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Abstract

Boneh, Raghunathan, and Segev (CRYPTO ’13) have recently put forward the notion of
function privacy and applied it to identity-based encryption, motivated by the need for providing
predicate privacy in public-key searchable encryption. Intuitively, their notion asks that decryp-
tion keys reveal essentially no information on their corresponding identities, beyond the absolute
minimum necessary. While Boneh et al. showed how to construct function-private identity-based
encryption (which implies predicate-private encrypted keyword search), searchable encryption
typically requires a richer set of predicates.

In this paper we significantly extend the function privacy framework. First, we introduce
the notion of subspace-membership encryption, a generalization of inner-product encryption, and
formalize a meaningful and realistic notion for capturing its function privacy. Then, we present a
generic construction of a function-private subspace-membership encryption scheme based on any
inner-product encryption scheme. Finally, we show that function-private subspace-membership
encryption can be used to construct function-private identity-based encryption. These are the
first generic constructions of function-private encryption schemes based on non-function-private
ones, resolving one of the main open problems posed by Boneh, Raghunathan, and Segev.
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1 Introduction

Predicate encryption systems [BW07, KSW08] are public-key schemes where a single public en-
cryption key has many corresponding secret keys: every secret key corresponds to a predicate
p : Σ → {0, 1} where Σ is some pre-defined set of indices (or attributes). Plaintext messages are
pairs (x,m) where x ∈ Σ and m is in some message space. A secret key skp for a predicate p has
the following semantics: if c is an encryption of the pair (x,m) then skp can be used to decrypt c
only if the “index” x satisfies the predicate p. More precisely, attempting to decrypt c using skp
will output m if p(x) = 1 and output ⊥ otherwise. A predicate encryption system is secure if it
provides semantic security for the pair (x,m) even if the adversary has a few benign secret keys (see
Section 2.3).

The simplest example of predicate encryption is a system supporting the set of equality predi-
cates, that is, predicates pid : Σ→ {0, 1} defined as pid(x) = 1 iff x = id. In such a system there is a
secret key skid for every id ∈ Σ and given the encryption c of a pair (x,m) the key skid can decrypt c
and recover m only when x = id. It is easy to see that predicate encryption for the set of equality
predicates is the same thing as (anonymous) identity-based encryption [BCOP04, ABC+08].

Currently the most expressive collusion-resistant predicate encryption systems [KSW08, AFV11]
support the family of inner product predicates: for a vector space Σ = Fℓ

q this is the set of predicates
pv : Σ → {0, 1} where v ∈ Σ and pv(x) = 1 iff x⊥v. This family of predicates includes the set of
equality predicates and others.

Searching on encrypted data. Predicate encryption systems provide a general framework for
searching on encrypted data. Consider a mail gateway whose function is to route incoming user email
based on characteristics of the email. For example, emails from “boss” that are marked “urgent” are
routed to the user’s cell phone as are all emails from “spouse.” All other emails are routed to the
user’s desktop. When the emails are transmitted in the clear the gateway’s job is straight forward.
However, when the emails are encrypted with the user’s public key the gateway cannot see data
needed for the routing decision. The simplest solution is to give the gateway the user’s secret key,
but this enables the gateway to decrypt all emails and exposes more information than the gateway
needs.

A better solution is to encrypt emails using predicate encryption. The email header functions as
the index x and the the routing instructions are used as m. The gateway is given a secret key skp
corresponding to the “route to cell phone” predicate. This secret key enables the gateway to learn
the routing instructions for messages satisfying the predicate p, but learn nothing else about emails.

Function privacy. A limitation of many existing predicate encryption systems is that the secret
key skp reveals information about the predicate p. As a result, the gateway, and anyone else who
has access to skp, learns the predicate p. Since in many practical settings it is important to keep the
predicate p secret, our goal is to provide function privacy: skp should reveal as little information
about p as possible.

At first glance it seems that hiding p is impossible: given skp the gateway can itself encrypt
messages (x,m) and then apply skp to the resulting ciphertext. In doing so the gateway learns if
p(x) = 1 which reveals some information about p. Nevertheless, despite this inherent limitation,
function privacy can still be achieved.

Towards a solution. In recent work Boneh, Raghunathan, and Segev [BRS13] put forward a
new notion of function privacy and applied it to identity-based encryption systems (i.e. to predicate
encryption supporting equality predicates). They observe that if the identity id is chosen from a
distribution with super-logarithmic min-entropy then the inherent limitation above is not a problem
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since the attacker cannot learn id from skid by a brute force search since there are too many potential
identities to test. They define function privacy for IBE systems by requiring that when id has
sufficient min-entropy then skid is indistinguishable from a secret key derived for an independently
and uniformly distributed identity. This enables function private keyword searching on encrypted
data. They then construct several IBE systems supporting function-private keyword searching.

While Boneh et al. [BRS13] showed how to achieve function privacy for equality predicates,
encrypted search typically requires a richer set of searching predicates, including conjunctions, dis-
junctions, and many others. The authors left open the important question of achieving function
privacy for a larger family of predicates.

Our contributions. In this paper we extend the framework and techniques of Boneh et al.
[BRS13] for constructing function-private encryption schemes. We put forward a generalization of
inner-product predicate encryption [KSW08, Fre10, AFV11], which we denote subspace-membership
encryption, and present a definitional framework for capturing its function privacy. Our framework
identifies the minimal restrictions under which a strong and meaningful notion of function privacy
can be obtained for subspace-membership encryption schemes.

Then, we present a generic construction of a function-private subspace-membership encryption
scheme based on any underlying inner-product encryption scheme (even when the underlying scheme
is not function private). Our construction is efficient, and in addition to providing function privacy, it
preserves the security properties of the underlying scheme. Finally, we present a generic construction
of a function-privacy identity-based encryption scheme based on any underlying function-private
subspace-membership encryption scheme.

These are the first generic constructions of function-private encryption schemes based on non-
function-private ones. Recall that even for the case of identity-based encryption, Boneh et al.
[BRS13] were not able to provide a generic construction, and had to individually modify various
existing schemes.

