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Abstract. In computer forensics, log files are indispensable resources that support
auditors in identifying and understanding system threats and security breaches. If
such logs are recorded locally, i.e., stored on the monitored machine itself, the prob-
lem of log authentication arises: if a system intrusion takes place, the intruder might
be able to manipulate the log entries and cover her traces. Mechanisms that cryp-
tographically protect collected log messages from manipulation should ideally have
two properties: they should be forward-secure (the adversary gets no advantage from
learning current keys when aiming at forging past log entries), and they should be
seekable (the auditor can verify the integrity of log entries in any order or access
pattern, at virtually no computational cost).
We propose a new cryptographic primitive, a seekable sequential key generator (SSKG),
that combines these two properties and has direct application in secure logging. We
rigorously formalize the required security properties and give a provably-secure con-
struction based on the integer factorization problem. We further optimize the scheme
in various ways, preparing it for real-world deployment. As a byproduct, we develop
the notion of a shortcut one-way permutation (SCP), which might be of independent
interest.
Our work is highly relevant in practice. Indeed, our SSKG implementation has become
part of the logging service of the systemd system manager, a core component of many
modern commercial Linux-based operating systems.

1 Introduction

Pseudorandom generators. A pseudorandom generator (PRG) is an unkeyed cryptographic
primitive that deterministically expands a fixed-length random seed to a longer random-
looking string [18]. Most often, PRGs find application in environments where truly random
bits are a scarce resource; for instance, once a system managed to harvest an initial seed
of, say, 128 uniformly distributed bits from a suitable (possibly physical) entropy source,
a PRG can securely stretch this seed to a much larger number of bits. While such mecha-
nisms are indispensable for constrained devices like smartcards, (variants of) PRGs are also
long-serving components of modern PC operating systems. A well-known example is the
/dev/urandom device available in virtually all current Linux/UNIX derivates.

Other applications exploit the feature that the output of PRGs can be re-generated : as
PRGs are deterministic primitives, the entire output sequence can be reconstructed from
the initial seed, whenever needed. This directly allows employment of PRGs for symmetric
encryption (formally, one could view stream ciphers like RC43 or AES-CTR as PRGs with
practically infinite output length), but also in distributed systems, where locally separate
agents can synchronously generate identical sequences of (pseudo-)random bits.

For PRGs with very large output length (e.g., stream ciphers) we introduce the notion
of seekability; a PRG is seekable if, for a fixed seed, ‘random access’ to the output sequence
is possible. For example, the PRG obtained by operating a block cipher in counter mode is
seekable: one can quickly jump to any part of the output string by setting the counter value

3 In fact, practical distinguishing attacks against RC4 are known [11]; RC4 is hence a PRG only
‘syntax-wise’.



to the right ‘address’. In contrast, RC4 is not known to be seekable: presumably, in order to
jump to position k in the output string, one has to iterate the cipher k times.

Forward security. The concept of forward security (FS), best-known from the context of
cryptographic key establishment (KE), expresses the inability of an adversary to gain ad-
vantage from the ‘corruption’ of entities. For example, consider an instance of a two-party
public key-authenticated KE protocol. We say that the established session key enjoys for-
ward security4 if an adversary cannot obtain any useful information about that key, even if
participants, after completing the protocol instance, surrender their respective secret keys.
In key exchange, forward security is recognized as one of the most fundamental security
goals [29,8].

Although less commonly seen, the notion of forward security extends to other cryp-
tographic settings and primitives. For instance, in forward-secure public key encryption
(FS-PKE, [7]), time is subdivided into a discrete number of epochs t0, t1, . . ., and messages
are encrypted in respect to a combination (pk, tk) of public key and time epoch. Recipients,
starting in epoch t0 with an initial key sk0, use an update procedure ski+1 ← f(ski) to
evolve the decryption key from epoch to epoch. An FS-PKE is correct if a recipient holding
key skk can decrypt all ciphertexts addressed to corresponding epoch tk; it is forward-secure
if secrecy of all messages addressed to ‘past’ epochs tj , j < k, is preserved even if the ad-
versary obtains a copy of skk. Clearly, FS-PKE only offers a security advantage over plain
public key encryption if users securely erase ‘expired’ decryption keys.

Similarly to FS-PKE, also forward-secure signature schemes [2] work with time epochs
and evolving keys; briefly speaking, their security properties ensure that an adversary holding
an epoch’s signing key skk cannot forge signatures for prior epochs tj , j < k (i.e., ‘old’
signatures remain secure).

Secure logging. Computer log files, whether manually or mechanically evaluated, are among
the most essential resources that support system administrators in their day-to-day business.
Such files are generated on hosts and communication systems, and record a large variety
of system events, including users logging on or off, network requests, memory resources
reaching their capacity, malfunctioning of disk drives, and crashing software.

While regular analysis of system logs allows administrators to maintain systems’ health
and long uptimes, log files are also indispensable in computer forensics, for the identification
and comprehension of system intrusions and other security breaches. However, if logs are
recorded locally (i.e., on the monitored machine itself) the problem of log authentication
arises: if a system intrusion takes place, the intruder might be able to manipulate the log
entries and cover her traces. So-called ‘log sanitizers’ aim at frustrating computer forensics
and are known to be a standard tool in hackers’ arsenal.

Two approaches to avert the threat of adversarial modification of audit logs seem promis-
ing. One such option is the deployment of online logging. Here, log messages are transferred
over a network connection to a remote log sink immediately after their creation, in the ex-
pectancy that entries caused by system intrusions have reached their destination before they
can be tampered with. As a side effect, online logging might also ease security auditing by
the fact that log entries are concentrated at a single point. However, as every local buffering
of log records increases the risk of their suppression by the intruder, full-time availability
of the log sink is an absolute security requirement in this setting. But observe that the in-
truder might be able provoke downtimes at the sink (e.g., by running a DOS attack against
it) or might disrupt the network connection to it (e.g., by injecting reset packets into TCP
connections, jamming wireless connections, etc.). An independent problem comes from the
difficulty to select an appropriate level of granularity for the events to be logged. For in-
stance, log files created for forensic analysis might ideally contain verbose information like
an individual entry for every file opened, every subprocess started, and so on. Network con-
nections and log sinks might quickly reach their capacities if events are routinely reported

4 in the context of key establishment also known as ‘forward secrecy’

2



in such a high resolution. This holds in particular if log sinks serve multiple monitored hosts
simultaneously.

Storing high volume log data is less an issue in secured local logging where a networked
log sink is not assumed. In such a setting, log messages are protected from adversarial
tampering by cryptographic means. It cannot be expected that standard integrity-protecting
primitives like message authentication codes (MAC) or signature schemes on their own
will suffice to solve the problem of log authentication: a skilled intruder will likely manage
to extract corresponding secret keys from corrupted system’s memory. Instead, forward-
secure signatures and forward-secure message authentication schemes have been proposed for
secure logging [28,24,34]. Clearly, local logging can never prevent the intruder from deleting
stored entries. However, cryptographic components might ensure that such manipulations
are guaranteed to be indicated to the log auditor.

