game. Otherwise:

– For the case of Assumption A, the adversary submits (xκ, eκ, π̂κ) to the challenger in the security

game for H̃, and sets π̃κ to be the reply by the challenger. Then the adversary returns the Cκ as
the reply to the κ-th refreshing query.

– For the case of Assumption U, the adversary returns (x∗∗, e∗∗, π̂∗∗, π̃∗∗), instead of the Cκ above,
as the reply to the κ-th refreshing query.

For the case of SubSubGame κ.5.ρ, the simulation of the κ-th refreshing process is similar as above, where
the adversary uses, instead of M∗β , a value π† ∈ Π chosen according to the probability distribution which
is negligibly close to the uniform distribution on Π′ specified by the assumption that Π′ is approximately
samplable relative to Π. Moreover, for the cases of SubSubGame κ.3.ρ and SubSubGame κ.5.ρ, the adversary
aborts the game unless the ρ-th query (where ρ = ρ in the case of SubSubGame κ.3.ρ and ρ = Q(ℓ) + 1− ρ
in the case of SubSubGame κ.5.ρ) comes after the κ-th refreshing query. On the other hand, for the case of
SubGame con-3.ρ, the adversary aborts the game in the case that the challenge phase does not come before
the ρ-th query (instead of the case that the challenge phase comes before the ρ-th query, as in the previous
adversary A3,1). Then, for the case of SubGame con-3.ρ, the adversary simulates the challenge phase in the
following manner:

• Given the challenge plaintexts (M∗0 ,M
∗
1 ), the adversary chooses the challenge bit β uniformly at

random. Then, by using the uniformly random element x∗ ∈ X ′ \ L which is chosen by the adversary

at the beginning of the internal game, the adversary computes e∗ =M∗β +Hk(x
∗) and π̂∗ = Ĥk̂(x

∗).

• For the case of Assumption A, the adversary submits (x∗, e∗, π̂∗) to the challenger in the security game

for H̃, and sets π̃∗ to be the reply by the challenger. Then the adversary returns C∗ = (x∗, e∗, π̂∗, π̃∗)
as the challenge ciphertext.

• For the case of Assumption U, the adversary returns (x∗∗, e∗∗, π̂∗∗, π̃∗∗), instead of the elements x∗, e∗

and π̂∗ above, as the challenge ciphertext.
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By the construction of the adversary A3,2, for the case of Assumption A, when SubSubGame κ.3.ρ and

the mode dec (respectively, eval1 and eval2) are chosen, A3,2 wins the security game for H̃ if and only if

the event R
⟨i⟩
ℓ

(κ.3.ρ) for i = 5 (respectively, i = 6 and i = 7) occurs in the internal game. The same holds

for R
⟨i⟩
ℓ

(κ.5.ρ) and R
⟨i⟩
ℓ

(con-3.ρ) instead of R
⟨i⟩
ℓ

(κ.3.ρ). Therefore, since X ′ \ L is approximately samplable
relative to X by the assumption, the same argument as the case of adversary A3,1 implies that the sum of

Pr[R
⟨i⟩
ℓ

(κ.3.ρ)], Pr[R
⟨i⟩
ℓ

(κ.5.ρ)] and Pr[R
⟨i⟩
ℓ

(con-3.ρ)] for all i ∈ {5, 6, 7}, κ and ρ is negligible.
From now, we consider the case of Assumption U. First we note that, for the cases of SubSubGame

κ.3.ρ and SubSubGame κ.5.ρ, when the oracle Hash used in the simulation of the κ-th refreshing process
returns ⊥ (i.e., xκ ∈ X \ L), Claim 2 implies that the elements λD(κ) · x∗(κ) and xκ are uniformly random
over X ′ \ L. Claim 2 also implies that whether the oracle Hash returns ⊥ or not is determined solely from
the value λD(κ) and is independent of x∗(κ). Moreover, Claim 1 implies that the private information on k

and k̂ are not used during the internal game except for computing the values Hk(λD(κ) · x∗(κ)) and Ĥk̂(xκ)
in the calculation of eκ and π̂κ, respectively. Therefore, since Π′ = Π, H is smooth relative to (X ′,Π′)

and Ĥ is smooth relative to (X ′, Π̂), the distributions of Hk(λD(κ) · x∗(κ)) and Ĥk̂(xκ) have negligible

statistical distances from the uniform distributions over Π and Π̂, respectively (note that, for any finite
abelian group, the sum of a uniformly random element and any element is uniformly random over the
group). Since the differences eκ−Hk(λD(κ) ·x∗(κ)) and π̂κ− Ĥk̂(xκ) are independent of x

∗(κ) by Claim 1, it
follows that the distribution of (xκ, eκ, π̂κ) has negligible statistical distance from the uniform distribution

of (x∗∗, e∗∗, π̂∗∗) over (X ′ \ L) × Π × Π̂. Similarly, for the case of SubGame con-3.ρ, Claim 3 and the

smoothness of H and Ĥ as above imply that the distribution of the first three components (x∗, e∗, π̂∗) of
the challenge ciphertext in the internal game has negligible statistical distance from the uniform distribution
of (x∗∗, e∗∗, π̂∗∗) over (X ′ \ L) × Π × Π̂. This implies that, when the tuple (xκ, eκ, π̂κ) for the cases of
SubSubGame κ.3.ρ and SubSubGame κ.5.ρ, or the tuple (x∗, e∗, π̂∗) for the case of SubGame con-3.ρ, is
replaced with the (x∗∗, e∗∗, π̂∗∗), the differences induced to the advantage of A3,2 and to the probabilities

Pr[R
⟨i⟩
ℓ

(κ.3.ρ)], Pr[R
⟨i⟩
ℓ

(κ.5.ρ)] and Pr[R
⟨i⟩
ℓ

(con-3.ρ)] by the modification are negligible. By the definition of

A3,2, after the modification, the adversary wins the security game for H̃ if and only if the event R
⟨i⟩
ℓ

(κ.3.ρ),

R
⟨i⟩
ℓ

(κ.5.ρ) or R
⟨i⟩
ℓ

(con-3.ρ) corresponding to the choices of the internal game and the mode (dec, eval1 or
eval2) occurs. Moreover, owing to the assumption that X ′ \ L is approximately samplable relative to X,
the uniform distribution over X ′ \ L which is sampled by the adversary can be replaced with an efficiently
samplable distribution over X with negligible statistical distance, and the adversary becomes PPT after the
replacement and has negligible advantage owing to the first-uniform computationally universal2 property of
H̃ relative to X ′×Π×Π̂. By the results above, the same argument as the case of Assumption A above implies

that the sum of Pr[R
⟨i⟩
ℓ

(κ.3.ρ)], Pr[R
⟨i⟩
ℓ

(κ.5.ρ)] and Pr[R
⟨i⟩
ℓ

(con-3.ρ)] for all i ∈ {5, 6, 7}, κ and ρ is negligible.

Summarizing, for any of the cases of Assumption A and Assumption U, the sum of Pr[R
⟨i⟩
ℓ

(κ.3.ρ)],

Pr[R
⟨i⟩
ℓ

(κ.5.ρ)] and Pr[R
⟨i⟩
ℓ

(con-3.ρ)] for all 1 ≤ i ≤ 7, κ and ρ is negligible. Hence, |δ3| is negligible as
well, as desired.

Evaluation of δ4: Finally, we evaluate the quantity δ4. By Claim 1 in the evaluation of δ3 above, in
SubGame κ.3, the private information on the key k for H is not used during the game except for the
computation of e∗(κ) = M∗β + Hk(x

∗(κ)) with x∗(κ) ∈ X ′ \ L in the κ-th refreshing process. Therefore, by

replacing the value Hk(x
∗(κ)) above with Hk(x

∗(κ))+π†† where π†† is chosen uniformly at random from Π′,
only negligible difference is induced to the probability of the event Tℓ owing to the smoothness of H relative
to (X ′,Π′). Secondly, since the uniformly random π†† ∈ Π′ is independent ofM∗β ∈ Π′, the elementM∗β+π

††

is also uniformly random over Π′. Then, owing to the assumption that Π′ is approximately samplable relative
to Π, by replacing the value M∗β + π†† above further with the element π† ∈ Π chosen as in the definition
of SubGame κ.4, only negligible difference is induced to the probability of the event Tℓ. Now the resulting

choice of e∗(κ) is the same as in SubGame κ.4, therefore |Pr[T (κ.3)
ℓ ] − Pr[T

(κ.4)
ℓ ]| is negligible for any κ.

