
Functional Signatures and Pseudorandom Functions

Elette Boyle
MIT

Shafi Goldwasser∗†

MIT and Weizmann
Ioana Ivan

MIT

October 29, 2013

Abstract

In this paper, we introduce two new cryptographic primitives: functional digital signatures and func-
tional pseudorandom functions.

In a functional signature scheme, in addition to a master signing key that can be used to sign any
message, there are signing keys for a function f , which allow one to sign any message in the range of f .
As a special case, this implies the ability to generate keys for predicates P , which allow one to sign any
message m, for which P (m) = 1.

We show applications of functional signatures to constructing succinct non-interactive arguments and
delegation schemes. We give several general constructions for this primitive based on different computa-
tional hardness assumptions, and describe the trade-offs between them in terms of the assumptions they
require and the size of the signatures.

In a functional pseudorandom function, in addition to a master secret key that can be used to evaluate
the pseudorandom function F on any point in the domain, there are additional secret keys for a function
f , which allow one to evaluate F on any y for which there exists an x such that f(x) = y. As a special
case, this implies pseudorandom functions with selective access, where one can delegate the ability to
evaluate the pseudorandom function on inputs y for which a predicate P (y) = 1 holds. We define and
provide a sample construction of a functional pseudorandom function family for prefix-fixing functions.

This work appeared in part as the Master Thesis of Ioana Ivan filed May 22 at MIT. We note
that independently the notion of pseudorandom functions with selective access was studied by Boneh-
Waters under the name of constrained pseudorandom functions [BW13] and by Kiayias, Papadopoulos,
Triandopoulos and Zacharias under the name delegatable pseudorandom functions [KPTZ13]. Subsequent
to our posting of an earlier manuscript of this work, Bellare and Fuchsbauer [BF13] and Backes, Meiser,
and Schröder [BMS13] additionally posted similar results on functional signatures.

∗This work was supported in part by Trustworthy Computing: NSF CCF-1018064.
†This material is based on research sponsored by the Air Force Research Laboratory under agreement number FA8750-11-2-

0225. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory
or the U.S. Government.

1 Introduction

We introduce new cryptographic primitives with a variety of accompanying constructions: functional digital
signatures (FDS), functional pseudorandom functions (F-PRF), and psuedorandom functions with selective
access (PRF-SA).1

Functional Signatures

In digital signature schemes, as defined by Diffie and Hellman [DH76], a signature on a message provides
information which enables the receiver to verify that the message has been created by a proclaimed sender.
The sender has a secret signing key, used in the signing process, and there is a corresponding verification key,
which is public and can be used by anyone to verify that a signature is valid. Following Goldwasser, Micali
and Rackoff [GMR88], the standard security requirement for signature schemes is unforgeability against
chosen-message attack: an adversary that runs in probabilistic polynomial time and is allowed to request
signatures for a polynomial number of messages of his choice, cannot produce a signature of any new message
with non-negligible probability.

In this work, we extend the classical digital signature notion to what we call functional signatures. In a
functional signature scheme, in addition to a master signing key that can be used to sign any message, there
are secondary signing keys for functions f (called skf), which allow one to sign any message in the range of
f . These additional keys are derived from the master signing key. The notion of security we require such
a signature scheme to satisfy is that any probabilistic polynomial time (PPT) adversary, who can request
signing keys for functions f1 . . . fl of his choice, and signatures for messages m1, . . .mq of his choice, can
only produce a signature of a message m with non-negligible probability, if m is equal to one of the queried
messages m1, . . .mq, or if m is in the range of one of the queried functions f1 . . . fl.

An immediate application of a functional signature scheme is the ability to delegate the signing pro-
cess from a master authority to another party. Suppose someone wants to allow their assistant to sign on
their behalf only those messages with a certain tag, such as “signed by the assistant”. Let P be a predi-
cate that outputs 1 on messages with the proper tag, and 0 on all other messages. In order to delegate the
signing of this restricted set of messages, one would give the assistant a signing key for the following function:

f(m) :=

{
m if P (m) = 1

⊥ otherwise
.

P could also be a predicate that checks if the message does not contain a given phrase, or if it is related to
a certain subject, or if it satisfies a more complex policy.

Another application of functional signatures is to certify that only allowable computations were performed
on data. For example, imagine the setting of a digital camera that produces signed photos (i.e the original
photos produced by the camera can be certified). In this case, one may want to allow photo-processing
software to perform minor touch-ups of the photos, such as changing the color scale or removing red-eyes,
but not allow more significant changes such as merging two photos or cropping a picture. But, how can an
original photo which is slightly touched-up be distinguished from one which is the result of a major change?
Functional signatures can naturally address this problem by providing the photo processing software with
keys which enable it to sign only the allowable modifications of an original photograph. Generalizing, we
think of a client and a server (e.g. photo-processing software), where the client provides the server with data
(e.g. signed original photos, text documents, medical data) which he wants to be processed in a restricted
fashion.A functional signature of the processed data provides proof of allowable processing.

Functional signatures can also be used to construct a delegation scheme. In this setting, there a client
who wants to allow a more powerful server to compute a function f on inputs chosen by the client, and

1We note that independently (and unknown to the authors) the notion of pseudorandom functions with selective access
was studied by Boneh-Waters under the name of constrained pseudorandom functions [BW13] and by Kiayias, Papadopoulos,
Triandopoulos and Zacharias under the name delegatable pseudorandom functions [KPTZ13]. Subsequent to our posting of an
earlier manuscript of this work, [BF13] and [BMS13] have additionally posted similar results on functional signatures.

1

wants to be able to verify that the result returned by the server is correct. The verification process should be
more efficient than for the client to compute f himself. The client can give the server a key for the function
f ′(x) = (f(x)|x). To prove that y = f(x) the prover gives the client a signature of y|x, which he could only
have obtained if y|x is in the range of f ′, that is, if y = f(x).

A desirable property of a functional signature scheme is function privacy : the signature should reveal
neither the function f that the secret key used in the signing process corresponds to, nor the message m that
f was applied to. In the example with the signed photos, one might not wish to reveal the original image
just that the final photographs were obtained by running one of the allowed functions on some image taken
with the camera.

An additional desirable property is succinctness: the size of the signature should only depend on the size
of the output f(m) and the security parameter (or just the security parameter), rather than the size of the
circuit for computing f .

Functional Pseudorandomness

Pseudorandom functions, introduced by Goldreich, Goldwasser, and Micali [GGM86], are a family of indexed
functions F = {Fs} such that: (1) given the index s, Fs can be efficiently evaluated on all inputs (2) no
probabilistic polynomial-time algorithm without s can distinguish evaluations Fs(xi) for inputs xi’s of its
choice from random values. Pseudorandom functions are useful for numerous symmetric-key cryptographic
applications, including generating passwords, identify-friend-or-foe systems, and symmetric-key encryption
secure against chosen ciphertext attacks. In the public-key setting, there is a construction of digital signatures
from pseudorandom functions [BG89], via the following paradigm: one may publish a commitment to secret
key s and henceforth be able to prove that y = Fs(x) for a pair (x, y) via a non-interactive zero-knowledge
(NIZK) proof.

In this work, we extend pseudorandom functions to a primitive which we call functional pseudorandom
functions (F-PRF). The idea is that in addition to a master secret key (that can be used to evaluate the
pseudorandom function Fs on any point in the domain), there are additional secret keys skf per function f ,
which allow one to evaluate Fs on any y for which there exists x such that f(x) = y (i.e y ∈ Range(f)). An
immediate application of such a construct is to specify succinctly the randomness to be used by parties in a
randomized distributed protocol with potentially faulty players, so as to force honest behavior. A centralized
authority holds a description of an index s of a pseudorandom function Fs. One may think of this authority
as providing a service which dispenses pseudorandomness (alternatively, the secret s can be shared among
players in an MPC). The authority provides each party id with a secret key sid which enables party id to (1)
evaluate Fs(y) whenever y = “id‖h”, where h corresponds to say the public history of communication, and
(2) use Fs(y) as her next sequence of coins in the protocol. To prove that the appropriate randomness was
used, id can utilize NIZK proofs. An interesting open question is how to achieve a verifiable F-PRF, where
there is additional information vks that can be used to verify that a given pair (x, Fs(x)) is valid, without
assuming the existence of an honestly generated common reference string, as in the NIZK setting. Note that
in this example the function f(x) = y is simply the function which appends the string prefix id to x. We
note that there are many other ways to force the use of proper randomness in MPC protocols by dishonest
parties, starting with the classical paradigm [GM82, GMW86] where parties interact to execute a “coin flip
in the well” protocol forcing players to use the results of these coins, but we find the use of F-PRF appealing
in its simplicity, lack of interaction and potential efficiency.

The notion of functional pseudorandom functions has many variations. One natural variant that immedi-
ately follows is pseudorandom functions with selective access: start with a pseudorandom function as defined
in [GGM86], and add the ability to generate secondary keys skPi (per predicate Pi) which enable computing
Fs(x) whenever Pi(x) = 1. This is a special case of F-PRF, as we can take the secret key for predicate Pi
to be skfi where fi(x) = x if Pi(x) = 1 and ⊥ otherwise. The special case of punctured PRFs, in which
secondary keys allow computing Fs(x) on all inputs except one, is similarly implied and has recently been
shown to have important applications (e.g., [SW13, HSW13]). Another variant is hierarchical pseudorandom
functions, with an additional property that parties with functional keys skf may also generate subordinate

2

keys skg for functions g of the form g = f ◦ f ′ (i.e., first evaluate some function f ′, then evaluate f). Note
that the range of such composition g is necessarily contained within the range of f .

Independent Work. A preliminary version of this work appeared in a Masters Thesis submitted on
May 22, 2013. We note that independently (and unknown to the authors) the notion of pseudorandom
functions with selective access was studied by Boneh-Waters under the name of constrained pseudorandom
functions [BW13] and by Kiayias, Papadopoulos, Triandopoulos and Zacharias under the name delegatable
pseudorandom functions [KPTZ13]. Subsequent to our posting of an earlier manuscript of this work, [BF13]
and [BMS13] have additionally posted similar results on functional signatures.

1.1 Our Results on Functional Signatures and Their Applications

We provide a construction of functional signatures achieving function privacy and succinctness, assuming
the existence of succinct non-interactive arguments of knowledge (SNARKS) and (standard) non-interactive
zero-knowledge arguments of knowledge (NIZKAoKs) for NP languages.

As a building block, we first give a construction of a functional signature scheme that is not succinct or
function private, based on a much weaker assumption: the existence of one-way functions.

Theorem 1.1 (Informal). Based on any one-way function, there exists a functional signature scheme that
supports signing keys for any function f computable by a polynomial-sized circuit. This scheme satisfies the
unforgeability requirement for functional signatures, but not function privacy or succinctness.

Overview of the construction: The master signing and verification keys for the functional signature
scheme will correspond to a key pair, (msk,mvk), in an underlying (standard) signature scheme.

To generate a signing key for a function f , we do the following. First, sample a fresh signing and
verification key pair (sk′, vk′) in the underlying signature scheme, and sign the concatenation f |vk′ using
msk. The signing key for f consists of this signature together with sk′. Given this signing key, a user
can sign any message m∗ = f(m) by signing m using sk′, and outputting this signature, together with the
signature of f |vk′ given as part of skf .

We then now show how to use a SNARK system, together with this initial construction, to construct a
succinct, function-private functional signature scheme.

A SNARK system for an NP language L with corresponding relation R is an extractable proof system
where the size of a proof is sublinear in the size of the witness corresponding to an instance. SNARK schemes
have been constructed under various non-falsifiable assumptions. Bitansky et al. [BCCT13] construct zero-
knowledge SNARKs where the length of the proof and the verifier’s running time are bounded by a polynomial
in the security parameter, and the logarithm of running time of the corresponding relation R(x,w), assuming
the existence of collision resistance hash functions and a knowledge of exponent assumption.2 (More details
are given in Section 2.3.)

Theorem 1.2 (Informal). Assuming the existence of succinct non-interactive arguments of knowledge (SNARKs),
NIZKAoK for NP languages, and a functional signature scheme that is not necessarily function-private or
succinct, there exists a succinct, function-private functional signature scheme that supports signing keys for
any function f computable by a polynomial-sized circuit.

Overview of the construction: Our construction makes use of non-succinct, non-function-private func-
tional signature scheme FS1 (which exists based on one-way functions by our construction above), and a
zero-knowledge SNARK system for NP.

In the setup algorithm for our functional signature scheme, we sample a key pair (msk,mvk) for the
functional signature scheme FS1, and common reference string crs for the SNARK system. We use msk as

2In [BCCT12], Bitansky et al. also show that any SNARK + NIZKAoK directly yield zero-knowledge (ZK)-SNARK with
analogous parameters.

3

the new master singing key and (mvk, crs) as the new master verification key. The key generation algorithm
is the same as in the underlying functional signature scheme FS1. To sign a message m∗ using a resulting key
skf , we generate a zero-knowledge SNARK for the following statement: ∃σ such that σ is a valid signature
of m∗ under mvk in the functional signature scheme FS1. To verify the signature, we run the verification
algorithm for the SNARK argument system.

Resorting to non-falsifiable assumptions, albeit strong, seems necessary to obtain succinctness for func-
tional signatures. We show that, given a functional signature scheme with short signatures, we can construct
a SNARG system.

Theorem 1.3 (Informal). If there exists a functional signature scheme supporting keys for all polynomial-
sized circuits f , that has short signatures (i.e of size poly(k) · (|f(m)| + |m|)o(1) for security parameter k),
then there exists a SNARG scheme with preprocessing for any language L ∈ NP with proof size poly(k) ·
(|w|+ |x|)o(1), where w is the witness and x is the instance.