In practice, system administrators are not required to opt for either the one or the
other approach: online logging and secured local logging smoothly work in combination. For
instance, log events might be captured with high granularity and stored locally, protected
by an appropriate forward-secure integrity protection. In addition, a specified subset of
events (like login failures) might be forwarded for analysis to a central sink. Every downtime
of the sink can be bridged using local buffering, as all entries stored in these buffers are
cryptographically integrity-protected.

1.1 Contributions, organization, applications

The key contribution of this paper is the development of a new cryptographic primitive:
a seekable sequential key generator (SSKG). Briefly, a sequential key generator (SKG) is a
stateful PRG that outputs a sequence of fixed-length strings — one per invocation. The
essential security property is indistinguishability of these strings from uniformly random.
For SSKG, we additionally require seekability, i.e., the existence of an efficient algorithm
that allows to jump to any position in the output sequence. For both, SKG and SSKG, we
demand that indistinguishability hold with forward security.

This paper is organized as follows. We start in Sections 2 and 3 by formalizing the
functionality and security properties of SKG and SSKG. We show that a related primitive
by Bellare and Yee securely instantiates an SKG; however, it is not seekable. Aiming at
constructing an SSKG, we introduce in Section 4 an auxiliary primitive, a shortcut one-
way permutation (SCP), that we instantiate in the factoring-based setting. In Section 5
we expose our SSKG; it is particularly efficient, taking one modular squaring operation
and one hash function evaluation per invocation. We conclude in Section 6 by proposing
further optimizations that substantially increase efficiency of our SSKG, making it ready for
deployment in practice.

We argue that a (seekable) SKG is the ideal primitive to implement a secured local logging
system, as described above. The construction is immediate: the strings output by the SKG
are used as keys for a MAC which is applied to all log messages. After each authentication
tag has been computed and appended to the particular log message, the SKG is evolved to
the next state, making the described authentication forward-secure. The log auditor, starting
with a copy of the SKG’s original seed, can recover all MAC keys and verify authenticity
of all log entries. Typically, log auditors will require random access to these MAC keys —
SSKGs provide exactly this functionality.

Further applications for SKGs and SSKGs. Potential applications of SKG and SSKG are
given not only by secure logging, but also by digital cameras, voice recorders and backup
systems [28]. In more detail, digital cameras could be equipped with an authentication
mechanism that individually authenticates every photo taken. Such cameras could support
modern journalism that, when reporting from armed conflict zones, is more and more reliant
on amateurs for the documentation of events; in such settings, where post-incidental (digital)
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manipulation inherently has to be anticipated, cryptographic SKG-like techniques could
support the verification of authenticity of reported images.

1.2 Related work

Secured local logging. An early proposal to use forward-secure cryptography to protect
locally-stored audit logs is by Kelsey and Schneier [20,21,28]. The core of their scheme
is an (evolving) ‘authentication key’: for each time epoch ti there is a corresponding au-
thentication key Ai. This key is used for multiple purposes: as a MAC key to authenticate
all log messages occurring in epoch ti, for deriving an epoch-specific encryption key Ki by
computing Ki ← H0(Ai), and for computing next epoch’s authentication key via iteration
Ai+1 ← H1(Ai) (where H0, H1 are hash functions). The scheme also serves as a basis for
the construction of Stathopoulos, Kotzanikolaou, and Magkos [30], who investigate the role
of secure logging in public communication networks. Further, an implementation of [28] in
tamper-resistant hardware is reported by Chong, Peng and Hartel [9]. Unfortunately, the
scheme by Kelsey and Schneier lacks a formal security analysis.5

The first rigorous analysis of forward-secure secret key cryptography was given by Bellare
and Yee [3]. They propose constructions of forward-secure variants of PRGs, symmetric
encryption schemes, and message authentication codes, and analyze them in respect to
formal security models. We anticipate here that our security definitions are strictly stronger
than those from [3], capturing a larger class of application scenarios.

The work of Holt [14] can be seen as an extension of [28]. With logcrypt, the author
proposes a symmetric scheme and an asymmetric scheme for secure logging. While the
former is similar to [28] (but apparently offers provable security), the latter bases on the
forward-secure signature scheme by Bellare and Miner [2]. Holt also discusses the efficiency
penalties experienced in the asymmetric variant. We finally note that [14] suggests to store
regular metronome entries in log files in order to thwart truncation attacks where adversary
cuts off the most recent set of log entries.

Ma and Tsudik propose deployment of forward-secure sequential aggregate signatures for
integrity-protected logging [23,24]. Their provably-secure construction builds on compact
constant-size authenticators with all-or-nothing security (i.e., if any single log message is
suppressed by the adversary, this will be noticed). Such aggregate signatures naturally defend
against truncation attacks, making Holt’s metronome entries disposable.

Waters, Balfanz, Durfee, and Smetters [32] identify searchable audit logs as an application
of identity-based encryption. Here, in order to increase users’ privacy, log entries are not only
authenticated but also encrypted. This encryption is done in respect to a set of keywords;
records encrypted towards such keywords are identifiable and decryptable by agents who
hold keyword-dependent private keys.

Another interesting approach towards forward-secure logging was proposed by Yavuz
and Ning [33], and Yavuz, Ning, and Reiter [34]. In their scheme, the key evolving procedure
and the computation of (aggregatable) authentication tags take not more than a few hash
function evaluations and finite field multiplications each; these steps are hence implementable
on sensors and other devices with constrained computing power. However, the required
workload on verifier’s side is much higher: one exponentiation per log entry.

An IETF-standardized secure logging scheme is signed syslog messages by Kelsey, Callas,
and Clemm [19]. The authors describe an extension to the standard UNIX syslog facility that
authenticates log entries via a regular signature scheme (e.g., DSA). The scheme, however,
does not provide forward security.

We conclude by recommending Itkis’ excellent survey on methods in forward-secure cryp-
tography [16].

5 It is, in fact, not difficult to see that the scheme is generically insecure (i.e., a security proof
cannot exist).
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Seekable PRGs. We are not aware of any work so far that focuses on the seekability of PRGs.
The observation that block ciphers operated in counter mode can be seen as seekable PRGs,
in contrast to most other stream ciphers, is certainly folklore. We point out that the famous
Blum-Blum-Shub PRG [4,5] is forward-secure. Moreover, its underlying number-theoretic
structure seems to allow for seekability. Unfortunately it is not efficient: the computation of
each individual output bit requires one modular squaring.

2 Sequential key generators

We introduce sequential key generators (SKG) and their security properties. Note that a
similar primitive, stateful generator, was proposed by Bellare and Yee [3]. However, our
syntax is more versatile and our security models are stronger, as we will see. We extend
SKGs to (seekable) SSKGs in Section 3.

