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Abstract

One-round group authenticated key exchange (GAKE) protocols typically provide implicit
authentication and appealing bandwidth efficiency. As a special case of GAKE – the pairing-
based one-round tripartite authenticated key exchange (3AKE), recently gains much attention of
research community due to its strong security. Several pairing-based one-round 3AKE protocols
have recently been proposed to achieve provable security in the g-eCK model. In contrast to
earlier GAKE models, the g-eCK model particularly formulates the security properties regarding
resilience to the leakage of various combinations of long-term key and ephemeral session state,
and provision of weak perfect forward secrecy in a single model. However, the g-eCK security
proofs of previous protocols are only given under the random oracle model. In this work, we give
a new construction for pairing-based one-round 3AKE protocol which is provably secure in the
g-eCK model without random oracles. Security of proposed protocol is reduced to the hardness
of Cube Bilinear Decisional Diffie-Hellman (CBDDH) problem for symmetric pairing. We also
extend the proposed 3AKE scheme to a GAKE scheme with more than three group members,
based on multilinear maps. We prove g-eCK security of our GAKE scheme in the standard model
under the natural multilinear generalization of the CBDDH assumption.

Keywords: one-round, group key exchange, authenticated key exchange, bilinear maps, multi-
linear maps

1 Introduction

The situation where three or more parties share a secret key is often called group (conference) keying.
A group authenticated key exchange protocol (GAKE) allows a set of parties communicating over
public network to create a common shared key that is ensured to be known only to those entities.
In a public key infrastructure (PKI) based GAKE protocol, each party typically possesses a pair
of long-term public/private key. The public key is expected to be certified with a party’s identity
and corresponding private key is kept secretly for authentication. GAKE protocols are essentially
generalized from two party authenticated key exchange (2AKE) protocols to the case of multiple
parties. However, this brings new challenges not only in the design but also in the analysis of the
GAKE protocols. The formal security model for GAKE was first studied by Bresson et al. [12],
where the secrecy (indistinguishability) of the established group key and mutual authentication are
modelled following the seminal work of the 2AKE model by Bellare and Rogaway [7]. Since then,
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figuring out new useful security properties for certain class of GAKE and modelling them become
continuing trends.

One-Round GAKE. One import research direction in the research field of GAKE is to construct se-
cure one-round protocol due to its appealing bandwidth-efficiency (in contrast to other multiple-round
GAKE). A prominent example is the pairing-based tripartite protocol introduced by Joux [26, 27]
which extends the classical two-party Diffie-Hellman KE protocol [18] to the three party case. How-
ever Joux’s protocol is unauthenticated and subject to well known man-in-the-middle attacks. Hence
how to transform Joux’s protocol to a secure one-round protocol in presence of active adversaries
turns out to be an interesting topic. Several attempts, e.g. [2, 33, 32, 35, 19], have been made to
improve the original Joux’s protocol. This has also pushed forward the development of security
model for GAKE. Meanwhile, the most recently proposed one is the g-eCK model by Fujioka et al.
[19]. The g-eCK model basically can be seen as a generalization from the two party eCK model [30].
In contrast to earlier GAKE models [12, 11, 28, 13, 23], the peculiarity of g-eCK model is that it
captures lots of desirable security properties regarding resilience to the leakage of various combina-
tions of long-term key and ephemeral session state from target sessions (i.e. the test session and its
partner session in the security game), and provision of weak perfect forward secrecy (wPFS) in a
single model. So far the g-eCK model is known as one of the strongest security model for one-round
GAKE[19]. Therefore proving security for one-round GAKE in the g-eCK model may provide more
guarantees.

Motivations. Manulis et al. [35] recently pointed out that the one-round 3AKE constructions [2,
33, 32] fail to achieve implicit key authentication, and introduced an improved protocol (which is
called MSU protocol in the following). In 2012, Fujioka et al. (FMSU) [19] generalized previous 3AKE
protocols into one framework based on admissible polynomials developed from [20] which yields many
further one-round 3AKE protocols. Meanwhile the one-round version of MSU protocol [35] can be
seen as a concrete instantiation of FMSU protocol.1 The generic FMSU protocol [19] was shown to
satisfy g-eCK security. However its security proof is given in the random oracle model (ROM) [6]
under a specific strong assumption, i.e. gap Bilinear Diffie-Hellman (GBDH) assumption [3]. It is
well-known that the security proof in the random oracle model may not imply that corresponding
protocol is secure in the real world. Several results, e.g., [14, 4], have demonstrated that there
exist schemes which are provably secure in the random oracle model, but are insecure as soon as one
replaces the random oracle by any concrete hash functions. This also makes the schemes secure in the
standard model to be more appealing than that in the random oracle model. So far we are not aware
of previous GAKE protocols being able to achieve g-eCK security in the standard model. Hence,
one of the open problems in research on GAKE is to construct a secure scheme in the g-eCK model
under standard assumptions without resorting to random oracles. Another important motivation of
this paper is try to simplify the security proof for GAKE protocols under the g-eCK model from the
perspective of reducing the freshness ceases that require to prove. Since under the g-eCK model,
the freshness cases are related to the group size which are not a small amount. Taking the 3AKE
as example, there might be fourteen freshness cases at all that may lead proof to be very tiresome.
When the group size is very large, the situation might be worse because the possible freshness cases
are exponential in the number of group members. Those facts make us necessary to somehow reduce
the upper bound of the freshness cases that require to do proof simulation.

1The MSU protocol consists of two communication rounds in which the first round is used to establish the session
key and the key confirmation steps are done in the second round. But it is able to execute without the second round.
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Contributions. We solve the above open problems by starting from 3AKE. We firstly give a con-
crete construction in Section 5 for one-round 3AKE protocol that is g-eCK secure in the standard
model under standard assumptions. The proposed protocol is based on bilinear groups, target colli-
sion resistant hash function family, and pseudo-random function family. In order to withstand active
attackers, each (either long-term or ephemeral) public key is required to be associated with some
kind of ‘tag’ which is used to verify the consistency of corresponding public key. Those tags are
particularly customized using specific weak Programmable Hash Functions (PHF) [25] for ephemeral
key and long-term key respectively, whose output lies in a pairing group. Interestingly the proposed
protocol is built to be able to run without knowing any priori information about its partners’ long-
term public key. We make use of the pairing to provide a means of consistency checking that (both
long-term and ephemeral) public keys coming from the adversary are in some sense of well-formed.
Due to those tags, all public keys are mutually independent. Hence an active adversary is not able
to lead non-partnered fresh sessions to generate co-related session keys. In particular, any active
adversaries have to leave session key related secret information in those tags which can be extracted
and exploited by the challenger (during the proof simulation) using corresponding trapdoor secret,
e.g. the exponents of the group elements used to computing the tags. We make use of the fact those
trapdoor information can’t be trivially obtained by adversary. Intuitively, these tags are what give us
the necessary leverage to deal with the non-trivial g-eCK security. In order to facilitate the security
analysis of 3AKE protocols in the g-eCK model, we introduce propositions to formally reduce fourteen
freshness cases (which cover all freshness cases for 3AKE protocols) to four freshness cases. Then it
is only necessary to prove the security of considered protocol under the reduced four freshness cases.
It is not hard to check the validity of these reductions to all one-round 3AKE protocols in which the
message sent by a party is independent of the messages sent by the other parties. Any g-eCK security
analyzers for one-round 3AKE protocols might benefit from these results. We then provide a succinct
and rigorous game-based security proof by reducing the g-eCK security of proposed 3AKE protocol
in the standard model to breaking the cubic Bilinear Decisional Diffie-Hellman (CBDDH) assumption
which is slightly modified from the Bilinear Decisional Diffie-Hellman (BDDH) assumption [27].2

In the latter we present a GAKE scheme with constant maximum group size in Section 6 following
the construction idea of 3AKE. Nevertheless the proposed GAKE scheme is based on the symmetric
multilinear map which is first postulated by Boneh and Silverberg [10]. Informally speaking, the
symmetric multilinear groups are equipped with a n-multilinear maps me : Gn → GT where n ≥ 2 is
an integer, G is a multiplicative cyclic group of large prime order p and GT is the target group with the
same order. Most recently, Garg, Gentry and Halvei [21] introduced a surprising candidate mechanism
that would approximate multilinear maps in discrete-logarithm hard groups. Their result may open
the opportunity to implement constructions using a multilinear map abstraction in practice. We prove
g-eCK security of our scheme in the standard model under a natural multilinear generalization of the
CBDDH assumption which is called n-Multiliear Decisional Diffie-Hellman Assumption (nMDDH).
In particular we give a general game-based security proof for our proposed GAKE scheme which is
given under any polynomial number of freshness cases. This general proof is applicable when the
group size of our GAKE protocol ranges from 2 to n+1, that also implies the concrete security proof
of our 3AKE protocol.

2 Preliminaries

In this section, we recall the required definitions for our result on proposed protocols.

2Although similar constructions for two-party AKE can be in e.g. [24, 17], those protocols relies on random oracles
and requires secure signature schemes (rather than PHF).
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Notations. We let κ ∈ N denote the security parameter and 1κ the string that consists of κ ones.
Let a capital letter with a ‘hat’ denote an identity; without the hat the letter denotes the public
key of that party. Let [n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n. If S is a set,

then a
$← S denotes the action of sampling a uniformly random element from S. Let ‘||’ denote the

operation concatenating two binary strings.

2.1 Bilinear Groups

In the following, we briefly recall some of the basic properties of bilinear groups. Our AKE solution
mainly consists of elements from a single group G. We therefore concentrate on symmetric bilinear
maps. Our pairing based scheme will be parameterized by a symmetric pairing parameter generator,
denoted by PG.Gen. This is a polynomial time algorithm that on input a security parameter 1κ,
returns the description of two multiplicative cyclic groups G and GT of the same prime order p,
generator g for G, and a bilinear computable pairing e : G×G→ GT .

Definition 1 (Symmetric Bilinear groups). We call PG = (G, g,GT , p, e)
$← PG.Gen(1κ) be a set of

symmetric bilinear groups, if the function e is an (admissible) bilinear map and it holds that:

1. Bilinear: ∀(a, b) ∈ G and ∀(x, y) ∈ Zp, we have e(ax, by) = e(a, b)xy.

2. Non-degenerate: e(g, g) 6= 1GT , is a generator of group GT .

3. Efficiency: ∀(a, b) ∈ G, e is efficiently computable.

2.2 Multilinear Groups

In the following, we recall the definition of symmetric multilinear groups introduced in [10]. We
assume that a party can call a group generator MLG.Gen(1κ, n) to obtain a set of multilinear groups.
On input a security parameter κ and a positive integer 2 < n ∈ N, the polynomial time group
generator MLG.Gen(1κ, n) outputs two multiplicative cyclic groups G and GT of the same prime
order p, generator g for G, and a n-multilinear map me : Gn ×G→ GT .

We summarize the properties of n-multilinear groups in the following definition.

Definition 2 (Multilinear groups). We call MLG = (G,GT , p,me)
$← MLG.Gen(κ, n) be a set of

symmetric multilinear groups, if the n-multilinear map me holds that:

1. n-multilinear: ∀(c1, . . . , cn) ∈ G and ∀(y1, . . . , yn) ∈ Zp, we have
me(cy11 , . . . , c

yn
n ) = me(c1, . . . , cn)y1···yn .

2. Non-degenerate: me(g, . . . , g) 6= 1GT , is a generator of group GT .

3. Efficiency: ∀(c1, . . . , cn) ∈ G, the operation me(c1, . . . , cn) is efficiently computable.

We here focus on symmetric n-multilinear groups, since our group AKE solution makes use of
elements from a single group G. Concrete multilinear maps can be found in [22, 21] by Garg, Gentry,
and Halvei. We here just focus on a general definition of symmetric n-multilinear groups without
loss of generality.
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2.3 Cube Bilinear Decisional Diffie-Hellman Assumption

Let PG = (G, g,GT , p, e) denote the description of symmetric bilinear group as Definition 1. The Cube
Bilinear Decisional Diffie-Hellman (CBDDH) problem that is stated as follows: given (g, ga, e(g, g)γ)
for (a, γ) ∈ (Z∗p)2 as input, output 1 if e(g, g)γ = e(g, g)a

3
and 0 otherwise.