Similarly, in Game con-3, by Claim 3 and the smoothness of H as above, only negligible difference is induced
to the probability of the event Tℓ when the value M∗β +Hk(x

∗) appeared in the computation of the second
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component e∗ of the challenge ciphertext is replaced with π† + Hk(x
∗) where π† ∈ Π is chosen as in the

definition of Game con-4. Hence, |Pr[T (con-3)
ℓ ] − Pr[T

(con-4)
ℓ ]| is negligible as well. Summarizing, it follows

that |δ4| is negligible, as desired.

By these results, we have AdvKH-CCA
KH-PKE,A(ℓ) ≤ |δ1| + |δ2| + |δ3| + |δ4|, while all of |δ1|, |δ2|, |δ3| and |δ4|

are negligible, therefore the advantage of the adversary A for our proposed KH-PKE scheme is negligible as
well. This completes the proof of Theorem 4.1.

5 Instantiations of the Generic Construction

5.1 Cramer–Shoup Projective Hash Family

To instantiate the (computationally or information-theoretically) universal2 hash proof system P̃ in our
generic construction of KH-PKE given in Section 4, the construction of hash proof systems proposed by
Cramer and Shoup [12, §7.43 Theorem 3] based on diverse group systems can be used. Here we recall
the definition of the Cramer–Shoup (CS) hash proof system. In fact, we deal with not only the original
construction based on an injective function as the internal function, but also its variants (already mentioned
in [12]) where the internal function is generalized to more various classes of functions.

The construction of the CS projective hash family [12] is as follows. Let G = (H, X, L,Π) be a diverse
group system, and let {g1, . . . , gd} be a fixed generating set of L. Let E be a finite set. Moreover, let
Γ: X × E → {0, . . . , p̃ − 1}n be a function, where p̃ is the smallest prime dividing |X/L| (in the original
construction, Γ is supposed to be an injective function; here we consider more general functions Γ). Then
the CS projective hash family H = (H,K,X × E,L× E,Π, S, α) is constructed as follows:

• We set K = Hn+1, and for
−→
k = (k0, k1, . . . , kn) ∈ K and (x, e) ∈ X × E, the value of H is defined as

follows, where we write Γ(x, e) = (γ1, . . . , γn) = (γ1(x, e), . . . , γn(x, e)):

H−→
k
(x, e) = k0(x) +

n∑
i=1

γiki(x) .

• We set S = Π(n+1)d, and for
−→
k = (k0, k1, . . . , kn) ∈ K, the value of α is defined by

α(
−→
k ) = (k0(g1), . . . , k0(gd), k1(g1), . . . , k1(gd), . . . , kn(g1), . . . , kn(gd)) .

Now, given a public information −→s = α(
−→
k ), an element (x, e) ∈ L × E and an expression x =

∑d
j=1 ωjgj

of x with the generating set {g1, . . . , gd} of L (which is a witness of (x, e) ∈ L × E), the private evaluation
algorithm for the corresponding hash proof system can compute the value of H by

H−→
k
(x, e) =

d∑
j=1

ωjs0,j +

n∑
i=1

γi(x, e)

d∑
j=1

ωjsi,j ,

where si,j = ki(gj) for i ∈ {0, 1, . . . , n} and j ∈ {1, . . . , d}.
The following lemma is the key property for our argument below. We note that essentially the same

argument appeared in [12]; here we include the proof for the sake of completeness.

Lemma 5.1. For the CS projective hash family constructed as above, for −→s ∈ S, (x, e), (x∗, e∗) ∈ (X\L)×E
and π, π∗ ∈ Π, if Γ(x, e) ̸= Γ(x∗, e∗), then we have

Pr
−→
k

$←K
[H−→

k
(x, e) = π ∧H−→

k
(x∗, e∗) = π∗ ∧ α(

−→
k ) = −→s ] ≤ 1

p̃
· Pr
−→
k

$←K
[H−→

k
(x∗, e∗) = π∗ ∧ α(

−→
k ) = −→s ] .
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Proof. Since Γ(x, e) ̸= Γ(x∗, e∗), by symmetry, we may assume without loss of generality that γn(x, e) ̸=
γn(x

∗, e∗). Now the left-hand side of the inequality in the statement is equal to∑
−→
k ∈K(−→s )

1

|H|n+1
· χ[k0(x) + γn(x, e)kn(x) = π ∧ k0(x∗) + γn(x

∗, e∗)kn(x
∗) = π∗] ,

where K(−→s ) denotes the set of all
−→
k ∈ K satisfying that α(

−→
k ) = −→s , we put π = π−

∑n−1
i=1 γi(x, e)ki(x) and

π∗ = π∗ −
∑n−1
i=1 γi(x

∗, e∗)ki(x
∗), and χ[·] denotes the characteristic function that returns 1 if the specified

condition is satisfied and returns 0 otherwise. Similarly, the right-hand side of the inequality in the statement
is equal to

1

p̃
·

∑
−→
k ∈K(−→s )

1

|H|n+1
· χ[k0(x∗) + γn(x

∗, e∗)kn(x
∗) = π∗] .

Therefore, it suffices to show that, for any k1, . . . , kn−1 ∈ H, we have∑
(k0,kn)∈K′

χ[k0(x) + γn(x, e)kn(x) = π ∧ k0(x∗) + γn(x
∗, e∗)kn(x

∗) = π∗]

≤ 1

p̃
·

∑
(k0,kn)∈K′

χ[k0(x
∗) + γn(x

∗, e∗)kn(x
∗) = π∗] ,

whereK ′ denotes the set of all (k0, kn) ∈ H2 satisfying that ki(gj) = si,j for any i ∈ {0, n} and j ∈ {1, . . . , d}.
The inequality above becomes trivial if K ′ = ∅; from now, we suppose that K ′ ̸= ∅. We take an element

(k∗0 , k
∗
n) of K ′. Let A denote the subgroup of H consisting of homomorphisms ψ : X → Π satisfying that

ψ(a) = 0 for all a ∈ L. Then any element of K ′ is uniquely expressed as (k∗0 +ψ0, k
∗
n+ψn) with ψ0, ψn ∈ A.

Moreover, we take an element ψ∗ of A satisfying that ψ∗(x) ̸= 0, which exists since the group system G is
diverse and x ̸∈ L. Let ord(ψ∗) denote the order of the group element ψ∗ ∈ A. Then there exist elements
ψ1, . . . , ψℓ ∈ A with ℓ = |A|/ord(ψ∗) (namely, the representative elements of the cosets in the quotient group
of A by the subgroup generated by ψ∗) satisfying that any element of A is uniquely expressed as ψi + aψ∗
with i ∈ {1, . . . , ℓ} and a ∈ {0, 1, . . . , ord(ψ∗)− 1}. Now if k0 = k∗0 + ψi0 + a0ψ∗ and kn = k∗n + ψin + anψ∗,
then we have

k0(x) + γn(x, e)kn(x) = k∗0(x) + ψi0(x) + γn(x, e)(k
∗
n(x) + ψin(x)) + (a0 + γn(x, e)an)ψ∗(x) ,

k0(x
∗) + γn(x

∗, e∗)kn(x
∗) = k∗0(x

∗) + ψi0(x
∗) + γn(x

∗, e∗)(k∗n(x
∗) + ψin(x

∗)) + (a0 + γn(x, e)an)ψ∗(x
∗) .

Therefore, it suffices to show that, for any k1, . . . , kn−1 ∈ H and any i0, in ∈ {1, . . . , ℓ}, we have

ord(ψ∗)−1∑
a0,an=0

χ[(a0 + γn(x, e)an)ψ∗(x) = π′ ∧ (a0 + γn(x
∗, e∗)an)ψ∗(x

∗) = π′∗]

≤ 1

p̃
·
ord(ψ∗)−1∑
a0,an=0

χ[(a0 + γn(x
∗, e∗)an)ψ∗(x

∗) = π′∗] ,

where we put

π′ = π − k∗0(x)− ψi0(x)− γn(x, e)(k∗n(x) + ψin(x)) ,

π′∗ = π∗ − k∗0(x∗)− ψi0(x∗)− γn(x∗, e∗)(k∗n(x∗) + ψin(x
∗)) .