1.1 Overview of Our Contributions

A subspace-membership encryption scheme is a predicate encryption scheme supporting subspace-
membership predicates. That is, an encryption of a message is associated with an attribute x ∈
Sℓ, and secret keys are derived for subspaces defined by all vectors in Sℓ orthogonal to a matrix
W ∈ Sm×ℓ (for integers m, ℓ ∈ N and an additive group S).1 Decryption recovers the message iff
W · x = 0. We refer the reader to Section 2.3 for the standard definitions of the functionality and
data security of predicate encryption (following [KSW08, AFV11]).

Function privacy for subspace-membership encryption. Our goal is to design subspace-
membership encryption schemes in which a secret key, skW, does not reveal any information, beyond
the absolute minimum necessary, on the matrixW. Formalizing a realistic notion of function privacy,
however, is not straightforward due to the actual functionality of subspace-membership encryption
encryption. Specifically, assuming that an adversary who is given a secret key skW has some a-
priori information that the matrix W belongs to a small set of matrices (e.g., {W0,W1}), then
the adversary may be able to fully recover W: The adversary simply needs to encrypt a (possibly
random) message m for some attribute x that is orthogonal to W0 but not to W1, and then run
the decryption algorithm on the given secret key skW and the resulting ciphertext to identify the
one that decrypts correctly. In fact, as in [BRS13], as long as the adversary has some a-priori

1Note that by setting m = 1 one obtains the notion of an inner-product encryption scheme [KSW08, Fre10, AFV11].
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information according to which the matrix W is sampled from a distribution whose min-entropy is
at most logarithmic in the security parameter, there is a non-negligible probability for a full recovery.

In the setting of subspace-membership encryption (unlike that of identity-based encryption
[BRS13]), however, the requirement that W is sampled from a source of high min-entropy does
not suffice for obtaining a meaningful notion of function privacy. In Section 3 we show that even if
W has nearly full min-entropy, but two of its columns may be correlated, then a meaningful notion
of function privacy is not within reach.

In this light, our notion of function privacy for subspace-encryption schemes focuses on secret
key skW for which the columns of W form a block source. That is, each column of W should have a
reasonable amount of min-entropy even given all previous columns. Our notion of function privacy
requires that such a secret key skW (where W is sampled from an adversarially-chosen distribution)
be indistinguishable from a secret key for a subspace chosen uniformly at random.

A function-private construction from inner-product encryption. Given any underlying
inner-product encryption scheme we construction a function-private subspace-membership encryp-
tion scheme quite naturally. We modify the key-generation algorithm as follows: for generating a
secret key for a subspace described by W, we first sample a uniform s ← Sm and use the key-
generation algorithm of the underlying scheme for generating a secret key for the vector v = Wᵀs.
Observe that as long as the columns of W form a block source, then the leftover hash lemma
for block sources guarantees that v is statistically close to uniform. In particular, essentially no
information on W is revealed.

We also observe that extracting from the columns of W using the same seed for the extractor
⟨s, ·⟩ interacts nicely with the subspace-membership functionality. Indeed, if W · x = 0, it holds
that vᵀx = 0 and vice-versa with high probability. We note that our technique requires an attribute
set that is superpolynomially large in the security parameter and refer the reader to Section 4 for
more details.

1.2 Related Work

As discussed above, the notion of function privacy was recently put forward by Boneh, Raghunathan,
and Segev [BRS13]. One of the main motivations of Boneh et al. was that of designing public-key
searchable encryption schemes [BCOP04, GSW04, ABC+08, BW07, SBC+07, KSW08, BSNS08,
CKRS09, ABN10, AFV11] that are keyword private. That is, public-key searchable encryption
schemes in which search tokens hide, as much as possible, their corresponding predicates. They pre-
sented a framework for modeling function privacy, and constructed various function-private anony-
mous identity-based encryption schemes (which, in particular, imply public-key keyword-private
searchable encryption schemes).

More generally, the work of Boneh et al. initiated the study of function privacy in functional
encryption [BSW11, O’N10, BO12, GVW12, AGVW13, GKP+13], where a functional secret key
skf corresponding to a function f enables to compute f(m) given an encryption c = Encpk(m).
Intuitively, in this setting function privacy guarantees that a functional secret key skf does not
reveal information about f beyond what is already known and what can be obtained by running
the decryption algorithm on test ciphertexts. In [BRS13], the authors also discuss connections of
function privacy to program obfuscation.

Our notion of subspace-membership encryption generalizes that of inner-product encryption in-
troduced by Katz, Sahai, and Waters [KSW08]. They defined and constructed predicate encryption
schemes for predicates corresponding to inner products over ZN (for some large N). Informally, this
class of predicates corresponds to functions fv where fv(x) = 1 if and only if ⟨v,x⟩ = 0. Subse-
quently, Freeman [Fre10] modified their construction to inner products over groups of prime order
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p, and Agrawal, Freeman, and Vaikuntanathan [AFV11] constructed an inner-product encryption
scheme over Zp for a small prime p. Other results on inner product encryption study adaptive
security [OT12], delegation in the context of hierarchies [OT09], and generalized IBE [BH08].

Finally, we note that function privacy in the symmetric-key setting, where the encryptor and
decryptor have a shared secret key, was studied by Shen, Shi, and Waters [SSW09]. They designed
a function-private inner-product encryption scheme. As noted by Boneh et al. [BRS13], achieving
function privacy in the public-key setting is a more subtle task due to the inherent conflict between
privacy and functionality.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce standard notation,
definitions, and tools. In Section 3 we introduce the notions of subspace-membership encryption and
function privacy for subspace-membership encryption. In Section 4 we present generic constructions
of function-private subspace-membership encryption schemes based on any inner-product encryption
scheme. In Section 5 we show that function-private subspace-membership encryption implies, in
particular, function-private identity-based encryption. Finally, in Section 6 we discuss several open
problems that arise from this work.

2 Preliminaries

2.1 Notation

For an integer n ∈ N we denote by [n] the set {1, . . . , n}, and by Un the uniform distribution over
the set {0, 1}n. For a random variable X we denote by x ← X the process of sampling a value x
according to the distribution of X. Similarly, for a finite set S we denote by x ← S the process of
sampling a value x according to the uniform distribution over S. We denote by x (and sometimes x)
a vector (x1, . . . , x|x|). We denote by X = (X1, . . . , XT ) a joint distribution of T random variables.
A non-negative function f : N→ R is negligible if it vanishes faster than any inverse polynomial. A
non-negative function f : N→ R is super-polynomial if it grows faster than any polynomial.