Definition 3. We say that the CBDDH problem relative to generator PG.Gen is (t, εCBDDH)-hard, if
the probability bound |Pr[EXPcbddhPG.Gen,A(κ, n) = 1]−1/2| ≤ εCBDDH holds for all adversaries A running
in probabilistic polynomial time t in the following experiment:

EXPcbddhPG.Gen,A(κ, n)

PG = (G, g,GT , p, e)
$← PG.Gen(1κ);

a, γ
$← Z∗p;

b
$← {0, 1}, if b = 1 Γ← e(g, g)a

3
, otherwise Γ← e(g, g)γ ;

b′ ← A(1κ,PG, ga,Γ);
if b = b′ then return 1, otherwise return 0;

where εCBDDH = εCBDDH(κ) is a negligible function in the security parameter κ.

A relative hard problem is the Bilinear Decisional Diffie-Hellman (BDDH) problem [27], that
given tuple (g, ga, gb, gc, e(g, g)γ) ∈ G4 × GT it is infeasible for any PPT adversary to distinguish
whether or not γ = abc. It is not hard to see that if there exists an adversary A being able to solve
the CBDDH problem with non-negligible advantage, then we can construct an efficient algorithm
B using A to solve the BDDH problem. Since given a CBDDH challenge instance(g, ga, e(g, g)γ), B
can construct a BDDH challenge instance for A via choosing three random values b, c, d

$← Z∗p and

computing the instance as (g, gab, gac, gad, e(g, g)γbcd). Then if A is able to distinguish e(g, g)γbcd

whether or not γbcd = a3bcd, then B knows whetheror not γ = a3. But we cannot do the reduction
in a reverse direction. Nevertheless, the proof for the security of CBDDH assumption in the generic
group model [37] is presented in Appendix A which is similar to the proof of the BDDH assumption [9,
Appendix A].

2.4 n-Multilinear Decisional Diffie-Hellman Assumption

We present a generalization of the CBDDH assumption in n-multilinear groups
MLG = (G,GT , g, p,me) that we call the n-Multilinear Decisional Diffie-Hellman (nMDDH) assump-
tion. Roughly speaking, the nMDDH problem is stated as follows: given (g, ga,me(g, . . . , g)γ) for
(a, γ) ∈ (Z∗p)2 as input, output 1 if me(g, . . . , g)γ = me(g, . . . , g)a

n+1
and 0 otherwise.

Definition 4. We say that the nMDDH problem relative to generator MLG.Gen is (t, εnMDDH)-hard,
if the probability bound |Pr[EXPnmddhPG.Gen,A(κ, n) = 1] − 1/2| ≤ εnMDDH holds for all adversaries A
running in probabilistic polynomial time t in the following experiment:

EXPnmddhPG.Gen,A(κ)

MLG = (G,GT , g, p,me)
$← MLG.Gen(κ, n);

a, γ
$← Z∗p;

b
$← {0, 1}, Γ← me(g, . . . , g)a

n+1
if b = 1, otherwise Γ← me(g, . . . , g)γ ;

b′ ← A(1κ,MLG, ga,Γ);
if b = b′ then return 1, otherwise return 0;

where εnMDDH = εnMDDH(κ) is a negligible function in the security parameter κ.
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2.5 Pseudo-Random Functions

Let PRF : KPRF × DPRF → RPRF denote a family of deterministic functions, where KPRF is the
key space, DPRF is the domain and RPRF is the range of PRF for security parameter κ. Let
RL = {(x1, y1), . . . , (xq, yq)} be a list which is used to record bit strings formed as tuple (xi, yi) ∈
(DPRF,RPRF) where 1 ≤ i ≤ q and q ∈ N. So that in RL each x is associated with a y. Let
RF : DPRF → RPRF be a stateful uniform random function, which can be executed at most a poly-
nomial number of q times and keeps a list RL for recording each invocation. On input a message
x ∈ DPRF, the function RF(x) is executed as follows:

� If x ∈ RL, then return corresponding y ∈ RL,

� Otherwise return y
$← RPRF and record (x, y) into RL.

Definition 5. We say that PRF is a (q, t, εPRF)-secure pseudo-random function family, if it holds

that |Pr[EXPprfPRF,A(κ) = 1] − 1/2| ≤ εPRF for all adversaries A running in probabilistic polynomial
time t and making at most q oracle queries in the following experiment:

EXPprfPRF,A(κ) F(b, x)

b
$← {0, 1}, k $← KPRF If x /∈ DPRF then return ⊥

b′ ← AF(b,·)(κ) If b = 1 then return PRF(k, x)
if b = b′ then return 1, otherwise return 0; Otherwise return RF(x)

where εPRF = εPRF(κ) is a negligible function in the security parameter κ, and the number of allowed
queries q is bound by t.

2.6 Target Collision-Resistant Hash Functions

Let TCRHF : KTCRHF ×MTCRHF → YTCRHF be a family of keyed-hash functions associated with key
space KTCRHF, message space MTCRHF and hash value space YTCRHF. The public key hkTCRHF ∈
KCRHF of a hash function TCRHF(hkTCRHF, ·) is generated by a PPT algorithm TCRHF.KG(1κ) on
input security parameter κ.

Definition 6. TCRHF is a (t, εTCRHF)-secure target collision resistant hash function family if for all
t-time adversaries A it holds that

Pr

[
hkTCRHF

$← TCRHF.KG(1κ), m
$←MTCRHF, m

′ ← A(1κ, hkTCRHF,m),
m 6= m′, m′ ∈MTCRHF, TCRHF(hkTCRHF,m) = TCRHF(hkTCRHF,m

′)

]
≤ εTCRHF,

where the probability is over the random bits of A.

Note that the notion of target collision resistance is both qualitatively and quantitatively weaker
than the notion of (full) collision resistance. Commonly target collision resistant functions can be
implemented with a dedicated cryptographic hash function like MD5 or SHA, as described in [16].
If the hash key hkTCRHF is obvious from the context, we write TCRHF(m) for TCRHF(hkTCRHF,m).

3 Security Model for Group Authenticated Key Exchange

In this section we present the formal security model for PKI-based group authenticated key-exchange
(GAKE) protocols. In this model, while emulating the real-world capabilities of an active adversary,
we provide an ’execution environment’ for adversaries following an important line of research [15, 28,
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30, 35, 19] which is initiated by Bellare and Rogaway [7]. We formalize the capabilities of an adversary
in a strong sense who is provided enormous power to take full control over the communication network
(e.g., alter or inject messages as she wishes), in particular she may compromise long-term keys of
parties or secret states of protocol instances at any time. Let KAKE be the key space of session
key, and {PK,SK} be key spaces for long-term public/private key respectively. Those spaces are
associated with security parameter κ of considered protocol.

Execution Environment. In the execution environment, we fix a set of honest parties
{ID1, . . . , ID`} for ` ∈ N, where ID is identity of a party which is chosen uniquely from space IDS.
Each identity is associated with a long-term key pair (skIDi , pkIDi) ∈ (SK,PK) for entity authen-
tication, and is indexed via integer i ∈ [`] in the model. Note that those identities are also lex-
icographically indexed via variable i ∈ [`] . For public key registration, each party IDi might be
required to provide extra information (denoted by proof) to prove either the knowledge of the secret
key or correctness of registered public key (via e.g. non-interactive proof of knowledge schemes). In
practice, the concrete implementation of proof is up to the CA [1] and may be either interactive or
non-interactive. Examples can be found in RFC 4210 [1] and PKCS#10. In this model we focus
on non-interactive proof. Each honest party IDi can sequentially and concurrently execute the pro-
tocol multiple times with different indented partners, this is characterized by a collection of oracles
{πsi : i ∈ [`], s ∈ [ρ]} for ρ ∈ N. Oracle πsi behaves as party IDi carrying out a process to execute
the s-th protocol instance, which has access to the long-term key pair (skIDi , pkIDi) of IDi and to all
other public keys. Moreover, we assume each oracle πsi maintains a list of independent internal state
variables with following semantics:

� pidsi – storing a set of partner identities in the group with whom πsi intends to establish a
session key (including IDi itself), where the identities are ordered lexicographically.

� Φs
i – storing the oracle decision Φs

i ∈ {accept, reject}.

� Ks
i – recording the session key Ks

i ∈ KKE for symmetric encryption.

� stsi – storing the maximum secret session states that are allowed to be leaked (e.g., the exponent
of exchanged ephemeral public key).

� T si – storing the transcript of all messages sent and received by πsi during its execution, where
the messages are ordered by round and within each round lexicographically by the identities of
the purported senders.

All those variables of each oracle are initialized with empty string denoted by symbol ∅ in the
following. At some point, each oracle πsi may complete the execution always with a decision state
Φs
i ∈ {accept, reject}. Furthermore, we assume that the session key is assigned to the variable Ks

i

(such that Ks
i 6= ∅) iff oracle πsi has reached an internal state Φs

i = accept.

Adversarial Model. An adversary A in our model is a PPT Turing Machine taking as input the
security parameter 1κ and the public information (e.g. generic description of above environment),
which may interact with these oracles by issuing the following queries.

� Send(πsi ,m): The adversary can use this query to send any message m of his own choice to
oracle πsi . The oracle will respond the next message m∗ (if any) to be sent according to the
protocol specification and its internal states. Oracle πsi would be initiated via sending the oracle
the first message m = (>, pidsi ) consisting of a special initialization symbol > and a variable
storing partner identities. After answering a Send query, the variables (pidsi ,Φ

s
i ,K

s
i , st

s
i , T

s
i )

might be updated depending on the specific protocol.

7



� RevealKey(πsi ): Oracle πsi responds with the contents of variable Ks
i .

� StateReveal(πsi ): Oracle πsi responds with the secret state stored in variable stsi , e.g. the random
coins used to generate the session key.

� Corrupt(IDi): Oracle π1i responds with the long-term secret key skIDi of party IDi if i ∈ [`].
After this query, oracles πsi (s > 1) can still answer other queries.

� RegisterCorrupt(IDτ , pkIDτ , proof IDτ ): This query allows the adversary to register an identity IDτ
(` < τ and τ ∈ N) and a static public key pkIDτ on behalf of a party IDτ , if IDτ is unique and
pkIDτ is ensured to be sound by evaluating the non-interactive proof proof IDτ . We only require
that the proof is non-interactive in order to keep the model simple. Parties established by this
query are called dishonest.

� Test(πsi ): This query may only be asked once throughout the experiment. Oracle πsi handles
this query as follows: If the oracle has state Ω = reject or Ks

i = ∅, then it returns some failure
symbol ⊥. Otherwise it flips a fair coin b, samples a random element K0 from key space KKE,
sets K1 = Ks

i to the real session key, and returns Kb.

We stress that the exact meaning of the StateReveal must be defined by each protocol separately,
and each protocol should be proven secure to resist with such kind of state leakage as claimed.
Namely a protocol should specify the content stored in the variable st during protocol execution. In
order to protect those critical session states of AKE protocols, utilizing secure (e.g. tamper-proof)
device might be a natural solution, namely at each party an untrusted host machine is used together
with a secure hardware. In this way it is possible to adopt a “All-and-Nothing” strategy to define
the session states – namely we can assume that all states stored on untrusted host machine can
be revealed via StateReveal query and no state would be exposed at secure device without loss of
generality.3 The RegisterCorrupt query is used to model the chosen identity and public key attacks.
In this query, the detail form of proofτ (i.e. how to register an identity and corresponding public
key) should be specified by each protocol, which corresponds to the proof of knowledge assumptions
for public key registration as discussed in [34, 5]. Please note that if the protocol allows for arbitrary
key registration then one could set the parameter proof = ∅. Basically, our execution environment
is consistent to the g-eCK model [19] except for the RegisterCorrupt query. In the original g-eCK
model, the adversary is allowed to register a public key (via AddUser query) by checking whether
corresponding register key comes from the key space for public key. However in our model, we model
the requirement of the key registration in a more general way via parameter proof.