We show that ψ∗(a · x) ̸= 0 for any integer a ̸= 0 with |a| < p̃. First, a is coprime to |X/L| by the
definition of p̃, therefore we have b1a = b2|X/L|+1 for some integers b1, b2. Now we have ψ∗(b2|X/L| ·x) = 0
since |X/L| · x ∈ L (note that the order of the image of x in the quotient group X/L is a divisor of |X/L|),
while ψ∗(x) ̸= 0 by the choice of ψ∗. This implies that ψ∗(b1a · x) ̸= 0, therefore ψ∗(a · x) ̸= 0, as desired.
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The previous paragraph implies that ord(ψ∗) ≥ p̃, since ψ∗(ord(ψ∗) · x) = (ord(ψ∗) · ψ∗)(x) = 0. Now,

since γn(x, e), γn(x
∗, e∗) ∈ {0, 1, . . . , p̃ − 1} and γn(x, e) ̸= γn(x

∗, e∗), the matrix

(
1 γn(x, e)
1 γn(x

∗, e∗)

)
is non-

singular, where the components are considered modulo ord(ψ∗). This implies that, when a0 and an run
over {0, 1, . . . , ord(ψ∗)− 1}, the pair of (a0 + γn(x, e)an mod ord(ψ∗)) and (a0 + γn(x

∗, e∗)an mod ord(ψ∗))
distributes uniformly on {0, 1, . . . , ord(ψ∗)−1}2. Therefore, it suffices to show that, for any k1, . . . , kn−1 ∈ H
and any i0, in ∈ {1, . . . , ℓ}, we have

ord(ψ∗)−1∑
a,a′=0

χ[aψ∗(x) = π′ ∧ a′ψ∗(x∗) = π′∗] ≤ 1

p̃
·
ord(ψ∗)−1∑
a,a′=0

χ[a′ψ∗(x
∗) = π′∗] .

Now we note that, the condition aψ∗(x) = π′ is satisfied by at most ord(ψ∗)/p̃ integers a ∈ {0, 1, . . . , ord(ψ∗)−
1}. Indeed, if the number of such a is larger than ord(ψ∗)/p̃, then the pigeonhole principle implies that we
have a1ψ∗(x) = a2ψ∗(x) = π′ for some integers a1 < a2 with a2 − a1 < p̃. However, this implies that
ψ∗((a2 − a1) · x) = (a2 − a1)ψ∗(x) = 0, contradicting the previous paragraph. Hence, we have

ord(ψ∗)−1∑
a,a′=0

χ[aψ∗(x) = π′ ∧ a′ψ∗(x∗) = π′∗] ≤
ord(ψ∗)−1∑
a′=0

ord(ψ∗)

p̃
χ[a′ψ∗(x

∗) = π′∗]

=
1

p̃
·
ord(ψ∗)−1∑
a,a′=0

χ[a′ψ∗(x
∗) = π′∗] ,

as desired. This completes the proof of Lemma 5.1.

Owing to Lemma 5.1, we will show that the CS projective hash family is (information-theoretically or
computationally) universal2, if the internal function Γ satisfies some appropriate property. First, we recall
the notions of collision resistant (CR) hash family and target collision resistant (TCR) hash family.

Definition 5.1 (Collision Resistant Hash Family). Let {fhk | hk ∈ HK} be a family of hash functions
fhk : X → Y indexed by a hash key hk ∈ HK. We say that the family is collision resistant (CR), if for any
PPT adversary A, its advantage AdvCRA (ℓ) defined by

AdvCRA (ℓ) = Pr[hk
$← HK; (x, x∗)← A(1ℓ, hk) : x ̸= x∗ ∧ fhk(x) = fhk(x

∗)]

is negligible in the security parameter ℓ.

Definition 5.2 (Target Collision Resistant Hash Family). Let {fhk | hk ∈ HK} be a family of hash functions
fhk : X → Y indexed by a hash key hk ∈ HK. Let X ′ ⊂ X . We say that the family is target collision resistant
(TCR) relative to X ′, if for any PPT adversary A, its advantage AdvTCRA (ℓ) defined by

AdvTCRA (ℓ) = Pr[x∗
$← X ′;hk $← HK;x← A(1ℓ, hk, x∗) : x ̸= x∗ ∧ fhk(x) = fhk(x

∗)]

is negligible in the security parameter ℓ. When X ′ = X , we simply say that the family of hash functions is
target collision resistant.

On the other hand, we also introduce a simple but useful technique to improve the efficiency; we can
“compress” the output of the CS projective hash family by using a “smooth” function. The smoothnessof a
function defined below is a statistical property that roughly ensures that the “min-entropy” of the output of
the function (for uniformly random input) is sufficiently high, and thus it is information-theoretically hard
to guess the output.2 The definition is as follows.

2Note that this notion is (somewhat similar to but) different from the smoothness of a projective hash family.
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Definition 5.3 (Smooth Function). Let f : X → Y be a hash function. We say that f is ϵ-smooth, if the
quantity Smthf := max

y∈Y
Pr
x

$←X
[f(x) = y] is not larger than ϵ. We say that f is smooth, if it is ϵ-smooth for a

negligible ϵ.

We note that, besides the injective functions (with superpolynomially large domain) which are trivially
smooth, the smoothness is in fact satisfied by several famous cryptographic functions such as OWFs, always
second-preimage resistant (aSec secure) hash functions [34], and KDFs [14]; see Appendix A. Interestingly,
the universal2 property of the CS projective hash family is preserved by hashing its output to be a shorter
element. Intuitively, for the CS projective hash family, the bound of the advantage of adversaries for the
universal2 property is closely related to the parameter for the underlying subset membership problem M,
therefore the bound cannot be freely selected (e.g., the order of the group should be larger than a certain
threshold relevant to the desired security level) since M must be hard. Our proposed technique provides a
way to reduce the output size of the projective hash family, while the too strong bound of the universal2
advantage is increased but is still reasonably strong. It is a bit surprising that this technique can be also
applied to the original Cramer–Shoup scheme, but to the best of our knowledge, it has never explicitly been
stated in the literature. When applying our technique to the Cramer–Shoup scheme, ciphertext length of
the resulting scheme becomes the same as that of the Kurosawa–Desmedt (KD) scheme [29] which is the
best known DDH-based PKE scheme. We should also note that this technique is not applicable to other
similar schemes such as the Cash–Kiltz–Shoup [9], Hanaoka–Kurosawa [22], and Kiltz schemes [27]. This
fact is primarily due to the structure of HPS-based constructions, and thus, it is difficult to apply the above
technique to PKE schemes from other methodology, e.g. [7, 22, 26].

We describe the technique discussed above. For any projective hash family H and any smooth function f
with domain including Π, we define the composition f ◦H to be the projective hash family obtained from H
by taking the composition f ◦Hk for the function Hk, k ∈ K. We will show that, for the case that H is the
CS projective hash family, f ◦H is (information-theoretically or computationally) universal2 provided some
appropriate conditions are satisfied. For the purpose, we require a trapdoor property for the underlying
subset membership problem, formalized as follows.

Definition 5.4 (Trapdoor Subset Membership Problem). We say that a subset membership problem M is
a trapdoor subset membership problem, if it is endowed with an additional trapdoor mode as well as the
ordinary mode, satisfying the followings: (1) In the trapdoor mode, the instance sampling algorithm takes as
input 1ℓ and returns Λ = Λ[X,X ′, L,W,R] ∈ [Iℓ] and a trapdoor element τ , where the distribution of Λ in
the trapdoor mode is identical to that of Λ in the ordinary mode; (2) there exists a PPT algorithm that takes
the trapdoor τ and an element x ∈ X as input and decides whether x ∈ L or not.

We say that a trapdoor subset membership problem M is hard (relative to X ′), if it is hard (relative to
X ′) in the ordinary mode as a subset membership problem.

Based on the definitions above, we give the following result:

Proposition 5.1. Let H be the CS projective hash family constructed as above. Let f : Π → Y be an
ϵ-smooth hash function.

1. If the function Γ is injective, then f ◦H is (|Π|ϵ/p̃)-universal2.

2. If Γ is sampled from a CR hash family, the subset membership problem associated to H is a trap-
door subset membership problem, and |Π|ϵ/p̃ is negligible, then f ◦H is first-adaptive computationally
universal2.