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X = x]). A k-source is a
random variable X with H∞(X) ≥ k. A (T, k)-block source is a random variable X = (X1, . . . , XT )
where for every i ∈ [T ] and x1, . . . , xi−1 it holds that H∞(Xi|X1 = x1, . . . , Xi−1 = xi−1) ≥ k. The
statistical distance between two random variables X and Y over a finite domain Ω is SD(X,Y ) =
1
2

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω] |. Two random variables X and Y are δ-close if SD(X,Y ) ≤ δ.

Two distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are statistically indistinguishable if it holds that
SD(Xλ, Yλ) is negligible in λ. They are computationally indistinguishable if for every probabilistic
polynomial-time algorithm A it holds that

∣∣Pr[A(1λ, x) = 1
]
− Pr

[
A(1λ, y) = 1

]∣∣ is negligible in λ,
where x← Xλ and y ← Yλ.

2.2 The Leftover Hash Lemma

Definition 2.1. A collection H of functions H : U → V is universal if for any x1, x2 ∈ U such that
x1 ̸= x2 it holds that PrH←H[H(x1) = H(x2)] = 1/|V |.

Lemma 2.2 (Leftover hash lemma for block sources [CG88, HILL99, Zuc96, CV08]). Let H be
a universal collection of functions H : U → V , and let X = (X1, . . . , Xℓ) be an (ℓ, k)-block-source
where k ≥ log |V |+2 log(1/ϵ)+Θ(1). Then, the distribution (H,H(X1), . . . ,H(Xℓ)), where H ← H,
is ϵℓ-close to the uniform distribution over H× V ℓ.
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2.3 Predicate Encryption

We use the definition of Katz, Sahai, and Waters [KSW08], which is based on the definition of
searchable encryption proposed in [BCOP04, BW07].

Definition 2.3 ([KSW08, Def. 2.1]). A (key-policy) predicate encryption scheme for the class of
predicates F over the set of attributes Σ consists of four randomized PPT algorithms Setup, KeyGen,
Enc, and Dec such that:

1. Setup: Setup takes as input the security parameter 1λ and outputs public parameters pp and
a master secret key msk.

2. Key generation: KeyGen takes as input the master secret key msk and a predicate f ∈ F
and outputs a key skf .

3. Encryption: Enc takes as input the public key pp, an attribute I ∈ Σ, and a message M in
some associated message spaceM. It returns a ciphertext c← Enc(pp, I,M).

4. Decryption: Dec takes as input a secret key skf and ciphertext c. It outputs either M or ⊥.
Correctness requires that for all λ ∈ N, for all (pp,msk) generated by Setup(1λ), for all f ∈ F ,

for all keys skf ← KeyGen(msk, f), for all I ∈ Σ:

• If f(I) = 1, then Dec (skf ,Enc(pp, I,M)) = M.

• If f(I) = 0, then Dec (skf ,Enc(pp, I,M)) = ⊥ with all but negligible probability in λ.

There are several notions of security for predicate encryption schemes. The most basic is payload
hiding, which guarantees that no efficient adversary can obtain any information about the encrypted
message, but allows information about the attributes to be revealed. A stronger notion is attribute
hiding, which guarantees in addition that no efficient adversary can obtain information about the
attribute associated with a ciphertext. We consider two definitions, attribute hiding and weak
atribute hiding following the work of Katz, Sahai, and Waters [KSW08] and Agrawal, Freeman, and
Vaikuntanathan [AFV11].

Definition 2.4 ([KSW08, AFV11]). A predicate encryption scheme Π for the class of predicates F
over the set of attributes Σ is attribute hiding if for all probabilistic polynomial-time adversaries A,
the advantage of A in distinguishing the experiments Expt

(0)
AH,Π,A(λ) and Expt

(1)
AH,Π,A(λ) is negligible

in the security parameter λ, where for each b ∈ {0, 1} the experiment Expt
(b)
AH,Π,A is defined as follows:

1. A(1λ) outputs a pair (I0, I1) ∈ Σ.

2. Setup(1λ) is run to generate (pp,msk) and the adversary is given pp.

3. A (adaptively) requests keys for predicates f1, . . . , fQ ∈ F subject to the restriction fi(I0) =
fi(I1) for every i ∈ [Q]. In response to each query, A receives skfi ← KeyGen(msk, fi).

4. A outputs two equal-length messages M0,M1 ∈ M. If there exists i ∈ [Q] such that fi(I0) =
fi(I1) = 1 then it must hold that M0 = M1. The adversary A receives ciphertext c ←
Enc(pp, Ib,mb).

5. A (adaptively) requests additional keys subject to the same restrictions as before.

6. A outputs a guess b′. The experiment outputs this bit b′.

The advantage of adversary A is defined as follows:

AdvAH
Π,A(λ)

def
=
∣∣∣Pr[Expt(0)AH,ΠA(λ) = 1

]
− Pr

[
Expt

(1)
AH,Π,A = 1

]∣∣∣ .
A predicate encryption scheme Π is said to be weakly attribute hiding if the adversary A, in step

(3) is restricted to query secret keys for predicates fi with fi(I0) = fi(I1) = 0. The experiments

Expt
(b)
wAH,Π,A(λ) for b ∈ {0, 1} and advantage AdvwAH

Π,A (λ) are defined in an analogous manner.
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2.4 Identity-Based Encryption

An identity-based encryption (IBE) scheme [Sha84, BF03] is a quadruple Π = (Setup,KeyGen,
Enc,Dec) of probabilistic polynomial-time algorithms. The setup algorithm, Setup, takes as input
the security parameter 1λ and outputs the public parameters pp of the scheme together with a
corresponding master secret key msk. The encryption algorithm, Enc, takes as input the public
parameters pp, an identity id, and a message m, and outputs a ciphertext c = Enc(pp, id,m). The
key-generation algorithm, KeyGen, takes as input the master secret key msk and an identity id, and
outputs a secret key skid corresponding to id. The decryption algorithm, Dec, takes as input the
public parameters pp, a ciphertext c, and a secret key skid, and outputs either a message m or the
symbol ⊥. For such a scheme we denote by ID = {IDλ}λ∈N andM = {Mλ}λ∈N its identity space
and message space, respectively.