The main idea in the SNARG construction is for the verifier (CRS generator) to give out a single signing
key skf for a function whose range consists of exactly those strings that are in L. Then, with skf , the prover
will be able to sign only those messages x that are in the language L, and thus can use this (short) signature
as his proof.

Gentry and Wichs showed in [GW11] that SNARG schemes with proof size poly(k) · (|w|+ |x|)o(1) cannot
be obtained using black-box reductions to falsifiable assumptions. We can thus conclude that in order to
obtain a functional signature scheme with signature size poly(k) · (|f(m)| + |m|)o(1) we must either rely on
non-falsifiable assumptions (as in our SNARK construction) or make use of non black-box techniques.

Finally, we can construct a scheme which satisfies unforgeability and functional privacy but not succinct-
ness based on the weaker assumption of non-interactive zero-knowledge arguments of knowledge (NIZKAoK)
for NP.

Theorem 1.4 (Informal). Assuming the existence of non-interactive zero-knowledge arguments of knowledge
(NIZKAoK) for NP, there exists a functional signature scheme that supports signing keys for any function
f computable by a polynomial-sized circuit. This scheme satisfies function privacy, but not succinctness: the
size of the signature is dependent on the size of f and m.

Overview of the construction: The construction is analogous to the SNARK-based construction in the
previous construction, with the SNARK system replaced with a NIZKAoK system. Namely, a signature will
be a NIZKAoK for the following statement: ∃σ such that σ is a valid signature of m∗ under mvk, in an
underlying non-succinct, non-function-private functional signature scheme, as before (recall such a scheme
exists based on OWF). The signature size is now polynomial in the size of σ, which, if m∗ = f(m), and
sigma was generated using skf , is itself polynomial in the security parameter, |m|, and |f |.

1.1.1 Relation to Delegation:

Functional signatures are highly related to delegation schemes. A delegation scheme allows a client to
outsource the evaluation of a function f to a server, while allowing the client to verify the correctness of
the computation more efficiently than computing the function himself. We show that given any functional
signature scheme supporting a class of functions F , we can obtain a delegation scheme in the preprocessing
model for functions in F , with related parameters.

Theorem 1.5 (Informal). If there exists a functional signature scheme for function class F , with signature
size s(k), and verification time t(k), then there exists a one-round delegation scheme for functions in F ,
with server message size s(k) and client verification time t(k).

Overview of the construction: The client can give the server a key skf ′ for the function f ′(x) = (f(x)|x).
To prove that y = f(x), the prover gives the client a signature of y|x, which he could only have obtained
if y|x is in the range of f ′; that is, if y = f(x). The length of a proof is equal to the length of a signature

4

in the functional signature scheme, s(k), and the verification time for the delegation scheme is equal to the
verification time of the functional signature scheme.

1.2 Summary of our Results on Functional Pseudorandom Functions and Se-
lective Pseudorandom Functions

We present formal definitions and constructions of functional pseudorandom functions (F-PRF) and pseu-
dorandom functions with selective access (PRF-SA). In particular, we present a construction based on the
existence of one-way functions of a functional pseudorandom function family supporting the class of prefix
-fixing functions. Our construction is based on the Goldreich-Goldwasser-Micali (GGM) tree-based PRF
construction [GGM86].

Theorem 1.6 (Informal). Assuming the existence of OWF, there exists a functional PRF that supports
keys for the following class of functions related to prefix matching: Fpre = {fz|z ∈ {0, 1}m,m ≤ n}, where
fz(x) = x if z is a prefix of x, and ⊥ otherwise. The pseudorandomness property holds against a selective
adversary, who declares the functions he will query before seeing the public parameters.

We remark that one can directly obtain a fully secure F-PRF for Fpre, in which security holds against an
adversary who adaptively requests key queries, from our selectively secure construction, with a loss of 2−n

in security for each functional secret key skfz queried by the adversary. This is achieved simply by guessing
the adversary’s query fz ∈ Fpre. For appropriate choices of the input length n, security of the underlying
OWF, and number of key queries, this still provides the required security.

Overview of the construction. We show that the original Goldreich-Goldwasser-Micali (GGM) tree-
based construction [GGM86] provides the desired functionality, where the functional key skf corresponding
to a prefix-fixing function fz(x) = z1z2 · · · zixi+1 · · ·xn will be given by the partial evaluation of the PRF
down the tree, at the node corresponding to prefix z1z2 · · · zi.

This partial evaluation clearly enables a user to compute all possible continuations in the evaluation tree,
corresponding to the output of the PRF on any input possessing prefix z. Intuitively, security holds since
the other partial evaluations at this level i in the tree still appear random given the evaluation skf (indeed,
this corresponds to a truncated i-bit input GGM construction).

Punctured pseudorandom functions. Punctured pseudorandom functions [SW13] are a special case
of functional PRFs where one can generate keys for the function family F = {fx(y) = y if y 6= x, and ⊥
otherwise}. Namely, a key for function fx allows one to compute the pseudorandom function on any input
except for x. Punctured PRFs have recently proven useful as one of the main techniques used in proving
the security of various cryptographic primitives based on the existence of indistinguishability obfuscation.
Some examples include a construction of public-key encryption from symmetric-key encryption and the con-
struction of deniable encryption given by Sahai and Waters in [SW13], as well as an instantiation of random
oracles with a concrete hash function for full-domain hash applications by Hohenberger et al. in [HSW13].

We note that the existence of a functional PRF for the prefix-fixing function family gives a construction
of punctured PRFs. A key that allows one to compute the PRF on all inputs except x = x1 . . . xn consists of
n functional keys for the prefix-fixing function family for prefixes: x̄1, x1x̄2, x1x2x̄3 . . . x1x2 . . . xn−1x̄n. We
remark that while n prefix-matching keys are revealed, there are only 2n such sets of keys (corresponding to
the 2n choices for the punctured input x), and thus we lose only 2−n security when complexity leveraging
from selective to full security. For appropriate choice of underlying OWF security, this yields fully secure
punctured PRFs for any desired poly-sized inputs, based on OWFs.

Corollary 1.7. Assuming the existence of OWF, there exists a (fully) secure punctured PRF for any desired
poly-size input length.

5

Other notions. Our construction has the additional beneficial property of hierarchical key generation:
i.e., a party with a functional key skfz for a prefix z may generate valid “subordinate” functional keys skfz′
for any prefix z′ = z|∗. That is, we prove the following additional statement.

Corollary 1.8 (Informal). Assuming the existence of OWF, there exists a hierarchical functional PRF for
the class of functions Fpre.

Recall that we can also view the prefix-matching function as a predicate allowing only signatures of
message that begin with a prefix z. As an immediate corollary of the above, we achieve (hierarchical)
functional PRFs with selective access for the corresponding class of prefix-matching predicates:

Corollary 1.9 (Informal). Assuming the existence of OWF, there exists a (hierarchical) functional PRF with
selective access for the class of prefix-matching predicates Ppre = {Pz|z ∈ {0, 1}m,m ≤ n}, where Pz(x) = 1
if z is a prefix of x, and 0 otherwise. The pseudorandomness property holds against a selective adversary (or
against an adaptive adversary, with a security loss of 2−n per key query).

1.3 Open Problems

The size of the signatures in our SNARK-based functional signature scheme is dependent only of the security
parameter, but it is based on non-falsifiable assumptions. In Section 4, we show that, for a functional
signature scheme that supports signing keys for a function f , a signature of y = f(x) cannot be sublinear
in the size of y or x, unless the construction is either proven secure under a non-falsifiable assumption or
makes use of non blac-kbox techniques. No lower bound exists that relates the size of the signature to
the description of f . Constructing functional signatures with short (sublinear in the size of the functions
supported) signatures and verification time under falsifiable assumptions remains an open problem.

An interesting problem left open by this work is to construct a functional PRF that is also verifiable. A
verifiable PRF, introduced by Micali, Rabin and Vadhan in [MRV99] has the property that, in addition to
the secret seed of the PRF, there is a corresponding public key and a way to generate a proof πx given the
secret seed, such that given the public key, x, y and πx one can check that y is indeed the output of the
PRF on x. The public parameters and the proof should not allow an adversary to distinguish the outputs
of the PRF from random on any point for which the adversary has not received a proof. A construction of
standard verifiable PRFs was given by Lysyanskaya based on the many-DH assumption in bilinear groups
in [Lys02].

One may extend the notion of verifiable PRFs to the setting of functional PRFs by enabling a user with
functional key skf to also generate verifiable proofs πx of correctness for evaluations of the PRF on inputs x
for which his key allows. We note that such a verifiable functional pseudorandom function family supporting
keys for a function class F , implies a functional signature scheme that supports signing keys for the same
function class, so the lower bound mentioned for functional signatures applies also to the proofs output in
the verifiable functional PRF context.

1.4 Other Related Work

Functional Encryption. This work is inspired by recent results on the problem of functional encryption,
which was introduced by Sahai and Waters in [SW05], and formalized by Boneh et al. in [BSW11]. In the
past few years there has been significant progress on constructing functional encryption schemes for general
classes of functions (e.g., [GVW12, GKP+12, GKP+13]). In this setting, a party with access to a master
secret key can generate secret keys for any function f , which allows a third party who has this secret key
and an encryption of a message m to learn f(m), but nothing else about m. In [GKP+12], Goldwasser et
al. construct a functional encryption scheme that can support general functions, where the ciphertext size
grows with the maximum depth of the functions for which keys are given. They improve this result in a
follow-up work [GKP+13], which constructs a functional encryption scheme that supports decryption keys
for any Turing machine. Both constructions are secure according to a simulation-based definition, as long as
a single key is given out. In [AGVW13], Agrawal et al. show that constructing functional encryption schemes

6

achieving this notion of security in the presence of an unbounded number of secret keys is impossible for
general functions. In contrast, no such impossibility results are known in the setting of functional signatures.

Connections to Obfuscation. The goal of program obfuscation is to construct a compiler O that takes
as input a program P and outputs a program O(P) that preserves the functionality of P , but hides all other
information about the original program. In [BGI+01] Barak et al. formalize this, requiring that, for every
adversary having access to an obfuscation of P that outputs a single bit, there exists a simulator that only
has blackbox access to P and whose output is statistically close to the adversary’s output:

Pr[A(O(P)) = 1]− Pr[SP (1|P |) = 1] = negl(|P |)

Barak et al. [BGI+01] construct a class of programs and an adversary for which no simulator can exist,
therefore showing that this definition is not achievable for general functions. Furthermore, in [GK05],
Goldwasser and Kalai give evidence that several natural cryptographic algorithms, including the signing
algorithm of any unforgeable signature scheme, are not obfuscatable with respect to this strong definition.

Consider the function Sign ◦ f , where Sign is the signing algorithm of an unforgeable signature scheme,
f is an arbitrary function and ◦ denotes function composition. Based on the results in [GK05] we would
expect this function not to be obfuscatable according to the blackbox simulation definition. A meaningful
relaxation of the definition is that, while having access to an obfuscation of this function might not hide
all information about the signing algorithm, it does not completely reveal the secret key, and does not
allow one to sign messages that are not in the range of f . In our function signature scheme, the signing
key corresponding to a function f achieves exactly this definition of security, and we can think of it as an
obfuscation of Sign ◦ f according to this relaxed definition. Indeed it has recently come to our attention that
Barak in an unpublished manuscript has considered delegatable signatures, a highly related concept.

Homomorphic Signatures. Another related problem is that of homomorphic signatures. In a homomor-
phic signature scheme, a user signs several messages with his secret key. A third party can then perform
arbitrary computations over the signed data, and obtain a new signature that authenticates the resulting
message with respect to this computation. In [GW12], Gennaro and Wichs construct homomorphic message
authenticators, which satisfy a weaker unforgeability notion than homomorphic signatures, in that the verifi-
cation is done with respect to a secret key unknown to the adversary. They impose an additional restriction
on the adversary, who is not allowed to make verification queries. For homomorphic signature schemes with
public verification, the most general construction of Boneh and Freeman [BF11] only allows the evaluation of
multivariate polynomials on signed data. Constructing homomorphic signature schemes for general functions
remains an open problem.

Signatures of correct computation. Papamanthou, Shi and Tamassia considered a notion of functional
signatures under the name “signatures of correct computation” in [PST13]. They give constructions for
schemes that support operations over multivariate polynomials, such as polynomial evaluation and differ-
entiation. Their constructions are secure in the random oracle model and allow efficient updates to the
signing keys: the keys can be updated in time proportional to the number of updated coefficients. In con-
trast, our constructions that support signing keys for general functions, assuming the existence of succinct
non-interactive arguments of knowledge.

Independent work. Finally, as mentioned earlier, related notions to functional PRFs appear in the
concurrent and independent works [BW13, KPTZ13]. Based on the Multilinear Decisional Diffie-Hellman
assumption (a recently coined assumption related to existence of secure multilinear maps), [BW13] show that
PRFs with Selective Access can be constructed for all predicates describable as polynomial-sized circuits.
We remark that this is not equivalent to functional PRFs for polynomial-sized circuits, which additionally
captures NP relations (i.e., the predicate y ∈ Range(f) may not be efficiently testable directly).

Subsequent to our posting of an earlier manuscript of this work, [BF13] and [BMS13] have additionally
posted similar results on functional signatures.