3. If Γ is sampled from a TCR hash family relative to a subset X ′ × E ⊂ X × E, the subset membership
problem associated to H is a trapdoor subset membership problem, and |Π|ϵ/p̃ and |X ′ ∩ L|/|X ′| are
negligible, then f ◦H is first-uniform computationally universal2 relative to X ′ × E.
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Proof. For the first part, let (x, e), (x∗, e∗) ∈ (X \L)×E with (x, e) ̸= (x∗, e∗), let −→s ∈ S, and let y, y∗ ∈ Y.
Then we have

Pr
−→
k

$←K
[f ◦H−→

k
(x, e) = y ∧ f ◦H−→

k
(x∗, e∗) = y∗ ∧ α(

−→
k ) = −→s ]

=
∑

π∈f−1(y),π∗∈f−1(y∗)

Pr
−→
k

$←K
[H−→

k
(x, e) = π ∧H−→

k
(x∗, e∗) = π∗ ∧ α(

−→
k ) = −→s ] .

Since Γ is injective, we have Γ(x, e) ̸= Γ(x∗, e∗), therefore Lemma 5.1 implies that the right-hand side of the
last equality is not larger than ∑

π∈f−1(y),π∗∈f−1(y∗)

1

p̃
· Pr
−→
k

$←K
[H−→

k
(x∗, e∗) = π∗ ∧ α(

−→
k ) = −→s ]

=
|f−1(y)|

p̃
· Pr
−→
k

$←K
[f ◦H−→

k
(x∗, e∗) = y∗ ∧ α(

−→
k ) = −→s ] .

This implies that f ◦H is (maxy∈Y |f−1(y)|/p̃)-universal2. Moreover, we have Smthf = maxy∈Y |f−1(y)|/|Π|,
therefore maxy∈Y |f−1(y)| ≤ |Π|ϵ since f is ϵ-smooth. Hence f ◦H is (|Π|ϵ/p̃)-universal2, as desired.

For the second part of the claim, let A be an adversary for the first-adaptive computationally universal2
game of f ◦ H. Let τ denote the trapdoor element for the subset membership problem associated to H
generated in its trapdoor mode. Then we construct an adversaryA† for the CR property for Γ in the following

manner. The adversary A† first generates the key
−→
k ∈ K uniformly at random, computes −→s = α(

−→
k ),

and then executes the adversary A with input −→s . In the simulation of the first-adaptive computationally
universal2 game, A† emulates the oracle Hash by using the trapdoor element τ (to efficiently decide whether

the query (x, e) is in L×E or not) and the key
−→
k (to compute the reply H−→

k
(x, e) to the query). Similarly,

given an element (x∗, e∗) ∈ X × E submitted by A, A† computes the reply y∗ = f ◦ H−→
k
(x∗, e∗) by using

−→
k . Finally, A† receives an output ((x, e), y) ∈ (X × E) × Y of A, and outputs (x, e) and (x∗, e∗). Now let
T (respectively, T ′) denote the event that Γ(x, e) = Γ(x∗, e∗) (respectively, Γ(x, e) ̸= Γ(x∗, e∗)) and A wins

the first-adaptive computationally universal2 game. Then we have Adv
AComp.Univ2
A (ℓ) = Pr[T ] + Pr[T ′] and

Pr[T ] ≤ AdvCRA†(ℓ). Moreover, the same argument as the previous paragraph based on Lemma 5.1 implies
that

Pr[T ′] = Pr[Γ(x, e) ̸= Γ(x∗, e∗) ∧H−→
k
(x, e) = y | H−→

k
(x∗, e∗) = y∗ ∧ α(

−→
k ) = −→s ] ≤ |Π|ϵ

p̃
,

which is negligible by the assumption. Hence, AdvCRA†(ℓ) is non-negligible provided Adv
AComp.Univ2
A (ℓ) is non-

negligible. This completes the proof of the second part of the claim.
Similarly, for the third part of the claim, let A be an adversary for the first-uniform computationally

universal2 game of f ◦H relative to X ′ ×E. Let τ denote the trapdoor element for the subset membership
problem associated to H generated in its trapdoor mode. Then we construct an adversary A† for the TCR
property for Γ relative to X ′ ×E in the following manner. Given an input (x∗, e∗) ∈ X ′ ×E, the adversary

A† first generates the key
−→
k ∈ K uniformly at random, computes −→s = α(

−→
k ), and then executes the

adversary A with input (x∗, e∗), −→s and y∗ = f ◦H−→
k
(x∗, e∗). Here A† efficiently simulates the first-uniform

computationally universal2 game by using τ and
−→
k in the same manner as the previous paragraph. Finally,

A† receives an output ((x, e), y) ∈ (X×E)×Y of A, and outputs (x, e) and (x∗, e∗). We define the events T
and T ′ in the same manner as in the previous paragraph. Moreover, let T0 and T ′0 denote the same events as
T and T ′, respectively, except that the input (x∗, e∗) for A† is chosen uniformly at random from (X ′ \L)×E
instead of X ′×E. Then we have Adv

UComp.Univ2
A (ℓ) = Pr[T0]+Pr[T ′0]. On the other hand, by the assumption

that |X ′ ∩L|/|X ′| is negligible, it follows that the uniform distributions on X ′×E and on (X ′ \L)×E have
negligible statistical distance, therefore |Pr[T ]−Pr[T0]| is negligible. Moreover, we have Pr[T ] ≤ AdvTCRA† (ℓ),
while the same argument as the previous paragraph implies that Pr[T ′0] ≤ |Π|ϵ/p̃, which is negligible by the

assumption. Hence, AdvTCRA† (ℓ) is non-negligible provided Adv
UComp.Univ2
A (ℓ) is non-negligible. This completes

the proof of Proposition 5.1.
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5.2 Instantiation of KH-PKE from Diverse Group Systems

Here we give an instantiation of our generic construction of KH-PKE schemes proposed in Section 4, based
on a general diverse group system and the corresponding CS projective hash family. Let G = (H, X, L,Π)
be a diverse group system for which the associated subset membership problem is hard. Let p̃ denote the
smallest prime dividing |X/L|. Suppose that ϵ′ := 1/p̃ and ϵ := (ϵ′|Π| − 1)(|Π| − 1)/2 are both negligible.

In the setting, we define the three hash proof systems P, P̂ and P̃ used by our generic construction in the
following manner:

• We set H to be the homomorphic projective hash family constructed from G as mentioned in Section 2,
and set P to be the corresponding hash proof system. Then P is ϵ-smooth by Lemma 2.3 and Lemma
2.2, and ϵ is negligible as above.

• We set Ĥ = H and P̂ = P. Then P̂ is homomorphic and ϵ′-universal1 by Lemma 2.3, and ϵ′ is
negligible as above.

• Let f : Π → Y be an ϵsmth-smooth function, and suppose that ϵ′′ := |Π|ϵsmth/p̃ is negligible. We

put E := Π2, and let Γ: X × E → {0, 1, . . . , p̃ − 1}n be any injective function. We set H̃ to be
the composition of f and the CS projective hash family constructed from the diverse group system
G and the internal function Γ, and set P̃ to be the corresponding hash proof system. Then P̃ is
(information-theoretically) ϵ′′-universal2 by Lemma 2.3 and Proposition 5.1, and ϵ′′ is negligible as
above.

Then the conditions of Theorem 4.1 with Assumption I are satisfied, therefore the resulting instantiation of
our KH-PKE scheme is KH-CCA secure.

For example, we can use any G satisfying that |Π| = |X/L| and it is an exponentially large prime p̃,
and the identity map Π → Π as the smooth function f . Then we have ϵ = 0, ϵ′ = 1/p̃, ϵsmth = 1/|Π| and
ϵ′′ = 1/p̃, therefore all of ϵ, ϵ′ and ϵ′′ are negligible, as desired.

5.3 DDH-Based Instantiation of KH-PKE

From now, we give instantiations of our KH-PKE schemes based on some standard computational assump-
tions. First, we describe the instantiation based on the DDH assumption. We recall the definition of the
DDH assumption.