2.1 Functionality and syntax

An SKG consists of four algorithms: GenSKG generates a set par of public parameters,
GenState0 takes par and outputs an initial state st0, update procedure Evolve maps each
state sti to a successor state sti+1, and GetKey algorithm derives from any state sti a cor-
responding (symmetric) key Ki. Keys K0,K1, . . . are supposed to be used in higher level
protocols, for example as keys for symmetric encryption or message authentication schemes.

Typically, SKG instances are not run in a single copy; rather, after distributing ‘clones’
of initial state st0 to a given set of parties, several copies of the same SKG instance are
run concurrently and independently, potentially on different host systems, not necessarily
in synchronization. If Evolve and GetKey algorithms are deterministic, respective sequences
K0,K1, . . . of computed symmetric keys will be identical for all copies. This setting is illus-
trated in Figure 1 and formalized as follows.

Definition 1 (Syntax of SKG). A sequential key generator is a tuple SKG = {GenSKG,
GenState0,Evolve,GetKey} of efficient algorithms as follows:

– GenSKG(1λ). On input of security parameter 1λ, this algorithm outputs a set par of public
parameters.

– GenState0(par). On input of public parameters par, this algorithm outputs an initial state
st0.

– Evolve(sti). On input of state sti, this deterministic algorithm outputs ‘next’ state sti+1.
For convenience, for any m ∈ N, by Evolvem we denote the m-fold composition of Evolve,
i.e., Evolvem(sti) = sti+m.

– GetKey(sti). On input of state sti, this deterministic algorithm outputs key Ki ∈ {0, 1}`(λ),
for a fixed polynomial `. For convenience, for any m ∈ N, we write GetKeym(sti) for
GetKey(Evolvem(sti)).

We also pose the informal requirement on Evolve algorithm that it securely erase state sti
after deriving state sti+1 from it. Note that secure erasure is generally considered difficult
to achieve and requires special care [12].

2.2 Security requirements

The fundamental security property of SKGs is the indistinguishability of keys Ki from
random strings of the same length. Intuitively, for any n of adversary A’s choosing, target
key Kn is required to be indistinguishable from random even if A has access to all other keys
Ki, i 6= n. This feature ensures generic composability of SKGs with applications that rely
on uniformly and independently distributed keys Ki. In addition to the indistinguishability
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GenSKG GenState0

Evolve Evolve Evolve Evolve

Evolve Evolve Evolve Evolve

par

st0 st1 st2 st3 st4

st0 st1 st2 st3 st4

Fig. 1. Interplay of GenSKG, GenState0, and Evolve algorithms of an SKG. The figure shows two
copies of the same SKG instance running in parallel. GetKey algorithm can be applied to each
intermediate state sti to derive key Ki.

requirement, forward security demands that an ‘old’ key Kn remain secure even when A
learns state stm, for any m > n (e.g., by means of a computer break-in).

We give two game-based definitions of these indistinguishability notions: one with and
one without forward security.

Definition 2 (IND and IND-FS security of SKG). A sequential key generator SKG is
indistinguishable against adaptive adversaries (IND) if for all efficient adversaries A =
(A1,A2) that interact in experiments ExptIND,b from Figure 2 the following advantage func-
tion is negligible, where the probabilities are taken over the random coins of the experiment
(including over A’s randomness):

AdvIND
SKG,A(λ) =

∣∣∣Pr
[
ExptIND,1SKG,A(1λ) = 1

]
− Pr

[
ExptIND,0SKG,A(1λ) = 1

]∣∣∣ .
The SKG is indistinguishable with forward security against adaptive adversaries (IND-FS)
if analogously defined advantage function AdvIND-FS

SKG,A (λ) is negligible.

ExptIND,bSKG,A(1λ):
(a) KList← ∅
(b) par←R GenSKG(1λ)
(c) st0 ←R GenState0(par)

(d) (state, n)←R A
OKey

1 (par)
– If A queries OKey(i):

(a) KList← KList ∪ {i}
(b) Ki ← GetKeyi(st0)
(c) Answer A with Ki

(e) K0
n ←R {0, 1}`(λ)

(f) K1
n ← GetKeyn(st0)

(g) b′ ←R A
OKey

2 (state,Kb
n)

– Answer OKey queries as above
(h) Return 0 if n ∈ KList
(i) Return b′

ExptIND-FS,b
SKG,A (1λ):

(a) KList← ∅
(b) par←R GenSKG(1λ)
(c) st0 ←R GenState0(par)

(d) (state, n,m)←R A
OKey

1 (par)
– Answer OKey queries as in ExptIND

(e) K0
n ←R {0, 1}`(λ)

(f) K1
n ← GetKeyn(st0)

(g) stm ← Evolvem(st0)

(h) b′ ←R A
OKey

2 (state, stm,K
b
n)

– Answer OKey queries as in ExptIND

(i) Return 0 if n ∈ KList or m ≤ n
(j) Return b′

Fig. 2. Security experiments for SKG without and with forward security

It is not difficult to see that the IND-FS notion is strictly stronger than the IND notion.
The proof of Lemma 1 appears in Appendix A.

Lemma 1 (IND-FS ⇒ IND). Any sequential key generator SKG that is indistinguishable
with forward security against adaptive adversaries is also indistinguishable against adaptive
adversaries.
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2.3 Comparison with stateful generators

Stateful generators, first described by Bellare and Yee [3, Section 2.2], aim at similar ap-
plications as SKGs. Syntactically, the two primitives are essentially identical. However, the
security definition of stateful generators is weaker and less versatile than the one of SKGs.
Concretely, in the (game-based) security definition for stateful generators, after having in-
cremental access to a sequence k0, k1, . . . of keys that are either all real (i.e., ki = Ki ∀i) or
all random (i.e., ki ∈R {0, 1}`(λ) ∀i), the adversary eventually requests to see the ‘current’
state stm and, based upon the result, outputs a guess on whether keys k0, . . . , km−1 were
actually real or random. For reference, a syntactically adjusted version of the model from [3]
is reproduced in Appendix B. Important here is the observation that an adversary that
corrupts a state stm cannot request access to keys Ki, i > m, before making this corruption
(in contrast to our model). This is a severe limitation in contexts where multiple parties
evolve states of the same SKG instance independently of each other and in an asynchronous
manner; for instance, in the secure logging scenario, the adversary might first observe the log
auditor verifying MAC tags on ‘current’ time epochs and then decide to corrupt a monitored
host that is out of synchronization, e.g., because it is powered down and hence didn’t evolve
its state. As such concurrent and asynchronous conditions are not considered in the model
by Bellare and Yee, in some practically relevant settings the security of the constructions
from [3] should not be assumed.

2.4 A simple construction

It does not seem difficult to construct SKGs from standard cryptographic primitives. Indeed,
many of the stateful generators proposed in [3], constructed from PRGs and PRFs, are in
fact IND-FS-secure SKGs. For concreteness, we reproduce a simple PRG-based design. Its
security is analysed in [3, Theorem 1].