7

1.5 Overview of the paper

In Section 2, we describe several primitives which will be used in our constructions. In Section 3, we give a
formal definition of functional signature schemes, and present three constructions satisfying the definition. In
Section 4, we show how to construct delegation schemes and succinct non-interactive arguments (SNARGs)
from functional signatures schemes. In Section 5, we give a formal definition of functional pseudorandom
functions and pseudorandom functions with selective access, and present a sample construction for the
prefix-fixing function family.

2 Preliminaries

In this section we define several cryptographic primitives that are used in our constructions.

2.1 Signature Schemes

Definition 2.1. A signature scheme for a message space M is a tuple (Gen,Sign,Verify):

• Gen(1k) → (sk, vk): the key generation algorithm is a probabilistic, polynomial-time algorithm which
takes as input a security parameter 1k, and outputs a signing and verification key pair (sk, vk).

• Sign(sk,m)→ σ: the signing algorithm is a probabilistic polynomial time algorithm which is given the
signing key sk and a message m ∈M and outputs a string σ which we call the signature of m.

• Verify(vk,m, σ) → {0, 1}: the verification algorithm is a polynomial time algorithm which, given the
verification key vk, a message m, and signature σ, returns 1 or 0 indicating whether the signature is
valid.

A signature scheme should satisfy the following properties:
Correctness

∀(sk, vk)← Gen(1k),∀m ∈M,∀σ ← Sign(sk,m),

Verify(vk,m, σ)→ 1

Unforgeability under chosen message attack
A signature scheme is unforgeable under chosen message attack if the winning probability of any probabilistic
polynomial time adversary in the following game is negligible in the security parameter:

• The challenger samples a signing, verification key pair (sk, vk)← Gen(1k) and gives vk to the adversary.

• The adversary requests signatures from the challenger for a polynomial number of messages. In round
i, the adversary chooses mi based on m1, σ1, . . .mi−1, σi−1, and receives σi ← Sign(sk,mi).

• The adversary outputs a signature σ∗ and a message m∗, and wins if Verify(vk,m∗, σ∗) → 1 and the
adversary has not previously received a signature of m∗ from the challenger.

Lemma 2.2 ([Rom90]). Under the assumption that one-way functions exist, there exists a signature scheme
which is secure against existential forgery under adaptive chosen message attacks by polynomial-time algo-
rithms.

2.2 Non-Interactive Zero Knowledge

Definition 2.3. [FLS90, BFM88, BSMP91]: Π = (Gen,Prove,Verify,S = (Scrs,SProof)) is an efficient adap-
tive NIZK argument system for a language L ∈ NP with witness relation R if Gen,Prove,Verify,Scrs,SProof
are all PPT algorithms, and there exists a negligible function µ such that for all k the following three
requirements hold.

8

• Completeness: For all x,w such that R(x,w) = 1, and for all strings crs← Gen(1k),

Verify(crs, x,Prove(x,w, crs))→ 1.

• Adaptive Soundness: For all PPT adversaries A, if crs← Gen(1k) is sampled uniformly at random,
then the probability that A(crs) will output a pair (x, π) such that x 6∈ L and yet Verify(crs, x, π)→ 1,
is at most µ(k).

• Adaptive Zero-Knowledge: For all PPT adversaries A,∣∣Pr[ExpA(k)→ 1]− Pr[ExpSA(k)→ 1]
∣∣ ≤ µ(k),

where the experiment ExpA(k) is defined by:

crs← Gen(1k)

Return AProve(crs,·,·)(crs)

and the experiment ExpSA(k) is defined by:

(crs, trap)← Scrs(1k)

Return AS
′(crs,trap,·,·)(crs),

where S′(crs, trap, x, w) = SProof(crs, trap, x).

We next define the notion of a NIZK argument of knowledge.

Definition 2.4. Let Π = (Gen,Prove,Verify,S = (Scrs,SProof)) be an efficient adaptive NIZK argument
system for an NP language L ∈ NP with a corresponding NP relation R. We say that Π is a argument-of-
knowledge if there exists a PPT algorithm E = (E1,E2) such that for every adversary A,

|Pr[A(crs)→ 1|crs← Gen(1k)]− Pr[A(crs)→ 1|(crs, trap)← E1(1k)]| = negl(k)

For every PPT adversary A,

Pr[A(crs)→ (x, π) and E(crs, trap, x, π)→ w∗ s.t. Verify(crs, x, π)→ 1 and (x,w∗) /∈ R]

= negl(k),

where the probabilities are taken over (crs, trap)← E1(1k), and over the random coin tosses of the extractor
algorithm E2.

We note that we require the distributions over the honestly generated crs, and the crs generated by the
extractor E1 to be statistically close, whereas they are often required to be just computationally indistinguish-
able. However, if one is satisfied with computational zero knowledge (as is the case for us), this is actually
without loss of generality. Namely, given any NIZKAoK Π = (Gen,Prove,Verify,S = (Scrs,SProof),E =
(E1,E2)) for which the CRS output by Gen(1k) and E1(1k) are only computationally indistinguishable, we
claim that the system Π′ formed by using E1 also as the honest CRS generation algorithm (i.e., replacing
Gen) is also a NIZKAoK, and satisfies our statistical indistinguishability requirement.

Claim 2.5. Suppose Π as above is a NIZKAoK for which {crs : crs← Gen(1k)}
c∼= {crs : (crs, trap)← E1(1k)}

are only computationally indistinguishable. Then Π′ := (E1,Prove,Verify,S = (Scrs,SProof),E = (E1,E2)) is
a NIZKAoK as in Definition 2.4.

9

Proof. Clearly extraction and adaptive soundness are maintained. Completeness must still hold for any
statement/witness pairs (x,w) produced by an efficient adversary, due to the computational indistinguisha-
bility of CRSs generated by Gen and E1; otherwise there exists an efficient distinguishing algorithm who
generates honest proofs and tests whether they verify. Finally, adaptive zero knowledge must hold for the
same simulator algorithms S = (Scrs,SProof). Indeed, for PPT adversary A, consider a third experiment
ExpE
A(k) defined by generating (crs, trap) ← E1(1k), and returning AProve(crs,·,·)(crs). That is, ExpE

A(k) is
identical to the real-world experiment ExpA(k) except that the CRS is generated according to E1 instead
of Gen (and, in particular, corresponds to the real-world experiment for the modified scheme Π′). By the
computational indistinguishability of CRSs generated by Gen and E1, it holds that ExpA(k) and ExpE

A(k) are
computationally indistinguishable. But by the adaptive zero knowledge property of the original scheme Π,
we have that ExpA(k) is computationally indistinguishable from the simulated experiment ExpSA(k). Thus,
it must be that ExpE

A(k) is computationally indistinguishable from ExpSA(k): that is, Π′ satisfies adaptive
zero knowledge.

Remark. There is a standard way to convert any NIZK argument system Π to a NIZK argument-of-
knowledge system Π′. The idea is to append to the crs a public key pk corresponding to any semantic secure
encryption scheme. Thus, the common reference string corresponding to Π′ is of the form crs′ = (crs, pk). In
order to prove that x ∈ L using a witness w, choose randomness r ← {0, 1}poly(k), compute c← Encpk(w, r)
and compute a NIZK proof π, using the underlying NIZK argument system Π, that (pk, x, c) ∈ L′, where

L′ , {(pk, x, c) : ∃(w, r) s.t. (x,w) ∈ R and c← Encpk(w, r)}.

Let π′ = (π, c) be the proof.
The common reference string simulator E1 will generate a simulated crs′ by generating (crs, trap) using

the underlying simulator Scrs, and by generating a public key pk along with a corresponding secret key sk.
Thus, trap′ = (trap, sk). The extractor algorithm E2, will extract a witness for x from a proof π′ = (π, c) by
using sk to decrypt the ciphertext c.

We note that the distribution over the honestly generated crs, and the crs generated by E1 are statistically
close, as required in our definition above.

Lemma 2.6 ([FLS90]). Assuming the existence of enhanced trapdoor permutations, there exists an efficient
adaptive NIZK argument of knowledge for all languages in NP.

2.3 Succinct Non-Interactive Arguments (SNARGs)

Definition 2.7. Π = (Gen,Prove,Verify) is a succinct non-interactive argument for a language L ∈ NP with
witness relation R if it satisfies the following properties:

• Completeness: For all x,w such that R(x,w) = 1, and for all strings crs← Gen(1k),

Verify(crs, x,Prove(x,w, crs)) = 1.

• Adaptive Soundness: There exists a negligible function µ(k), such that, for all PPT adversaries A,
if crs ← Gen(1k) is sampled uniformly at random, then the probability that A(crs) will output a pair
(x, π) such that x 6∈ L and yet Verify(crs, x, π) = 1, is at most µ(k).

• Succinctness: There exists an universal polynomial p(·) that does not depend on the relation R, such
that

∀x,w s.t R(x,w) = 1, crs← Gen(1k), π ← Prove(x,w, crs),

|π| ≤ p(k + logR)

where R denotes the runtime of the relation associated with language L. We note that the definition
of succinctness considered in the lower bound of [GW11] is weaker, in that they require the proof size
to only be bounded by r(k) · (|x|+ |w|)o(1), for some polynomial r(·).

10

Definition 2.8. A SNARG Π = (Gen,Prove,Verify) is a succinct non-interactive argument of knowl-
edge(SNARK) for a language L ∈ NP with witness relation R if there exists a negligible function µ(·)
such that, for all PPT provers P ∗, there exists a PPT algorithm EP∗ = (E1

P∗ ,E
2
P∗) such that for every

adversary A,

|Pr[A(crs)→ 1|crs← Gen(1k)]− Pr[A(crs)→ 1|(crs, trap)← E1
P∗(1

k)]| = µ(k),

and,

Pr[P ∗(crs)→ (x, π) and E2
P∗(crs, trap, x, π)→ w∗ s.t. Verify(crs, x, π)→ 1 and (x,w∗) /∈ R]

= µ(k).

where the probabilities are taken over (crs, trap)← E1
P∗(1

k), and over the random coin tosses of the extractor
algorithm E2

P∗ .

Remark As in the NIZK definition, we require the distributions over the honestly generated crs, and
the crs generated by the extractor E1

P∗ to be statistically close. We note that the SNARK construction in
[BCCT13] satisfies a stronger definition, where the extraction process has to work for a honestly generated
crs, without having access to a trapdoor.

Definition 2.9. A SNARK Π = (Gen,Prove,Verify,E) is a zero-knowledge SNARK for a language L ∈ NP
with witness relation R if there exist PPT algorithmsS = (Scrs,SProof) satisfing the following property:
Adaptive Zero-Knowledge: For all PPT adversaries A,∣∣Pr[ExpA(k)→ 1]− Pr[ExpSA(k)→ 1]

∣∣ ≤ µ(k),

where the experiment ExpA(k) is defined by:

crs← Gen(1k)

Return AProve(crs,·,·)(crs)

and the experiment ExpSA(k) is defined by:

(crs, trap)← Scrs(1k)

Return AS
′(crs,trap,·,·)(crs),

where S′(crs, trap, x, w) = SProof(crs, trap, x).

There are several constructions of SNARKs known, all based on non-falsifiable assumptions. A falsifiable
assumption is an assumption that can be modeled as a game between an efficient challenger and an adversary.
Most standard cryptographic assumptions are falsifiable. This includes both general assumptions like the
existence of OWFs, trapdoor predicates, and specific assumptions (discrete logarithm, RSA, LWE, hardness
of factoring).

Lemma 2.10 ([BCCT13]). A SNARK system for any language L ∈ NP can be constructed assuming the
existence of collision-resistant hash function and knowledge of exponent assumptions.

Lemma 2.11 ([BCCT12]). If there exist SNARKs and NIZKAoK for NP, then there exist zero-knowledge
SNARKs for all languages in NP.

In [GW11] Gentry and Wichs show that no construction of SNARGs, with proof size bounded by r(k) ·
(|x| + |w|)o(1), for some polynomial r(·), can be proved secure under a black-box reduction to a falsifiable
assumption. A black-box reduction is one that only uses oracle access to an attacker, and does not use that
adversary’s code in any other way. The definition of succinctness in [GW11] is a relaxation of the one in
definition Definition 2.8, which makes their lower bound result stronger.

11

2.4 Delegation Schemes

A delegation scheme allows a client to outsource the evaluation of a function F to a server, while allowing
the client to verify the correctness of the computation. The verification process should be more efficient
than computing the function. We formalize these requirements below, following the definition introduced by
Gennaro et al. in [GGP10].

Definition 2.12 ([GGP10]). A delegation scheme for a function F consists of a tuple of algorithms (KeyGen,
Encode, Compute, Verify)

• KeyGen(1k, F) → (enc, evk, vk): The key generation algorithm takes as input a security parameter k
and a function F , and outputs a key enc that is used to encode the input, an evaluation key evk that
is used for the evaluation of the function F , and a verification key vk that is used to verify that the
output was computed correctly.

• Encode(enc, x) → σx: The encoding algorithm uses the encoding key enc to encode the function input
x as a public value σx, which is given to the server to compute with.

• Compute(evk, σx)→ (y, πy): Using the public evaluation key, evk and the encoded input σx, the server
computes the function output y = F(x), and a proof πy that y is the correct output.

• Verify(vk, x, y, πy) → {0, 1}: The verification algorithm checks the proof πy and outputs 1(indicating
that the proof is correct), or 0 otherwise.

We require a delegation scheme to satisfy the following requirements:

Correctness
For all vk, x, y, πy such that (enc, evk, vk)← KeyGen(1k, F), σx ← Encode(enc, x), (y, πy)← Compute(evk, σx),

Verify(vk, x, y, πy)→ 1

Authentication
For all PPT adversaries, the probability that the adversary is successful in the following game is negligible:

• The challenger runs KeyGen(1k, F)→ (enc, evk, vk), and gives (evk, vk) to the adversary.