Definition 5.5 (The Decisional Diffie–Hellman (DDH) Assumption). Let G be a multiplicative cyclic group
of prime order p. We say that the DDH assumption holds in G, if for any PPT algorithm A, the advantage
AdvDDHG,A (ℓ) := |Pr[A(g0, g1, gr0, gr1) = 0]−Pr[A(g0, g1, gr0, gr

′

1 ) = 0]| is negligible, where g0 and g1 are chosen
from G uniformly at random, and r and r′ are chosen from Zp uniformly at random.

In order to construct the DDH-based instantiation, we define a trapdoor subset membership problem M
and a diverse group system G in the following manner. Let G be a cyclic group of prime order p for which
the DDH assumption holds. In particular, 1/p is negligible (since otherwise the DDH assumption is not
satisfied), therefore the uniform distributions on G and on G \ {1} have negligible statistical distance.

• The instance sampling algorithm for M chooses two generators g0, g1 ∈ G \ {1} of G uniformly at
random, sets X := G2, L := {(gi0, gi1) ∈ X | i ∈ Zp} ≃ G which is generated by (g0, g1), W := Zp,
and defines the relation R in such a way that, for (x0, x1) ∈ X and ω ∈ W , we have ((x0, x1), ω) ∈ R
if and only if x0 = gω0 and x1 = gω1 . On the other hand, the subset sampling algorithm first chooses
ω ∈ W uniformly at random, and then outputs (gω0 , g

ω
1 ) ∈ L and the ω ∈ W . The construction of M

satisfies the condition for a hard subset membership problem, where the hardness follows immediately
from the DDH assumption on G.

• In the trapdoor mode for M, the algorithm chooses the g0 and g1 above in such a way that g0 is chosen
first; secondly τ ∈ Zp \ {0} is chosen uniformly at random, which is the trapdoor element; and then g1
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KeyGen(1ℓ) :

hk
$← HK; g0, g1

$← G
k0, k1, k̂0, k̂1, k̃0,0, k̃0,1, k̃1,0, k̃1,1

$← Zp

s← gk0
0 gk1

1 ; ŝ← gk̂0
0 gk̂1

1

s̃0 ← g
k̃0,0

0 g
k̃0,1

1 ; s̃1 ← g
k̃1,0

0 g
k̃1,1

1

pk ← (hk, f, g0, g1, s, ŝ, s̃0, s̃1)

skd ← (k0, k1, k̂0, k̂1, k̃0,0, k̃0,1, k̃1,0, k̃1,1)

skh ← (k̃0,0, k̃0,1, k̃1,0, k̃1,1)
Return (pk, skd, skh)

Dec(skd, C) :
Parse C as (x0, x1, e, π̂, y)

π̂′ ← xk̂0
0 xk̂1

1

γ ← Γhk(x0, x1, e, π̂)

y′ ← f(x
k̃0,0+γk̃1,0

0 x
k̃0,1+γk̃1,1

1 )
If either π̂ ̸= π̂′ or y ̸= y′ then

return ⊥
π ← xk0

0 xk1
1

Return M ← e/π

Enc(pk,M) (for M ∈M := G) :

ω
$← Zp; x0 ← gω0 ; x1 ← gω1

π ← sω; e←M · π
π̂ ← ŝω

γ ← Γhk(x0, x1, e, π̂)
y ← f((s̃0 · s̃γ1 )ω)
Return C ← (x0, x1, e, π̂, y)

Eval(skh, C1, C2) :
Parse Cb as (xb,0, xb,1, eb, π̂b, yb) for b = 1, 2
γb ← Γhk(xb,0, xb,1, eb, π̂b) for b = 1, 2

y′b ← f(x
k̃0,0+γbk̃1,0

b,0 x
k̃0,1+γbk̃1,1

b,1 ) for b = 1, 2

If either y1 ̸= y′1 or y2 ̸= y′2 then
return ⊥

ω
$← Zp

x0 ← x1,0x2,0g
ω
0 ; x1 ← x1,1x2,1g

ω
1

e← e1e2s
ω; π̂ ← π̂1π̂2ŝ

ω

γ ← Γhk(x0, x1, e, π̂)

y ← f(x
k̃0,0+γk̃1,0

0 x
k̃0,1+γk̃1,1

1 )
Return C ← (x0, x1, e, π̂, y)

Figure 2: DDH-based instantiation of our KH-PKE scheme (here G is a cyclic group of prime order p satisfying the
DDH assumption; {Γ = Γhk : G4 → {0, 1, . . . , p − 1} | hk ∈ HK} is a TCR hash family; and f : G → Y is a smooth
function)

is defined by g1 := gτ0 . Then, by using τ , it can be efficiently decided whether a given (x0, x1) ∈ X is
in L or not, by checking if x1 = xτ0 . Hence, M is a hard trapdoor subset membership problem.

• To define the corresponding diverse group system G, we set Π := G, and define H to be the set of
homomorphisms Hk0,k1 : X → Π, indexed by (k0, k1) ∈ Z2

p, satisfying that Hk0,k1(x0, x1) := xk00 x
k1
1 for

any (x0, x1) ∈ X. Then G is diverse; indeed, for any (x0, x1) = (gi0, g
j
1) ∈ X, by putting g1 = gτ0 , we

have H−τ,1(x0, x1) = g
(j−i)τ
0 = 1 if and only if j ≡ i mod p, i.e., (x0, x1) ∈ L.

By the construction, we have |X/L| = |Π| = p, therefore the homomorphic hash proof system P = P̂
associated to the M and G is (1/p)-universal1 (by Lemma 2.3) and 0-smooth (by Lemma 2.2). On the other
hand, let Γ = Γhk : X×Π2 → {0, 1, . . . , p− 1} be a function indexed by hk ∈ HK sampled from a TCR hash
family. Let f : Π → Y be an ϵsmth-smooth function, where ϵsmth is negligible. Then, since M is a trapdoor
subset membership problem and the values |Π|ϵsmth/p = ϵsmth and |L|/|X| = 1/p are negligible, Proposition

5.1 implies that the composition (denoted by P̃) of f and the CS hash proof system constructed from the
diverse group system G and the internal function Γ is a first-uniform computationally universal2 hash proof
system.

Now we show that the conditions of Theorem 4.1 with Assumption U (where X ′ = X and Π′ = Π) are
satisfied (note that the last two conditions in Assumption U are now trivial, since X ′ = X). First, since
|L|/|X| = 1/p is negligible, the uniform distributions on X and on X \L have negligible statistical distance,
therefore X \ L is approximately samplable relative to X. Secondly, for the condition for critical integers,
since |X/L| = p, we have o(Λ) = p. On the other hand, we have |X| = p2, therefore any positive integer
that is not coprime to |X| is a multiple of p. This implies that there exist no critical integers, therefore
the condition for critical integers in Assumption U is automatically satisfied. Hence, all the conditions for
Theorem 4.1 with Assumption U are satisfied, therefore the resulting instantiation of our KH-PKE scheme
is KH-CCA secure. We write down the instantiation of the KH-PKE scheme in Figure 2.

Efficiency Comparison In Table 1, we give an efficiency comparison of our DDH-based KH-PKE scheme
with the CS PKE [11], the KD PKE [29], and the naive construction (see Section 1). We note that the latter
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Table 1: Comparison among the Cramer–Shoup (CS) scheme, the Kurosawa–Desmedt (KD) scheme, the KD + CS-
lite (using the double encryption) scheme, and our DDH-based KH-PKE scheme (here |C| − |M | denotes ciphertext
overhead; |g| denotes the size of an element in the underlying group G; exp denotes exponentiation; and we count 1
multi-exp as 1.2 regular exp, and the size of MAC and the output length of f as ℓ and n = n(ℓ), respectively)

|C| − |M | Cost (Enc) Cost (Dec) KH property

CS [11] 3|g| 4.2 exp 2.4 exp No

KD [29] 2|g|+ ℓ 3.2 exp 1.2 exp No

KD+CS-lite Double Enc 5|g|+ ℓ 7.2 exp 3.6 exp No?