Secure AKE Protocols. To formalize the notion that two oracles are engaged in an on-line
communication, we define the partnership via matching sessions. We assume that messages in a
transcript T si are represented as binary strings.

Definition 7. We say that an oracle πsi has a matching session to oracle πtj , if pidsi = pidtj and πsi
has sent all protocol messages and T si = T tj .

We first consider the correctness of a GAKE protocol to rule out those useless protocols.

Definition 8 (Correctness). Let πsi and πtj be two oracles. We say a GAKE protocol Σ is correct,
if both oracles πsi and πtj accept such that πsi and πtj have matching sessions, then it holds that
Ks
i = Kt

j .

3Similar modelling technique involving secure hardware was previously used by Bresson et al. [11]. Basing the
security models on specific implementation approach reduces the gap that often exists between formal models and
practical security without loss of generality, and this also enables us to define the detailed content of StateReveal query.
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Security Game. The security game is played between a challenger C and an adversary A, where
the following steps are performed:

1. At the beginning of the game, the challenger C implements the collection of oracles {πsi :
i ∈ [`], s ∈ [ρ]}, and generates ` long-term key pairs (pkIDi , skIDi) and corresponding proof
proofi for all honest parties IDi for i ∈ [`] where the identity IDi ∈ IDS of each party is
chosen uniquely. C gives adversary A all identities, public keys and corresponding proofs
{(ID1, pkID1 , proof ID1

), . . . , (ID`, pkID` , proof ID`)} as input.

2. A may issue polynomial number of queries: Send, StateReveal, Corrupt, RegisterCorrupt and
RevealKey.

3. At some point, A may issue a Test(πsi ) query on an oracle πsi during the experiment but only
once.

4. At the end of game, the A may terminate with outputting a bit b′ as its guess for b of Test
query.

For the security definition, we need the notion about the freshness of oracles which formulates
the restrictions on the adversary with respect to performing these above queries.

Definition 9 (Freshness). Let πsi be an accepted oracle. Let πS = {πtj}IDj∈pidsi ,j 6=i be a set of oracles
(if they exist), such that πsi has a matching session to πtj . Then the oracle πsi is said to be fresh if
none of the following conditions holds:

1. A queried RegisterCorrupt(IDj , pkIDj , proof IDj ) with some IDj ∈ pidsi .

2. A queried either RevealKey(πsi ) or RevealKey(πtj) for some oracle πtj ∈ πS .

3. A queried both Corrupt(IDi) and StateReveal(πsi ).

4. For some oracle πtj ∈ πS , A queried both Corrupt(IDj) and StateReveal(πtj).

5. If IDj ∈ pidsi (j 6= i) and there is no oracle πtj such that πsi has a matching session to πtj , A
queried Corrupt(IDj).

Security of GAKE protocols is now defined by requiring that the protocol is a session key secure
key-exchange protocol, thus an adversary cannot distinguish the session key from a random key.

Definition 10 (g-eCK Security). We say that an adversary A (t, ε)-breaks the g-eCK security of a
correct group AKE protocol Σ, if A runs the AKE security game within time t, and the following
condition holds:

� If a Test query has been issued to a fresh oracle πsi , then the probability that the bit b′ returned
by A equals to the bit b chosen by the Test query is bounded by

|Pr[b = b′]− 1/2| > ε,

We say that a correct group AKE protocol Σ is (t, ε)-g-eCK-secure, if there exists no adversary that
(t, ε)-breaks the g-eCK security of Σ.
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4 Simplify the Security Proof for One-round GAKE in the g-eCK
Model

We first present a generic definition of one-round group authenticated key exchange (ORGAKE) to
allow us to describe our generic result for this class of protocols. In a ORGAKE protocol, each party
may send a single ‘message’ and this message is always assumed to be independent of the message sent
by the other party without loss of generality. The independence property of sent messages is required
since the session participants can’t achieve mutual authentication in one-round and it enables parties
to run protocol instances simultaneously (which is a key feature of one-round protocol). The key
exchange procedure is done within two pass and a common shared session key is generated to be
known only by session participants.

Let GD := ((ID1, pkID1), . . . , (IDn, pkIDn)) be a list which is used to store the public information
of a group of parties formed as tuple (IDi, pkIDi), where n is the size of the group members which
intend to share a key and pkIDi is the public key of party IDi ∈ IDS (i ∈ [n]). Let T denote the
transcript storing the messages sent and received by a protocol instance at a party which are sorted
orderly. A general PKI-based ORGAKE protocol may consist of four polynomial time algorithms
(ORGAKE.Setup,ORGAKE.KGen,ORGAKE.MF,ORGAKE.SKG) with following semantics:

� pms ← Setup(1κ): This algorithm takes as input a security parameter κ and outputs a set of
system parameters storing in a variable pms.

� (skID, pkID, proof ID)
$← ORGAKE.KGen(pms, ID): This algorithm takes as input system pa-

rameters pms and a party’s identity ID, and outputs a pair of long-term private/public key
(skID, pkID) ∈ (PK,SK) for party ID and a non-interactive proof for pkID (which is required
during key registration.).

� mID1

$← ORGAKE.MF(pms, skID1 , rID1 ,GD): This algorithm takes as input system parameters

pms and the sender ID1’s secret key skID1 , a randomness rID1

$← RORGAKE and the group
information variable GD, and outputs a message to be sent in a protocol pass, where RORGAKE

is the randomness space.4

� K ← ORGAKE.SKG(pms, skID1 , rID1 ,GD,T): This algorithm take as the input system parame-

ters pms and ID1’s secret key skID1 , a randomness rID1

$← RORGAKE and the group information
GD and a transcript T orderly recorded all protocol messages exchanged5, and outputs session
key K ∈ KORGAKE.

For correctness, we require that, on input the same group description GD = ((ID1, pk1), . . . , (IDn, pkn))
and transcript T, algorithm ORGAKE.SKG satisfies the constraint:

– ORGAKE.SKG(pms, skID1 , rID1 ,GD,T) = ORGAKE.SKG(pms, skIDi , rIDi ,GD,T),

where skIDi is the secret key of a party IDi ∈ GD who generates randomness rIDi ∈ RORGAKE

for i ∈ [n].

Besides these algorithms, each protocol might consist of other steps such as long-term key regis-
tration and message exchange, which should be described by each protocol independently.

4We remark that the parameter GD of algorithm ORGAKE.MF is only optional, which can be any empty string if
specific protocol compute the message without knowing any information about its indented partners.

5The detail order needs to be specified by each protocol.
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Simplify the Security Proof for One-round Tripartite AKE in the g-eCK model. We
show how to reduce the complexity of the security proof of any one-round 3AKE protocol with the
above form in the g-eCK model. To prove the security of a protocol in the g-eCK model, it is
necessary to show the proof under all possible freshness cases formulated by Definition 9. Let oracle
πs
∗

Â
be the test oracle with intended partner B̂ and Ĉ for instance. If any adversary breaks the

indistinguishability security property of am OR3AKE protocol, then at least one of the following
fresh events must occur:

� Event 0: There are oracles πt
∗

B̂
and πl

∗

Ĉ
, such that πs

∗

Â
has matching session to πt

∗

B̂
and to πl

∗

Ĉ
respectively.

� Event 1: There is an oracle πt
∗

F̂
such that πs

∗

Â
and πt

∗

F̂
have matching sessions but there is no

oracle of D̂ having matching session to πs
∗

Â
, where F̂ and D̂ are parties such that F̂ , D̂ ∈ {B̂, Ĉ}

and D̂ 6= F̂ .

� Event 2: πs
∗

Â
has no matching session.

Besides the restrictions regarding RegisterCorrupt and RevealKey queries which are ‘deterministic’, we
particular may obtain different freshness events on whether the test oracle has matching sessions and
corresponding freshness cases related to different combinations of StateReveal and Corrupt queries
which are ‘flexible’ and determined by adversary’s choice. However, among those different freshness
cases, at least one would occur in the security game. In the Table 1, we show the freshness cases
regarding to StateReveal and Corrupt query which might be occurred in each event. Let ‘nRS’ denote
the situation that the adversary did not issue StateReveal query to specific oracle, and ′nC’ denote
the situation adversary did not issue Corrupt query to corresponding party (e.g. the owner of certain
oracle).

Event 0 πs
∗

Â
πt

∗

B̂
πl

∗

Ĉ
Event 1 πs

∗

Â
πt

∗

F̂
D̂ Event 2 πs

∗

Â
B̂ Ĉ

Case 1 (C1) nRS nRS nRS Case 9 (C9) nRS nRS nC Case 13 (C13) nC nC nC
Case 2 (C2) nC nRS nRS Case 10 (C10) nC nRS nC Case 14 (C14) nRS nC nC
Case 3 (C3) nRS nRS nC Case 11 (C11) nC nC nC
Case 4 (C4) nC nRS nC Case 12 (C12) nRS nC nC
Case 5 (C5) nRS nC nRS
Case 6 (C6) nC nC nRS
Case 7 (C7) nC nC nC
Case 8 (C8) nRS nC nC

Table 1: Freshness Cases in Each Event

In order to complete the proof, we must provide the security proofs under all fourteen cases that
might be tiresome. However we introduce the following general propositions to facilitate the proof
of any OR3AKE protocols in the form of the above description. Our goal is to reduce the freshness
cases which have the similar restrictions on adversary’s queries.

Proposition 1. If adversary A1 (t1, εA1)-breaks the g-eCK security of a OR3AKE protocol Σ in case
C2, then there exists an adversary A2 who can (t2, εA2)-breaks the g-eCK security of Σ in case C5,
such that t1 ≈ t2 and εA1 = εA2.

Proof. Intuitively, in cases C2 and C5, the test oracle has matching sessions, then the adversary
could selects either an oracle πs

∗

Â
or its partners πt

∗

B̂
or πl

∗

Ĉ
as test oracle since πs

∗

Â
, πt

∗

B̂
and πl

∗

Ĉ
will

compute the same session key. In both cases the adversary reveals the states of two oracles and
corrupt a party. We show the security reduction as follows. A2 interacts with the AKE challenger
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C and tries to break the security of considered protocol under freshness case C5. It runs A1 as
subroutine and responds all oracle queries except for the test oracle. When A1 issues the Test query
to πs

∗

Â
, A2 selects the matching partner πt

∗

B̂
as the test oracle. When A2 receives the real session key

or random key, A2 sends it to A1. If A1 outputs a bit, A2 outputs the same bit. Note that A2 can
issue StateReveal(πs

∗

Â
) since it has matching session to the ‘test oracle’ (i.e. πt

∗

B̂
) from the view of A2.

A2 can issue Corrupt(Â) since from the view of A2 the party Â is the intended partner of its ‘test
oracle’. So A2 can correctly respond to all queries issued by A1. Therefore, if A1 breaks the security
of the considered protocol in case C2, A2 wins the game in case C5 with the same advantage as A1’s.
�

Proposition 2. If adversary A1 (t1, εA1)-breaks the g-eCK security of a OR3AKE protocol Σ in case
C3 (C5), then there exists an adversary A2 who can (t2, εA2)-breaks the g-eCK security of Σ in case
C9, such that t1 ≈ t2 and εA1 = εA2.

Proof. This proof is similar to the proof of Proposition 1. A2 interacts with an AKE challenger
C and tries to break the security of considered protocol under freshness case C9. It runs A1 as
subroutine and responds all the oracle queries except for the test oracle. A1 issues the Test query
to oracle πs

∗

Â
which has a matching session to oracle πt

∗

F̂
and to πl

∗

D̂
in the view of A1. Note that

the oracle πt
∗

F̂
is simulated by challenger C, but the oracle πl

∗

D̂
is simulated by A2 on behalf of D̂ for

A1 (since A2 is the challenger of A1). The message generated by oracle πl
∗

D̂
(in the view of A1) is

chosen by A2. So that when A2 receives the real session key or random key, A2 sends it to A1. If A1

outputs a bit, A2 outputs the same bit. A2 can respond to any oracle queries issued by A1 since the
restricted oracle queries are equivalent. Therefore, A2 breaks the security of the considered protocol
in case C9 if A1 wins the game in case C3 (C5). �

Proposition 3. If adversary A1 (t1, εA1)-breaks the g-eCK security of a OR3AKE protocol Σ in case
C7, then there exists an adversary A2 who can (t2, εA2)-breaks the g-eCK security of Σ in case C11.
If such adversary A2 exists, then there exists an adversary A3 who can (t3, εA3)-breaks the g-eCK
security of Σ in case C13. We have that t1 ≈ t2 ≈ t3 and εA1 = εA2 = εA3.

