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New Quadratic Bent Functions in Polynomial
Forms with Coefficients in Extension Fields

Chunming Tang, Yanfeng Qi, Maozhi Xu

Abstract—In this paper, we first discuss the bentness of a large
class of quadratic Boolean functions in polynomial form f(x) =∑n

2
−1

i=1 Trn1 (cix
1+2i) + Tr

n/2
1 (cn/2x

1+2n/2

), where ci ∈ GF (2n)
for 1 ≤ i ≤ n

2
− 1 and cn/2 ∈ GF (2n/2). The bentness of

these functions can be connected with linearized permutation
polynomials. Hence, methods for constructing quadratic bent
functions are given. Further, we consider a subclass of quadratic
Boolean functions of the form f(x) =

∑m
2
−1

i=1 Trn1 (cix
1+2ei) +

Tr
n/2
1 (cm/2x

1+2n/2

) , where ci ∈ GF (2e), n = em and m is
even. The bentness of these functions are characterized and some
methods for constructing new quadratic bent functions are given.
Finally, for a special case: m = 2v0pr and gcd(e, p− 1) = 1, we
present the enumeration of quadratic bent functions.

Index Terms—Bent function, Boolean function, linearized per-
mutation polynomial, cyclotomic polynomial, semi-bent function

I. INTRODUCTION

A bent function, whose Hamming distance to the set
of all affine Boolean functions equals 2n−1 ± 2

n
2 −1, is a

Boolean function with even n variables from GF (2n) to
GF (2). Further, it has maximum nonlinearity and the absolute
value of its Walsh transform has a constant magnitude [22].
Nonlinearity is an important property for a boolean function
in cryptographic applications. Much research has been paid
on bent functions [3], [4], [5], [6], [7], [10], [14], [17],
[25]. Since bent functions with maximal nonlinearity have
a close relationship with sequences, bent functions are often
used in the construction of sequences with maximally linear
complexity and low correlation[2], [8], [9], [15], [16], [21],
[23]. Further, many applications of bent functions can be found
in coding theory [18] and combinatorial design.

As another class of Boolean functions, semi-bent functions
are also highly nonlinear. For an even integer n, the Walsh
spectra of bent functions with n variables has the value ±2

n
2

while the Walsh spectra of semi-bent functions belongs to
{0,±2

n+2
2 }. For an odd integer n, the Walsh spectra of

semi-bent functions belongs to {0,±2
n+1
2 }. Khoo, Gong and

Stinson [13], [14] considered the quadratic Boolean function
of the form

f(x) =

n−1
2∑

i=1

ciTr
n
1 (x

1+2i),
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where n is odd, Trn1 (x) is the trace function from GF (2n) to
GF (2) and ci ∈ GF (2). They proved that f(x) is semi-bent
if and only if

gcd(c(x), xn + 1) = x+ 1,

where c(x) =
∑n−1

2
i=1 ci(x

i + xn−i).
Charpin, Pasalic and Tavernier [6] generalized Khoo et al.’s

results to even n and considered quadratic functions of the
form

f(x) =

⌊n−1
2 ⌋∑

i=1

ciTr
n
1 (x

1+2i), ci ∈ GF (2).

When n is even, they proved that f(x) is semi-bent if and
only if

gcd(c(x), xn + 1) = x2 + 1,

where c(x) =
∑n−2

2
i=1 ci(x

i + xn−i). For odd n, they investi-
gated the conditions for the semi-bent functions of f(x) with
three and four trace terms.

For further generalization, Ma, Lee and Zhang [17] applied
techniques from [14] and considered the quadratic Boolean
functions of the form

f(x) =

n−2
2∑

i=1

ciTr
n
1 (x

1+2i) + Tr
n/2
1 (x1+2

n
2 ), (1)

where ci ∈ GF (2) and Tr
n/2
1 (x) is the trace function from

GF (2
n
2 ) to GF (2). They proved that f(x) is a bent function

if and only if
gcd(c(x), xn + 1) = 1,

where c(x) =
∑n−2

2
i=1 ci(x

i + xn−i) + xn/2. For some spe-
cial cases of n, Yu and Gong [25] considered the concrete
constructions of bent functions of the form (1) and presented
some enumeration results.