Construction 1 (PRG-based SKG [3]) Let G : {0, 1}λ → {0, 1}λ+`(λ) be a PRG, where
for each x ∈ {0, 1}λ we write G(x) as G(x) = GL(x) ‖ GR(x) with GL(x) ∈ {0, 1}λ and
GR(x) ∈ {0, 1}`(λ). Let then GenSKG output the empty string, GenState0 sample st0 ←R

{0, 1}λ, Evolve(sti) output GL(sti), and GetKey(sti) output GR(sti).

3 Seekable sequential key generators

We have seen that secure SKGs exist and are not too difficult to construct. Moreover, the
scheme from Construction 1 is efficient. Indeed, if it is instantiated with a hash function-
based PRG, invocations of Evolve and GetKey algorithms take only a small (constant) number
of hash function evaluations. However, this assessment of efficiency is adequate only if SKG’s
keys Ki are used (and computed) in sequential order. We argue that in many potential
fields of application such access structures are not given; instead, random access to the keys
is required, likely implying a considerable efficiency penalty if keys need to be computed
iteratively via Ki ← GetKeyi(st0). The following examples illustrate that random access
patterns do not intrinsically contradict the envisioned sequential nature of SKGs.

Consider a host that uses SKG’s keys Ki to authenticate continuously incurring log
messages. A second copy of the same SKG instance would be run by the log auditor. From
time to time the latter might want to check the integrity of an arbitrary selection of these
messages6. Observe that this scenario does not really correspond to the setting from Figure 1:
While the upper SKG copy might represent the host that evolves keys in the expected linear
order Ki → Ki+1, the auditor (running the independent second copy) would actually need
non-sequential access to SKG’s keys.

6 For example, after a zero-day vulnerability in a software product run on the monitored host
becomes public, the log auditor might want to retrospectively look for specific irregularities in
log entries related to that vulnerability.
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For a second example in secure logging, assume SKG’s epochs are coupled to absolute
time intervals (e.g., one epoch per second). If a host is powered up after a long down-time,
in order to resynchronize its SKG state, it is required to do a ‘fast-forward’ over a large
number of epochs. Ideally, an SKG would support the option to skip an arbitrary number
of Evolve steps in short time7.

A variant of SKG that explicitly offers random access capabilities is introduced in this
section. We claim that many practical applications can widely benefit from the extended
functionality. Observe that the advantage of SSKGs over SKGs is purely efficiency-wise; in
particular, the definition of SSKG’s security will be (almost) identical to the one for SKGs.

3.1 Functionality and syntax

When comparing to regular SKGs, the distinguishing property of seekable sequential key
generators (SSKG) is that keys Ki can be computed directly from initial state st0 and index i,
i.e., without executing the Evolve procedure i times. The corresponding new algorithm, Seek,
and its relation to the other SKG algorithms is visualized in Figure 3. For reasons that will
become clear later, when extending SKG’s syntax towards SSKG, in addition to introducing
the Seek algorithm we also had to slightly adapt the signature of the GenSKG algorithm:

Definition 3 (Syntax of SSKG). A seekable sequential key generator is a tuple SSKG =
{GenSSKG,GenState0,Evolve,Seek,GetKey} of efficient algorithms as follows:

– GenSSKG(1λ). On input of security parameter 1λ, this algorithm outputs a set par of
public parameters and a seeking key sk.

– GenState0, Evolve, GetKey as for SKGs (cf. Definition 1).

– Seek(sk, st0,m). On input of seeking key sk, initial state st0, and m ∈ N, this determin-
istic algorithm returns a state stm.

GenSSKG

GenState0 Evolve Evolve Evolve Evolve

GenState0 Evolve Evolve Evolve

Seek

Seek

par

par

sk

st0 st1 st2 stm−1 stm stm+1

st′0 st′1 st′m′−1 st′m′ st′m′+1

m

m′

Fig. 3. Interplay of the different SSKG algorithms. The figure shows two independent SSKG in-
stances running in parallel. Given seeking key sk and respective instance’s initial state st0, one
can seek directly to any arbitrary state stm. As in SKGs, GetKey algorithm can be applied to any
intermediate state sti to derive key Ki.

In contrast to SKGs, for SSKGs we need to explicitly require consistency of keys com-
puted with Seek and Evolve algorithms:

7 Clearly, a (fast-)forward algorithm with execution time linear in the number δ of skipped epochs
is trivially achievable. The question is: can we do better than O(δ)?
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Definition 4 (Correctness of SSKG). A seekable sequential key generator SSKG is cor-
rect if, for all λ ∈ N, all (par, sk)←R GenSSKG(1λ), and all st0 ←R GenState0(par), we have
that Seek(sk, st0,m) = Evolvem(st0) for all m ∈ N.

Remark 1 (Security notions IND and IND-FS for SSKG). Indistinguishability of SSKGs is
defined in exactly the same way as for regular SKGs, with one purely syntactical excep-
tion: As the new GenSSKG algorithm outputs the auxiliary seeking key, the experiments
in Figure 2 need to be adapted such that the par ←R GenSKG(1λ) line is replaced by
(par, sk) ←R GenSSKG(1λ). However, seeking key sk is irrelevant for the rest of the experi-
ment.

Example 1 (Practical SSKG setting). We describe a practical setting of secured local logging
with multiple monitored hosts. The system administrator first runs GenSSKG algorithm to
establish system-wide parameters; each host then runs GenState0 algorithm to create its
individual initial state st0, serving as a basis for specific sequences (sti)i∈N and (Ki)i∈N. The
log auditor, having access to seeking key sk and to initial states st0 of all hosts, can reproduce
all corresponding keys Ki without restriction. Observe that, as the SSKG instances run on
different hosts are independent of each other, authenticated log messages from one host
cannot be ‘replayed’ on other hosts.

In practice, it might be difficult to find ‘the right’ frequency with which keys should
be evolved to the next epoch. Recall that, even if forward-secure log authentication is in
place, an intruder cannot be prevented from manipulating the log entries of the epoch in
which he got access to a system. This suggests that keys should be updated at least every
few seconds — and even more often to obtain protection against fully-automated attack
tools. On battery-powered mobile devices, however, too frequently scheduled wakeups from
system’s sleep mode with the only purpose of evolving keys will noticeably contribute to
draining devices’ energy reserves.

Remark 2 (On the necessity of seeking trapdoors). For standard SKGs, the secret material
managed by users is restricted to one ‘current’ state sti. In contrast, for SSKGs, we intro-
duced additional secret information, sk, required to perform the seek operation. One might
ask whether this step was really necessary. We fixed the syntax of SSKGs as given in Defini-
tion 3 for a technical reason: the SSKG construction we present in Section 5 is factoring-based
and its Seek algorithm requires knowledge of modulus’ factorization n = pq. However, as
knowledge of p and q thwarts the one-wayness of designated Evolve operation, we had to
formally separate the entities that can and cannot perform the Seek operation. While this
property slightly narrows the applicability of SSKGs, it is irrelevant for the intended secure
logging scenario as described in Example 1.