Our DDH-based KH-PKE 3|g|+ n 5.4 exp 3.6 exp Yes

three schemes do not possess the keyed-homomorphic property and/or the KH-CCA security. As seen in
Table 1, our scheme is comparably efficient to the best known DDH-based (standard) PKE schemes, i.e. the
CS and the KD schemes, in terms of computational costs. The ciphertext size of our construction is dependent
on how large the output length n of the smooth function f is. However, as analyzed in Appendix A, if we
assume that f is a OWF, an aSec hash function, or a KDF, that is secure against non-uniform adversaries,
then n can be as small as ℓ for ℓ-bit security. In this case, the ciphertext overhead of our scheme is only
ℓ-bit longer than that of the CS scheme for ℓ-bit security.3 Then, for 128-bit security, ciphertext overhead of
our scheme is 896-bit while that of the Cramer–Shoup scheme is 768-bit (assuming that these schemes are
implemented over elliptic curves).

It is somewhat surprising that it is possible to realize KH property with only significantly small additional
cost. Furthermore, comparing with the naive construction (from KD and CS(-lite)) which appears to have
KH property (but does not satisfy KH-CCA security), we see that our scheme is more efficient. This means
that our methodology does not only yield KH property (and KH-CCA security) but also significantly high
efficiency.

5.4 DCR-Based Instantiation of KH-PKE

Here we describe the instantiation of our KH-PKE scheme based on the DCR assumption. First, we recall
the definition of the DCR assumption.

Definition 5.6 (The Decisional Composite Residuosity (DCR) Assumption [33]). Let p, q, p′, q′ be distinct
odd primes with p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are both λ = λ(ℓ) bits in length. Let
N = pq. We say that the DCR assumption holds in Z∗N2 , if for any PPT adversary A, the advantage
AdvDCRN,A (1ℓ) := |Pr[A(g,N) = 0]− Pr[A(gN , N) = 0]| is negligible, where g is a uniformly random element
of Z∗N2 .

In order to construct the DCR-based instantiation, we note the following immediate consequence of the
DCR assumption:

Lemma 5.2. Let p, q, p′, q′ and N = pq be as in the definition of the DCR assumption. If the DCR
assumption holds in Z∗N2 , then |Pr[A(g2, N) = 0]− Pr[A(g2N , N) = 0]| is negligible for any PPT adversary
A, where g is a uniformly random element of Z∗N2 .

We define a trapdoor subset membership problem M and a diverse group system G as follows.

• The instance sampling algorithm for M chooses the primes p, q, p′ and q′ as in the DCR assumption,
puts N := pq, and sets X := {g2 | g ∈ Z∗N2} and L := {g2N | g ∈ Z∗N2}. By the choice of N , we have

3Even if this “non-uniform” security assumption is not justified (and only security against uniform PPT adversaries is
assumed), n can still be as small as at most 2ℓ-bit, which is still smaller than (or in some group equal to) the size of an element
in the group G.See our analysis of smoothness of these cryptographic functions in Appendix A.
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Z∗N2 ≃ Z∗p2 ×Z∗q2 ≃ (Cp×C2×Cp′)× (Cq×C2×Cq′) where Cn denotes the multiplicative cyclic group
of order n, therefore X ≃ Cp ×Cp′ ×Cq ×Cq′ and L ≃ Cp′ ×Cq′ . Let ι denote the isomorphism from
X to Cp×Cp′ ×Cq ×Cq′ . Moreover, X ′ is defined to be the subset of X consisting of elements ι−1(y)
with y = (yp, yp′ , yq, yq′) ∈ Cp×Cp′×Cq×Cq′ satisfying either yp ̸= 1 and yq ̸= 1, or yp = yq = 1. Now
let g∗ be a generator of L, which can be approximately sampled by g∗ = g2N where g ∈ Z∗N2 is chosen
uniformly at random.4 Then the instance sampling algorithm sets W := {1, . . . , ⌊N/4⌋}, and defines
the relation R in such a way that, for (x, i) ∈ X ×W , we have (x, i) ∈ R if and only if x = gi∗. On the
other hand, the subset sampling algorithm first chooses ω ∈W uniformly at random, and then outputs
gω∗ ∈ L together with ω ∈W as the witness.5 Now we have |X| = pqp′q′ and |X ′\L| = (p−1)(q−1)p′q′,
therefore |X ′ \ L|/|X| is overwhelming and the three uniform distributions on X, on X \ L and on
X ′ \L have negligible statistical distances from each other. By this and Lemma 5.2, it follows that the
construction of M satisfies the condition for a hard subset membership problem relative to X ′ provided
the DDH assumption holds in Z∗N2 . Moreover, X ′ \ L is approximately samplable relative to X.

• In the trapdoor mode for M, the algorithm also outputs τ := p′q′ as the trapdoor element. Then, by
using τ , it can be efficiently decided whether a given x ∈ X is in L or not, by checking if xτ = 1.
Hence, M is a hard trapdoor subset membership problem (relative to X ′).

• To define the corresponding diverse group system G, we set Π := X, and define H to be the set of
homomorphisms Hk : X → Π, indexed by k ∈ K := Zpqp′q′ , satisfying that Hk(x) := xk for any x ∈ X.

Then G is diverse; indeed, for any x ∈ X, we have Hp′q′(x) = xp
′q′ = 1 if and only if x ∈ L.

By the construction, we have |X/L| = pq and |Π| = pqp′q′, therefore p̃ = min{p, q}. This implies that,

by setting both P and P̂ to be the homomorphic HPS associated to G, P̂ is (1/p̃)-universal1 by Lemma
2.3, and 1/p̃ is negligible. On the other hand, for the HPS P, we define the subgroup Π′ of Π = X by
Π′ := ι−1(Cp × 1 × Cq × 1). We note that Π′ = {x ∈ X | xN = 1} and it is generated by 1 + N ∈ Z∗N2 ,
therefore a uniformly random element of Π′ can be efficiently chosen (in particular, Π′ is approximately
samplable relative to Π). Now we have the following:

Lemma 5.3. In the setting, P is 0-smooth relative to (X ′,Π′).

Proof. Let k ∈ K and x ∈ X ′ \L. Write k = λ1p
′q′+λ2 with λ1 ∈ {0, 1, . . . , pq−1} and λ2 ∈ {0, 1, . . . , p′q′−

1}, and ι(x) = y = (yp, yp′ , yq, yq′). Then we have yp ̸= 1 and yq ̸= 1 by the definition of X ′ and L. Put
yp,q := (yp, 1, pq, 1) and yp′,q′ := (1, yp′ , 1, yq′). On the other hand, we have s = α(k) = gk∗ = gλ2

∗ since
g∗ ∈ L, therefore λ2 is uniquely determined from s since g∗ is a generator of L. Now we have

yk = yλ1p
′q′yλ2 = yλ1p

′q′

p,q yλ1p
′q′

p′,q′ yλ2 = (yp
′q′

p,q )λ1yλ2 ,

therefore xk = ι−1(yp
′q′

p,q )λ1xλ2 . Since yp ̸= 1 and yq ̸= 1, yp
′q′

p,q is a generator of Cp×1×Cq×1. Hence, when
k is chosen uniformly at random subject to the condition α(k) = s for a given s, λ1 is uniformly random
while λ2 is fixed, therefore xk is the product of the fixed element xλ2 of Π and a uniformly random element
ι−1(yp

′q′

p,q )λ1 of Π′. This implies that P is 0-smooth relative to (X ′,Π′), as desired.

Moreover, let Γ = Γhk : X × Π2 → {0, 1, . . . , p̃ − 1} be a function indexed by hk ∈ HK sampled from a
CR hash family. Let f : Π→ Y be an ϵsmth-smooth function, where ϵsmth satisfies that the value |Π|ϵsmth/p̃ =
pqp′q′ϵsmth/min{p, q} is negligible (for example, f may be an identity mapping Π → Π; then we have
ϵsmth = 1/|Π| and |Π|ϵsmth/p̃ = 1/p̃ is negligible, as desired). Then, since M is a trapdoor subset membership

problem, Proposition 5.1 implies that the composition (denoted by P̃) of f and the CS hash proof system
constructed from the diverse group system G and the internal function Γ is a first-adaptive computationally
universal2 hash proof system.