• The adversary gets access to an encoding oracle, Oenc(·) = Encode(enc, ·).
• The adversary is successful if it can produce a tuple (x, y, πy) such that y 6= F (x) and Verify(vk, x, y, πy)→

1.

Efficient verification
Let T (n) be the running time of the verification algorithm on inputs of size n. Let TF (n) be the running
time of F on inputs of size n. We require the worst-case running time of the verification algorithm to be sub
linear in the worst case running time of F ,

T (n) ∈ o(TF (n))

2.5 Pseudorandom Generators and Functions

Definition 2.13. A pseudorandom generator (PRG) is a length expanding function prg : {0, 1}k → {0, 1}n
(for n > k) such that prg(Uk) and Un are computationally indistinguishable, where Uk is a uniformly
distributed k-bit string and Un is a uniformly distributed n-bit string.

Definition 2.14. [GGM86] A family of functions F = {Fs}s∈S , indexed by a set S, and where Fs : D →
R for all s, is a pseudorandom function (PRF) family if for a randomly chosen s, and all PPT A, the
distinguishing advantage Prs←S [Afs(·) = 1] − Prf←(D→R)[Aρ(·) = 1] is negligible, where (D → R) denotes
the set of all functions from D to R.

12

3 Functional Signatures: Definition and Constructions

3.1 Formal Definition

We now give a formal definition of a functional signature scheme, and explain in more detail the unforgeability
and function privacy properties a functional signature scheme should satisfy.

Definition 3.1. A functional signature scheme for a message spaceM, and function family F = {f : Df →
M} consists of algorithms (FS.Setup, FS.KeyGen, FS.Sign, FS.Verify):

• FS.Setup(1k)→ (msk,mvk): the setup algorithm takes as input the security parameter and outputs the
master signing key and master verification key.

• FS.KeyGen(msk, f) → skf : the key generation algorithm takes as input the master signing key and a
function f ∈ F (represented as a circuit), and outputs a signing key for f .

• FS.Sign(f, skf ,m) → (f(m), σ): the signing algorithm takes as input the signing key for a function
f ∈ F and an input m ∈ Df , and outputs f(m) and a signature of f(m).

• FS.Verify(mvk,m∗, σ) → {0, 1}: the verification algorithm takes as input the master verification key
mvk, a message m and a signature σ, and outputs 1 if the signature is valid.

We require the following conditions to hold:

Corectness:
∀f ∈ F ,∀m ∈ Df , (msk,mvk)← FS.Setup(1k), skf ← FS.KeyGen(msk, f), (m∗, σ)← FS.Sign(f, skf ,m),

FS.Verify(mvk,m∗, σ) = 1.

Unforgeability:
The scheme is unforgeable if the advantage of any PPT algorithm A in the following game is negligible:

• The challenger generates (msk,mvk)← FS.Setup(1k), and gives mvk to A

• The adversary is allowed to query a key generation oracle Okey, and a signing oracle Osign, that share a
dictionary indexed by tuples (f, i) ∈ F × N, whose entries are signing keys: skif ← FS.KeyGen(msk, f).
This dictionary keeps track of the keys that have been previously generated during the unforgeability
game. The oracles are defined as follows :

– Okey(f, i) :

∗ if there exists an entry for the key (f, i) in the dictionary, then output the corresponding value,
skif .

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry (f, i) → skif to the

dictionary, and output skif
– Osign(f, i,m):

∗ if there exists an entry for the key (f, i) in the dictionary, then generate a signature on f(m)
using this key: σ ← FS.Sign(f, skif ,m).

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry (f, i) → skif to the

dictionary, and generate a signature on f(m) using this key: σ ← FS.Sign(f, skif ,m).

• The adversary wins if it can produce (m∗, σ) such that

– FS.Verify(mvk,m∗, σ) = 1.

– there does not exist m such that m∗ = f(m) for any f which was sent as a query to the Okey oracle.

– there does not exist a (f,m) pair such that (f,m) was a query to the Osign oracle and m∗ = f(m).

Function privacy:
Intuitively, we require the distribution of signatures on a message m′ generated via different keys skf to be
computationally indistinguishable, even given the secret keys and master signing key. Namely, the advantage
of any PPT adversary in the following game is negligible:

13

• The challenger honestly generates a key pair (mvk,msk) ← FS.Setup(1k) and gives both values to the
adversary. (Note wlog this includes the randomness used in generation).

• The adversary chooses a function f0 and receives an (honestly generated) secret key skf0 ← FS.KeyGen(msk, f0).

• The adversary chooses a second function f1 for which |f0| = |f1| (where padding can be used if there is
a known upper bound) and receives an (honestly generated) secret key skf1 ← FS.KeyGen(msk, f1).

• The adversary chooses a pair of values m0,m1 for which |m0| = |m1| and f0(m0) = f1(m1).

• The challenger selects a random bit b ← {0, 1} and generates a signature on the image message m′ =
f0(m0) = f1(m1) using secret key skfb , and gives the resulting signature σ ← FS.Sign(skfb ,mb) to the
adversary.

• The adversary outputs a bit b′, and wins the game if b′ = b.

Succinctness:
There exists a polynomial s(·) such that for every k ∈ N, f ∈ F ,m ∈ Df , it holds with probability 1
over (msk,mvk)← FS.Setup(1k); skf ← FS.KeyGen(msk, f); (f(m), σ)← FS.Sign(f, skf ,m) that the resulting
signature on f(m) has size |σ| ≤ s(k, |f(m)|). In particular, the signature size is independent of the size |m|
of the input to the function, and of the size |f | of a description of the function f .

3.2 Construction

In this section, we present a construction of a (succinct) functional signature scheme, based on succinct
non-interactive arguments of knowledge (SNARKs).

Theorem 3.2. Assuming the existence of SNARKs for NP, there exists a succinct, function-private func-
tional signature scheme for the class of polynomial-size circuits.

We achieve this via two steps. We first give a construction of a weaker functional signature scheme,
achieving correctness and unforgeability but not succinctness or function privacy, based on one-way functions.
We then show how to use any weak functional signature scheme (satisfying correctness and unforgeability),
together with a SNARK system, to obtain a functional signature scheme that is additionally succinct and
function-private. In a third construction, we demonstrate that if one does not require the signatures to be
succinct (but still demand function privacy), this transformation can be achieved based on non-interactive
zero-knowledge arguments of knowledge (NIZKAoKs).

We present these three constructions in the following three subsections.

3.2.1 OWF-based construction

In this section we give a construction of a functional signature scheme from any standard signature scheme
(i.e., existentially unforgeable under chosen-message attack). Our constructed functional signature scheme
satisfies the unforgeability property given in Definition 3.1, but not function privacy or succinctness. Since
standard signature schemes can be based on one-way functions (OWF) [Rom90], this shows that we can also
construct functional signature schemes under the assumption that OWFs exist.

The main ideas of the construction are as follows. The master signing and verification keys (msk,mvk)
will simply be a standard key pair for the underlying signature scheme. As part of the signing key for a
function f , the signer receives a fresh key pair (sk, vk) for the underlying signature scheme, together with
a signature (with respect to mvk) on the function f together with vk. We can think of this signature as a
certificate authenticating that the owner of key vk has received permission to sign messages in the range of
f . We describe the construction below.

Let Sig = (Sig.Setup,Sig.Sign,Sig.Verify) be a signature scheme that is existentially unforgeable under chosen
message attack. We construct a functional signature scheme FS1 = (FS1.Setup, FS1.KeyGen, FS1.Sign,
FS1.Verify) as follows:

14

• FS1.Setup(1k):

– Sample a signing and verification key pair for the standard signature scheme (msk,mvk)← Sig.Setup(1k),
and set the master signing key to be msk, and the master verification key to be mvk.

• FS1.KeyGen(msk, f):

– choose a new signing and verification key pair for the underlying signature scheme: (sk, vk) ←
Sig.Setup(1k).

– compute σvk ← Sig.Sign(msk, f |vk), a signature of f concatenated with the new verification key vk.

– create the certificate c = (f, vk, σvk).

– output skf = (sk, c).

• FS1.Sign(f, skf ,m):

– parse skf as (sk, c), where sk is a signing key for the underlying signature scheme, and c is a certificate
as described in the KeyGen algorithm.

– sign m using sk: σm ← Sig.Sign(sk,m).

– output (f(m), σ), where σ = (m, c, σm)

• FS1.Verify(mvk,m∗, σ):

– parse σ = (m, c = (f, vk, σvk), σm) and check that:

1. m∗ = f(m).

2. Sig.Verify(vk,m, σm)→ 1: σm is a valid signature of m under the verification key vk.

3. Sig.Verify(mvk, vk|f, σvk) = 1: σvk is a valid signature of f |vk under the verification key mvk.

Theorem 3.3. If the signature scheme Sig is existentially unforgeable under chosen message attack, FS1 as
specified above satisfies the unforgeability requirement for functional signatures.

Proof. Fix a PPT adversary AFS, and let Q(k) be a polynomial upper bound on the number of queries made
by AFS to the oracles Okey and Osign. We will use AFS to construct an adversary Asig such that, if AFS wins
in the unforgeability game for functional signatures with non-negligible probability, then Asig breaks the
underlying signature scheme, which is assumed to be secure against chosen message attack.

For AFS to win the functional signature unforgeability game, it must produce a message signature pair
(m∗, σ), where σ = (m, (f, vk, σvk), σm) such that:

• σm is a valid signature of m under the verification key vk.

• σvk is a valid signature of f |vk under mvk.

• f(m) = m∗.

• AFS has not sent a query of the form Okey(f̃ , i) to the signing key generation oracle for any f̃ that has
m∗ in its range.

• AFS hasn’t sent a query of the form Osign(f̃ , i, m̃) to the signing oracle for any f̃ , m̃ such that f̃(m̃) = m∗

There are two cases for such a forgery (m∗, σ), where σ = (m, (f, vk, σvk), σm):

• Type I forgery: The values (f, vk) are such that the concatenated pair f |vk has not already been
signed under mvk during any point of the signing and key oracle queries during the security game.

• Type II forgery: The values (f, vk) are such that the concatenated pair f |vk has been signed under
mvk during the course of AFS’s oracle queries.

Here we refer to all mvk signatures generated by the oracles Osign, Okey as intermediate steps in order to
answer AFS’s respective queries.

We now describe the constructed signature adversary, Asig. In the security game for the standard (exis-
tentially unforgeable under chosen message attack) signature scheme, Asig is given the verification key vksig,

15

and access to a signing oracle ORegsig . He is considered to be successful in producing a forgery if he outputs
a valid signature for a message that was not queried from ORegsig .

Asig interacts with AFS, playing the role of the challenger in the security game for the functional signature
scheme. This means that Asig must simulate the Okey and Osign oracles. AFS flips a coin b, indicating his
guess for the type of forgery AFS will produce, and places his challenge accordingly.

Case 1: b = 1: Asig guesses that AFS will produce a Type I forgery:
First Asig forwards his challenge verification key vksig to AFS as the master verification key in the functional

signature security game.
To simulate the Okey, and Osign oracles, Asig maintains a dictionary indexed by tuples (f, i), whose entries

are signing keys for the functional signature scheme that have already been generated. Asig answers the
queries issued by AFS as follows:

• Okey(f, i) :

– if there exists an entry for the key (f, i) in the dictionary, then output the corresponding value,
skif .

– otherwise, Asig generates a new key pair for the underlying signature scheme, (sk, vk)← Sig.Setup(1k),
obtains σvk ← ORegsig(f |vk) from its own signing oracle (in the standard signature challenge), and
returns skf = (sk, σvk) to AFS. It also sets entry (f, i) in its dictionary to skf .

• Osign(f, i,m):

– if there exists an entry for the key (f, i) in the dictionary, skif = (sk, σvk). It then generates a

signature using skif : that is, generate a signature σm ← Sig.Sign(sk,m), and output (f(m), σ),
where σ = (m, c = (f, vk, σvk), σm).

– otherwise, Asig generates a new key pair for the regular signature scheme, (sk, vk)← Sig.Setup(1k),
obtains σvk ← ORegsig(f |vk) from its signing oracle, and sets entry (f, i) in its dictionary to skf =
(sk, σvk). It then generates σm ← Sig.Sign(sk,m), and outputs (f(m), σ), where σ = (m, c =
(f, vk, σm), σvk).

Eventually, AFS outputs a signature (m∗, σ), where σ = (m, (f, vk, σvk), σm). Asig outputs (f |vk, σvk) as
its message-forgery pair in the security game for the standard signature scheme.

Case 2: b = 0: Asig guesses that AFS will produce a Type II forgery:
Asig generates a new key pair (msk,mvk)← Sig.Setup(1k) himself, and forwards mvk to AFS. He also guesses
a random index q between 1 and Q(k), denoting which of AFS’s signing queries he will embed his challenge
verification key in. He keeps track of the number of keys generated so far in a variable NUMKEY S, which
is initialized to 0. As before, Asig maintains a dictionary indexed by tuples (f, i), whose entries are signing
keys for the functional signature scheme that have already been generated. Asig answers the queries issued
by AFS as follows:

• Okey(f, i) :

– if there exists an entry for the key (f, i) in the dictionary, with value CHALLENGE, abort

– if there exists an entry for the key (f, i) in the dictionary and its value is not CHALLENGE, then
output the corresponding value, skif .

– otherwise, Asig generates a new key pair for the regular signature scheme, (sk, vk)← Sig.Setup(1k),
generates σvk ← Sign(msk, f |vk) himself, and returns skf = (sk, σvk) to AFS. It also sets entry (f, i)
in its dictionary to skf .