Hu and Feng [10] generalized results of Ma, Lee and Zhang
[17] and studied the quadratic Boolean functions of the form

f(x) =

m−2
2∑

i=1

ciTr
n
1 (βx

1+2ei) + Tr
n/2
1 (βx1+2

n
2 ), (2)

where ci ∈ GF (2), n = em, m is even and β ∈ GF (2e).
They obtained that f(x) is bent if and only if

gcd(c(x), xm + 1) = 1,

where c(x) =
∑m−2

2
i=1 ci(x

i+xm−i)+xm/2. Further, they pre-
sented the enumerations of bent functions for some specified
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m. Note that β ∈ GF (2e), then (β2e−1

)1+2ei = β2e = β. The
function f(x) of the form (2) satisfies that

f(x) =

m−2
2∑

i=1

ciTr
n
1 ((β

2e−1

x)1+2ei) + Tr
n/2
1 ((β2e−1

x)1+2
n
2 ),

where ci ∈ GF (2). From the transformation x 7−→ β2e−1

x, a
bent function of the form (2) is changed into a bent function
of the form (1). Actually, (2) does not introduce new bent
functions.

In this paper, we first consider quadratic Boolean functions
of the form

f(x) =

n
2 −1∑
i=1

Trn1 (cix
1+2i) + Tr

n/2
1 (cn/2x

1+2n/2

), (3)

where ci ∈ GF (2n) for 1 ≤ i ≤ n
2 −1 and cn/2 ∈ GF (2n/2).

And we study the bentness of these functions from some
specific linearized polynomials. Further, we generalize results
in [10], [17] and study the bentness of quadratic Boolean
functions of the form

f(x) =

m
2 −1∑
i=1

Trn1 (cix
1+2ei) + Tr

n/2
1 (cm/2x

1+2n/2

), (4)

where ci ∈ GF (2e). Further, we gives some examples of new
bent functions. And we construct new quadratic bent functions
from known quadratic bent functions. Finally, we presents
enumerations of bent functions of the form (4) for the case
m = 2v0pr and gcd(e, p−1) = 1, where v0 > 0, r > 0, p is an
odd prime satisfying ordp(2) = p− 1 or ordp(2) = (p− 1)/2
((p− 1)/2 is odd).

The rest of the paper is organized as follows: Section 2
introduces some notations and backgrounds. Section 3 gives
the description of bentness of quadratic Boolean functions
considered in this paper and methods of constructing new bent
functions. Section 4 enumerates the number of quadratic bent
functions for special n. Finally, Section 5 makes a conclusion
for this paper.

II. PRELIMINARIES

In this section, some notations are given first. Let GF (2n)
be the finite field with 2n elements. Let GF (2n)∗ be the
multiplicative group of GF (2n). Let e|n, the trace function
Trne (x) from GF (2n) to GF (2e) is defined by

Trne (x) = x+ x2e + · · ·+ x2e(n/e−1)

, x ∈ GF (2n).

The trace function satisfies that
(1) Trne (x

2e) = Trne (x), where x ∈ GF (2n).
(2) Trne (ax + by) = aTrne (x) + bTrne (y), where x, y ∈

GF (2n) and a, b ∈ GF (2e).
When n is even, a quadratic Boolean function from GF (2n)

to GF (2) can be represented by

f(x) =

n
2 −1∑
i=0

Trn1 (cix
1+2i) + Tr

n/2
1 (cn/2x

1+2n/2

), (5)

where ci ∈ GF (2n) for 0 ≤ i ≤ n
2 and cn/2 ∈ GF (2

n
2 ).

When n is odd, f(x) can be represented by

f(x) =

n−1
2∑

i=0

Trn1 (cix
1+2i), (6)

where ci ∈ GF (2n).
For a Boolean function f(x) over GF (2n), the Hadamard

transform is defined by

f̂(λ) =
∑

x∈GF (2n)

(−1)f(x)+Trn2 (λx), λ ∈ GF (2n).

For a quadratic Boolean function f(x) of the form (5) or (6),
the distribution of the Hadamard transform can be described
by the bilinear form

Qf (x, y) = f(x+ y) + f(x) + f(y). (7)

For the bilinear form Qf , define

Kf = {x ∈ GF (2n) : Qf (x, y) = 0,∀y ∈ GF (2n)} (8)

and kf = dimGF (2)(Kf ). Then 2|(n − kf ). The distribution
of the Hadamard transform values of f̂(λ) is given in the
following theorem [11].