Functionality. In terms of functionality, we require that the decryption algorithm is correct with
all but a negligible probability. Specifically, for any security parameter λ ∈ N, for any identity
id ∈ IDλ, and for any message m ∈Mλ it holds that

Dec(pp,KeyGen(msk, id),Enc(pp, id,m)) = m

with probably at least 1− ν(λ) for a negligible function ν(·), where the probability it taken over the
internal randomness of the algorithm Setup, KeyGen, Enc, and Dec.

Data privacy. We consider the standard selective notion of anonymity and message indistin-
guishability under a chosen-identity adaptive-chosen-plaintext attack known as anon-IND-sID-CPA
and abbreviated to sDP in the rest of the paper.

Definition 2.5 (Selective data privacy – anon-IND-sID-CPA). An identity-based encryption scheme
Π = (Setup,KeyGen,Enc,Dec) over a identity space ID = {IDλ}λ∈N and a message space M =
{Mλ}λ∈N is selective data private if for any probabilistic polynomial-time adversary A, there exists
a negligible function ν(λ) such that

AdvsDP
Π,A(λ)

def
=
∣∣∣Pr[Expt(0)sDP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
sDP,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment Expt
(b)
sDP,Π,A(λ) is defined as follows:

1. (id∗0, id
∗
1, state1)← A(1λ), where id∗0, id

∗
1 ∈ IDλ.

2. (pp,msk)← Setup(1λ).

3. (m∗0,m
∗
1, state2)← A(state1), where m∗0,m

∗
1 ∈Mλ.

4. c∗ ← Enc(pp, id∗b ,m
∗
b).

5. b′ ← AKeyGen(msk,·)(c∗, state2), where b′ ∈ {0, 1}.
6. Denote by S the set of identities with which A queried KeyGen(msk, ·).
7. If S ∩ {id∗0, id∗1} = ∅ then output b′, and otherwise output ⊥.

Function Privacy. We consider the notion of function privacy introduced by Boneh, Raghu-
nathan, and Segev [BRS13]. A function-private IBE scheme informally requires that no adversary
learn anything about id from the secret key skid beyond the absolute minimum necessary.

Definition 2.6 (Real-or-random function-privacy oracle). The real-or-random function-privacy or-
acle RoRFP takes as input triplets of the form (mode,msk, ID), where mode ∈ {real, rand}, msk is
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a master secret key, and ID = (ID1, . . . , IDT ) ∈ IDT is a circuit representing a joint distribution
over IDT . If mode = real then the oracle samples (id1, . . . , idT ) ← ID and if mode = rand then
the oracle samples (id1, . . . , idT )← IDT uniformly. It then invokes the algorithm KeyGen(msk, ·) on
each of id1, . . . , idT and outputs a vector of secret keys (skid1 , . . . , skidT ).

Definition 2.7 (Function-privacy adversary). A (T, k)-block-source function-privacy adversary A is
an algorithm that is given as input a pair (1λ, pp) and oracle access to RoRFP(mode,msk, ·) for some
mode ∈ {real, rand}, and to KeyGen(msk, ·), and each of its queries to RoRFP is a (T, k)-block-source.

Definition 2.8 (IBE Function privacy). An identity-based encryption scheme Π = (Setup,KeyGen,
Enc,Dec) is (T, k)-source function private if for any probabilistic polynomial-time (T, k)-source
function-privacy adversary A, there exists a negligible function ν(λ) such that

AdvFP-IBE
Π,A (λ)

def
=
∣∣∣Pr[ExptrealFP-IBE,Π,A(λ) = 1

]
− Pr

[
ExptrandFP-IBE,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
FP,Π,A(λ) is defined as follows:

1. (pp,msk)← Setup(1λ).

2. b← ARoRFP-IBE(mode,msk,·),KeyGen(msk,·)(1λ, pp).

3. Output b.

In addition, such a scheme is statistically (T, k)-source function private if the above holds for any
computationally-unbounded (T, k)-source enhanced function-privacy adversary making a polynomial
number of queries to the RoRFP-IBE oracle.

3 Subspace-Membership Encryption and Its Function Privacy

In this section we formalize the notion of subspace-membership encryption and its function privacy
within the framework of Boneh, Raghunathan and Segev [BRS13]. A subspace-membership encryp-
tion scheme is a predicate encryption scheme [BW07, KSW08] supporting the class of predicates F ,
over an attribute space Σ = Sℓ, defined as

F =
{
fW : W ∈ Sm×ℓ

}
with fW(x) =

{
1 W · x = 0 ∈ Sm
0 otherwise

for integers m, ℓ ∈ N, and an additive group S. Informally, in a subspace-membership encryption,
an encryption of a message is associated with an attribute x ∈ Sℓ, and secret keys are derived for
subspaces defined by all vectors in Sℓ orthogonal to a matrix W ∈ Sm×ℓ. Decryption recovers the
message if and only if W · x = 0. We refer the reader to Section 2.3 for the standard definitions of
the functionality and data security of predicate encryption (following [KSW08, AFV11]). Subspace-
membership encryption with delegation was also studied in [OT09, OT12]. Here we do not need the
delegation property.

Based on the framework introduced by Boneh, Raghunathan, and Segev [BRS13], our notion of
function privacy for subspace-membership encryption considers adversaries that are given the public
parameters of the scheme and can interact with a “real-or-random” function-privacy oracle RoRFP

defined as follows, and with a key-generation oracle.

Definition 3.1 (Real-or-random function-privacy oracle). The real-or-random function-privacy or-
acle RoRFP takes as input triplets of the form (mode,msk, V ), where mode ∈ {real, rand}, msk is a
master secret key, and V = (V1, . . . , Vℓ) ∈ Sm×ℓ is a circuit representing a joint distribution over
Sm×ℓ (i.e., each Vi is a distribution over Sm). If mode = real then the oracle samples W ← V
and if mode = rand then the oracle samples W ← Sm×ℓ uniformly. It then invokes the algorithm
KeyGen(msk, ·) on W for outputting a secret key skW.
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Definition 3.2 (Function-privacy adversary). An (ℓ, k)-block-source function-privacy adversary A
is an algorithm that is given as input a pair (1λ, pp) and oracle access to RoRFP(mode,msk, ·) for
some mode ∈ {real, rand}, and to KeyGen(msk, ·). It is required that each of A’s queries to RoRFP

be an (ℓ, k)-block-source.