• Osign(f, i,m):

– if there exists an entry for the key (f, i) in the dictionary, skif = (sk, σvk), generate σm ←
Sig.Sign(sk,m), and output (f(m), σ), where σ = (m, c = (f, vk, σvk), σm).

– if there is no (f, i) entry in the dictionary, and NUMKEY S 6= q, Asig generates a new key
pair for the regular signature scheme, (sk, vk) ← Sig.Setup(1k), signs f |vk himself with respect

16

to msk: σvk ← Sig.Sign(msk, f |vk), and sets entry (f, i) in its dictionary to skf . It then generates
a signature on m with respect to the new key sk: σm ← Sig.Sign(sk,m), and outputs (f(m), σ),
where σ = (m, c = (f, vk, σvk), σm). NUMKEY S is then incremented.

– if there is no (f, i) entry in the dictionary and NUMKEY S = q, or if the (f, i) entry in the dic-
tionary is set to CHALLENGE, then Asig queries its oracle for a signature of m under vksig,
σm ← ORegsig(m), computes σvk ← Sig.Sign(msk, f |vksig), and outputs (f(m), σ), where σ =
(m, c = (f, vk, σvk), σm). If there is no (f, i) entry in the dictionary, Asig sets it to CHALLENGE.
NUMKEY S is then incremented.

If Asig does not abort, AFS will eventually output a signature (m∗, σ), where σ = (m, (f, vk, σvk), σm).
Asig outputs (m,σm) as its forgery in the security game for the standard signature scheme with respect to
vksig.

We will now argue that if AFS forges in the functional signature scheme with non-negligible probability
then Asig is wins the unforgeability game for the standard signature scheme with non-negligible probability.

First note that as long as Asig does not abort (i.e., the bad situation is not encountered where the
adversary requests the secret key corresponding to the embedded vksig challenge), then his answers to the
AFS’s keygen and signing queries are simulated perfectly as in the real world. Further, as long as there is not
an abort, the view of AFS is independent of Asig’s choice of b and q, as they only determine which verification
key is the challenge verification key vksig

Now, if AFS produces a Type I forgery, then by definition this forgery must include a signature on a
new message f |vk that was not ever signed under the master verification key mvk during the course of any
oracle query response. Thus, if AFS makes a Type I forgery and Asig guessed b = 1 (embedding his challenge
signature key in the position of the mvk), then AFS’s forgery includes a signature on a new message f |vk that
Asig did not query to his signature oracle, constituting a forger in the unforgeability game for the standard
signature scheme.

If AFS produces a Type II forgery, then the corresponding f |vk was already signed under the master
verification key mvk during the course of one of the oracle queries. This cannot have occurred during a Okey

query, as it would mean that AFS queried Okey on the function f , and producing a signature with respect to
this f is not a valid forgery in the functional signature scheme. It must then have been signed during an
Osign query. Namely, the verification key vk must have been freshly generated during a query of the form
Osign(f, i,m) for which no entry under index (f, i) previously existed, and then the pair f |vk was signed.

Note that if AFS produces a Type II forgery and Asig guessed b = 0 and the correct q to embed his
challenge, and Asig does not abort, the forgery produced by AFS must include a signature of a new message
m̃ with respect to vksig, for a m̃ that Asig hasn’t queried from his signing oracle, and therefore Asig can use
this forgery as its own forged signature in the unforgeability game for the standard signature scheme.

We note that, if Asig does abort, it must be that he embedded his challenge in a query q of the form
Osign(f, i,m), and later AFS issued a key generation query Osign(f, i). But this query can’t be the signing
query q∗ for which the adversary receives a signature of f |vk under mvk, and later outputs a signature of
f(m′) for another m′. Since the adversary has queried the Osign(f, i), no message in the range of f would be
considered a forgery in the functional signature game. We can conclude that, if Asig aborts, he didn’t guess
q∗ correctly, so we don’t need to consider this case separately.

Denoting by b, q the guesses of Asig, we have that success probability of if Asig is therefore:

17

Pr[Asig forges in signature challenge]

≥ Pr[b = 1 ∧ AFS outputs Type I forgery]

+
∑

q∗∈[Q(k)]

Pr[b = 0 ∧ q = q ∗ ∧ Asig does not abort ∧ AFS outputs Type II forgery wrt vkq∗]

= Pr[b = 1 ∧ AFS outputs Type I forgery]

+
∑

q∗∈[Q(k)]

Pr[b = 0 ∧ q = q∗ ∧ AFS outputs Type II forgery on vkq∗]

≥ 1

2
Pr[AFS outputs Type I forgery] +

1

2Q(k)

∑
i∗∈[Q(k)]

Pr[AFS outputs Type II forgery on vkq∗]

≥ 1

2Q(k)

Pr[AFS outputs Type I forgery] +
∑

i∗∈[Q(k)]

Pr[AFS outputs Type II forgery on vkq∗]


=

1

2Q(k)
Pr[AFS forges]

Thus, if AFS produces a forgery in the functional signature scheme with non-negligible probability 1/P (k),
then Asig successfully forges in the underlying signature scheme with non-negligible probability 1/2P (k)Q(k).
But, this cannot be the case, since we’ve assumed that SIg is existentially unforgeable against chosen-message
attack. We conclude that FS1 satisfies the unforgeability requirement for functional signatures.

While this construction is secure under a very general assumption (the existence of one-way functions), it
does not provide function privacy guarantees (indeed, the signature contains a description of the relevant pre
image and function), and its efficiency can be greatly improved. The size of a signature generated with key
skf (σ ← FS.Sign(skf ,m)) in this scheme is proportional to the size of |f |+ |m| plus the size of a signature of
the standard signature scheme. In contrast, we will next show how to use SNARKs to construct a functional
signature where the signature size is proportional to |f(m)|, instead of |f |+ |m|.

3.2.2 Succinct, Function-Private Functional Signatures from SNARKs

We demonstrate how to combine any unforgeable functional signature scheme (such as the OWF-based
construction from the previous section) together with a succinct non-interactive argument of knowledge
(SNARK) to obtain a new functional signature scheme also satisfying succinctness and function privacy.

Let FS1 = (FS1.Setup,FS1.Sign,FS1.Verify) be a functional signature scheme, satisfying the unforgeability
game as in Definition 3.1, but not necessarily function privacy or succinctness. Let Π = (Gen, Prove, Verify,
S = (Scrs,SProof), E = (E1,E2)) be an efficient adaptive zero-knowledge SNARK system for the following NP
language L:

L = {(m,mvk) | ∃σ s.t. FS1.Verify(mvk,m, σ) = 1}.

We show how to use FS1 and Π to construct a new functional signature scheme that also satisfies function
privacy and succinctness.

• FS2.Setup(1k):

– choose a master signing key, verification key pair for FS1: (msk′,mvk′)← FS1.Setup(1k).

– choose a crs for the zero-knowledge SNARK: crs← Π.Gen(1k).

– set the master secret key msk = msk′, and the master verification key mvk = (mvk′, crs).

• FS2.KeyGen(msk, f):

18

– the key generation algorithm is the same as in the underlying functional signature scheme: skf ←
FS1.KeyGen(msk, f).

• FS2.Sign(f, skf ,m):

– generate a signature on m in the underlying functional signature scheme: σ′ ← FS1.Sign(f, skf ,m).

– generate π ← Π.Prove((f(m),mvk′), σ′, crs), a zero-knowledge SNARK that (f(m),mvk′) ∈ L,
where L is defined as above, and output (m∗ = f(m), σ = π). Informally, π is a proof that the
signer knows a signature of f(m) in the underlying functional signature scheme.

• FS2.Verify(mvk,m∗, σ):

– output Π.Verify(crs,m∗, σ): i.e., verify that σ is a valid argument of knowledge of a signature of
f(m) in the underlying functional signature scheme.

Theorem 3.4. Assume the existence of an unforgeable (but not necessarily succinct or function-private)
functional signature scheme FS1 supporting the class F of polynomial-sized circuits, and Π be an adaptive
zero-knowledge SNARK system for NP . Then there exists succinct, function-private functional signatures
for F .

Proof of unforgeability
Suppose there exists an adversary AFS2 that produces a forgery in the new functional signature scheme with
non-negligible probability. We show how to construct an adversary AFS1 that uses AFS2 to produce a forgery
in the underlying functional signature scheme.

AFS1 plays the role of the challenger in the security game for AFS2. He gets a verification key mvkFS1 in
his own unforgeability game, generates (crs, trap)← E1(1k), a simulated CRS for the ZK-SNARK, together
with a trapdoor, and forwards mvkFS2 = (mvkFS1, crs) to AFS2 as the new master verification key. AFS2 makes
two types of queries:

• OkeyFS2(f, i), which AFS1 answers (honestly) by forwarding them to its KeyGen oracle, OkeyFS1(f, i)

• OsignFS2(f,m, i), in which case AFS1 forwards the query to his signing oracle, and receives a signature
σFS1 ← OsignFS1(f,m, i). It then outputs π ← Π.Prove((f(m),mvkFS1), σ, crs) as his signature of f(m).

After querying the oracles, AFS2 will output an alleged forgery in the functional signature scheme, π∗, on
some message m∗. AFS1 runs the extractor E2(crs, trap, (m∗,mvkFS1), π

∗) to recover a witness w = σ such
that FS1.Verify(mvkFS1,m

∗, σ) = 1 Asig then submits σ as a forgery in his own unforgeability game.

We now prove that if AFS2 forges with noticeable probability, then AFS1 also forges with noticeable
probability in his own security game.

Hybrid 0. The real-world functional signature challenge experiment. Namely, the CRS is generated in the
honest fashion crs ← Gen(1k), and the adversary’s signing queries are answered honestly. Denote the
probability of the adversary producing a valid forgery in the functional signature FS2 scheme within
this experiment by Forge0.

Hybrid 1. The same experiment as Hybrid 0, except the CRS is generated using the extraction-enabling
procedure, (crs, trap) ← E1(1k). The remainder of the experiment continues as before with respect
to crs. Denote the probability of the adversary producing a valid forgery in the functional signature
scheme within this experiment by Forge1.

Hybrid 2. The interaction with the adversary is the same as in Hybrid 1. Denote by M the set of all
messages signed with mskFS1 in the underlying functional signature scheme during the course of the
experiment, as a result of AFS1’s key and signing oracle queries. At the experiment conclusion, the
ZK-SNARK extraction algorithm is executed on the adversary’s alleged forgery π∗ (on message m∗) in
the functional signature scheme: i.e., (σ∗)← E2(crs, trap, (m∗,mvkFS1), π

∗).

Denote by Extract2 the probability that σ∗ is a valid signature in the underlying functional signature
scheme FS1 on a message m∗ such that f∗ /∈M . Note that this corresponds to the probability of AFS1

successfully producing a forgery.

19

Unforgeability of the functional signature scheme follows from the following sequence of lemmas.

Lemma 3.5. Forge0 ≤ Forge1 + negl(k).

Proof. Follows directly from the fact that the CRS values generated via the standard algorithm Gen and
those generated by the extraction-enabling algorithm E1 are statistically close, as per Definition 2.8.

More formally, suppose there exists a PPT adversary A for which Forge1 < Forge0 − ε for some ε. Then
the following (not necessarily efficient) adversary Acrs distinguishes between CRS values with advantage ε.
In the CRS challenge, Acrs is given a value crs (generated by either the standard algorithm or the extraction-
enabling algorithm). First, Acrs generates a key pair (mskFS1,mvkFS1)← FS1.Setup(1k) for the underlying
functional signature scheme, and sends mvkFS2 = (mvkFS1, crs) to A. He answers AFS2’s queries as in
Hybrid 0, generating signatures and proofs as required (note that A holds the master secret key mskFS1,
which allows him to answer the queries). At the conclusion of AFS2’s query phase, he outputs an alleged
forgery π∗ in the functional signature scheme. The adversary Acrs tests whether π∗ is indeed a forgery.
We note that this verification process might not be efficient, since Acrs needs to test whether the message
whose signature AFS2 claims to have forged is actually not in the range of any of the functions f that AFS2
has requested signing keys for. If the forgery verifies, Acrs outputs “standard crs”; otherwise, he outputs
“extractable crs”. His advantage in the CRS distinguishing game is precisely Forge1 − Forge0, as desired.
Since the real and simulated CRS strings are supposed to be statistically close, the distinguishing advantage
Forge1 − Forge0 has to be negligible even for an inefficient adversary.

Lemma 3.6. Forge1 ≤ Extract2 + negl(k).

Proof. This holds by the extraction property of the ZK-SNARK system (Definition 2.8).
Namely, if there exists a PPT adversary A for which Forge1 > Extract2 + ε for some ε, then the following

adversary AExt successfully produces a properly-verifying proof π for which extraction fails with probability
ε (which must be negligible by the SNARK extraction property).
AExt receives a CRS value crs generated via (crs, trap)← E1(1k). He samples a key pair (mskFS1,mvkFS1)

← FS1.Setup(1k) for the underlying functional signature scheme, sends mvkFS2 = (mvkFS1, crs) to the
adversary A, and answers all of A’s key and signing oracle queries as in Hybrid 1.

Now, let M the collection of all messages f which were signed by AExt during the course of the interaction
withA. Suppose that π∗ is a valid forgery onm∗ in the functional signature scheme; in particular, π∗ is a valid
proof that (m∗,mvkFS1) ∈ L. We argue that if extraction succeeds on π∗ (i.e if σ∗← E2(crs, trap, (m∗, vk), π∗)
yields a valid witness for (m∗, vk) ∈ L)), then it must be that the extracted σ∗ is a valid signature on a
message g /∈M in the underlying functional signature scheme, so that we are in the event corresponding to
Extract3. That is, we show Forge1 − Extract2 is bounded above by the probability that extraction fails.