4 Shortcut permutations

We introduce a novel primitive, shortcut one-way permutation (SCP), that will serve as a
building block for our SSKG construction in Section 5. Consider a finite set D together
with an efficient permutation π : D → D. Clearly, for any x ∈ D and m ∈ N, it is easy to
compute the m-fold composition πm(x) = π ◦ · · · ◦ π(x) in linear time O(m), by evaluating
the permutation m times. In shortcut permutations, we have the efficiency requirement that
the value πm(x) can be computed more efficiently than that, using a dedicated algorithm.
In addition, we require one-wayness of π: given y ∈ D, it should be impossible to compute
π−1(y).

While we will rigorously specify the one-wayness requirement of SCPs, we do not give a
precise definition of what ‘more efficiently’ means for the computation of πm. The reason is
that we aim at practicality of our construction, and, in general, practical efficiency strongly
depends on the concrete parameter sizes and computing platforms in use. However, we
anticipate that the SCPs that we construct in Section 4.1 have algorithms that compute
πm(x) in constant time.
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We next formalize the syntax and functionality of SCPs. For technical reasons, the def-
inition slightly deviates from the above intuition in that the algorithm which efficiently
computes πm also requires an auxiliary input, the shortcut information.

Definition 5 (Syntax of SCP). A shortcut permutation is a triple SCP = {GenSCP,Eval,
Express} of efficient algorithms as follows:

– GenSCP(1λ). This probabilistic algorithm, on input of security parameter 1λ, outputs
public parameters pp and a corresponding shortcut information sc. We assume that each
specific value pp implicitly defines a finite domain D = D(pp). We further assume that
elements from D can be efficiently sampled with uniform distribution.

– Eval(pp, x). This deterministic algorithm, given public parameters pp and a value x ∈ D,
outputs a value y ∈ D.

– Express(sc, x,m). This deterministic algorithm takes shortcut information sc, an element
x ∈ D, and a non-negative integer m, and returns a value y ∈ D.

A shortcut permutation SCP is correct if, for all λ ∈ N and all (pp, sc) ←R GenSCP(1λ),
we have that (a) Eval(pp, · ) implements a bijection π : D → D, and (b) Express(sc, x,m) =
πm(x), for all x ∈ D and m ∈ N.

As the newly introduced shortcut property is solely an efficiency feature, it does not
appear in our specification of one-way security. In fact, the one-wayness definitions of SCPs
and of regular one-way permutations [18] are essentially the same. Observe that we model
one-wayness only for the case that the adversary does not have access to shortcut informa-
tion sc.

Definition 6 (One-wayness of SCP). We say that a shortcut permutation SCP is one-
way if the probability

Pr
[
(pp, sc)←R GenSCP(1λ); y ←R D(pp);x←R B(pp, y) : Eval(pp, x) = y

]
is negligible in λ, for all efficient adversaries B.

Remark 3 (Comparison of SCPs and TDPs). The syntax of (one-way) SCPs is, to some
extent, close to that of trapdoor permutations (TDPs, [18]). However, observe the significant
difference between the notions of trapdoor and shortcut. While a TDP’s trapdoor allows
efficient inversion of the permutation (i.e., computation of π−1), a shortcut in our newly
defined primitive allows acceleration of the computation of πm, for arbitrary m. In particular,
for SCPs, there might be no way to invert π even if the shortcut information is available. We
admit, though, that in our number-theory-based constructions from Section 4.1 one-wayness
does not hold for adversaries that obtain the shortcut information: any party knowing the
shortcut can also efficiently invert the permutation.

4.1 Constructions based on number theory

We propose two efficient number-theoretic SCP constructions: FACT-SCP and RSA-SCP.
Let N be a Blum integer, i.e., N = pq for primes p, q such that p ≡ q ≡ 3 mod 4. Let

QRN = {x2 : x ∈ Z×N} denote the set of quadratic residues modulo N . It is well-known [25]
that the squaring operation x 7→ x2 mod N is a permutation on QRN . Moreover, computing
square roots inQRN , i.e., inverting this permutation, is as hard as factoringN . This intuition
is the basis of the following hardness assumption.

Definition 7 (SQRT assumption). For probabilistic algorithms GenSQRT that take as
input security parameter 1λ and output tuples (N, p, q, ϕ) such that N = pq, factors p and
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q are prime and satisfy p ≡ q ≡ 3 mod 4, and ϕ = ϕ(N) = |Z×N |, the SQRT problem is said
to be hard if for all efficient adversaries A the success probability

Pr
[
(N, p, q, ϕ)←R GenSQRT(1λ); y ←R QRN ;x←R A(N, y) : x2 ≡ y mod N

]
is negligible in λ, where the probability is taken over the random coins of the experiment
(including A’s randomness). The SQRT assumption states that there exists an efficient
probabilistic algorithm GenSQRT for which the SQRT problem is hard.

The construction of an SCP based on the SQRT assumption is now straight-forward:

Construction 2 (FACT-SCP) Construct SQRT-based SCP as follows: Let GenSCP(1λ) run
GenSQRT(1λ) and output pp = N and sc = ϕ, let D = QRN , let Eval(N, x) output x2 mod
N , and let Express(ϕ, x,m) output x(2

m mod ϕ) mod N .

Remark 4 (Correctness and security of FACT-SCP). Observe that the specified domain D is
efficiently samplable (take x←R Z×N and square it), that correctness of the SCP follows from
standard number-theoretic results (in particular [25, Fact 2.160] and [25, Fact 2.126]), and
that every Express operation takes about one exponentiation modulo N . Further, comparing
the experiments in Definitions 6 and 7 makes evident that FACT-SCP is one-way if the SQRT
problem is hard for GenSQRT, i.e., if integer factorization is hard [25, Fact 3.46].

Similarly to FACT-SCP, in Appendix C we define the RSA-based RSA-SCP. Observe that
both constructions rely on different, though related, number-theoretic assumptions. In fact,
while the security of FACT-SCP can be shown to be equivalent to the hardness of integer
factorization, RSA-SCP can be reduced ‘only’ to the RSA assumption. Although equivalence
of the RSA problem and integer factorization is widely believed, a proof has not been found
yet. Hence, in some sense, SQRT-based schemes are more secure than RSA-based schemes.
In addition to that, our SQRT-based scheme has a (slight) performance advantage over our
RSA-based scheme (squaring is more efficient than raising to the power of e). The only
situation we are aware of in which RSA-SCP might have an advantage over FACT-SCP is
when the most often executed operation is Express, and deployment of multiprime RSA
is acceptable (e.g., N = pqr). Briefly, in the multiprime RSA setting [17,13], private key
operations can be implemented particularly efficiently, based on the Chinese Remainder
Theorem (CRT). Observe that Definition 8 (in Appendix C) is general enough to cover the
multiprime setting.

5 Seekable sequential key generation from shortcut permutations

We construct an SSKG from a generic SCP. Briefly, the Evolve operation corresponds to
the Eval algorithm, the Seek algorithm is implemented via SCP’s Express procedure, and
keys Ki are computed by applying a hash function (modeled as a random oracle in the
security analysis) to the corresponding state sti.