Definition 3.3 (Function-private subspace-membership encryption). A subspace-membership en-
cryption scheme Π = (Setup,KeyGen,Enc,Dec) is (ℓ, k)-block-source function private if for any prob-
abilistic polynomial-time (ℓ, k)-block-source function-privacy adversary A, there exists a negligible
function ν(λ) such that

AdvFP
Π,A(λ)

def
=
∣∣∣Pr[ExptrealFP,Π,A(λ) = 1

]
− Pr

[
ExptrandFP,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
FP,Π,A(λ) is defined as follows:

1. (pp,msk)← Setup(1λ).

2. b← ARoRFP(mode,msk,·),KeyGen(msk,·)(1λ, pp).

3. Output b.

In addition, such a scheme is statistically (ℓ, k)-block-source function private if the above holds for
any computationally-unbounded (ℓ, k)-block-source function-privacy adversary making a polynomial
number of queries to the RoRFP oracle.

Multi-shot vs. single-shot adversaries. Note that Definition 3.3 considers adversaries that
query the function-privacy oracle for any polynomial number of times. In fact, as adversaries are
also given access to the key-generation oracle, this “multi-shot” definition is polynomially equivalent
to its “single-shot” variant in which adversaries query the real-or-random function-privacy oracle
RoRFP at most once. This is proved via a straightforward hybrid argument, where the hybrids
are constructed such that only one query is forwarded to the function-privacy oracle, and all other
queries are answered using the key-generation oracle.

The block-source requirement on the columns of W. Our definition of function privacy for
subspace-membership encryption requires that a secret key skW reveals no unnecessary information
about W as long as the columns of W form a block source (i.e., each column is unpredictable even
given the previous columns). One might consider a stronger definition, in which the columns of W
may be arbitrarily correlated, as long as each column of W is sufficiently unpredictable. Such a
definition, however, is impossible to satisfy.

Specifically, consider the special case of inner-product encryption (i.e., m = 1), and an ad-
versary that queries the real-or-random oracle with a distribution over vectors w ∈ Sℓ defined
as follows: sample ℓ − 1 independent and uniform values u1, . . . , uℓ−1 ← S and output w =
(u1, 2u1, u2, . . . , uℓ−1). Such a distribution clearly has high min-entropy (specifically, (ℓ − 1) log |S|
bits), and each coordinate of w has min-entropy log |S| bits. However, secret keys for vectors drawn
from this distribution can be easily distinguished from secret keys for vectors drawn from the uni-
form distribution over Sℓ: encrypt a message M to the attribute x = (−2, 1, 0, . . . , 0) ∈ Sℓ and check
to see if decryption succeeds in recovering M. For a random vector w ∈ Sℓ the decryption succeeds
only with probability 1/|S| giving the adversary an overwhelming advantage.

Therefore, restricting function privacy adversaries to query the RoRFP oracle only with sources
whose columns form block sources is essential for achieving a meaningful notion of function privacy.
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On correlated RoRFP queries. In Definition 3.2 we consider adversaries that receives only a
single secret key skW for each query to the RoRFP oracle. Our definition easily generalizes to include
adversaries that are allowed to query the RoRFP oracle with correlated queries. More specifically,
an adversary can receive secret keys skW1 , . . . , skWT

for any parameter T that is polynomial in the
security parameter. The RoRFP oracle samples subspaces W1, . . . ,WT from an adversarially chosen

joint distribution over
(
Sm×ℓ

)T
with the restriction that for every 1 ≤ i ≤ T , the columns of Wi

come from a (ℓ, k)-block-source even conditioned on any fixed values for W1, . . . ,Wi−1.
2

Function privacy of existing inner-product encryption schemes. The inner-product pred-
icate encryption scheme from lattices [AFV11] is trivially not function private as the secret key
includes the corresponding function fv as part of it (this is necessary for the decryption algorithm
to work correctly). The scheme constructed from bilinear groups with composite order [KSW08]
however presents no such obvious attack, but we were not able to prove its function privacy based
on any standard cryptographic assumption.

4 A Generic Construction Based on Inner-Product Encryption

In this section we present a generic construction of a function-private subspace-membership en-
cryption scheme starting from any inner-product encryption scheme. Our technique requires an
inner-product encryption scheme with a large attribtue space S (i.e., of size superpolynomial in the
security parameter).

Our construction. Let IP = (IP.Setup, IP.KeyGen, IP.Enc, IP.Dec) be an inner-product encryp-
tion scheme with attribute set Σ = Sℓ. We construct a subspace-membership encryption scheme
SM = (SM.Setup, SM.KeyGen, SM.Enc,SM.Dec) as follows.

• Setup: SM.Setup is identical to IP.Setup. On input the security parameter it outputs public
parameters pp and the master secret key msk by running IP.Setup(1λ).

• Key generation: SM.KeyGen takes as input the master secret key msk and a function fW
where W ∈ Sm×ℓ and proceeds as follows. It samples uniform s ← Sm and computes v =

Wᵀs ∈ Sℓ. Next, it computes skv ← IP.KeyGen(msk,v) and outputs skW
def
= skv.

• Encryption: SM.Enc is identical to IP.Enc. On input the public parameters, an attribute
x ∈ Sℓ, and a message M, it outputs a ciphertext c← IP.Enc(pp,x,M).

• Decryption: SM.Dec is identical to IP.Dec. On input the public parameters pp, a secret key
skW, and a ciphertext c, the algorithm outputs M← IP.Dec(pp, skW, c).

Correctness. Correctness of the construction follows from the correctness of the underlying inner-
product encryption scheme. For every W ∈ Sm×ℓ and every x ∈ Sℓ, it suffices to show the following:

• If f(I) = 1, then it holds that W · x = 0. This implies xᵀv = xᵀ (Wᵀs) = 0 and therefore
SM.Dec correctly outputs M as required.