Proof. This proof is similar to the proofs of Proposition 1 and Proposition 2. A2 runs A1 as
subroutine and responds all the oracle queries except for the test oracle. A1 issues the Test query to
oracle πs

∗

Â
which has a matching session to oracle πt

∗

F̂
and to πl

∗

D̂
(in the view of A1). A2 could select

πt
∗

F̂
as test oracle which is possible since it has matching session to πs

∗

Â
. So that when A2 receives

the real session key or random key, A2 sends it to A1. If A1 outputs a bit, A2 outputs the same
bit. A2 can respond to any oracle queries issued by A1 since the restricted oracle queries for those
adversaries are equivalent. Therefore, A2 breaks the security of the considered protocol in case C11
if A1 wins the game in case C7. Analogously we have the reduction from C11 to C13, since the
restricted oracle queries are the same to adversaries. �

Proposition 4. If adversary A1 (t1, εA1)-breaks the g-eCK security of a OR3AKE protocol Σ in
case C4, then there exists an adversary A2 who can (t2, εA2)-breaks the g-eCK security of Σ in case
C10. If such adversary A2 exists, then there exists an adversary A3 who can (t3, εA3)-breaks the
g-eCK security of Σ in case C12. If such adversary A3 exists, then there exists adversary A4 who
can (t4, εA4)-breaks the g-eCK security of Σ in case C14. We have that t1 ≈ t2 ≈ t3 ≈ t4 and
εA1 = εA2 = εA3 = εA4.
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Proof. This proof is similar to the proofs of Proposition 1, Proposition 2 and Proposition 3. Thus
we omit the detail here for avoid repetition. �

Proposition 5. If adversary A1 (t1, εA1)-breaks the g-eCK security of a OR3AKE protocol Σ in
case C6, then there exists an adversary A2 who can (t2, εA2)-breaks the g-eCK security of Σ in case
C8. If such adversary A2 exists, then there exists an adversary A3 who can (t3, εA3)-breaks the
g-eCK security of Σ in case C12. If such adversary A3 exists, then there exists adversary A4 who
can (t4, εA4)-breaks the g-eCK security of Σ in case C14. We have that t1 ≈ t2 ≈ t3 ≈ t4 and
εA1 = εA2 = εA3 = εA4.

Proof. This proof is similar to the proofs of Proposition 1, Proposition 2 and Proposition 3. We
therefore omit the detail here. �

The above reductions routes are informally depicted in the Figure 1.

C2→ C5(C3)→ C9
C7→ C11→ C13

C4→ C10→ C12→ C14
C6→ C8→ C12→ C14

Figure 1: Reductions of g-eCK-Freshness for One-round Tripartite AKE

Due to the above reductions, one could prove the security of any one-round 3AKE protocol in
the g-eCK model only under freshness cases C1, C9, C13 and C14. This would be dramatically
simplify the security proof. In the sequel, we call these freshness cases require to write proof as
target freshness cease.

Towards Lower Bound of Target Freshness Cases for the Proof of One-round GAKE
with Arbitrary Group Size in the g-eCK Model. In order to make the proof for one-round
GAKE protocol in the g-eCK model to be more tight, we might also need to do the analogous
reductions about the freshness cases as it is done for OR3AKE. However, we might not be able to
formally do so in a short page when the group size n ∈ N is a large integer, in which the total number
of the freshness cases would be very large. So that we can only make certain conjecture for the lower
bound of target freshness cases for the proof of GAKE protocol with arbitrary group size n in the
g-eCK Model.

Conjecture 1. For any one-round group AKE protocol with members n+ 1, we have n+ 2 freshness
cases that require proof simulations.

Proof. Please first note that each freshness case consists of two main aspects: (i) the status (e.g.
the number) of matching sessions, (ii) the restrictions of adversary’s queries. Since there are at most
n+ 1 parties in a protocol instance for which can be queried either Corrupt or StateReveal. It is not
hard to see that there are n + 1 distinct events for the status of matching sessions, i.e. matching
sessions of test oracle vary between n and 0. Let ‘Event i’ (0 ≤ i ≤ n) denote the situation that the
test oracle has n − i matching sessions (we use the similar representation approach as three party
case). In Event i, there is 2n−i+1 distinct freshness cases, because either the test oracle or each
oracle having matching session to test oracle has two distinct cases, i.e. it can be either corrupted
or revealed states by adversary. Collect the number of freshness cases in each event, we have total
number of freshness cases 2(2n+1 − 1) =

∑n
i=0 2n−i+1. From the reductions for three party case, we
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know that freshness cases have analogous or the same query restrictions could be somehow reduced.
So that we only need to do proof simulations for these ‘target’ freshness cases having distinct query
restrictions. We observe that there are n + 2 such target freshness cases. Since each event would
contribute one distinct freshness case, except for the Event n in which event there is two distinct
freshness cases related to test oracle. Namely in Event i (i 6= n) that the test oracle has n − i
matching sessions, we have the distinct freshness case as: The adversary did not query StateReveal
to these n − i matching sessions (of test oracle) and did not query Corrupt to these i parties which
have no matching session to test oracle. �

5 A Tripartite AKE Protocol from Bilinear Maps

In this section we present a three party one-round AKE protocol based on symmetric bilinear groups,
a target collision resistant hash function and a pseudo-random function family. The requirements
for underlying building blocks are standard, the proposed protocol provides g-eCK security without
random oracles.

Design Principle. The challenge here is that we have to simultaneously cope with chosen identity
and long-term public key (CIDPK) attacks (modeled by RegisterCorrupt query) and chosen ephemeral
key (CEK) attacks (modeled by Send query) in presence of strong adversaries who can reveal non-
trivial session states (via StateReveal query) and even compromise the long-term keys of participants
(via Corrupt query). The CIDPK attack addresses the situation that the adversary registers dishonest
identity and public key and tries to subvert the security, e.g. obtain information about honest
user’s secret key via small sub-group attacks [31]. The CEK attack addresses the situation that the
adversary tries to manipulate the session key via exchanged ephemeral keys of her own choice. To
deal with these complicated situations, we have to set up a proof simulation for our construction in
the g-eCK model that is able to simulate all queries ‘appropriately’.

Our main idea is to make use of the weak (3,poly)-PHF [25] to resist with not only CEK attacks
but also CIDPK attacks under the g-eCK model. This is possible, since there are at most three
(either long-term or ephemeral) public keys will not be compromised by adversary. However, we
can’t efficiently construct the protocol based on BDDH assumption. Because in a BDDH challenge
instance, all Diffie-Hellman (DH) keys are distinct to each other. Consider the most awkward case
that there are at most three uncorrupted parties, each of which may possess a long-term key generated
by a BDDH challenge value. Thus we might need at least three different weak (3,poly)-PHFs to plug
in all BDDH challenge values in order to simulate the session keys correctly for all those uncorrupted
oracles. To avoid this inefficient setting, the CBDDH assumption might be a perfect alternative
choice. We could simultaneously embed CBDDH challenge value into these uncompromised DH keys
and the parameters of weak (3,poly)-PHF in the security proof.

5.1 Protocol Description

We describe the protocol in terms of the following three parts: Setup, long-term key generation and
registration, protocol execution, one could think of the general algorithms defined in Section 4 are
implied in specific part.

Setup: The proposed protocol takes as input the following building blocks which are initialized
respectively in terms of the security parameter κ ∈ N:
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� Symmetric bilinear groups PG = (G, g,GT , p, e)
$← PG.Gen(1κ) and a set of random values

{ui}0≤i≤3
$← G,

� a target collision resistant hash function TCRHF(hkTCRHF, ·) : KTCRHF × G → Zp, where

hkTCRHF
$← TCRHF.KG(1κ), and

� a pseudo-random function family PRF(·, ·) : GT × {0, 1}∗ → KAKE.

The system parameter variable encompasses pms := (PG, {ui}0≤i≤3, hkTCRHF).

Â
(skÂ = a

$← Z∗p,
pkÂ = (A, tA) :=

(ga, (u0u
hA
1 u

h2
A

2 u
h3
A

3 )a)
hA = TCRHF(A)

B̂
(skB̂ = b

$← Z∗p,
pkB̂ = (B, tB) :=

(gb, (u0u
hB
1 u

h2
B

2 u
h3B
3 )b)

hB = TCRHF(B)

Ĉ
(skĈ = c

$← Z∗p,
pkĈ = (C, tC) :=

(gc, (u0u
hC
1 u

h2C
2 u

h3
C

3 )c)
hC = TCRHF(C)

x
$← Z∗p, X := gx y

$← Z∗p, Y := gy z
$← Z∗p, Z := gz

hX := TCRHF(X) hY := TCRHF(Y ) hZ := TCRHF(Z)

tX := (u0u
hX
1 u

h2X
2 u

h3X
3 )x tY := (u0u

hY
1 u

h2
Y

2 u
h3
Y

3 )y tZ := (u0u
hZ
1 u

h2
Z

2 u
h3
Z

3 )z

broadcast
(Â, A, tA, X, tX)

broadcast
(B̂, B, tB , Y, tY )

broadcast
(Ĉ, C, tC , Z, tZ)

hB := TCRHF(B)
hC := TCRHF(C)

hA := TCRHF(A)
hC := TCRHF(C)

hA := TCRHF(A)
hB := TCRHF(B)

hY := TCRHF(Y )
hZ := TCRHF(Z)

hX := TCRHF(X)
hZ := TCRHF(Z)

hX := TCRHF(X)
hY := TCRHF(Y )

UB := u0u
hB
1 u

h2
B

2 u
h3
B

3 UA := u0u
hA
1 u

h2
A

2 u
h3
A

3 UA := u0u
hA
1 u

h2
A

2 u
h3
A

3

UC := u0u
hC
1 u

h2
C

2 u
h3
C

3 UC := u0u
hC
1 u

h2C
2 u

h3
C

3 UB := u0u
hB
1 u

h2
B

2 u
h3
B

3

UY := u0u
hY
1 u

h2
Y

2 u
h3
Y

3 UX := u0u
hX
1 u

h2
X

2 u
h3
X

3 UX := u0u
hX
1 u

h2
X

2 u
h3
X

3

UZ := u0u
hZ
1 u

h2Z
2 u

h3
Z

3 UZ := u0u
hZ
1 u

h2
Z

2 u
h3
Z

3 UY := u0u
hY
1 u

h2
Y

2 u
h3
Y

3

reject if either reject if either reject if either
e(tB , g) 6= e(UB , B) or e(tA, g) 6= e(UA, A) or e(tA, g) 6= e(UA, A) or
e(tC , g) 6= e(UC , C) or e(tC , g) 6= e(UC , C) or e(tB , g) 6= e(UB , B) or
e(tY , g) 6= e(UY , Y ) or e(tX , g) 6= e(UX , X) or e(tX , g) 6= e(UX , X) or
e(tZ , g) 6= e(UZ , Z) e(tZ , g) 6= e(UZ , Z) e(tY , g) 6= e(UY , Y )

Each party has sid := Â||A||tA||X||tX ||B̂||B||tB ||Y ||tY ||Ĉ||C||tC ||Z||tZ
Each party rejects if some values recorded in sid are identical

k := e(BY,CZ)a+x k := e(AX,CZ)b+y k := e(AX,BY )c+z

ke := PRF(k, sid) ke := PRF(k, sid) ke := PRF(k, sid)

Figure 2: One-round Tripartite AKE Protocol

Long-term Key Generation and Registration: On input pms := (PG, {ui}0≤i≤3, hkTCRHF),

a party Â may run an efficient algorithm (skÂ, pkÂ, ∅)
$← ORGAKE.KGen(pms, Â) to generate the

long-term key pair as: skÂ = a
$← Z∗p, pkÂ = (A, tA) where A = ga, tA := (u0u

hA
1 u

h2A
2 u

h3A
3 )a and

hA = TCRHF(A). Please note that we allow arbitrary key registration, i.e. the adversary is able to
query RegisterCorrupt(Â, pkÂ, ∅) with proofÂ = ∅.
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Protocol Execution: On input the system parameter pms, the protocol among parties Â, B̂ and
Ĉ is executed as following, which is also informally depicted in the Figure 2.