Construction 3 (SCP-SSKG) Let SCP = {GenSCP,Eval,Express} be a shortcut permuta-
tion, and let H : {0, 1}∗ → {0, 1}`(λ) be a hash function, for a polynomial `. Then the
algorithms of our seekable sequential key generator SCP-SSKG are specified in Figure 4.

Correctness of Construction 3 follows by inspection. We state IND-FS security of SCP-SSKG
in Theorem 1; the corresponding proof appears in Appendix D. Recall that IND security fol-
lows by Lemma 1.

Theorem 1 (Security of SCP-SSKG). The SSKG from Construction 3 offers IND-FS se-
curity if SCP is a one-way shortcut permutation, in the random oracle model.
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GenSSKG(1λ):
(a) (pp, sc)←R GenSCP(1λ)
(b) (par, sk)← (pp, sc)
(c) Return (par, sk)

GenState0(par):
(a) pp← par
(b) x0 ←R D(pp)
(c) st0 ← (pp, 0, x0)
(d) Return st0

Seek(sk, st0,m):
(a) sc← sk
(b) (pp, 0, x0)← st0
(c) xm ← Express(sc, x0,m)
(d) stm ← (pp,m, xm)
(e) Return stm

Evolve(sti):
(a) (pp, i, xi)← sti
(b) xi+1 ← Eval(pp, xi)
(c) sti+1 ← (pp, i+ 1, xi+1)
(d) Return sti+1

GetKey(sti):
(a) (pp, i, xi)← sti
(b) Ki ← H(pp, i, xi)
(c) Return Ki

Fig. 4. SCP-based SSKG construction SCP-SSKG

6 Implementing SSKGs

Let FACT-SSKG denote the factorization-based SSKG obtained by combining Construc-
tions 2 and 3. Some implementational details that increase the efficiency and versatility of
this construction are discussed next.

We first propose a small tweak to the scheme that affects the storage size of the initial
state. Recall that, in foreseen applications of SSKGs, the initial state st0 is first created
by (randomized) GenState0 algorithm and then copied to other parties (cf. discussion in
Section 2.1). In FACT-SSKG, between 1024 to 4096 bits would have to be copied, depending
on the desired level of security [1], just counting the size of x0 ∈ QRN . However, in the
specific application we are aiming at, described in detail in Section 6.1, that much bandwidth
is not available. We hence propose to make GenState0 algorithm deterministic, now providing
it with an explicit random seed of short length (e.g., 80–128 bits); all randomness required by
the original GenState0 algorithm is deterministically extracted from that seed via a PRG, and
only 128 bits (or less) have to be shared with other parties. We implement this new feature
by introducing an auxiliary algorithm, RndQR, that deterministically maps seed ∈ {0, 1}`(λ)
to an element in QRN such that the distribution of RndQR(N, seed) with random seed
is negligibly close to the uniform distribution on QRN . The new GenState0 and RndQR
algorithms are shown in Figure 5. The admissibility of proposed RndQR construction is
confirmed by [10] and [26, §B.5.1.3], in the random oracle model.

The second modification of FACT-SSKG improves the efficiency of the Seek operation.
A standard trick [17,6] to speed up private operations in factoring-based schemes is via the
Chinese Remainder Theorem (CRT). For instance, if an exponentiation y ← xk mod N is
to be computed and the factorization N = pq is known, then y can be obtained by CRT-

decomposing x into xp ← x mod p and xq ← x mod q, by computing yp ← x
k mod ϕ(p)
p mod p

and yq ← x
k mod ϕ(q)
q mod q independently of each other, and by mapping (yp, yq) back to ZN

(by applying the CRT a second time). The described method to compute xk is approximately
four times faster than evaluating the term directly, without the CRT [25, Note 14.75]. The
correspondingly modified Seek algorithm is shown in Figure 5.

We combine Remark 4, Theorem 1, and Lemma 1 to obtain:

Corollary 1 (Security of FACT-SSKG). Under the assumption that integer factorization is
hard, our seekable sequential key generator FACT-SSKG offers both IND and IND-FS security,
in the random oracle model.

6.1 Deployment in practice

We implemented FACT-SSKG (incorporating the tweaks described above) [27]. In fact, the
code is part of the journald logging component of the systemd system and service manager,
the core piece of many modern commercial Linux-based operating systems [31]. The SSKG
is used as described in the introduction: it is combined with a cryptographic MAC in order
to implement secured local logging, called Forward-Secure Sealing in journald. Generation of
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GenSSKG(1λ):
(a) (N, p, q, ϕ)←R GenSQRT(1λ)
(b) par← N
(c) sk← (N, p, q)
(d) Return (par, sk)

GenState0(par, seed):
(a) N ← par
(b) x0 ← RndQR(N, seed)
(c) st0 ← (N, 0, x0)
(d) Return st0

Seek(sk, seed,m):
(a) (N, p, q)← sk
(b) x0 ← RndQR(N, seed)
(c) (xp, xq)← CRTDecomp(x0, p, q)
(d) kp ← 2m mod p− 1
(e) kq ← 2m mod q − 1
(f) xp,m ← (xp)

kp mod p
(g) xq,m ← (xq)

kq mod q
(h) xm ← CRTComp(xp,m, xq,m, p, q)
(i) stm ← (N,m, xm)
(j) Return stm

Evolve(sti):
(a) (N, i, xi)← sti
(b) xi+1 ← (xi)

2 mod N
(c) sti+1 ← (N, i+ 1, xi+1)
(d) Return sti+1

GetKey(sti):
(a) (N, i, xi)← sti
(b) Ki ← H(N, i, xi)
(c) Return Ki

RndQR(N, seed):
(a) h← H ′(N, seed)
(b) h← h mod N
(c) s← h2 mod N
(d) Return s

CRTDecomp(x, p, q):
(a) xp ← x mod p
(b) xq ← x mod q
(c) Return (xp, xq)

CRTComp(xp, xq, p, q):
(a) u← p−1 mod q
(b) a← u(xq − xp) mod q
(c) x← xp + pa
(d) Return x

Fig. 5. Algorithms of optimized FACT-SSKG, together with auxiliary RndQR, CRTDecomp, and
CRTComp algorithms. In the specification of RndQR we assume a hash function H ′ : {0, 1}∗ →
{0, . . . , 2t − 1}, where t = dlog2Ne+ 128.

initial state st0 takes place on the system whose logs are to be protected. The corresponding
seed is shown on screen only (hence the restriction on seed’s size), both in text and as QR
code [15]; the latter may be scanned off the screen with devices such as mobile phones. The
separation between on-disk storage of public parameters and on-screen display of the seed
is done in order to ensure the latter will not remain on the system. Each time the SKG
state is evolved, a MAC tag protecting the data written since the previous MAC operation
is appended to the log file. An offline verification tool that checks the MAC tag sequence of
log files taken from a system is provided. If a log file is corrupted, the verification tool will
determine the time range where the integrity of the log file is intact. When the SKG state is
evolved, particular care is taken to ensure the previous state is securely deleted from the file
system and underlying physical storage, which includes techniques to ensure secure removal
even on modern copy-on-write file systems.