Since π∗ is a valid forgery in the functional signature scheme FS2, it must be that m∗ /∈ Range(g) for
all key queries Okey(g, i) made by A, and that m∗ 6= g(x) for all signing queries Osign(g, x, i) made by A.
Now, if the extracted tuple (f∗,m, σ∗) ← E2(crs, trap, (m∗, vk), π∗) is a valid witness for (m∗, vk) ∈ L, then
from the definition of the language L it means that m∗ = f∗(m) and that σ∗ is a valid signature on f∗ with
respect to the master signing key sk (i.e., Verify(vk, σ∗, f∗) = 1). Recall that the set M consists exactly of
the functions g for which A made a key query, and the collection of constant functions g′ ≡ g(x) for which
A make a signing query (g, x). But since m∗ ∈ Range(f∗) and m∗ /∈ Range(g) for all g ∈ M , it must be
that f∗ /∈M , as desired.

Therefore, with probability at least Forge2 − Extract3 = ε, it must hold that π∗ is a valid proof but that
the extraction algorithm fails to extract a valid witness from π∗. By the extraction property of the SNARK
system, it must be that ε is negligible.

Lemma 3.7. Extract2 < negl(k).

Proof. This holds by the unforgeability of the underlying functional signature scheme FS1, since Extract2
is precisely the probability that adversary AFS1 constructed above produces a successful forgery in the
unforgeability game for FS1.

20

Proof of function privacy
We show that any adversary Apriv who succeeds in the function privacy game with noticeable advantage
can be used to break the zero knowledge property of the ZK-SNARK scheme. Recall that in the adaptive
zero knowledge security game, the adversary is given a CRS (either honestly generated or simulated) and
access to an oracle who accepts statement-witness pairs (x,w) and responds with either honestly generated
or simulated proofs of the statement.

More specifically, consider the following two hybrid experiments:

Hybrid 0. The real function privacy challenge. In particular, the CRS for the ZK-SNARK system is
generated honestly as crs ← Π.Gen(1k). The challenge signature, on message mb for randomly cho-
sen b ← {0, 1} (with respect to key fb), is generated by first generating a signature on mb in the
underlying functional signature scheme σ ← Sig.Sign(skfb ,mb) and then honestly generating a proof
π ← Π.Prove((fb(mb),mvk), σ, crs).

Hybrid 1. Similar to Hybrid 0, except that the SNARK appearing in the challenge signature is replaced by a
simulated argument. Namely, the CRS is generated using the simulator algorithm (crs, trap)← Scrs(1k).
And the challenge signature is generated by sampling a random bit b← {0, 1} and ignoring it, instead
using the simulator π ← SProof(crs, trap, (m′,mvk)), where m′ = f0(m0) = f1(m1).

Denote by win0,win1 the advantage of the adversary Apriv in guessing the bit b in Hybrid 0 and 1,
respectively. Function privacy of FS2 follows from the following two claims.

Claim 3.8. win1 ≥ win0 − negl(k).

Proof. Follows directly from the adaptive zero knowledge property of the ZK-SNARK system. More explic-
itly, consider the following adversary AZK:

1. AZK receives a CRS value crs from the adaptive zero knowledge challenger (either honestly generated or
simulated). In addition, he generates a master key pair for the underlying functional signature scheme:
(msk,mvk) ← FS1.Setup(1k). AZK takes mvk′ = (mvk, crs) and sends the key pair (mvk′,msk) to the
function privacy adversary Apriv.

2. Apriv responds (adaptively) with function queries f0, f1 and a message pair m0,m1 with f0(m0) =
f1(m1). For each function query fb, AZK generates a corresponding key skfb ← FS1.KeyGen(msk, fb)
and sends skfb to Apriv.

3. AZK prepares the function privacy challenge signature as follows. First, he chooses a random bit
b ← {0, 1}, and uses (fb,mb, skfb) to generate a signature on fb(mb) in the underlying functional
signature scheme: σ ← FS1.Sign(skfb ,mb). He then submits the query ((fb(mb),mvk), σ) to the proof
oracle in his own ZK challenge. (Recall that σ is a valid witness for (fb(mb),mvk) ∈ L). Denote the
oracle response by π, which is either honestly generated or simulated.

4. AZK sends the signature π to Apriv, who responds with a guessed bit b′ in the function privacy game. If
b′ = b, then AZK outputs “real.” Otherwise, if b′ 6= b, then AZK outputs “simulated.”

Note that if AZK has access to the Real Proof experiment (Experiment ExpA(k) in Definition 2.9), then
AZK perfectly simulates Hybrid 0, whereas if he has access to the Simulated Proof experiment (Experiment
ExpSA(k) in Definition 2.9), then AZK perfectly simulates Hybrid 1. Thus, AZK’s advantage in the adaptive
zero knowledge challenge is equal to win0 −win1, which by the ZK security of the ZK-SNARK scheme must
hence be negligible.

Claim 3.9. win1 < negl(k).

Proof. Note that the view of Apriv in Hybrid 1 is in fact independent of the selected bit b. Indeed, the challenge
signature is generated with respect only to the value m′ = f0(m0) = f1(m1), and not any particular witness.
Thus, information theoretically, even a computationally unbounded adversary could not correctly guess the
bit b with noticeable advantage.

21

Succinctness
The succinctness of our signature scheme follows directly from the succinctness property of the SNARK
system. Namely, the size of a functional signature produced by FS2.Sign(f, skf ,m) is exactly the proof
length of a SNARK for the language L. There exists a polynomial q such that the runtime R of the
associated relation is bounded by q(|f(m)| + |mvk| + |σ|), where σ is a signature in the underlaying, non-
succinct functional signature scheme.
By Definition 2.7, there exists a polynomial p, such that the corresponding proof length is bounded by
p(k + polylog(|f(m)| + |mvk| + |σ|)). The size of the signature |σ| = poly(|f | + |m| + k). We may assume
that |f |, and |m| are bounded by 2k, and therefore the size of a signature in the SNARK-based construction
is polynomial in k, and independent of |f |, |m|, (and even |f(m)|).

3.2.3 NIZK-based construction

If one wishes to avoid SNARK-type assumptions, one can obtain a functional signature scheme satisfying
both unforgeability and function privacy (but not succinctness) under the more general assumption of stan-
dard non-interactive zero-knowledge arguments of knowledge (NIZKAoK). This can be done by essentially
replacing the ZK-SNARKs in the construction of the previous section with NIZKAoKs. We remark that our
construction hides the function f , but it reveals the size of a circuit computing f .3

Let (FS3.Setup, FS3.Keygen, FS3.Sign, FS3.Verify) be a functional signature scheme which is identical to
our previous construction FS2, except that we use a NIZKAoK Π′, instead of the zero-knowledge SNARK
system Π.

Theorem 3.10. If (Sig.Setup, Sig.Sign, Sig.Verify) is an existentially unforgeable signature scheme, and Π′

is a NIZKAoK, our new functional signature construction (FS3.Setup, FS3.Keygen, FS3.Sign, FS3.Verify)
satisfies both unforgeability and function privacy.

We can use the proof from the previous section, since a zero-knowledge SNARK and a NIZK satisfy the
same adaptive zero-kowledge and extractability properties that are used in the proof. The only difference
is that a SNARK has a more efficient verification algorithm, and shorter proofs, while a NIZK can be
constructed under more general assumptions.

4 Applications of Functional Signatures

In this section we discuss applications of functional signatures to other cryptographic problems, such as
constructing delegation schemes and succinct non-interactive arguments.

4.1 SNARGs from Functional Signatures

Recall that in a SNARG protocol for a language L, there is a verifier V , and a prover P who wishes to
convince the verifier that an input x is in L. To achieve succinctness, proofs produced by the prover must
be sublinear in the size of the input plus the size of the witness.

We show how to use a functional signature scheme supporting keys for functions f describable as
polynomial-size circuits, and which has short signatures (i.e of size r(k) · (|f(m)| + |m|)o(1) for a poly-
nomial r(·)) to construct a SNARG scheme with preprocessing for any language L ∈ NP with proof size
bounded by r(k) · (|w|+ |x|)o(1), where w is the witness and x is the instance. We note that this is the proof
size used in the lower bound of [GW11].

Let L be an NP complete language, and R the corresponding relation. The main idea in the construction
is for the verifier (or CRS setup) to give out a single signing key for a function whose range consists of
exactly those strings that are in L. Note that this can be efficiently described by use of the relation R (where
the function also takes as input a witness). Then, with skf for this appropriate function f , the prover will

3This is not a concern in the SNARK-base construction, since the size of the signature was independent of the function size.

22

be able to sign only those messages that are in the language L, and hence can use a signature on x as a
convincing proof that x ∈ L. The resulting proof is succinct and publicly verifiable.

More explicitly, let FS = (FS.Setup,FS.KeyGen,FS.Sign,FS.Verify) be a succinct functional signature
scheme (as in Definition 3.1) supporting the class F of polynomial-size circuits. We construct the desired
SNARG system Π = (Π.Gen,Π.Prove,Π.Verify) for NP language L with relation R, as follows:

• Π.Gen(1k):

– run the setup for the functional signature scheme, and get (mvk,msk)← FS.Setup(1k)

– generate a signing key skf ← FS.KeyGen(msk, f) where f is the following function:

f(x|w) :=

{
x if R(x,w) = 1

⊥ otherwise
.

– output crs = (mvk, skf)

• Π.Prove(x,w, crs):

– output FS.Sign(f, skf , x|w)

• Π.Verify(crs, x, π):

– output FS.Verify(mvk, x, π)

Theorem 4.1. If FS is a functional signature scheme supporting the class F of polynomial-sized circuits,
then Π is a succinct non-interactive argument (SNARG) for NP language L.

Proof. We address the correctness, soundness, and succinctness of the scheme.

Correctness
The correctness property of the SNARG scheme follows immediately from correctness property of the func-
tional signature scheme. Namely, let R be the relation corresponding to the language L. Then
∀(x,w) ∈ R,∀crs = (mvk, skf), where (msk,mvk) ← FS.Setup(1k), and skf ← FS.KeyGen(msk, f), and
∀π = σ, where (x, σ)← FS.Sign(f, skf , (x,w)),

Π.Verify(crs, x, π) = FS.Verify(mvk, x, σ)→ 1.

Soundness
The soundness of the proof system follows from the unforgeability property of the signature scheme: since
the prover is not given keys for any function except f , he can only sign messages x that are in the range of
f , and therefore instances in the language L.
Suppose there exists a PPT adversary Adv for which Pr[crs ← Π.Gen(1k); (x, π) ← Adv(crs) : x /∈ L ∧
Π.Verify(crs, x, π) = 1] = ε(|x|), for a non-negligible function ε(·).
Then we can construct an adversary AFS who breaks the unforgeability of the underlying functional signature
scheme. AFS gives crs = (mvk, skf) to Adv, where mvk is his challenge verification key, and skf is the signing
key for the function f defined above, which he gets from his key generation oracle.
Adv outputs (x, π), and AFS uses them as his forgery in the functional signature game. If x /∈ L, x must
not be in the range of L, and therefore (x, π) is a valid forgery. So AFS wins the unforgeability game with
probability ε(|x|), which we have assumed is non-negligible.

Succinctness
The size of a proof is equal to the size of a signature in the functional signature scheme, which by assumption
is r(k) · (|f(m)|+ |m|)o(1) = r(k) · (|x|+ |w|)o(1) for a polynomial r(·).

23

Remark 4.2 (Functional PRFs as Functional MACs). Note that functional pseudorandom functions directly
imply a notion of functional message authentication codes (MACs), where the master PRF seed s serves
as the (shared) master secret MAC key, and a functional PRF subkey skf enables one to both MAC and
verify messages f(m). Using the transformation above with such a functional MAC in the place of functional
signatures yields a privately verifiable SNARG system.

Remark 4.3 (Lower bound of [GW11]). Gentry and Wichs showed in [GW11] that SNARG schemes for
NP with proof size r(k) · (|x|+ |w|)o(1) for polynomial r(·) cannot be obtained using black-box reductions to
falsifiable assumptions [Nao03]. Therefore, combined with Theorem 4.1, it follows that in order to obtain a
functional signature scheme with signature size r(k) · (|f(m)|+ |m|)o(1) we must either rely on non-falsifiable
assumptions (as in our SNARK-based construction) or make use of non black-box techniques.

4.2 Connection between functional signatures and delegation

Recall that a delegation scheme allows a client to outsource the evaluation of a function f to a server,
while allowing the client to verify the correctness of the computation. The verification process should be
more efficient than computing the function. See Definition 2.12 for the required correctness and security
properties.

Given a functional signature scheme with with signature size δ(k), and verification time t(k) (which we
assume is independent of the of the size of a function f used in the signing process), we can get a delegation
scheme in the preprocessing model with proof size δ(k) and verification time t(k). Here k is the security
parameter.

Let (FS.Setup,FS.Prove,FS.Sign,FS.Verify) be a functional signature scheme supporting the class F of
polynomial-sized circuits. We construct a delegation scheme (KeyGen,Encode,Compute,Verify) as follows:

• KeyGen(1k, f):

– run the setup for the functional signature scheme and generate (mvm,msk)← FS.Setup(1k).

– define the function f ′(x) := (x, f(x)), and generate a signing key for f ′: skf ′ ← FS.KeyGen(msk, f ′).