• If f(I) = 0, then it holds that e
def
= W · x ̸= 0 ∈ Sm. As xᵀv = xᵀ (Wᵀs) = eᵀs, for any e ̸= 0

the quantity xᵀv is zero with probability 1/|S| over choices of s. As 1/|S| is negligible in λ
whenever |S| is super-polynomial in λ, the proof of correctness follows.

2Or equivalently, the columns of [ W1 | W2 | · · · | WT ] are distributed according to a (Tℓ, k)-block-source.
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Security. We state the following theorem about the security of our construction.

Theorem 4.1. If IP is an attribute hiding (resp. weakly attribute hiding) inner-product encryption
scheme for an attribute set S of size super-polynomial in the security parameter, then it holds that:

1. The scheme SM is an attribute hiding (resp. weakly attribute hiding) subspace-membership
encryption scheme under the same assumption as the security of the underlying inner-product
encryption scheme.

2. The scheme SM when m ≥ 2 is statistically function private for (ℓ, k)-block-sources for any
ℓ = poly(λ) and k ≥ log |S|+ ω(log λ).

Proof. We first prove the attribute-hiding property of the scheme, and then prove its function
privacy.

Attribute hiding. Attribute-hiding property of SM follows from the attribute-hiding property
of IP in a rather straightforward manner. Given a challenger for the attribute-hiding property
of IP, an SM adversary A can be simulated by algorithm B as follows: A’s challenge attributes
are forwarded to the IP-challenger and the resulting public parameterers are published. Secret
key queries can be simulated by first sampling uniform s ← Sm, then computing v = Wᵀs and
forwarding v to the IP key generation oracle. Similarly, the challenge messages from the adversary
are answered by forwarding them to the challenger. The details are as follows.

Let X ∈ {AH,wAH}. Given an adversary A that makes Q secret key queries in total and has
a non-negligible advantage AdvX

SM,A(λ) (see Definition 2.3) we construct an adversary B that in-

teracts with an inner-product encryption attribute hiding challenger with advantage AdvX
IP,B(λ) ≈

AdvX
SM,A(λ) as follows.

Adversary A outputs a pair of attributes x0 and x1 and B forwards them to the IP-challenger.
B receives pp (but not msk) and forwards pp to the adversary. For i ∈ [Q], on the ith KeyGen query
Wi from A, algorithm B samples a random si ← Sm and computes vi = Wi

ᵀsi. It forwards vi

to the KeyGen oracle provided by the IP-challenger and receives skvi = skWi . The algorithm B
answers A’s KeyGen query with skWi .
A outputs two messages M0 and M1. If there exists an i ∈ [Q] such that vi

ᵀx0 = 0 or vi
ᵀx1 = 0,

the algorithm B aborts and outputs a uniform bit. Otherwise, it forwards M0 and M1 to the IP-
challenger and receives a challenge ciphertext c which it forwards to A. Finally, B receives a guess
b from A and outputs the bit b.

Observe that the algorithm B simulates the adversary queries honestly. For b ∈ {0, 1}, let E(b)
IP

denote the event
[
Expt

(b)
X,IP,B(λ) = 1

]
and let E

(b)
SM denote the event

[
Expt

(b)
X,SM,A(λ) = 1

]
. Let Abort

denote the event that B aborts (for either b ∈ {0, 1}, as the abort condition is independent of the
bit b) and outputs a uniform bit. Therefore,

AdvX
IP,B(λ)

def
=
∣∣∣Pr[Expt(0)X,IP,B(λ) = 1

]
− Pr

[
Expt

(1)
X,IP,B = 1

]∣∣∣
=
∣∣∣Pr[E(0)

IP

]
− Pr

[
E
(1)
IP

]∣∣∣
≥
∣∣∣Pr[E(0)

IP Abort
]
− Pr

[
E
(1)
IP Abort

]∣∣∣− Pr[Abort] (4.1)

≥
∣∣∣Pr[E(0)

SM

]
− Pr

[
E
(1)
SM

]∣∣∣− Pr[Abort] (4.2)

≥ AdvX
SM,A(λ)−

2Q

|S|
. (4.3)
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Here, Equation (4.1) follows from a standard probability argument. Equation (4.2) follows from

the fact that if B does not abort, the events E
(b)
IP and E

(b)
SM are identical. Equation (4.3) follows

by bounding the probability that B aborts. Pr[Abort] can be derived using the same argument
used to show correctness: for every i ∈ [Q], if Wi · x0 ̸= 0, then x0

ᵀvi = 0 with probability at
most 1/|S| (and similarly with x1). The abort probability therefore follows from a straightforward
union bound. As Q is polynomial in λ, AdvX

IP,B(λ) remains non-negligible if AdvX
SM,A(λ) is

non-negligible, completing the proof.

Function privacy. Let A be a computationally unbounded (ℓ, k)-block-source function-privacy
adversary that makes a polynomial number Q = Q(λ) of queries to the RoRFP oracle. We prove that
the distribution of A’s view in the experiment ExptrealFP,SM,A is statistically close to the distribution

of A’s view in the experiment ExptrandFP,SM,A (we refer the reader to Definition 3.3 for the descriptions
of these experiments). We denote these two distributions by Viewreal and Viewrand, respectively.

As the adversary A is computationally unbounded, we assume without loss of generality that A
does not query the KeyGen(msk, ·) oracle—such queries can be internally simulated by A. Moreover,
as discussed in Section 3, it suffices to focus on adversaries A that query the RoRFP oracle exactly
once. From this point on we fix the public parameters pp chosen by the setup algorithm, and show
that the two distributions Viewreal and Viewrand are statistically close for any such pp.

Denote by V = (V1, . . . , Vℓ) the random variable corresponding to the (ℓ, k)-source with which
A queries the RoRFP oracle. For each i ∈ [ℓ], let (wi,1, . . . , wi,m) denote a sample from Vi. Also, let
s = (s1, . . . , sm) ∈ Sm. As A is computationally unbounded, and having fixed the public parameters,
we can in fact assume that

Viewmode =

((
m∑
i=1

si · wi,1

)
, . . . ,

(
m∑
i=1

si · wi,ℓ

))
(4.4)

for mode ∈ {real, rand}, where W = {wi,j}i∈[m],j∈[ℓ] is drawn from V for mode = real, W is uniformly

distributed over Sm×ℓ for mode = rand, and si ← S for every i ∈ [ℓ]. For mode ∈ {real, rand} we
prove that the distribution Viewmode is statistically close to a uniform distribution over Sm.