On the technical side, our implementation supports modulus sizes of 512–16384 bits
(1536 bits is recommended), uses SHA256 for key derivation, and relies on HMAC-SHA256
for integrity protection. The code links against the gcrypt library [22] for large integer
arithmetic and the SHA256 hash function, and is licensed under an Open Source license
(LGPL 2.1).

Conclusion

We review different cryptographic schemes for log file protection and point out that they
all lack an important usability feature: seekability. In short, seekability allows users of se-
quential key generators to jump to any position in the otherwise forward-secure keystream,
in negligible time. We introduce a new primitive, seekable sequential key generator (SSKG),
and give two provably-secure factorization-based constructions. As a side product, we in-
troduce the concept of shortcut one-way permutations (SCP), which may find independent
application.
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K. Paterson, J. Pelzl, T. Pornin, B. Preneel, C. Rechberger, V. Rijmen, M. Robshaw, A. Rupp,
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A Proof of Lemma 1

Proof. Let A = (A1,A2) be an arbitrary adversary against IND. Using A, we construct
an IND-FS adversary B = (B1,B2) by letting B1 run A1 on the same input par and relay
all occurring OKey queries to its own challenger. When A1 eventually stops and outputs
(state, n), B1 also stops and outputs (state, n, n + 1). Ignoring its stm input, algorithm B2
runs A2 on (state,Kb

n), again relays all OKey queries, and finally outputs A2’s guess b′. It is
easy so see that

Pr
[
ExptIND-FS,b

SKG,B (1λ) = 1
]

= Pr
[
ExptIND,bSKG,A(1λ) = 1

]
for b ∈ {0, 1} ,

as B1 prevents the ‘m ≤ n’ condition in experiments ExptIND-FS,b to hold by returning
m = n+ 1. We hence have

AdvIND
SKG,A(λ) = AdvIND-FS

SKG,B (λ) ∀λ .

As we assume IND-FS security of SKG, this effectively bounds AdvIND
SKG,A(λ) by a negligible

function. This proves the statement. ut

B Security model for stateful generators

For reference, we reproduce the experiment of Bellare and Yee’s security definition for state-
ful generators [3]. We widely adapted their notation to the standard of our paper.

C RSA-based shortcut permutations

Definition 8 (RSA assumption). For probabilistic algorithms GenRSA that take as in-
put security parameter 1λ and output triples (N,ϕ, e) such that ϕ = ϕ(N) = |Z×N | and
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ExptIND-BY,b
A (1λ):

(a) KList← ∅
(b) par←R GenSKG(1λ)
(c) st0 ←R GenState0(par)

(d) (state,m)←R A
OKey

1 (par)
– If A queries OKey(i):

(a) KList← KList ∪ {i}
(b) K0

i ←R {0, 1}`(λ)
(c) K1

i ← GetKeyt(st0)
(d) Answer A with Kb

i

(e) stm ← Evolvem(st0)

(f) b′ ←R A
OKey

2 (state, stm)
– Answer OKey queries as above

(g) Return 0 if m ≤ max(KList)
(h) Return b′

Fig. 6. Security experiment for stateful generators (adapted syntax)

gcd(e, ϕ) = 1, the RSA problem is said to be hard if for all efficient adversaries A the
success probability

Pr
[
(N,ϕ, e)←R GenRSA(1λ); y ←R ZN ;x←R A(N, e, y) : xe ≡ y mod N

]
is a negligible function, where the probability is taken over the random coins of the experiment
(including over A’s randomness). The RSA assumption states that there exists an efficient
probabilistic algorithm GenRSA for which the RSA problem is hard.

Construction 4 (RSA-SCP) Construct RSA-based SCP as follows: Let GenSCP(1λ) run
GenRSA(1λ) and output pp = (N, e) and sc = ϕ, let D = ZN , let Eval(N, x) output xe mod
N , and let Express(ϕ, x,m) output x(e

m mod ϕ) mod N .

Remark 5 (Correctness and security of RSA-SCP). Observe that specified domain D is ef-
ficiently samplable, that correctness of the SCP follows from standard number-theoretic
results [25], and that every Express operation takes about one exponentiation modulo N .
Further, comparing the experiments in Definitions 6 and 8 makes evident that RSA-SCP is
one-way if the RSA problem is hard for GenRSA.

D Proof of Theorem 1

Proof. In brief, we want to make formal the intuition that an attacker A could tell apart a
real key Kn from a random one only by querying the oracle H on ‘the right value’ (n, xn)8:
indeed, a proper key Kn is computed by hashing the corresponding state stn = (n, xn).
Querying H on state stn reveals immediately the nature, real or random, of the challenge
key Kb

n. However, we will prove that the probability that an attacker does pose such a query
to H is negligible, hence the indistinguishability.

By using game hops, we modify the original experiment, ExptIND-FS,b, into a game that
A can ‘win’ only by guessing (she has advantage zero). In such a game, both the challenge
keys K0

n and K1
n are randomly chosen, so that no adversary can find a better strategy than

guessing b.
We now formalize this intuition. In what follows, for better legibility we do not explicitly

consider the public parameter pp generated by the IND-FS challenger, but we instead refer
to the permutation π : D → D that it defines. Let st0 = (0, x0) denote the initial state
the challenger generates. Further states stt = (t, xt) are computed by iterating the shortcut

8 in the proof we drop the first component par for legibility
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permutation, xt ← π(xt−1), while keys are the hash value of these states, Kt ← H(t, xt).
The attacker is granted oracle access to OKey and H.

There are three games, starting from Gameb0 = ExptIND-FS,b. In the hop to Gameb1, we
modify the game in such a way that, if A poses query (n, xn) to H which corresponds to stn,
i.e. xn = πn(x0), then the game aborts. In other words, Gameb1 forbids A to compute the
key Kn (and, by comparing with the challenge key Kb

n, to trivially win the game). Going
on, in Gameb2, we let both potential challenge keys, K0

n and K1
n, be randomly chosen. The

latter game is indeed trivial to analyze: Game02 and Game12 are identical!
Let E be the event ‘A requests query (n, xn) to H’. By definition, Gameb0 and Gameb1 are

exactly the same as long as E does not happen. As the transition is based on a ‘failure event’,
we can bound the advantage of an attacker A against the IND-FS experiment as follows:

AdvIND-FS
A (λ) ≤ Adv

Gameb1
A (λ) + Pr [E] .