– output enc = ⊥, evk = skf , vk = mvk.

• Encode(enc, x) = x : no processing needs to be done on the input.

• Compute(evk, σx):

– let skf ′ = evk, x = σx
– generate a signature of (x, f(x)) using key skf ′ : i.e., σ ← FS.Sign(skf ′ , f

′, x)

– output (f(x), π = σ)

• Verify(vk, x, y, πy):

– output FS.Verify(vk, y, πy)

Theorem 4.4. If FS is a functional signature scheme supporting the class F of polynomial-sized circuits,
then (KeyGen,Encode, Compute,Verify) is a delegation scheme.

Correctness
The correctness of the delegation scheme follows from the correctness of the functional signature scheme.

Authenticity
By the unforgeability property of the functional signature scheme, any PPT server will only be able to
produce a signature of (x, y) that is in the range of f ′: that is, if y = f(x). Thus the server will not be able
to sign a pair (x, y) with non-negligible probability, unless y = f(x).

Efficiency
The runtime of the verification algorithm of the delegation scheme is the runtime of the verification algorithm
for the signature scheme, t(k). The poof size is equal to the size of a signature in the functional signature
scheme, δ(k).

24

5 Functional Pseudorandom Functions

In this section we present a formal definition of functional pseudorandom functions (F-PRF), pseudorandom
functions with selective access (PRF-SA), and hierarchical functional pseudorandom functions. We present
a construction of a functional pseudorandom function family supporting the class of prefix-fixing functions
based on one-way functions, making use of the Goldreich-Goldwasser-Micali (GGM) tree-based PRF con-
struction [GGM86]. Our construction directly yields a PRF with selective access, and additionally supports
hierarchical key generation.

5.1 Definition of Functional PRF

In a standard pseudorandom function family, the ability to evaluate the chosen function is all-or-nothing: a
party who holds the secret seed s can compute Fs(x) on all inputs x, whereas a party without knowledge
of s cannot distinguish evaluations Fs(x) on requested inputs x from random. We propose the notion of a
functional pseudorandom function (F-PRF) family, which partly fills this gap between evaluation powers.
The idea is that, in addition to a master secret key that can be used to evaluate the pseudorandom function
F on any point in the domain, there are additional secret keys per function f , which allow one to evaluate
F on y for any y for which there exists an x such that f(x) = y (i.e., y is in the range of f).

Definition 5.1 (Functional PRF). We say that a PRF family F = {Fs : D → R}s∈S is a functional
pseudorandom function (F-PRF) if there exist additional algorithms

KeyGen(s, f) : On input a seed s ∈ S and function description f : A → D from some domain A to D, the
algorithm KeyGen outputs a key skf .

Eval(skf , f, x) : On input key skf , function f : A → D, and input x ∈ A, then Eval outputs the PRF
evaluation Fs(f(x)).

which satisfy the following properties:

• Correctness: For every (efficiently computable) function f : A→ D, ∀x ∈ A, it holds that

∀s← S, ∀skf ← KeyGen(s, f), Eval(skf , f, x) = Fs(f(x)).

• Pseudorandomness: Given a set of keys skf1 . . . skfl for functions f1 . . . fl, the evaluation of Fs(y)
should remain pseudorandom on all inputs y that are not in the range of any of the functions f1 . . . fl.
That is, for any PPT adversary A, the advantage of A in distinguishing between the following two
experiments is negligible (for any polynomial l = l(k)):

Experiment Rand Experiment PRand
Key query Phase Key query Phase
(pp, s)← Gen(1k) (pp, s)← Gen(1k)
f1 ← A(pp) f1 ← A(pp)
skf1 ← KeyGen(s, f1) skf1 ← KeyGen(s, f1)
...

...
fl ← A(pp, f1, skf1 , . . . , fl−1, skfl−1

) fl ← A(pp, f1, skf1 , . . . , fl−1, skfl−1
)

skfl ← KeyGen(s, fl) skfl ← KeyGen(s, fl)
Challenge Phase Challenge Phase
H ← FD→R a random function

b← AO
{fi}
s,H (·)(f1, skf1 , . . . , fl, skfl) b← AFs(·)(f1, skf1 , . . . , fl, skfl)

where O{fi}s,H (y) :=

{
Fs(y) if ∃i ∈ [l] and x s.t. fi(x) = y

H(y) otherwise
.

25

Note that, as defined, the oracle O{fi}s,H (y) need not be efficiently computable. This inefficiency stems
both from sampling a truly random function H, and from testing whether the adversary’s evaluation queries
y are contained within the range of one of his previously queried functions fi. However, within particular
applications, the system can be set up so that this oracle is efficiently simulatable: For example, evaluations
of a truly random function can be simulated by choosing each queried evaluation one at a time; Further, the
range of the relevant functions fi may be efficiently testable given trapdoor information (e.g., determining
the range of f : r 7→ Enc(pk, 0; r) for a public-key encryption scheme is infeasible given only pk but efficiently
testable given the secret key).

We also consider a weaker security definition, where the adversary has to reveal which functions he
will request keys for before seeing the public parameters or any of the keys. We refer to this as selective
pseudorandomness.

Definition 5.2 (Selectively Secure F-PRF). We say a PRF family is a selectively secure functional pseu-
dorandom function if the algorithms KeyGen,Eval satisfy the correctness property above, and the following
selective pseudorandomness property.

• Selective Pseudorandomness: For any PPT adversary A, the advantage of A in distinguishing
between the following two experiments is negligible:

Experiment Sel-Rand Experiment Sel-PRand
Key query Phase Key query Phase
f1, . . . , fl ← A f1, . . . , fl ← A
(pp, s)← Gen(1k) (pp, s)← Gen(1k)
skf1 . . . skfl ← KeyGen(s, f1, . . . fl) skf1 . . . skfl ← KeyGen(s, f1, . . . fl)
Challenge Phase Challenge Phase
H ← FD→R a random function

b← AO
{fi}
s,H (·)(f1, skf1 , . . . fl, skfl) b← AFs(·)(f1, skf1 , . . . fl, skfl)

where O{fi}s,H (y) :=

{
Fs(y) if ∃i ∈ [l] and x s. t. fi(x) = y

H(y) otherwise
.

A special case of functional PRFs are when access control is to be determined by predicates. (Indeed,
fitting within the F-PRF framework, one can emulate predicate policies by considering the corresponding
functions fP (x) = x if P (x) = 1 and = ⊥ if P (x) = 0). For completeness, we now present the corresponding
formal definition, which we refer to as PRFs with selective access.

Definition 5.3 (PRF with Selective Access). We say that a PRF family F = {Fs : D → R}s∈S is a
pseudorandom function family with selective access (PRF-SA) for a class of predicates P on D if there exist
additional efficient algorithms

KeyGen(s, P) : On input a seed s ∈ S and predicate P ∈ P, KeyGen outputs a key skP .

Eval(skP , P, x) : On input key skP and input x ∈ D, if it holds that P (x) = 1 then Eval outputs the PRF
evaluation Fs(x).

which satisfy the following properties:

• Correctness: For each predicate P ∈ P, ∀x ∈ D s.t. P (x) = 1, it holds that

∀s← S, ∀skP ← KeyGen(s, P),Eval(skP , P, x) = Fs(x)

• Pseudorandomness: Given a set of keys skP1
. . . skPl for predicate P1 . . . Pl, the evaluation of Fs(x)

should remain pseudorandom on all inputs x for which P1(x) = 0∧· · ·∧Pl(x) = 0. That is, for any PPT
adversary A, the advantage of A in distinguishing between the following two experiments is negligible:

26

Experiment Rand Experiment PRand
Query Phase Query Phase
(pp, s)← Gen(1k) (pp, s)← Gen(1k)
P1 ← A(pp) P1 ← A(pp)
skP1

← KeyGen(s, P1) skP1
← KeyGen(s, P1)

...
...

Pl ← A(pp, P1, skP1
. . . Pl−1, skPl−1

) Pl ← A(pp, P1, skP1
. . . Pl−1, skPl−1

)
skPl ← KeyGen(s, Pl) skPl ← KeyGen(s, Pl)
Challenge Phase Challenge Phase
H ← FD→R a random function

b← AO
P
s,H(·)(P1, skP1

, . . . Pl, skPl) b← AFs(·)(P1, skP1
, . . . Pl, skPl)

where OPs,H(x) :=

{
Fs(x) if ∃i ∈ [l], Pi(x) = 1

H(x) otherwise
.

Finally, we consider hierarchical F-PRFs, where a party holding key skf for function f : B → D can
generate a subsidiary key skf◦g for a second function g : A→ B.

Definition 5.4 (Hierarchical F-PRF). We say that an F-PRF family ({Fs}s,KeyGen,Eval) is hierarchical if
the algorithm KeyGen is replaced by a more general algorithm:

SubkeyGen(skf , g): On input a functional secret key skf for function f : B → C (where the master secret
key is considered to be sk1 for the identity function f(x) = x), and function description g : A→ B for
some domain A, SubkeyGen outputs a secret subkey skf◦g for the composition f ◦ g.

satisfying the following properties:

• Correctness: Any key skg generated via a sequence of SubkeyGen executions will correctly evaluate
Fs(f(x)) on each value y for which they know a preimage x with g(x) = y. Formally, for every sequence
of (efficiently computable) functions f1, . . . , f` with fi : Ai → Ai−1, ∀y ∈ A0 s.t. ∃x ∈ A` for which
f1 ◦ · · · ◦ f`(x) = y, it holds that

∀sk1 ← S, ∀skf1◦···◦fi ← SubkeyGen(skf1◦···◦fi−1
, fi) for i = 0, . . . , `,

Eval(skf1◦···◦f` , (f1 ◦ · · · ◦ f`), x) = Fsk1(y).

• Pseudorandomness: The pseudorandomness property of Definition 5.1 holds, with the slight modifi-
cation that the adversary may adaptively make queries of the following kind, corresponding to receiving
subkeys skg generated from unknown functional keys skf . The query phase begins with a master secret
key s ← S being sampled and assigned identity id = 1. Loosely, GenerateKey generates a new subkey
of an existing (possibly unknown) key indexed by id, and keeps the resulting key hidden. RevealKey
simply reveals the generated key indexed by id.

GenerateKey(id, g): If no key exists with identity id then output ⊥ and terminate; otherwise denote
this key by skf . The challenger generates a g-subkey from skf as skf◦g ← SubkeyGen(skf , g), and
assigns this key a unique identity id′. The new value id′ is output, and the resulting key skf◦g is
kept secret.

RevealKey(id): If no key exists with identity id then output ⊥ and terminate; otherwise output the
corresponding key skf .

In the challenge phase, the adversary’s evaluation queries are answered either (1) consistently pseudo-
random, or (2) pseudorandom for all inputs y for which the adversary was given a key skf in a RevealKey
query with y ∈ Range(f), and random for all other inputs.

27

5.2 Construction Based on OWF

We now construct a functional pseudorandom function family Fs : {0, 1}n → {0, 1}n supporting the
class of prefix-fixing functions, based on the Goldreich-Goldwasser-Micali (GGM) tree-based PRF construc-
tion [GGM86]. More precisely, our construction supports the function class

Fpre =
{
fz(x) : {0, 1}n → {0, 1}n

∣∣∣ z ∈ {0, 1}m for m ≤ n
}
,

where fz(x) :=

{
x if (x1 = z1) ∧ · · · ∧ (xm = zm)

⊥ otherwise
.

Recall that the GGM construction makes use of a length-doubling pseudorandom generator G : {0, 1}k →
{0, 1}2k (which can be constructed from any one-way function). Denoting the two halves of the output of G
as G(y) = G0(y)G1(y), the PRF with seed s is defined as Fs(y) = Gyk(· · ·Gy2(Gy1(s))).

We show that we can obtain a functional PRF for Fpre by adding the following two algorithms on top of
the GGM PRF construction. Intuitively, in these algorithms the functional secret key skfz corresponding to
a queried function fz ∈ Fpre will be the partial evaluation of the GGM prefix corresponding to prefix z: i.e.,
the label of the node corresponding to node z in the GGM evaluation tree. Given this partial evaluation, a
party will be able to compute the completion for any input x which has z as a prefix. However, as we will
argue, the evaluation on all other inputs will remain pseudorandom.

KeyGen(s, fz) : output Gzm(· · ·Gz2(Gz1(s))), where m = |z|

Eval(skfz , y) : output

{
Gyn(· · ·Gym+2

(Gym+1
(skfz))) if y1 = z1 ∧ · · · ∧ ym = zm

⊥ otherwise

We first prove that this construction yields an F-PRF with selective security (i.e., when the adversary’s
key queries are specified a priori). We then present a sequence of corollaries for achieving full security,
PRFs with selective access, and hierarchical F-PRFs. We also focus on the specific application of punctured
PRFs [SW13].

Theorem 5.5. Based on the existence of one-way functions, the GGM pseudorandom function family to-
gether with algorithms KeyGen and Eval defined as above, is a selectively secure functional PRF for the class
of functions Fpre, as per Definition 5.2.

Proof. We will reduce the pseudorandom property of our functional PRF scheme to the security of the
underlying PRG. Recall that (as per Definition 5.2), the functional PRF requires indistinguishability of ex-
periments Sel-PRand and Sel-Rand, in which the adversary makes key queries (which are answered honestly),
and then makes evaluation queries, which are either answered consistently (PRand) or randomly (Rand). At
a high level, we will show that both Experiment Sel-Rand and Experiment Sel-PRand are indistinguishable
from a third experiment where, in the query phase, the adversary’s queries are answered randomly (except
when one query is a prefix of another, in which case we need to ensure consistency), and in the challenge
phase the adversary’s queries are answered randomly. Both claims will be proved using a hybrid argument
similar to the proof of the original GGM construction.