Note that the collection of functions {gs1,...,sm : Sm → S}s1,...,sm∈S defined by gs1,...,sm(w1, . . . , wm)
=
∑m

j=1 sj · wj is universal. This enables us to directly apply the Leftover Hash Lemma for block-
sources (Lemma 2.2) implying that for our choice of parameters m, ℓ and k the statistical distance
between Viewreal and the uniform distribution is negligible in λ.3 The same clearly holds also for
Viewrand, as the uniform distribution over Sm×ℓ is, in particular, a (ℓ, k)-block-source. This completes
the proof of function privacy.

Theorem 4.1 for correlated RoRFP queries. Recollect that the definition of function privacy for
subspace membership (Definition 3.3) extends to adversaries that query the RoRFP oracle with secret
keys for T correlated subspaces W1, . . . ,WT for any T = poly(λ). If the columns of the jointly
sampled subspaces [W1 W2 · · · WT ] form a block source, we can extend the proof of function
privacy to consider such correlated queries. The adversaries view comprises T terms as in Equation
(4.4) with randomly sampled vectrs s1, . . . , sT in place of s. The collection of functions g remains
universal and a simple variant of Lemma 2.2 implies that for our choice of parameters, the statistical
distance between Viewreal and the uniform distribution is negligible in λ (and similarly for Viewrand).

3We note here that a weaker version of Lemma 2.2 will suffice as the adversary’s view does not include (s1, . . . , sm).
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5 Application: Function-Private Identity-Based Encryption

In this section we present a generic construction of a function-private identity-based encryption
scheme from any function-private subspace-membership encryption scheme with a relatively large
attribute space (super-polynomial in the security parameter). Combining this with our construction
from Section 4.1 yields, in particular, a construction of a function-private identity-based encryption
scheme from any inner-product encryption scheme with a relatively large attribute space. Note
that this does not require the underlying inner-product encryption scheme to provide any form of
function privacy.

The scheme. Let m = m(λ) > 1, ℓ = ℓ(λ) = m+ 1, and let SM = (Setup,KeyGen,Enc,Dec) be
a large-attribute subspace-membership encryption scheme with parameters m and ℓ = m + 1 over
an attribute set S = S(λ) (as defined in Section 3) such that |S| is super-polynomial in the security
parameter. We construct an identity-based encryption scheme IBE = (Setup′,KeyGen′,Enc′,Dec′)
for the identity space ID = Sm as follows.

• Setup: The algorithm Setup′ is identical to the algorithm Setup of the underlying scheme
SM.

• Key generation: To generate a secret key for an identity id = (id0, . . . , idm−1) ∈ ID, the
key-generation algorithm KeyGen′ first constructs a matrix Wid ∈ Sm×(m+1) by sampling a
uniformly distributed matrix R ∈ Sm×m and setting

Wid =

R R ·

 id0
...

idm−1


 . (5.1)

The algorithm then runs KeyGen(msk,Wid) and outputs the resulting secret key skWid
.

• Encryption: To encrypt a message M for an identity (id0, . . . , idm−1) ∈ Sm, the encryption
algorithm Enc′ sets x = (id0, id1, . . . , idm−1,−1)ᵀ and outputs Enc(pp,x,M).

• Decryption: The algorithm Dec′ is identical to the algorithm Dec of the underlying scheme
SM.

Correctness. Let i⃗d ∈ Sm denote the column vector (id0, . . . , idm−1)
ᵀ. Consider an attribute

x = (id0, id1, . . . , idm−1,−1)ᵀ corresponding to an identity id. The matrix Wid is constructed such
that Wid · x = R · i⃗d −R · i⃗d = 0. Thus, correctness of the IBE scheme follows directly from the
correctness of the underlying SME scheme.

Data privacy. The data privacy of the IBE scheme follows from the attribute hiding property of
the underlying subspace-membership encryption scheme.

Theorem 5.1. If SM is a (large-attribute) subspace-membership encryption scheme that is attribute
hiding, then IBE constructed above is selectively data private.

Proof. Recollect the definition of anon-IND-sID-CPA (sDP) data privacy for an IBE scheme from
Definition 2.5. Any adversary A that has a non-negligible advantage in the sDP game can be
used to construct an algorithm B that breaks the attribute hiding property (see Definition 2.3) of
the underlying subspace-membership encryption scheme as follows. (We actually show a slightly
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stronger result below where in the sDP data privacy game, the adversary chooses the challenge
messages M∗0 and M∗1 after receiving secret keys of his choice.)

Upon receiving the challenge identities id∗0 and id∗1 from A, the algorithm B constructs the
attributes x∗0 and x∗1 as constructed in the encryption algorithm and sends this as the challenge
attributes to the attribute-hiding challenger. Queries to the KeyGen(msk, ·) oracle from A are
answered by B by constructing the appropriate subspace W and requesting secret keys skW from
the attribute-hiding challenger.

Finally, the challenge messages M∗0 and M∗1 chosen by A are forwarded by B to the attribute-
hiding challenger. It receives a challenge ciphertext c∗ that it forwards to A. The algorithm B
continues to simulate KeyGen(msk, ·) queries as above and finally returns the bit b′ that algorithm
A outputs.

Observe that the algorithm A cannot issue a key-generation query for any identity that is either
id∗0 or id∗1. As the set S is superpolynomially large, with overwhelming probability, the matrix R
in the construction of Wid is full-rank in S and this implies that for all identities id ̸∈ {id∗0, id∗1},
Wid · x∗0 ̸= 0 and Wid · x∗1 ̸= 0. Thus, the queries issued by algorithm B are that of an allowed
attribute-hiding adversary.