As we later prove Pr[E] is negligible, hence Gameb0 and Gameb1 are indistinguishable.
The second transition is fictitious: choosing both challenge keys K0

n and K1
n uniformly

at random, or having the one output by H and the other randomly chosen, is essentially the
same, as long as we prevent A to query H on the input which yield K1

n. Since, in Gameb1,
we have already excluded such an eventuality (if E happens, then the game aborts), there
is no way an attacker can tell whether she is playing against Gameb1 or Gameb2. Hence, A’s
advantage in Gameb1 equals her advantage in Gameb2. As already observed, the last game is
trivial to analyze: any adversary has advantage zero. We end up with the following bound:

AdvIND-FS
A (λ) ≤ Pr [E] . (1)

We now argue that the event E occurs only with negligible probability. Actually, we
can prove a stronger statement, namely that any query (t, xt) that A poses to H, with
xt = πt(x0) and t < m, has only negligible probability to occur. If this holds, the event E
has also negligible probability: as n must be smaller than m, excluding every query (t, xt)
with t < m automatically excludes, in particular, query (n, xn). In what follows, we shortly
call this kind of queries lucky. We prove that E is unlikely to occur by building an inverter B
for the SCP π, which uses A as a black box, and succeeds whenever A makes lucky queries
to H.

Lemma 2. Let A be an IND-FS attacker against SCP-SSKG, π be the SCP underlying the
scheme, and M be an upper bound for the number of iterations the scheme supports. If,
within the experiment, A queries the hash oracle H on values (t, xt) such that xt = πt(x0)
and t < m with probability ε, then there exists an inverter B for π, which uses A as a black
box, whose advantage is at least

Advinvert
π,B (λ) ≥ ε

M
. (2)

Putting together the inequalities (1) and (2), we can bound the probability of the event
E, that is, the advantage of A in the IND-FS experiment:

AdvIND-FS
A (λ) ≤M ·Advinvert

π,B (λ) .

This term is negligible in λ as π is one way.
It remains to prove Lemma 2.

Proof (Lemma 2). We want to build an inverter B for SCP whose strategy relies on A’s
ability of making lucky queries.

The main idea is to embed B’s challenge y into the state stm that A requests, and
wait until she asks a lucky query qt = (t, xt): as t ≤ n < m, it holds that πm−t(xt) = y.
The inverter outputs πm−t−1(xt), winning the inverting experiment. However, we have to
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make sure that B simulates a suitable environment for A and answers her queries to OKey

and H. More precisely, B has to guarantee that the two oracles are consistent, i.e., that
OKey(t) = H(qt) for every query qt which corresponds to a valid state stt.

Within the proof, we can assume wlog. that the adversary A makes only ‘clever’ queries
to H, thus trying to hit lucky queries by guessing pairs (t, z). We call a query (t, z) to H
in-line (with the initial state (0, x0)), and we denote it by (t, xt), if z = πt(x0). Recall that,
according to the previous definition, a query to H is lucky if it is in-line and t < m. In this
terms, consistency between the two oracles H and OKey means that, for every in-line query
(t, xt), H’s reply must equal OKey(t).

Now, observe that B cannot check whether A’s queries are in-line or not, nor whether
A ‘accidentally’ hits any valid state, until A declares the value m. More precisely, in-line
queries are not even well-defined before that: in B’s simulation of the experiment, there is
no explicit initial state (0, x0). From B’s point of view, a value x0 does exist, being implicitly
defined by the equality y = πm(x0), but this becomes true only when A outputs m. In this
sense, in-line queries are well-defined only after A1 has declared which state stm she wants
to corrupt. This may undermine the ‘quality’ of B’s simulation.

However, we overcome the issue above by letting the inverter guess m, and ‘define’ in-line
queries with respect to its guess and the challenge value y it receives. We now describe B’s
strategy in more detail. First, B chooses m? uniformly at random from {1, . . . ,M} with
the hope to guess the right value m. B simulates the oracle OKey by returning random
`(λ)-bit strings, with the constraint that, if a query is asked twice, the answer must be the
same. In case A requests a key Kt for t ≥ m?, the inverter must also assure consistency
with the behavior of H on queries qt that are in-line (but not lucky). This can be done by
programming the oracle H. Queries to H are more delicate since could help B to invert π. If
a query (t, z) is not in-line, then B simply replies with a random string, provided that H(t, z)
has not been already set (which happens, e.g., if the same query was previously asked or the
oracle has been programmed on (t, z)). Regarding in-line queries qt, there are two cases: if
t < m?, then B extracts a (potential) preimage of y and interrupts the simulation, otherwise
replies with the corresponding key Kt (in case it has been already defined). A more detailed
description of how B simulates the oracles follows. Let B maintain tables KList and HList,
for storing queries and corresponding answers to OKey and H respectively.

Queries t to OKey. Check whether KList already contains an entry (t,Kt) and, if not:
– If t ≥ m?, pick Kt uniformly at random, compute zt = πt−m

?

(y) and program the
oracle by setting H(t, zt) := Kt. Update KList and HList by adding entries (t,Kt)
and ((t, zt),Kt) respectively.

– If t < m?, choose a random key Kt and add the pair (t,Kt) to KList.
In either case, return Kt.

Queries q = (t, z) to H. Go through HList and, if there is no entry ((t, z), h):
– If t ≥ m?, check whether πt−m

?

(y) = z: if not, choose h ∈ {0, 1}`(λ) uniformly at
random, set H(q) := h, update HList by appending (q, h). Otherwise, there are two
cases:
(a) If there is an entry (t,Kt) ∈ KList, program the oracle H(q) := Kt and add the

pair (q,Kt) to HList.
(b) Otherwise, pick a random `(λ)-bit string h, set H(q) := h, add entries (q, h) and

(t, h) to HList and KList respectively.
– If t < m?, check whether πm

?−t(z) = y: if so, set x := πm
?−t−1(z), interrupt the

simulation and output x.
If none of the previous case arises, pick a `(λ)-bit string h uniformly at random, set
H(q) := h, and update HList by appending (q, h). Eventually, return H(q).

The algorithm B maintains the simulation until either it computes a (potential) preimage
of y, or A1 declares values n and m: at this point B can check whether its guess on m was
correct and, if not, it stops and outputs failure. Otherwise, if it guessed m? = m correctly,
it does know the valid state A1 has requested, as xm = y. The inverter can, thus, continue
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the simulation and, from now on, it is sure that any lucky query sent by A2 will permit to
invert y.

Eventually B gives stm = (m, y), together with a random key Kn, to A2, and proceeds
by answering her queries as previously done. As before, if a lucky query qt to H is made, B
does not need to answer: it computes and outputs a preimage of y and terminates. If there
is no lucky query, B keeps running the simulation until A2 returns b′, thereafter outputs
failure and halts.

We now analyze B’s winning probability. Observe that, in order to win, the inverter has
to guess the right value m and, if it does, its strategy succeeds whenever A requests a lucky
query to H. Denote by F the event ‘A asks a lucky query to H’. It holds

Pr[B(par, y) = x : π(x) = y] = Pr[m? = m ∧ F]

and, since the two events on the right side are independent, Pr[F] = ε and the probability of
hitting the right value m by randomly guessing m? is 1/M , we obtain the claimed bound.

ut
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