1. Upon activating a new session with participants (Â, B̂, Ĉ), the party Â first chooses an

ephemeral private key x
$← Z∗p and compute ephemeral public key X := gx. Next Â com-

putes hX := TCRHF(X), and tX := (u0u
hX
1 u

h2X
2 u

h3X
3 )x. To the end Â broadcasts messages

(Â, A, tA, X, tX) to B̂ and Ĉ.

2. Upon activating a new session with participants (Â, B̂, Ĉ), the party B̂ first chooses an

ephemeral private key y
$← Z∗p and compute ephemeral public key Y := gy. Next B̂ com-

putes hY := TCRHF(Y ), and tY := (u0u
hY
1 u

h2Y
2 u

h3Y
3 )y. To the end B̂ broadcasts messages

(B̂, B, tB, Y, tY ) to Â and Ĉ.

3. Upon activating a new session with participants (Â, B̂, Ĉ), the party Ĉ first chooses an

ephemeral private key z
$← Z∗p and compute ephemeral public key Z := gz. Next Ĉ com-

putes hZ := TCRHF(Z), and tZ := (u0u
hZ
1 u

h2Z
2 u

h3Z
3 )z. To the end Â broadcasts messages

(Â, B̂, Ĉ, Â, C, tC , Z, tZ) to Â and B̂.

4. Upon receiving (B̂, B, tB, Y, tY ) and (Ĉ, C, tC , Z, tZ), the party Â sets identifier
sid := Â||A||tA||X||tX ||B̂||B||tB||Y ||tY ||Ĉ||C||tC ||Z||tZ and rejects the session if some values
recorded in sid are identical. Next Â computes hB = TCRHF(B), hC = TCRHF(C), hY =

TCRHF(Y ) and hZ = TCRHF(Z) and rejects the session if either e(tB, g) 6= e(u0u
hB
1 u

h2B
2 u

h3B
3 , B)

or e(tC , g) 6= e(u0u
hC
1 u

h2C
2 u

h3C
3 , C) or e(tY , g) 6= e(u0u

hY
1 u

h2Y
2 u

h3Y
3 , Y ) or e(tZ , g) 6= e(u0u

hZ
1 u

h2Z
2 u

h3Z
3 , Z).

Finally, Â computes k := e(BY,CZ)a+x and session key ke := PRF(k, sid).

5. Upon receiving (Â, A, tA, X, tX) and (Ĉ, C, tC , Z, tZ), the party B̂ sets identifier
sid := Â||A||tA||X||tX ||B̂||B||tB||Y ||tY ||Ĉ||C||tC ||Z||tZ and rejects the session if some values
recorded in sid are identical. Next B̂ computes hA = TCRHF(A), hC = TCRHF(C), hX =

TCRHF(X) and hZ = TCRHF(Z) and rejects the session if either e(tA, g) 6= e(u0u
hA
1 u

h2A
2 u

h3A
3 , A)

or e(tC , g) 6= e(u0u
hC
1 u

h2C
2 u

h3C
3 , C) or e(tX , g) 6= e(u0u

hX
1 u

h2X
2 u

h3X
3 , X) or e(tZ , g) 6= e(u0u

hZ
1 u

h2Z
2 u

h3Z
3 , Z).

Finally, B̂ computes k := e(AX,CZ)b+z and session key ke := PRF(k, sid).

6. Upon receiving (Â, A, tA, X, tX) and (B̂, B, tB, Y, tY ) the party Ĉ sets identifier
sid := Â||A||tA||X||tX ||B̂||B||tB||Y ||tY ||Ĉ||C||tC ||Z||tZ and rejects the session if some values
recorded in sid are identical. Next Ĉ computes hB = TCRHF(B), hC = TCRHF(C), hX =

TCRHF(X) and hY = TCRHF(Y ) and rejects the session if either e(tB, g) 6= e(u0u
hB
1 u

h2B
2 u

h3B
3 , B)

or e(tC , g) 6= e(u0u
hC
1 u

h2C
2 u

h3C
3 , C) or e(tX , g) 6= e(u0u

hX
1 u

h2X
2 u

h3X
3 , X) or e(tY , g) 6= e(u0u

hY
1 u

h2Y
2 u

h3Y
3 , Y ).

Finally, Â computes k := e(AX,BY )a+x and session key ke := PRF(k, sid).

Implementation and Session States: We assume that the maximum states of party Â
allowing for leakage consist of ephemeral private key x (resp. y and z for parties B̂ and Ĉ) –
namely those values would be stored in the state variable st of each oracle at any time. For
example this can be guaranteed by performing the computations for k and ke on secure device.
Note that the all pairing operations including e(BY,CZ) can be done on host machine.

In a nutshell, other non-trivial states, e.g. the secret exponent c+ z and key material k, should
be carefully protected. We stress that it is not allowed to simultaneously leak the ephemeral
private key say z and secret key material say k = e(AX,BY )c+z to any attackers. Otherwise the
protocol is insecure in the g-eCK model. Since such attacker can simply replay the ephemeral
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key say X = gx generated by test session owned by Â to any session of Ĉ and extract non-trivial
secret e(AX,BY )c from the knowledge of z and k, where Y could be chosen by the attacker
on behalf of B̂. Then it can break the security by sending any ephemeral keys Z ′ = gz

′
and

Y of her own choice on behalf of Ĉ and B̂ respectively to test session which generates the
session key PRF(e(AX,BY )c+z

′
, sid). Analogously the leakage of ephemeral private key z and

corresponding secret exponent c + z would lead to the expose of private key c. As well the
leakage of only exponent c+ z would enable adversary to launch infinite replay attacks.

We remark that our scheme can satisfy perfect forward secrecy by increase key confirmation
procedures in an extra round, but the protocol then would become less efficient. We leave this
problem for future work, that is to construct secure one-round GAKE protocols in the g-eCK+
model [35].

5.2 Performance Improvement

In this section, we discuss the issue on how to improve the efficiency of proposed one-round tripartite
protocol. Obviously, the consistency checks on both long-term and ephemeral keys are somewhat
costly which requires four pairing operations in each session. Thus we mainly focus on the perfor-
mance improvement concerning those consistency checks.

We first introduce an alternative consistency checking algorithm which is derived from the similar
technique in [29] used to improve the efficiency of identity-based KEM scheme. The idea is to merge
consistency checks on incoming Diffie-Hellman keys. In the new consistency check algorithm, upon
receiving (Ĉ, Â, A, tA, X, tX) and (Ĉ, C, tC , Z, tZ) the party Â may perform the following steps:

1. Compute UB := u0u
hB
1 u

h2B
2 u

h3B
3 , UC := u0u

hC
1 u

h2C
2 u

h3C
3 , UY := u0u

hY
1 u

h2Y
2 u

h3Y
3 and UZ := u0u

hZ
1 u

h2Z
2 u

h3Z
3 .

2. Choose four random values θ1, θ2, θ3, θ4
$← Z∗p.

3. Reject the session if e(tθ1B t
θ2
C t

θ3
Y t

θ4
Z , g) 6= e(U θ1B , B)e(U θ2C , C)e(U θ3Y , Y )e(U θ4Z , Z).

We claim that the combined consistency check equation implies that all received tags are con-

sistent. In order to prove our argument we define functions ∆1(tY ) :=
e(u0u

hY
1 u

h2Y
2 u

h3Y
3 ,Y )

e(tY ,g)
, ∆2(tB) :=

e(u0u
hB
1 u

h2B
2 u

h3B
3 ,B)

e(tB ,g)
, ∆1(tZ) :=

e(u0u
hZ
1 u

h2Z
2 u

h3Z
3 ,Z)

e(tZ ,g)
and ∆1(tC) :=

e(u0u
hC
1 u

h2C
2 u

h3C
3 ,C)

e(tC ,g)
. Obviously, we have

∆1(tY ) = ∆2(tB) = ∆1(tZ) = ∆2(tC) = 1 if and only if tY , tB, tZ , tC are consistent. Consequently,

for random values θ1, θ2, θ3, θ4
$← Z∗p, function (∆1(tY ))θ1(∆2(tB))θ2(∆3(tZ))θ3(∆4(tC))θ4 evaluates

to 1 if tY , tB, tZ , tC are consistent and to a random group value in GT otherwise. This alternative
consistency check algorithm substitutes one multiple-exponentiation for three pairing operations.
Note that the above technique could be extended to merge more consistency check equations that
would dramatically improve the efficiency of consistency check procedure, e.g. the consistency check
operations in our upcoming one-round group AKE protocols in Section 6.

Furthermore, we notice that a party Â has to do consistency check on long-term key in every
sessions that might be wasteful. An alternative solution could make the Certificate Authority to
check the consistency of long-term public key during key registration procedure. In this way, it
might reduce two pairing operations for protocol execution and also the number of public key. To
register a public key pkÂ = A, each party Â should at least prove the consistency via tag tA. Then

the public key A is registered if e(tA, g) = e(A, u0u
hA
1 u

h2A
2 u

h3A
3 ). Thus this check would be done only

once at CA. The downside of this approach is that it might increase the burden of CA. In particular,
the tag tA is required while querying the RegisterCorrupt(Â, pkÂ, proofÂ) in the security game, i.e.
proofÂ = tA.
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5.3 Security Analysis

We show the security of proposed protocol in our strong security model.

Theorem 1. Assume each ephemeral key chosen during key exchange has bit-size λ ∈ N. Suppose
that the CBDDH problem is (t, εCBDDH)-hard in the symmetric bilinear groups PG, the TCRHF is
(t, εTCRHF)-secure target collision resistant hash function family, and the PRF is (q, t, εPRF)-secure
pseudo-random function family. Then the proposed protocol is (t′, ε)-session-key-secure in the sense

of Definition 10 with t′ ≈ t, q ≥ 3 and ε ≤ (ρ`)2

2λ
+ εTCRHF + 4(ρ`)3 · (εCBDDH + εPRF).

The full proof of theorem 1 is presented in Appendix B.

6 A GAKE Construction from Multilinear Maps

An interesting work is to extend the proposed 3AKE scheme to GAKE scheme with more than three
group members. Based on bilinear groups might be impossible to achieve so. Since we can not get
an aggregate long-term shared key for a group of members from bilinear map. However, Boneh and
Silverberg [10] have given us inspiration on how to generalize the 3AKE to GAKE by exploiting
multilinear maps.

6.1 Protocol Description

Setup: The proposed protocol takes as input the following building blocks which are initialized
respectively in terms of the security parameter κ ∈ N and upper-bound of number of users n+ 1:

� n-mulitilinear groups MLG = (G,GT , g, p,me)
$← MLG.Gen(κ, n) and a set of random values

{uj}0≤j≤n+1
$← G.

� a target collision resistant hash function TCRHF(hkTCRHF, ·) : KTCRHF × G → Zp, where

hkTCRHF
$← TCRHF.KG(1κ), and

� a pseudo-random function family PRF(·, ·) : GT × {0, 1}∗ → KAKE.

Let pms := (MLG, {uj}0≤j≤n+1, hkTCRHF) be the variable used to store the public system parame-
ters.

Long-term Key Generation and Registration: On input pms := (MLG, {uj}0≤j≤n+1, hkTCRHF),

a party Â may run an efficient algorithm (skD̂, pkD̂, ∅)
$← ORGAKE.KGen(pms, D̂) to generate the

long-term key pair for a party D̂ as: skD̂ = d
$← Z∗p, pkD̂ = (D, tD), where D = gd, tD := (

∏n+1
j=0 u

hjD
j )d

and hA = TCRHF(A). Please note that we allow arbitrary key registration, i.e. the adversary is able
to query RegisterCorrupt(D̂, pkD̂, ∅) with proofD̂ = ∅.