4The probability that g∗ is not a generator of L is 1 − (1 − 1/p′)(1 − 1/q′) = 1/p′ + 1/q′ − 1/(p′q′), which is negligible
(otherwise, the DCR assumption can be trivially broken since Z∗

N2 is not large enough).
5The distribution of the gω∗ and the uniform distribution on L have statistical distance (⌊N/4⌋− p′q′)(2/(p′q′)− 1/(p′q′)) ≤

(2p′ + 1)(2q′ + 1)/(4p′q′)− 1 = 1/(2p′) + 1/(2q′) + 1/(4p′q′), which is negligible.
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KeyGen(1ℓ) :

hk
$← HK; µ $← Z∗N2 ; g ← µ2N

k, k̂, k̃0, k̃1
$← {1, . . . , ⌊N2/4⌋}

s← gk; ŝ← gk̂; s̃0 ← gk̃0 ; s̃1 ← gk̃1

pk ← (hk, g, s, ŝ, s̃0, s̃1)

skd ← (k, k̂, k̃0, k̃1)

skh ← (k̃0, k̃1)
Return (pk, skd, skh)

Dec(skd, C) :
Parse C as (x, e, π̂, y)

π̂′ ← xk̂

γ′ ← Γhk(x, e, π̂); y′ ← f(xk̃0+γ′k̃1)
If either π̂ ̸= π̂′ or y ̸= y′ then

return ⊥
π ← xk; M̃ ← e · π−1

Return M ← (M̃ − 1)/N

Enc(pk,M) (for M ∈M := ZN ) :

ω
$← {1, . . . , ⌊N/4⌋}; x← gω

π ← sω; e← (1 +N)M · π
π̂ ← ŝω

γ ← Γhk(x, e, π̂); y ← f((s̃0 · s̃γ1 )ω)
Return C = (x, e, π̂, y)

Eval(skh, C1, C2) :
Parse Cb as (xb, eb, π̂b, yb) for b = 1, 2
γb ← Γhk(xb, eb, π̂b) for b = 1, 2

y′b ← f(xk̃0+γbk̃1) for b = 1, 2
If either y1 ̸= y′1 or y2 ̸= y′2 then

return ⊥
ω

$← {1, . . . , ⌊N2/4⌋}
x← x1x2g

ω; e← e1e2s
ω; π̂ ← π̂1π̂2ŝ

ω

γ ← Γhk(x, e, π̂); y ← f(xk̃0+γk̃1)
Return C ← (x, e, π̂, y)

Figure 3: DCR-based instantiation of our KH-PKE scheme (here N = pq with p = 2p′ + 1 and q = 2q′ + 1 satisfies
that the DCR assumption holds in Z∗N2 ; {Γ = Γhk : X

3 → {0, 1, . . . , p̃ − 1} | hk ∈ HK} is a CR hash family where
X = {g2 | g ∈ Z∗N2} and p̃ = min{p, q}; and f : X → Y is a smooth function)

Summarizing, all the conditions for Theorem 4.1 with Assumption A are satisfied, therefore the resulting
instantiation of our KH-PKE scheme is KH-CCA secure. We write down the instantiation of the KH-
PKE scheme in Figure 3. Here we note that, for the choice of secret keys for the hash proof systems, the
uniform distribution on {1, . . . , pqp′q′} has negligible statistical distance from the uniform distribution on
{1, . . . , ⌊N2/4⌋}. We note also that, the multiplicative group Π′ is isomorphic to the additive group ZN ,
with efficiently computable isomorphism ZN ∋M 7→ (1 +N)M mod N2 ∈ Π′ and its efficiently computable

inverse Π′ ∋ M̃ 7→ (M̃ − 1)/N mod N ∈ ZN . In the instantiation here, we switch the plaintext space from
Π′ to ZN via the isomorphism. As in [13], we implicitly assume that the Dec algorithm checks that x, e, and

π̂ lie in Z∗N2 and M̃ − 1 is a multiple of N .
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A Smoothness of Cryptographic Functions

In this section, we show that natural cryptographic functions, a one-way function (OWF), an always second-
preimage resistant (aSec secure) hash function [34], and a key derivation function (KDF) [14], are smooth
in the sense of Definition 5.3.

Interestingly, although the amount of smoothness, Smthf , is always negligible, its “tightness” is different
depending on whether the function f is secure against uniform adversaries or against non-uniform adver-
saries.6 More specifically, for each cryptographic function f considered here, we show that the smoothness
of f is (essentially) upperbounded by the square root of the advantage of some (uniform) PPT adversary A
attacking the security of the function f . We also show that the smoothness of f is (essentially) upperbounded
by the advantage of some non-uniform PPT adversary Anu. These results suggest that if we can assume the
security of these cryptographic functions against non-uniform adversaries, then the output length can be as
small as ℓ-bit for ℓ-bit security, because the smoothness of the functions are “tightly” upperbounded by the
advantage of “non-uniform” adversaries attacking the security of the cryptographic functions Furthermore,

6Recall that a non-uniform algorithm is an algorithm that takes as an advice string (which is dependent only on the input
length) as an additional input. The class of non-uniform PPT algorithms is equivalent to the class of polynomial-sized circuit
families.
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even if this “non-uniform” security assumption is not justified (and instead only security against uniform
adversaries is assumed), the output length the function can still be as small as at most 2ℓ-bit, because the
main term that contribute to the smoothness is the square root of the advantage of an adversary attacking
the security of the cryptographic functions (against uniform PPT adversaries).

In practice, for example, (an appropriate modification of) cryptographic hash functions such as SHA-
series, can be assumed to be the cryptographic functions (secure against non-uniform adversaries) considered
here.

Some Notation: To show the smoothness of each cryptographic function, it is useful to introduce the
following notation. Let f : Xℓ → {0, 1}ℓ be a function. For each ℓ ∈ N, let ymax

ℓ ∈ {0, 1}ℓ be the lexicograph-
ically smallest string7 such that Pr

x
$←Xℓ

[f(x) = ymax
ℓ ] ≥ Pr

x
$←Xℓ

[f(x) = y] holds for any y ∈ {0, 1}ℓ. Then,

by definition, we have Smthf = maxy∈{0,1}ℓ Prx $←Xℓ

[f(x) = y] = Pr
x

$←Xℓ

[f(x) = ymax
ℓ ]. Next, for each ℓ ∈ N,

we define xmax
ℓ ∈ Xℓ to be the lexicographically smallest string in the set {x ∈ Xℓ|f(x) = ymax

ℓ }. Note that
ymax
ℓ ∈ {0, 1}ℓ and xmax

ℓ ∈ Xℓ are uniquely determined for each ℓ ∈ N.
For the function f , it is also useful to note the following properties about the probability of “collision”

for random inputs:

Pr
x

$←Xℓ

[f(x) = ymax
ℓ ] = Smthf and Pr

x,x′ $←Xℓ

[f(x) = f(x′)] ≥ (Smthf )
2, (1)

where the former is by definition, and the latter is obtained as follows:

Pr
x,x′ $←Xℓ

[f(x) = f(x′)] ≥ Pr
x,x′ $←Xℓ

[f(x) = ymax
ℓ ∧ f(x) = ymax

ℓ ]

= ( Pr
x

$←Xℓ

[f(x) = ymax
ℓ ])2 = (Smthf )

2

A.1 One-Way Function

Definition A.1 (One-Way Function (OWF)). Let f : Xℓ → {0, 1}ℓ be a function, where n = n(ℓ) :=
log2 |Xℓ| ∈ ω(log2 ℓ). We say that f is a one-way function (OWF) if (1) f is efficiently computable in terms
of the security parameter ℓ (and thus n is some polynomial of ℓ), (2) we can efficiently sample an element
uniformly at random from the domain Xℓ, and (3) AdvOWF

A (ℓ) := Pr
x

$←Xℓ

[x′ ← A(1ℓ, f(x)) : f(x′) = f(x)] is

negligible for any PPT algorithm A.
Furthermore, we say that f is a OWF against non-uniform adversaries if the condition (3) is replaced

with “AdvOWF
Anu

(ℓ) is negligible for any non-uniform PPT algorithms Anu.”

Lemma A.1. If f is a OWF as defined in Definition A.1, then f is smooth. Specifically, there exists a PPT
algorithm A such that

Smthf ≤
√
AdvOWF

A (ℓ).

Furthermore, there exists a non-uniform PPT algorithm Anu such that

Smthf = AdvOWF
Anu

(ℓ).