Finally, it follows in a straightforward manner that for b ∈ {0, 1}, if B is interacting with

Expt
(b)
AH,SM,B, then the challenger ciphertext is an encryption of M∗b to the identity id∗b . Thus, algo-

rithm B simulates ExptsDP,IBE,A correctly. From this, we conclude thatAdvAH
SM,B(λ) = AdvsDP

IBE,A(λ)−
negl(λ) which completes the proof of the selective data privacy of the IBE scheme.

Function privacy. We show that with overwhelming probability over the choice of the matrix
R ∈ Sm×m, if the identity id is sampled from a k-source, then the columns of Wid are distributed
according to a (m+1, k)-block-source. And if the identity is sampled uniformly from ID, then Wid

is distributed uniformly over Sm×(m+1). This allows us to simulate, in a straightforward manner, a
RoRIBE oracle given access to a RoR oracle for the subspace membership predicate. Thus, we can
state the following theorem.

Theorem 5.2. If SM is a subspace membership encryption scheme with parameters m = poly(λ)
and ℓ = m + 1 that satisfies function privacy against (m + 1, k)-block-source adversaries, then the
IBE scheme constructed above is statistically function private against k-source adversaries.

Before we prove Theorem 5.2, we note that from Theorem 4.1, we can construct a subspace-
membership scheme for anym ≥ 2 that is statistically function private against (m+1, k)-block-source
adversaries for any k ≥ log |S| + ω(log λ) from an underlying (large attribute-space) IP scheme in
a black-box manner. This gives us the first black-box IBE schemes that are function-private against
k-sources for k ≥ log |S|+ ω(log λ).

Proof of Theorem 5.2. Recollect the definition of the vector i⃗d corresponding to the identity id.
We first consider the case when id (and hence, i⃗d) is sampled from a k-source. Observe that the first
m columns of Wid correspond to columns of R that is sampled uniformly at random from all Sm×m
matrices. It follows that each of the first m columns have entropy m · log |S| ≥ k even conditioned
on previous columns.

The last column is of the form R · i⃗d. With overwhelming probability over the choice of R, it
holds that R is full-rank over S. As R is invertible, it injectively maps identities to the final column.
Thus, the final column has the same entropy k as the distribution of i⃗d and this holds even given
R. Thus, the columns of Wid come from a (m+ 1, k)-block-source, as required.

A similar argument allows us to conclude that if i⃗d is distributed uniformly in Sd, the columns of
Wid have entropy m · |S| conditioned on the previous columns. Thus, it is sampled uniformly from
the set of all matrices in Sm×(m+1).
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With these two observations, the proof of the theorem is straightforward. Given an IBE function-
privacy adversary, we can construct an adversary that breaks the function privacy of the subspace-
membership scheme as follows. The setup algorithm simply outputs parameters pp output by the
underlying subspace-membership setup algorithm. To simulate responses to the RoRIBE oracle, the
reduction algorithm samples an identity id from the adversary’s distribution, constructs Wid and
forwards the query to the RoRFP oracle of the subspace-membership encryption scheme. It returns
the secret key sk received from the oracle to the IBE function-privacy adversary.

As proved above, when interacting with a k-source IBE function-privacy adversary the reduction
simulates a valid (m+1, k)-block-source adversary against SM. Moreover, if mode = real, then the
replies to the RoRIBE query correspond to secret keys for identities drawn from the real distribution,
and if mode = rand, then the replies correspond to secret keys for identities drawn from the uniform
distribution. Thus, any adversary that breaks the function-privacy of the IBE scheme can be used to
break the function-privacy of the underlying subspace-membership encryption scheme with identical
advantage. This concludes the proof of the theorem.

Fully-secure function-private IBE. Current constructions of inner-product encryption schemes
[KSW08, AFV11] satisfy a selective notion of security where the challenge attributes are chosen by
the adversary before seeing the public parameters. Our transformation of inner-product encryption
schemes to function-private IBE schemes (via subspace membership) is not limited to selective secu-
rity. Starting from an inner-product encryption scheme satisfying an adaptive version of attribute
hiding, our construction yields fully-secure function-private IBE schemes. We also note that the
standard complexity leveraging approach (see [BB11, Section 7.1]) gives a generic transformation
from selectively-secure IBE to fully-secure IBE. This approach does not modify the key generation
algorithm and therefore preserves function privacy.

6 Conclusions and Open Problems

Our work proposes subspace-membership encryption and constructs the first such function-private
schemes from any inner-product encryption scheme. We also show its application to constructing
function-private IBE schemes. In this section, we discuss a few extensions and open problems that
arise from this work.

Function privacy from computational assumptions. In this work we construct subspace-
membership schemes that are statistically function private. Although the construction of inner-
product encryption schemes from lattices [AFV11] presents an immediate function-privacy attack,
we were unable to find such attacks for the construction from composite-order groups [KSW08] (or
its prime order variant [Fre10]). We conjecture that suitable “min-entropy” variants of the decisional
Diffie-Hellman assumption [Can97] have a potential for yielding a proof of computational function
privacy for these schemes.

Other predicates. A pre-cursor to the work on predicate encryption supporting inner-products
was work on predicate encryption supporting comparison and range queries by Boneh and Waters
[BW07]. They achieve this by constructing predicate encryption supporting an interesting primitive,
denoted Hidden-Vector Encryption (HVE). Briefly, in HVE, attributes correspond to vectors over an
alphabet Σ and secret keys correspond to vectors over the augmented alphabet Σ∪{⋆}. Decryption
works if the attributes and secret key match for every coordinate that is not a ⋆.

HVE can be implemented using inner-product encryption schemes [KSW08] but it breaks func-
tion privacy in a rather trivial manner. Formalizing function privacy for HVE does not immediately
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follow from the notion of function privacy for inner-products because of the role played by ⋆. The
questions of formalizing function privacy (which in turn will imply realistic notions also for encryp-
tion supporting range and comparison queries) and designing function-private HVE schemes are
left as open problems. It is also open to formalize security and design function-private encryption
schemes that support polynomial evaluation predicates [KSW08].

Enhanced function privacy. A stronger notion of function privacy, denoted enhanced function
privacy [BRS13], asks that an adversary learn nothing more than the minimum necessary from a
secret key even given corresponding ciphertexts with attributes that allow successful decryption.
Constructing enhanced function-private schemes for subspace membership and inner products is an
interesting line of research that may require new ideas and techniques.
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