Let ω denote the size of group for a protocol instance such that 2 ≤ ω ≤ n + 1. An important
attribute for a GAKE protocol is the scalable group size. In the following we show our construction
for protocol execution phase which is scalable with range between 2 and n+ 1. Recall that the upper
bound of group size is determined by the n-multilinear map.
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Protocol Execution: We consider the protocol execution for a protocol instance with ω group
members denoted by (D̂1, D̂2, . . . , D̂ω), where each party D̂i (1 ≤ i ≤ ω) has long-term key Di.
In the key exchange phase, each party D̂i generates an ephemeral key Xi = gxi , computes tag

tXi := (
∏n+1
j=0 u

hjXi
j )xi and broadcasts (D̂i, Di, tDi , Xi, tXi) to its intended communication partners,

where xi
$← Z∗p and hXi := TCRHF(Xi). Upon receiving all messages {D̂l, Dl, tD1 , Xl, tXl}1≤l≤ω,l 6=i

from each session participant, the party D̂i rejects the session if the consistency check on one of the

received either long-term or ephemeral keys fails, i.e. me(tWl
, g, . . . , g) 6= me(

∏n+1
j=0 u

hjWl
j ,Wl, g, . . . , g)

where Wl ∈ {Dl, Xl} for 1 ≤ l ≤ ω, l 6= i and hWl
= TCRHF(Wl).

6 The party D̂i sets sid :=
D̂1||D1||tD1 ||X1||tX1 || . . . ||D̂ω||Dω||tDω ||Xω||tXω , and rejects the session if some values recorded in
sid are identical. To this end, the party D̂i generates the key material k := me(D1X1, . . . , Di−1Xi−1,
Di+1Xi+1, . . . , DωXω, . . . , DωXω)di+xi and session key ke := PRF(k, sid), where the values
D0, X0, Dω+1, Xω+1 are ‘empty’ which should be omitted. Other parties in this group will do the
similar procedures to generate the session key.

Please note that the scalability is achieved generally by setting all Diffie-Hellman keys after the
position ω in n-multilinear map me to be DωXω. This is possible since at least one DH key in
(Dω, Xω) is not compromised by adversary in the security game. As otherwise such session is no
longer fresh in terms of Definition 9.

Implementation and Session States: We assume that the maximum states of party D̂i allowing
for leakage from a session consist of ephemeral private key xi – namely those values would be stored
in the variable in the state variable st of each oracle at any time. The implementation scenario is
similar to the three party case presented in Section 5, namely generate the k and ke on secure device.

Remark 1. The above construction implies the proposed tripartite AKE protocol in Section 5 if the
parameter of n-multilinear map such that n = 2 which is equivalent to bilinear map. Then the
scalable construction of GAKE could also yield a two party eCK secure AKE protocol that might be
of independent interesting. It is not hard to see that the security of such two party AKE protocol
can be proved without random oracles based on CBDDH assumption in the g-eCK model when group
size equals two (i.e. then it implies the eCK model).7

6.2 Security Analysis

We show the security of above group AKE protocol in our strong security model.

Theorem 2. Assume each ephemeral key chosen during key exchange has bit-size λ ∈ N. Suppose
that the nMDDH problem is (t, εnMDDH)-hard in the symmetric multilinear groups MLG, the TCRHF
is (t, εTCRHF)-secure target collision resistant hash function family, and the PRF is (q, t, εPRF)-secure
pseudo-random function family. Then the proposed protocol of size 2 ≤ ω ≤ n + 1 ≤ ` is (t′, ε)-

g-eCK-secure in the sense of Definition 10 with t′ ≈ t, q ≥ n + 1 and ε ≤ (ρ`)2

2λ
+ εTCRHF + (n +

2)(ρ)n+1
(

`
n+1

)
· (εnMDDH + εPRF).8

6As for multilinear maps which are implemented with a series of bilinear maps, e.g.the framework by Garg et al. [21],
one could use the bilinear map e instead of me in those consistency check operations for efficiency consideration. One
could also use the similar technique in Section 5.2 to merge those consistency checks.

7Similar construction for eCK-secure one-round two party AKE can be found in [39]. However, this work focuses
on one-round GAKE.

8Please recall that the integer ` is the number of the honest party in the security experiment and the integer ρ is
the number of the oracle of each party. Hence the group size ω is bounded by the n-multilinear maps and `.
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The full proof of theorem 2 is presented in Appendix C. We lose a factor (n+ 2)(ρ)n+1
(

`
n+1

)
here

which is exponential in group size n. Hence, in order to make the overall advantage of adversary
to be negligible, one may need to use a larger security parameter or to limit the maximum group
members.

7 Conclusions

We presented a new one-round 3AKE protocol based on pairing groups that is provably secure in
the g-eCK model (which is known to be one of the strongest GAKE model) without random oracles.
It is the first such scheme achieving this level of security in the standard model. We also studied
the problem on how to generalize the 3AKE protocol to GAKE protocol with group members larger
than three. A candidate construction for such GAKE was given based on multilinear maps. An open
question is to build one-round GAKE satisfying g-eCK+ security [35] with perfect forward secrecy.
It might be also interesting to construct g-eCK secure GAKE without multilinear maps.

Moreover, it is easy to see that the session key materials computed in both proposed 3AKE
and GAKE protocols involve long-term shared key that plays an extremely role in achieving g-eCK
security for those protocols. On the other hand, these long-term shared key forms the fundamen-
tal building block of group non-interactive key exchange (GNIKE) protocol. Thus formalizing the
security notions for GNIKE and constructing secure GNIKE scheme from proposed GAKE scheme
might be of independent interesting.
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A Analysis of CBDDH Assumption in the Generic Group Model

In this section, we prove a lower bound on the computational complexity of the CBDDH problem
with a generic adversary who breaks this assumption in the sense of Shoup [37].

In the generic symmetric bilinear group model, elements of G and GT are encoded as arbitrary
unique random looking strings, therefore only equality property can be directly tested by the adver-
sary. Specifically, we use an injective function ψ : Zp → {0, 1}∗ to represent the opaque encoding
of the elements of G which maps an element a ∈ Zp to string representation ψ(ga) of G and use an
similar injective function ψ1 : Zp → {0, 1}∗ to represent the encoding of the elements of GT , where p
is the group order. Internally, the simulator represents the elements of G,GT not as themselves but
as their discrete logarithms relative to some arbitrary generator g (resp. e(g, g)) . The adversary
A may interact with three kinds of oracles which compute the group operations in G, the group
operations in GT , and the bilinear pairing e : G×G→ GT from elements’ encodings.

Theorem 3. Suppose A is an algorithm that (t, εCBDDH)-solves the CBDDH problem in the symmetric
bilinear groups of order p, running within polynomial time t and making at most qG oracle queries
for the group operations in G,GT and the bilinear pairing e at all. Then the advantage εCBDDH of A
holds that∣∣∣∣∣Pr

[
A(p, ψ(1), ψ(a), b

$← {0, 1},
ψ1(Γ0), ψ1(Γ1))) = b Γb := a3; Γ1−b

$← Z∗p

]
− 1/2

∣∣∣∣∣ = εCBDDH ≤
2 · (qG + 4)2

p
.
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Proof. Consider a scenario there exist an algorithm C that plays the following game with A.
C maintains two lists of pairs: L := {(Fi, θi) : i = 1, . . . , τ − 1}, and LT := {(FT,i, θT,i) : i =

1, . . . , τT − 1}, such that at step τ0(≤ qG) in the game

τ + τT = τ0 + 4.

The θi and θT,i are set of encodings, and the Fi, FT,i ∈ Zp[A,Γ0,Γ1] are multivariate polynomials in
A,Γ0 and Γ1.

At the beginning of the game, C initializes the list L by assigning F0 := 1, F1 := A, and list
LT to FT,0 := Γ0, FT,1 := Γ1. The corresponding encodings are set to be random distinct strings in
{0, 1}∗. The lists are initialized at step τ0 := 0 by setting τ := 2 and τT := 2. C starts the game
by providing A with encodings (θ0, θ1, θT,0, θT,1). Algorithm A may make oracle queries on strings
previously obtained by C as follows:

� GroupOp: On input two encodings θi and θj for 0 < i, j < τ and an operator on either multiply
or divide, C computes Fτ := Fi ± Fj accordingly. If the Fτ is equivalent to any previous Fv for
some v < τ , then C sets θτ := θv. Otherwise, C sets θτ to a random string from {0, 1}∗ which is
distinct to any earlier encodings θu for u ∈ [τ − 1] and increment τ by 1. The group operations
in GT is proceeded similarly based on list LT .

� Pairing: On input two encodings θT,i and θT,j (0 < i, j < τ), C computes the product FT,τT :=
FT,i · FT,j . If the FT,τT equals to any previous FT,v for some v < τT , then C sets θT,τT := θv.
Otherwise C sets it to a random string from {0, 1}∗ which is distinct to any earlier encodings
θT,u for u ∈ [τT − 1] and increment τT by 1.

When A terminates with a guess bit b′ ∈ {0, 1}, after asking at most qG queries. C chooses

two random values a, γ
$← Z∗p as the secret exponent, and evaluates all the polynomials under the

assignment A := a and choice of b on Γb := a3,Γ1−b := γ. The simulation of C is perfect and reveals
nothing to A about b unless the values that C chose for indeterminates give rise to some non-trivial
equality relation. More specifically, algorithm A wins the game if for any Fi 6= Fj or any FT,i 6= FT,j ,
one of the following equations holds:

� Fi(a, a
3, γ)–Fj(a, a

3, γ) = 0

� Fi(a, γ, a
3)–Fj(a, γ, a

3) = 0

� FT,i(a, a
3, γ)–FT,j(a, a

3, γ) = 0

� FT,i(a, γ, a
3)–FT,j(a, γ, a

3) = 0

Let Fail be the event that one of these four conditions holds. When event fail occurs, then C’s
responses to A’s queries deviate from the real oracles’ responses. Since each non-trivial polynomial
Fi–Fj has degree at most 1 and FT,i–FT,j has degree at most 2. Applying the result of [36] by
Schwartz-Zippel, we can obtain that for all i, j, Pr[Fi–Fj = 0] ≤ 1/p and Pr[FT,i–FT,j ] ≤ 2/p. Thus
the algorithm A’s advantage is

εCBDDH ≤ 2 ·
((

τ

2

)
1

p
+

(
τT
2

)
2

p

)
<

2 · (qG + 4)2

p
= O(

q2G
p

).

We therefore obtain the asymptotic complexities of the CBDDH assumption against generic
attacks from the following corollary.
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Corollary 1. Any adversary that solves the CBDDH problem with constant probability 1
2 + εCBDDH

with 0 < εCBDDH < 1/2 in generic symmetric bilinear groups of order p requires Ω(
√
p) generic group

operations.

�

B Proof of Theorem 1

It is straightforward to see that two oracles accept with matching sessions would compute the same
session key. Namely the proposed protocol is correct. In the sequel, we wish to show that the
adversary is unable to distinguish random value from the session key of any fresh oracle. Without
loss of generality, we consider that the adversary chooses the test oracle πs

∗

Â
executed with its intended

partners B̂ and Ĉ.
Next we introduce the notations which might be used in the proof. Let the ephemeral keys

generated by oracles πs
Â

, πt
B̂

and πt
Ĉ

are X = gx, Y = gy and Z = gz respectively. we use the
superscript ‘*’ to highlight corresponding values processed by the test oracle and its partner oracles
(if they exist), say the ephemeral key X∗ generated by oracle πs

∗

Â
. Let D = gd, F = gf , W = gw

and V = gv denote the Diffie-Hellman (DH) keys received by an oracle πsi (i ∈ [`]) which are used to
compute the session key, where these DH keys could be either ephemeral or long-term key.

To complete the proof of Theorem 1, we only need to prove the advantage of the adversary is
negligible under target freshness cases C1, C9, C13 and C14, due to the reductions (by Proposition 1,
Proposition 2, Proposition 3 and Proposition 4.) in Section 4. The proof proceeds in a sequence
of games, following [38, 8]. Let Sδ be the event that the adversary wins the security experiment in
Game Gδ and freshness cases in the set {C1, C9, C13, C14}. Let Advδ := Pr[Sδ] − 1/2 denote the
advantage of A in Game Gδ.