Proof. We first show the existence of the uniform PPT adversary A against the one-wayness of f . Consider
the algorithm A that takes 1ℓ and y = f(x) (where x ∈ Xℓ is chosen uniformly at random) as input, picks
x′ ∈ Xℓ uniformly at random, and terminates with output this x′. Note that A is a (uniform) PPT algorithm,
and its one-wayness advantage is as follows:

AdvOWF
A (ℓ) = Pr

x,x′←Xℓ

[f(x) = f(x′)] ≥ (Smthf )
2

7In general, there could be multiple strings y ∈ {0, 1}ℓ that maximize the probability Pr
x

$←Xℓ

[f(x) = y]. Choosing the

lexicographically smallest one is to canonically specify one of such strings.
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where in the last step we use the inequation (1). Therefore, we have Smthf ≤
√
AdvOWF

A (ℓ), as required.

We next show the existence of the non-uniform adversary Anu against the one-wayness of f . Consider
the non-uniform PPT algorithm Anu that has xmax

ℓ as an advice (i.e. xmax
ℓ is hard-wired inside Anu for each

security parameter ℓ ∈ N), takes 1ℓ and y = f(x) as input (where x ∈ Xℓ is chosen uniformly at random),
and terminates with output the string xmax

ℓ . Clearly Anu is PPT, and its one-wayness advantage is:

AdvOWF
Anu

(ℓ) = Pr
x

$←Xℓ

[f(x) = f(xmax
ℓ )] = Pr

x
$←Xℓ

[f(x) = ymax
ℓ ] = Smthf ,

as required.
This completes the proof of Lemma A.1.

A.2 Always Second-Preimage Resistant Hash Functions

Definition A.2 (Always Second-Preimage Resistant (aSec) Hash Functions [34]). Let H : Xℓ → {0, 1}ℓ be
a function, where n = n(ℓ) := log2 |Xℓ| ∈ ω(log2 ℓ). We say that H is an always second-preimage resistant
(aSec secure) hash function if (1) H is efficiently computable in terms of the security parameter ℓ (and thus
n is some polynomial of ℓ), (2) we can efficiently sample an element uniformly at random from the domain
Xℓ, (3) AdvaSecA (ℓ) := Pr

x
$←Xℓ

[x′ ← A(1ℓ, x) : H(x′) = H(x) ∧ x′ ̸= x] is negligible for any PPT algorithm A.
Furthermore, we say that H is an aSec secure hash function against non-uniform adversaries if the

condition (3) is replaced with “AdvaSecA (ℓ) is negligible for any non-uniform PPT algorithm.”

We remark that an aSec secure hash function is (close to but) different from the notion of universal one
way hash function (UOWHF) [4]. UOWHF is a family of hash functions (or a keyed hash function), and in
the security experiment, an adversary is allowed to choose the first message x for which the adversary has
to find a collision, but is required to find a colliding input x′ under a randomly chosen key hk.

Lemma A.2. If H is an aSec secure hash function as defined in Definition A.2, then H is smooth. Specifically,
there exists a PPT algorithm A such that

SmthH ≤
√
AdvaSecA (ℓ) + |Xℓ|−1.

Furthermore, there exists a non-uniform PPT algorithm Anu such that

SmthH = AdvaSecAnu
(ℓ) + |Xℓ|−1.

Proof. The proof proceeds very similarly to that of Lemma A.1. First, we show the existence of the uniform
PPT adversary A against the aSec security of H. Consider the algorithm A that takes 1ℓ and x (for a
uniformly chosen value x ∈ Xℓ) as input, picks x′ ∈ Xℓ uniformly at random, and terminates with output
this x′. Note that A is trivially a (uniform) PPT algorithm, and its advantage against aSec security of H is
as follows:

AdvaSecA (ℓ) = Pr
x,x′ $←Xℓ

[H(x) = H(x′) ∧ x ̸= x′]

= Pr
x,x′ $←Xℓ

[H(x) = H(x′)]− Pr
x,x′ $←Xℓ

[x = x′]

≥ (SmthH)
2 − |Xℓ|−1

Therefore, we have SmthH ≤
√
AdvaSecA (ℓ) + |Xℓ|−1, as required.

We next show the existence of the non-uniform adversary Anu against the aSec security of H. Consider
the non-uniform PPT algorithm Anu that has xmax

ℓ ∈ Xℓ as an advice (i.e. xmax
ℓ is hard-wired inside Anu
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for each security parameter ℓ ∈ N), takes 1ℓ and x as input (where x is chosen uniformly at random), and
terminates with output the string xmax

ℓ . Clearly Anu is PPT, and its advantage is:

AdvaSecAnu
(ℓ) = Pr

x
$←Xℓ

[H(x) = H(xmax
ℓ ) ∧ x ̸= xmax

ℓ ]

= Pr
x

$←Xℓ

[H(x) = ymax
ℓ ]− Pr

x
$←Xℓ

[x = xmax
ℓ ]

= SmthH − |Xℓ|−1,

Therefore, we have SmthH = AdvaSecAnu
(ℓ) + |Xℓ|−1, as required.

This completes the proof of Lemma A.2.

A.3 Key Derivation Function

Definition A.3 (Key Derivation Function (KDF) [14]). Let KDF : Xℓ → {0, 1}ℓ be a function, where
n = n(ℓ) := log2 |Xℓ| ∈ ω(log2 ℓ). We say that KDF is a secure key derivation function (KDF) if (1)
KDF is efficiently computable in terms of the security parameter ℓ (and thus n is some polynomial of ℓ),
(2) We can efficiently sample an element uniformly at random from the domain Xℓ, and (3) AdvKDF

A (ℓ) :=
|Pr

x
$←∆

[A(1ℓ,KDF(x)) = 1]− Pr
y

$←{0,1}ℓ
[A(1ℓ, y) = 1]| is negligible for any PPT algorithm A.

Furthermore, we say that KDF is a secure KDF against non-uniform adversaries if AdvKDF
Anu

(ℓ) is negligible
for any non-uniform algorithm Anu.

Lemma A.3. If KDF be a secure key derivation function as defined in Definition A.3, then KDF is smooth.
Specifically, there exists a uniform PPT algorithm A such that

SmthKDF ≤
√
AdvKDF

A (ℓ) + 2−ℓ.

Furthermore, there exists a non-uniform PPT algorithm Anu such that

SmthKDF = AdvKDF
Anu

(ℓ) + 2−ℓ.

Proof. We first show the existence of the uniform PPT adversary A against the security of KDF. Consider
the algorithm A that takes 1ℓ and y ∈ {0, 1}ℓ as input, picks x′ ∈ Xℓ uniformly at random, and returns 1 if
G(x′) = y or returns 0 otherwise. Note that A is clearly PPT, and its advantage is as follows:

AdvKDF
A (ℓ) = | Pr

x
$←Xℓ

[A(1ℓ,KDF(x)) = 1]− Pr
y

$←{0,1}ℓ
[A(1ℓ, y) = 1]|

= | Pr
x,x′ $←Xℓ

[KDF(x) = KDF(x′)]− Pr
y

$←{0,1}ℓ,x′ $←Xℓ

[y = KDF(x′)]|

≥ (SmthKDF)
2 − 2−ℓ,

where in the last inequality we use the inequality (1) and the fact that y is chosen uniformly at random from

{0, 1}ℓ. Therefore, we have SmthKDF ≤
√
AdvKDF

A (ℓ) + 2−ℓ, as required.

Next, we show the existence of the non-uniform PPT adversary Anu against the security of KDF. Consider
the algorithm Anu that has ymax

ℓ ∈ {0, 1}ℓ as an advice (i.e. ymax
ℓ is hard-wired inside Anu for each ℓ ∈ N),

takes 1ℓ and y ∈ {0, 1}ℓ as input, and returns 1 if y = ymax
ℓ or returns 0 otherwise. Note that Anu is clearly

PPT, and its advantage is as follows:

AdvKDF
Anu

(ℓ) = | Pr
x

$←Xℓ

[Anu(1
ℓ,KDF(x)) = 1]− Pr

y
$←{0,1}ℓ

[Anu(1
ℓ, y) = 1]|

= | Pr
x

$←Xℓ

[KDF(x) = ymax
ℓ ]− Pr

y
$←{0,1}ℓ

[y = ymax
ℓ ]|

= SmthKDF − 2−ℓ.
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Therefore, we have SmthKDF = AdvKDF
Anu

(ℓ) + 2−ℓ, as required.
This completes the proof of Lemma A.3.
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