Let f1, . . . fl ∈ Fpre be the functions queried by the adversary. Let P1, . . . Pl be the corresponding prefixes.
We consider the following experiments:

Exp 1. Experiment Sel-PRand. In the key query phase, the key for each function fi corresponding to
prefix Pi is obtained (honestly) by following the corresponding path in the GGM tree. In the challenge
phase, the adversary’s evaluation queries are answered (honestly) with the corresponding pseudorandom
values. We denote the probability that an adversary Adv outputs 1 in this experiment by outputAdvExp1.

Exp 2. Keys for the queried functions f1, . . . , fl ∈ Fpre corresponding to prefixes Pi are computed randomly,
up to consistency among queried sub-prefixes. This takes place as follows (recall that all queries are
made up front):

28

• for each fi, if no prefix of Pi is also queried by the adversary in his keygen queries, then skfi is
assigned a random value.

• otherwise, let Pj be the shortest such prefix that is also queried (so that skfj has already been
defined by the previous case). Then skfi is computed by honestly applying to skfj the sequence of
PRG’s determined by the bits of Pi following Pj .

In the challenge phase, the adversary’s evaluation queries are answered with random values. If a query
is repeated, we answer consistently. We denote the probability that an adversary Adv outputs 1 in this
experiment by outputAdvExp2.

Exp 3 Experiment Sel-Rand. In the key query phase, the key for each function fi corresponding to prefix
Pi is obtained (honestly) by following the corresponding path in GGM tree, and. In the challenge
phase, the adversary’s evaluation queries (to values not computable by himself already) are answered
with random values. If a query is repeated, we answer consistently. We denote the probability that an
adversary Adv outputs 1 in this experiment by outputAdvExp3.

Note that that experiment described in Exp 1 is Experiment Sel-PRand in the Functional PRF definition,
and the experiment described in Exp 3 is Experiment Sel-Rand.

Lemma 5.6. For any PPT adversary Adv

|outputAdvExp1 − outputAdvExp2| = negl(n).

Proof. Suppose there exists an adversary Adv, such that |outputAdvExp1 − outputAdvExp2| = ε(n) for some non-

negligible ε(n). Wlog, assume that outputAdvExp2 − outputAdvExp1 = ε(n) > 0. We claim that we can use Adv to
construct an adversary APRG that breaks the security of the underlying pseudorandom generator. Recall
in the PRG challenge, APRG receives a polynomial-sized set of values, which are either random or random
outputs of the PRG.

We use a hybrid argument, and define Expi for i ∈ [n]. The value i corresponds to the level of the tree
where APRG will place his challenge values when interacting with Adv.

In Expi, in the key query phase, the key for each function fj corresponding to prefix Pj of length |Pj | = m
is computed as follows:

• if no other queried prefix is a prefix of Pj and m ≤ i, return a random string of size n.

• if no other queried prefix is a prefix of Pj and m > i, set the label of Pj ’s ancestor on the ith level to
a randomly sampled n-bit string, and then apply the pseudorandom generators to it as in the GGM
construction according to the remaining bits of Pj until the mth level, and return the resulting string
of size n.

• if some other queried prefix is a prefix of Pj , let skfh be the key corresponding to the shortest such
queried prefix Ph. To obtain the key for Pj , apply the pseudorandom generators to skfh as in the GGM
construction according to the remaining bits of Pj , up to the mth level of the tree.

In the challenge phase, the answers to the adversary’s evaluation queries x are computed as follows:

• let x(i) denote the i-bit prefix of the queried input x. If the node corresponding to x(i) in the tree
has not yet been labeled, then a random value is chosen and set as this label. The response to the
adversary’s query is then computed by applying the PRGs to the label, as determined by the (i+ 1) to
n bits of the queried input x.

Since outputAdvExp2 − outputAdvExp1 = ε(n), there must exist an i such that:

Pr[Adv→ 1 in Expi]− Pr[Adv→ 1 in Expi+1] ≥ ε(n)

n
.

Our constructed PRG adversary APRG plays the role of the challenger in the game with Adv, chooses a
random i ∈ [n] and places his PRG challenges there. That is, in the key query phase, APRG computes the
keys for functions fi corresponding to prefix Pj , of length |Pj | = m as follows:

29

• if no other queried prefix is a prefix of Pj and m < i, return a a random string of size n.

• if no other queried prefix is a prefix of Pj and m = i, return one of APRG’s challenge values.

• if no other queried prefix is a prefix of Pj and m > i, set a challenge string as the ancestor of Pj on the
ith level, and then apply the pseudorandom generators to it as in the GGM construction until the mth

level and return the resulting string of size n.

• if some other queried prefix is a prefix of Pj , let skfh be the key corresponding to the shortest such
queried prefix, Ph. To obtain the key for Pj , apply the pseudorandom generators to skfh as in the
GGM construction, up to the mth level of the tree.

In the challenge phase, the answers to the adversary’s evaluation queries x are computed as follows:

• let x(i) denote the i-bit prefix of the queried input x. If the node corresponding to x(i) in the tree has
not yet been labeled, then one of APRG’s challenge values is chosen and set as the label. The response
to the adversary’s query is then computed by applying the PRGs to the label, as determined by the
(i+ 1) to n bits of the queried input x.

Comparing the experiment above to Expi and Expi+1, we can see that, if the inputs to APRG are random,
APRG behaves as the challenger in Expi, and if they are the output of a PRG, he behaves as the challenger
in Expi+1.

At the end APRG outputs the same answer as Adv in its own security game.

Pr[APRG guesses correctly]

=
1

2
Pr[APRG → 1|challenge values random] +

1

2
Pr[APRG → 0|challenge values are output of a PRG]

=
1

2
Pr[Adv outputs 1 in Expi] +

1

2
Pr[Adv outputs 0 in Expi+1]

=
1

2
Pr[Adv outputs 1 in Expi] +

1

2
(1− Pr[Adv outputs 1 in Expi+1])

=
1

2
+

1

2
(Pr[Adv outputs 1 in Expi]− Pr[Adv outputs 1 in Expi+1])

≥ 1

2
+
ε(n)

2n

If ε(n) is non-negligible, APRG can distinguish between random values and outputs of a pseudorandom
generator with non-negligible advantage, which would break the security of the underlaying pseudorandom
generator. This completes the proof of the lemma.

Lemma 5.7. For any PPT adversary Adv

|outputAdvExp2 − outputAdvExp3| = negl(n).

Proof. We use a similar hybrid argument: In Expi, in the key query phase, the key for the functions
corresponding to prefix Pj , of length |Pj | = m is computed as before:

• if no other queried prefix is a prefix of Pj and m ≤ i, return a random string of size n.

• if no other queried prefix is a prefix of Pj and m > i, set a random string as the parent of Pj on the
ith level, and then apply the pseudorandom generators to it as in the GGM construction until the mth

level and return the resulting string of size n.

• if some other queried prefix is a prefix of Pj , let skfh be the key corresponding to the shortest queried
prefix of Pj , Ph. To obtain the key for Pj , apply the pseudorandom generators to skfh as in the GGM
construction, up to the mth level of the tree.

30

In the challenge phase, the adversary’s queries are answered with random values, unless he has already
received a key that allows him to compute the PRF on his queried value, in which case the query is answered
consistently.
The first hybrid, Exp0, is Exp 3, and the last hybrid, Expn is Exp 2.

From the previous lemmas, we can conclude that, for any PPT adversary Adv

|outputAdvExp1 − outputAdvExp3| = negl(n).

This is equivalent to saying that no PPT adversary can distinguish between Experiment Sel-PRand and
Experiment Sel-Rand in the Functional PRF definition. That is, the construction is a secure F-PRF.

Remark 5.8. We remark that one can directly obtain a fully secure F-PRF for Fpre (as in Definition 5.1) from
our selectively secure construction, with a loss of 1

2n in security for each functional secret key skfz queried by
the adversary. This is achieved simply by guessing the adversary’s query fz ∈ Fpre. For appropriate choices
of input size n and security parameter k, this can still provide meaningful security.

As an immediate corollary of Theorem 5.5, we obtain a (selectively secure) PRF with selective access for
the class of equivalent prefix-matching predicates Ppre = {Pz : {0, 1}n → {0, 1}|z ∈ {0, 1}m for m ≤ n},
where Pz(x) := 1 if (x1 = z1) ∧ · · · ∧ (xm = zm) and 0 otherwise.

Corollary 5.9. Based on the existence of one-way functions, the GGM pseudorandom function family
together with algorithms KeyGen and Eval defined as above, is a selectively secure functional PRF for the
class of predicates Ppre.

Our F-PRF construction has the additional benefit of being hierarchical. That is, given a secret key
skfz for a prefix z ∈ {0, 1}m, a party can generate subordinate secret keys skfz′ for any z′ ∈ {0, 1}m′ ,
m′ > m agreeing with z on the first m bits. This secondary key generation process is accomplished simply
by applying the PRGs to skfz , traversing the GGM tree according to the additional bits of z′. We thus
achieve the following corollary.

Corollary 5.10. Based on the existence of one-way functions, the GGM pseudorandom function family
together with algorithms KeyGen and Eval defined as above, is a (selectively secure) hierarchical functional
PRF for the class of predicates Ppre.

The pseudorandomness property can be proved using the same techniques as in the proof of Theorem 5.5.

5.2.1 Punctured Pseudorandom Functions

Punctured PRFs, formalized by [SW13], are a special case of functional PRFs where one can generate keys for
the function family F = {fx(y) = y if y 6= x, and ⊥ otherwise}. Such PRFs have recently been shown to have
important applications, including use as a primary technique in proving security of various cryptographic
primitives based on the existence of indistinguishability obfuscation (see, e.g., [SW13, HSW13]).

The existence of a functional PRF for the prefix-fixing function family gives a construction of punctured
PRFs. Namely, a punctured key skx allowing one to compute the PRF on all inputs except x = x1 . . . xn con-
sists of n functional keys for the prefix-fixing function family for prefixes: (x̄1), (x1x̄2), (x1x2x̄3), . . . , (x1x2 . . . xn−1x̄n).

Our GGM-based construction in the previous section thus directly yields a selectively secure punctured
PRF based on OWFs.

Corollary 5.11 (Selectively-Secure Punctured PRFs). Assuming the existence of OWF, there exists a se-
lectively secure punctured PRF for any desired poly-size input length.

31

When considering full security, this may seem an inhibiting limitation, as näıve complexity leveraging
over each of the n released keys would incur a tremendous loss in security. However, for a punctured PRF,
these n keys are not independently chosen: rather, there is a one-to-one correspondence between the input
x that is punctured, and corresponding set of n prefix-fixing keys we give out. This means there are only
2n possible sets of key queries made by a punctured PRF adversary (as opposed to 2n

2

possible choices of
n independent prefix queries), and thus, in the full-to-selective security reduction, we lose only a factor of
2−n in the security (as the reduction needs only to guess which of these 2n query sets will be made by the
adversary). Given a desired level of security k and input size n = n(k), and assuming an underlying OWF
secure against all adversaries that run in time 2K

ε

when implemented with security parameter K for some
constant 0 < ε < 1, then by setting K = n1/ε, we obtain a fully secure puncturable PRF.

Corollary 5.12. Assuming the existence of 2K
ε

-hard OWF for security parameter K and some constant
0 < ε, there exists a (fully) secure punctured PRF for any desired poly-size input length.

References

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional en-
cryption: New perspectives and lower bounds. In CRYPTO, 2013.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In ITCS, pages
326–349, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data. In STOC, pages 111–120, 2013.

[BF11] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions. In
EUROCRYPT, pages 149–168, 2011.

[BF13] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. Cryptology ePrint Archive,
Report 2013/413, 2013.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In STOC, pages 103–112, 1988.

[BG89] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures and message authen-
tication based on non-interative zero knowledge proofs. In CRYPTO, pages 194–211, 1989.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BMS13] Michael Backes, Sebastian Meiser, and Dominique Schrder. Delegatable functional signatures.
Cryptology ePrint Archive, Report 2013/408, 2013.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-
knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges.
In TCC, pages 253–273, 2011.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
Cryptology ePrint Archive, Report 2013/352, 2013.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In FOCS, pages 308–317, 1990.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

32

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary
input. In FOCS, pages 553–562, 2005.

[GKP+12] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nicko-
lai Zeldovich. Succinct functional encryption and applications: Reusable garbled circuits and
beyond. IACR Cryptology ePrint Archive, 2012:733, 2012.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Overcoming the worst-case curse for cryptographic constructions. In CRYPTO, 2013.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In STOC, pages 365–377, 1982.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all np-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In CRYPTO, pages 171–185,
1986.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, pages 162–179, 2012.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifi-
able assumptions. In STOC, pages 99–108, 2011.

[GW12] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. IACR Cryp-
tology ePrint Archive, 2012:290, 2012.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2013/509, 2013.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegat-
able pseudorandom functions and applications. Cryptology ePrint Archive, Report 2013/379,
2013.

[Lys02] Anna Lysyanskaya. Unique signatures and verifiable random functions from the dh-ddh separa-
tion. In CRYPTO, pages 597–612, 2002.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In FOCS,
pages 120–130, 1999.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, pages 96–109, 2003.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct computa-
tion. In TCC, pages 222–242, 2013.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In STOC,
pages 387–394, 1990.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–
473, 2005.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption,
and more. Cryptology ePrint Archive, Report 2013/454, 2013.

33