Game G0. This is the original game with adversary A. The system parameters are chosen honestly
by challenger as protocol specification. Meanwhile, the challenger chooses four uniform random values

ri
$← Z∗p for 0 ≤ i ≤ 3, and sets ui := gri as public parameters. Thus we have that

Pr[S0] = 1/2 + ε = 1/2 + Adv0.

Game G1. In this game, the challenger proceeds exactly like previous game, except that we add
an abort rule. The challenger raises event aborteph and aborts, if during the simulation an ephemeral
key (say X) replied by an oracle πsi but it has been sample by another oracle or sent by adversary
before. Since there are ρ` such ephemeral keys would be sampled uniform randomly from {0, 1}λ.

Thus, the event aborteph occurs with probability Pr[aborteph] ≤ (ρ`)2

2λ
. We have that

Adv0 ≤ Adv1 +
(ρ`)2

2λ
.

Note that the ephemeral key chosen by each oracle is unique in this game.
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Game G2. In this game we want to make sure that the received Diffie-Hellman keys are correctly
formed. Technically, we add an abort condition, namely the challenger proceeds exactly as before,
but raises event aborthash and aborts if there exist two distinct (either ephemeral or long-term) public
keys M and N such that TCRHF(M) = TCRHF(N). Obviously the Pr[aborthash] ≤ εTCRHF, according
to the security property of underlying hash function. Thus we have

Adv1 ≤ Adv2 + εTCRHF.

Game G3. This game proceeds as previous game, but C aborts if one of the following guesses fails:
(i) the freshness case occurred to test oracle from the set {C1, C9, C13, C14}, (ii) the test oracle πs

∗

Â
,

(iii) its partner parties B̂ and Ĉ, and (iv) corresponding oracles (if any) πt
∗

D̂
(D̂ ∈ {B̂, Ĉ}) such that

πs
∗

Â
has a matching session to πt

∗

D̂
, in terms of specific guessed freshness case. Since there are four

considered fresh cases, ` parties and at most ρ oracles for each party, then the probability that all
above guesses of C are correct is at least 1/4(ρ`)3. Thus we have that

Adv2 ≤ 4(ρ`)3 · Adv3.

Please note that if the challenger guesses all correctly in this game, then it knows the uncompromised
Diffie-Hellman keys (and corresponding producer) used by the test oracle to compute its session key.
This can be exploited to do further reduction (e.g. to plug in the CBDDH challenger values) in the
subsequent games.

Game G4. Please first note that there are at least three uncompromised (either long-term and
ephemeral) Diffie-Hellman keys which are used by test oracle to generate its key material k∗, as
otherwise the test oracle is not g-eCK-fresh any more. We call such guessed three uncompromised
DH keys as target DH keys.

Technically, this game is proceeded as previous game, but the challenger C replaces the key
material ksi with random value k̃si for oracles {πsi : i ∈ [`], s ∈ [ρ]} which satisfy the following
conditions:

� The ksi is computed involving the three target DH keys which are guessed by C for test oracle,
and

� Those target DH keys used by πsi are from three distinct parties.

The second condition is necessary, because the adversary can easily result in one oracle receiving
DH keys from certain party which are all uncompromised via e.g. Send query RegisterCorrupt queries.
On the other side, if those uncompromised DH keys are not from distinct parties, that might imply
all DH keys from certain party are chosen (or revealed) by adversary. In this case, the adversary
can compute the session key herself. The above two conditions are used to ensure that the changed
key materials of oracles can not be trivially generated by adversary. This also enables us to embed
CBDDH challenge instance into the simulation of those modified oracles.

If there exists an adversary A can distinguish the Game G4 from Game G3 then we can use it
to construct a distinguisher D to solve the CBDDH problem as follows. Given a CBDDH challenge
instance (g, gµ,Γ) ∈ G2 × GT , the goal of D is to determine whether Γ = e(g, g)µ

3
or a random

element from GT where g is a generator of G. Let p(h) = p0 + p1h + p2h
2 + p3h

3 be a polynomial
of degree 3 over Z∗p. The detail form of this polynomial will be discussed in the simulation based on
specific freshness case. Let q(h) = q0 +q1h+q2h

2 +q3h
3 be a random polynomial of degree 3 over Z∗p.

In the following, D simulates the challenger for A as previous game but with the some modifications
based on its correct guesses (otherwise it aborts).
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1. Case C1. In this case D does the following modifications:

(a) Set X∗ := gµrx , Y ∗ := gµry and Z∗ := gµrz where rx, ry, rx
$← Z∗p.

(b) Compute the key material of test oracle and its partner oracles as:

� k∗
Â

= k∗
B̂

= k∗
Ĉ

:= Γrxryrz ·e(CZ∗, BY ∗)a · e(Z∗, X∗)b · e(BY ∗, X∗)c.
(c) Compute those tags of test oracle and its partner oracles as:

� t∗X := (X∗)r3(h
∗
X)3+r2(h∗X)2+r1h∗X+r0 ,

t∗Y := (Y ∗)r3(h
∗
Y )3+r2(h∗Y )2+r1h∗Y +r0 and

t∗Z := (Z∗)r3(h
∗
Z)

3+r2(h∗Z)
2+r1h∗Z+r0 .

2. Case C9. We assume there is an oracle πt
∗

B̂
having matching session to test oracle without loss

of generality. In this case D does the following modifications:

(a) Set C := gµrc , X∗ := gµrx and Y ∗ := gµry where rc, rx, ry
$← Z∗p.

(b) Set polynomial p(h) to satisfy that p(h) = (h − h∗X)(h − h∗Y )(h − hC), where h∗Y =
TCRHF(Y ∗), h∗X = TCRHF(X∗) and hC = TCRHF(C).

(c) Set ui = gµpigqi for 0 ≤ i ≤ 3.

(d) Compute the tags tC = Cq(hC), t∗Y = (Y ∗)q(h
∗
Y ) and t∗X = (Z∗)q(h

∗
X).

(e) Compute the key material of test oracle and its partner oracle as:

� k∗
Â

= k∗
B̂

:= Γrxryrc ·e(CV ∗, BY ∗)a · e(( tV
V q(hV ) )rx/p(hV ), BY ∗) · e(C,X∗)b.

(f) Compute the key material of other oracles of Ĉ in terms of the following situations:

� There are at most two DH keys in {F, V,D,W} which are equivalent to keys in
the set {X∗, Y ∗} and from different parties. Since the adversary can either register
these keys as public key for dishonest users or replay them as ephemeral key. Recall
that these DH keys in {F, V,D,W,C,Z} should be distinct in corresponding sid.
We assume that E = X∗ and D = Y ∗ for example, then the kl

Ĉ
is computed as:

kl
Ĉ

:= Γrxryrc · e(( tW
W q(hW ) )rc/p(hW ), FV ) · e(( tV

V q(hV ) )rc/p(hV ), D).

� The DH keys (either long-term or ephemeral public key) from one party do not belong
to the set {X∗, Y ∗}. We assume that {F, V } /∈ {X∗, Y ∗} for example, then the kl

Ĉ
is

computed as:

� kl
Ĉ

:= e(( tE
Eq(hE) )rc/p(hE)( tV

V q(hV ) )rc/p(hV ), DW ) · e(FV,DW )z when V /∈ {X∗, Y ∗}.

3. Case C13. In this case D does the following modifications:

(a) Set A := gµra , B := gµrb , and C := gµrc , where ra, rb, rc
$← Z∗p.

(b) Set polynomial p(h) to satisfy that p(h) = (h − hA)(h − hB)(h − hC), where hA =
TCRHF(A), hB = TCRHF(B) and hC = TCRHF(C).

(c) Set ui = gµpigqi for 0 ≤ i ≤ 3. Please note that we have that u0u
h
1u

h2
2 u

h3
3 = gµp(h)gq(h)

and u0u
h
1u

h2
2 u

h3
3 = gµp(h)gq(h).

(d) Compute the tags tA = Aq(hA), tB = Bq(hB) and tC = Cq(hC).

(e) Replace the value e(B,C)a with Γrarbrc when compute the key material k of oracles πs
Â

,

πt
B̂

and πl
Ĉ

which involve all public keys (A,B,C) including the test oracle πs
∗

Â
, more

specifically:

� ks
Â

:= Γrarbrc · e(CV,BW )x · e(( tW
W q(hW ) )ra/p(hW ), C) · e(( tV

V q(hV ) )ra/p(hV ), BW ).
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� kt
B̂

:= Γrarbrc · e(CV,AW )y · e(( tW
W q(hW ) )rb/p(hW ), C) · e(( tV

V q(hV ) )rb/p(hV ), AW ).

� kl
Ĉ

:= Γrarbrc · e(BV,AW )z · e(( tW
W q(hW ) )rc/p(hW ), B) · e(( tV

V q(hV ) )rc/p(hV ), AW ).

(f) Compute the secret key material k for other oracles of parties Â, B̂ and Ĉ, following the
similar approach as did in the proof of Case C9 when computing the key material for
oracles of uncorrupted party Ĉ (i.e. the modification in the step 2f). The common point
here is that we should simulate the key material for situations when there exist DH keys
equal to challenged DH keys (i.e. A or B or C).

4. Case C14. In this case D does the following modifications:

(a) Set X∗ := gµrx , B := gµrb and C := gµrc where rx, rb, rc
$← Z∗p.

(b) Set polynomial p(h) to satisfy that p(h) = (h − h∗X)(h − hB)(h − hC), where hB =
TCRHF(B), h∗X = TCRHF(X∗) and hC = TCRHF(C).

(c) Set ui = gµpigqi for 0 ≤ i ≤ 3.

(d) Compute the tag tB = Bq(hB), tC = Cq(hC) and the tag t∗X = (X∗)q(h
∗
X).

(e) Compute the key material k∗
Â

of test oracle πs
∗

Â
, kt

B̂
of oracles πt

B̂
and kl

Ĉ
of oracles πl

Ĉ
which compute the session keys using public keys (X∗, B,C) as:

� k∗
Â

:= Γrxrbrc ·e(CV,BW )a · e(( tW
W q(hW ) )rx/p(hW ), C) · e(( tV

V q(hV ) )rx/p(hV ), BW ).

� kt
B̂

:= Γrxrbrc ·e(CV,X∗D)y · e(( tD
Dq(hD) )rb/p(hD), C) · e(( tV

V q(hV ) )rb/p(hV ), DX∗).

� kl
Ĉ

:= Γrxrbrc ·e(BW,X∗D)z · e(( tD
Dq(hD) )rc/p(hD), B) · e(( tW

W q(hW ) )rc/p(hW ), DX∗).

(f) Change the computation of secret key material k of other oracles of B̂ and Ĉ following
the similar approach as did in the proof of Case C9 when computing the key material for
oracles of uncorrupted party Ĉ. One could think of replacing the symbols (e.g. Y ∗) in the
step 2f with the symbols (e.g. B) in this case.

Those modified tags are consistent with the original form. we make use of the fact there is no
collision on those hash values due to the result of previous game. To answer the RevealKey query for
those modified oracles, the D will use the changed key material (e.g. kB̂) to compute the final session
key as protocol specification. With respect to the other queries, the D simulates them honestly as the
challenger using corresponding values chosen by herself. Without flipping the bit b, the Test-query is
replied with the session key which is computed using modified key material. Based on the condition
that all guesses of D are correct, if Γ = e(g, g)µ

3
, then the simulation is equivalent to Game G3;

otherwise the simulation is equivalent to Game G4. At the end of the game, D returns what A
returns to the CBDDH challenger. If A can distinguish the real key from the random value, that
implies D solves the CBDDH problem. We therefore obtain that

Adv3 ≤ Adv4 + εCBDDH.

Game G5. In this game, we change function PRF(k̃∗
Â
, ·) to a truly random function for test oracle

and its partner oracles (if they exist). We make use of the fact that the secret seed k̃∗
Â

of test oracle
is a truly random value. Any PPT algorithm distinguishing the Game G5 from Game G4 implies that
it is able to break the security of the pseudo-random function PRF. Thus we have that

Adv4 ≤ Adv5 + εPRF.
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Note that in this game the session key returned by Test-query is totally a truly random value which
is independent to the bit b and any messages. Thus the advantage that the adversary wins this game
is Adv5 = 0.

Sum up the probabilities from Game G0 to Game G5, we proved this theorem.

C Proof of Theorem 2

Basically, the proof can be generalized from the proof of Theorem 1 due to the intimate relationship
between proposed 3AKE and GAKE schemes. We will focus on the largest group size n+ 1 without
loss of generality, because we need to evaluate the maximum advantage of adversary to break the
protocol. For the test query involving group of size smaller than n+1, the simulation is quite similar.

Let Sδ be the event that the adversary wins the security experiment in Game Gδ. Let Advδ :=
Pr[Sδ]− 1/2 denote the advantage of A in Game Gδ.

Game G0. This is the original game with adversary A. The system parameters are chosen honestly
by challenger as protocol specification. However, the challenger chooses n+1 uniform random values

{rj}
$← Z∗p for 0 ≤ j ≤ n, and sets uj := grj as public parameters. Thus we have that

Pr[S0] = 1/2 + ε = 1/2 + Adv0.

Game G1. This game proceeds as the same as the Game 2 in the proof of Theorem 1. With the
similar argument from the proof of Game 2 of Theorem 1, we have that

|Adv0 − Adv1| ≤
(ρ`)2

2λ
+ εTCRHF.

Game G2. This game proceeds as previous game, but C aborts if one of the following guesses fails:
(i) the freshness case occurred to test oracle from all n+ 2 possibilities, (ii) the test oracle, (iii) the
n intended communication partners of test oracle, and (iv) every oracles (if they exist in terms of
specific guessed freshness case) which have matching session to test oracle. Since there are n+2 fresh
cases that need to do proof simulation, ` parties at all and at most ρ oracles for each party, then the
probability that all above guesses of C are correct is at least 1

(n+2)(ρ)n+1( `
n+1)

. Thus we have that

Adv1 ≤ (n+ 2)(ρ)n+1

(
`

n+ 1

)
· Adv2.

Game G3. Please note that the g-eCK freshness definition guarantees that for our protocol there
are at least n+ 1 Diffie-Hellman (DH) keys from all session participants of test fresh oracle are not
compromised by adversary. We call such guessed n+ 1 uncompromised DH keys as target DH keys.
This game is proceeded as previous game, but the challenger C replaces the key material ksi with

random value k̃si for oracles {πsi : i ∈ [`], s ∈ [ρ]} which satisfy the following conditions:

� The ksi is computed involving the n+ 1 target DH keys which are guessed by C for test oracle,
and

� Those target DH keys used by πsi are from n+ 1 distinct parties.
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Of course if two oracles have matching sessions and satisfy both above conditions, then we could use
the same modified random key material to generate corresponding session key. The above two con-
ditions ensure that the changed key materials of oracles can not be trivially generated by adversary.
This also enables us to embed nMDDH challenge instance into the simulation of all oracles satisfying
above conditions. The second condition is used to exclude the situation that the DH keys from some
party are all compromised in which case the adversary can simply compute the session key.

If there exists an adversary A can distinguish the Game 3 and 2 then we can use it to construct
a distinguisher D to solve the nMDDH problem. Given a nMDDH challenge instance (g, gµ,Γ) ∈
G2 ×GT , the goal of D is to determine whether Γ = me(g, . . . , g)µ

n+1
or a random element from GT

where g is a generator of G. Meanwhile, D simulates the challenger for A as previous game but with
the following modifications based on its correct guesses (otherwise it aborts). We highlight that,
after all those correct guesses, D knows the ‘distribution’ of all n+ 1 uncompromised target DH keys
among honest parties and theirs oracles. Namely D knows the facts about which parties’ long-term
keys are not corrupted (if any) and which oracles’ ephemeral keys are not revealed (if any), under
specific guessed freshness cases. Let p(h) =

∑n+1
j=0 p

hj
j = (h − hW1) . . . (h − hWn+1) be a polynomial

of degree n + 1 over Z∗p such that p(hW1) = p(hW2), . . . ,= p(hWn+1) = 0 where hWj = TCRHF(Wj)
for 1 ≤ j ≤ n+ 1 and each Wj is either uncorrupted long-term key Dj or uncompromised ephemeral

key Xj in specific freshness case. Let q(h) =
∑n+1

j=0 q
hj
j be a random polynomial of degree n+ 1 over

Z∗p. It will also set uj = gµpjgqj for 0 ≤ j ≤ n + 1. Meanwhile, we would plug the challenge value
gµ to all n+ 1 target uncompromised DH keys in specific (guessed) freshness case, i.e. D generates

the DH key as Wj = gµrwj where rwj
$← Z∗p. Moreover, the tag tWj of Wj would be computed as

tWj = W
q(hWj )

j . The remaining problem is to simulate the RevealKey query and Test query correctly
in terms of freshness case.

On the next we discuss how to simulate the key material for any oracle πsi (i ∈ [`], s ∈ [ρ]),
including test oracle and its partner oracle (if they exists). In the sequel, we let (D1, tD1 , X1, tX1)
denote the values generated for oracle πsi , and let {Dj , tDj , Xj , tXj}2≤j≤n+1 denote a set of values
received by oracle πsi .

9 We consider the following cases (which cover all) concerning the DH keys of
πsi :

1. Case 1: the ephemeral key X1 is generated from challenge value gµ.

2. Case 2: the long-term key D1 is generated from challenge value gµ.

3. Case 3: neither long-term key D1 nor ephemeral key X1 is generated from challenge value gµ.

It is not hard to see, in the Case 3 D can simulate the key honestly as protocol specification.
Thus we only need to do modifications on oracles πsi under Case 1 and Case 2. With respect to the

Case 1, the d1
$← Z∗p is chosen by D as protocol specification and X1 is generated using challenge

value as X1 := gµrx1 where rx1
$← Z∗p. Then the tag tX1 can be computed as tX1 := X

q(hX1
)

1 and

hX1 = TCRHF(X1). With respect to the Case 2, the x1
$← Z∗p might be chosen by D and D1

can be set as D1 := gµrd1 where rd1
$← Z∗p. The tag tD1 can be computed as tD1 := D

q(hD1
)

1 and
hD1 = TCRHF(D1).

Let W1 denote the DH key generated for oracle πsi such that W1 ∈ {D1, X1} and W1 is generated
using challenge value as gµrw1 where rw1 ∈ {rx1 , rd1} depending on the value of W1. We further

9Please forget the (subscripts) positions of DH keys recorded in sidsi of πsi for the time being. We here need to
differentiate the DH keys generated by oracle πsi with other DH keys received by πsi in the following modification, even
though those DH keys of πsi might be located in different position in sidsi rather than the first place.
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let W 1 = gw1 denote the DH key generated for oracle πsi such that W 1 ∈ {D1, X1} and W 1 is not
generated using challenge value. Then we could rewrite the key material ksi of oracle πsi as

ksi =me(D2X2, . . . , Dn+1Xn+1)
d1+x1 = me(D2X2, . . . , Dn+1Xn+1)

w1+w1

=me(D2X2, . . . , Dn+1Xn+1)
w1 ·me(D2X2, . . . , Dn+1Xn+1)

w1 .

Since the w1 is chosen by D then it is able to compute the value

α = me(D2X2, . . . , Dn+1Xn+1)
w1 .

For both above cases, we further consider the following disjoint event that covers all possibilities.

� Event 1: Firstly, we consider the event that every DH key tuple (Dj , Xj) for 2 ≤ j ≤ n + 1
received by oracle πsi consists of one DH key that is computed using challenge value gµ. As
all values recorded in sidsi are distinct, so that in each received DH key tuple (Dj , Xj) there
is at most one DH key that is generated using challenge value in this event. We further let
Wj = gµrwj for 2 ≤ j ≤ n+1 denote the DH key received by oracle πsi such that Wj ∈ {Dj , Xj}
and Wj is generated using challenge value. And we let W j = gwj for 2 ≤ j ≤ n+ 1 denote the
DH key received by oracle πsi such that W j ∈ {Dj , Xj} and W j is not generated using challenge
value for 2 ≤ j ≤ n+1. Then in this event, D could compute the key material ksi using the value
Γ, randomness rw1 and the value gµwj extracted from tW j

, and n-multilinear map operations.

To elaborate the simulation of ksi , we rewrite the β := me(D2X2, . . . , Dn+1Xn+1)
w1 as following:

β :=me(gµw2rw1 , D3X3, . . . , Dn+1Xn+1) ·me(W2, D3X3, . . . , Dn+1Xn+1)
w1

=me(gµw2rw1 , D3X3, . . . , Dn+1Xn+1) ·me(W2, g
µw3rw1 , D4X4, . . . , Dn+1Xn+1)

·me(W2,W3, D4X4, . . . , Dn+1Xn+1)
w1

=me(gµw2rw1 , D3X3, . . . , Dn+1Xn+1) ·me(W2, g
µw3rw1 , D4X4, . . . , Dn+1Xn+1)

·me(W2,W3, g
µw4rw1 , D5X5, . . . , Dn+1Xn+1)·

. . .

·me(W2,W3,W4, . . . ,Wn−1, g
µwnrw1 , Dn+1Xn+1)

·me(W2,W3,W4, . . . ,Wn−1,Wn, g
µwn+1rw1 ) ·me(W2,W3, . . . ,Wn+1)

w1 .

The above ‘expansion’ of the equation is only conceptual that is consistent to the original com-
putation of β. However this enables us to embed the challenge value Γ into the key material ksi
and compute ksi without knowing w1. More specifically we change β to β′ by replacing the value
me(W2,W3, . . . ,Wn+1)

w1 in above computation of β with value Γrw1 ···rwn+1 and computing val-

ues gµwj from tag tW j
as gµwj = (

tWj

W
q(h

Wj
)

j

)

1
p(h

Wj
)

where tW j
∈ {tDj , tXj} and 2 ≤ j ≤ n + 1.

Eventually we compute the key material ksi = α · β′ and use it to compute the final session key
of oracle πsi .

� Event 2: On the second, we consider the event that there exists one DH key tuple (Dj , Xj) (2 ≤
j ≤ n+1) received by oracle πsi which are all not generated using challenge value gµ. Then, in or-
der to simulate the key material ksi , the jobs of D are only to compute gµdj from tDj (if Dj is cho-

sen by adversary, as otherwise D knows corresponding exponent dj) as gµdj := (
tDj

D
q(hDj

)

j

)
1

p(hDj
)
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and to compute gµxj from tXj as gµxj := (
tXj

X
q(hXj

)

j

)
1

p(hXj
)
. Let {ηl} for 1 ≤ l ≤ n − 1 be a set

of variables each of which stores distinct integer number ranging from 2 to n + 1 except for
j. Thus the key material is generated as ksi = α ·me(gµdjrw1gµxjrw1 , Dη1Xη1 , . . . , Dηn−1Xηn−1),
which is consistent to original form.

In a nutshell D is able to simulate all session keys appropriately in terms of the tags of both
ephemeral key and long-term key. If Γ = me(g, . . . , g)µ

n+1
then the simulation is exactly equivalent

to previous game, otherwise it equals to this game. By applying the security of nMDDH assumption,
we therefore obtain that

Adv2 ≤ Adv3 + εnMDDH.

Game G4. In this game, we change function PRF(k̃∗i , ·) to a truly random function for test oracle

and its partner oracles (if they exist). We make use of the fact, that the secret seed k̃∗i of test oracle
is a truly random value. If there exists a polynomial time adversary A can distinguish the Game
G4 from Game G3. Then we can construct an algorithm B using A to break the security of PRF.
Exploiting the security of PRF, we have that

Adv3 ≤ Adv4 + εPRF.

Note that in this game the session key returned by Test-query is totally a truly random value which
is independent to the bit b and any messages. Thus the advantage that the adversary wins this game
is Adv4 = 0.

Sum up the probabilities from Game G0 to Game G4, we proved this theorem.
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