Theorem 2.1: Let f(x) be a quadratic Boolean function of
the form (5) or (6) and kf = dimGF (2)(Kf ), where Kf is
defined in (8). The distribution of the Hadamard transform
values of f(x) is given by

f̂(λ) =


0, 2n − 2n−kf times

2
n+kf

2 , 2n−kf−1 + 2
n−kf

2 −1 times

−2
n+kf

2 , 2n−kf−1 − 2
n−kf

2 −1 times.

Bent functions as an important class of Boolean functions are
defined below.

Definition Let f(x) be a Boolean function from GF (2n) to
GF (2). Then f(x) is called a bent function if for any λ ∈
GF (2n), f̂(λ) ∈ {2n

2 ,−2
n
2 }.

Bent functions only exist in the case for even n. From Theorem
2.1, the following result on bent functions is given below.

Corollary 2.2: Let f(x) be a quadratic function of the form
(5) over GF (2n), then f(x) is bent if and only if Kf = {0},
where Kf is defined in (8).

III. NEW CONSTRUCTION OF QUADRATIC BENT
FUNCTIONS IN POLYNOMIAL FORMS

In this section, let n be even. We present the characterization
of the bentness for quadratic Boolean functions and some
methods for constructing bent functions.

A. Bent functions and linearized permutation polynomials

In this subsection, we discuss the relationship of bentness
of quadratic Boolean function of the form (3) with linearized
permutation polynomials.

Theorem 3.1: The quadratic Boolean function

f(x) =

n−1∑
i=0

Trn1 (cix
1+2i), ci ∈ GF (2n) (9)
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is bent if and only if

Lf (x) =
n−1∑
i=1

(ci + c2
i

n−i)x
2i (10)

is a linearized permutation polynomial, that is, Lf (x) = 0
only has a solution 0.

Proof:

f(x+ y) =
n−1∑
i=0

Trn1 (ci(x+ y)1+2i)

=

n−1∑
i=0

Trn1 (ci(x+ y)1(x+ y)2
i

)

=
n−1∑
i=0

Trn1 (cix
1+2i) +

n−1∑
i=0

Trn1 (ciy
1+2i)

+
n−1∑
i=0

Trn1 (cix
2iy) +

n−1∑
i=0

Trn1 (ciy
2ix)

=f(x) + f(y) +

n−1∑
i=0

Trn1 (cix
2iy) +

n−1∑
i=0

Trn1 ((ciy
2ix)2

n−i

)

=f(x) + f(y) +
n−1∑
i=1

Trn1 ((ci + c2
i

n−i)x
2iy).

Then we have

Qf (x, y) =f(x+ y) + f(x) + f(y)

=

n−1∑
i=1

Trn1 ((ci + c2
i

n−i)x
2iy).

From Corollary 2.2, f(x) is bent if and only if
∑n−1

i=1 (ci +

c2
n−i

i )x2i = 0 has only a solution 0. Since Lf (x) =∑n−1
i=1 (ci + c2

n−i

i )x2i is a linearized polynomial and can
be seen as a linear transformation of GF (2n) over GF (2),
Lf (x) = 0 has only a solution 0 if and only if Lf (x) is a
linearized permutation polynomial. This theorem follows.

The following theorem characterizes the bentness of
quadratic Boolean functions of the form (3).

Theorem 3.2: Let f(x) be a quadratic Boolean function
defined by

f(x) =

n
2 −1∑
i=1

Trn1 (cix
1+2i) + Tr

n/2
1 (cn/2x

1+2n/2

), (11)

where ci ∈ GF (2n) for 1 ≤ i ≤ n
2 −1 and cn/2 ∈ GF (2n/2).

Then f(x) is bent if and only if

Lf (x) =

n
2 −1∑
i=1

(cix
2i + c2

n−i

i x2n−i

) + cn/2x
2n/2

(12)

is a linearized permutation polynomial, that is, Lf (x) = 0 has
only a solution 0.

Proof: Since Trnn/2(·) is a surjective map from GF (2n)

to GF (2
n
2 ), there exists c′n/2 ∈ GF (2n) satisfying cn/2 =

Trnn/2(c
′
n/2) = c′n/2 + c′2

n/2

n/2 . Then

f(x) =

n
2 −1∑
i=1

Trn1 (cix
1+2i) + Trn1 (c

′
n/2x

1+2n/2

)

From Theorem 3.1,

Lf (x) =

n
2 −1∑
i=1

(cix
2i + c2

n−i

i x2n−i

) + cn/2x
2n/2

.

Hence, this theorem follows from the similar discussion of
Theorem 3.1.
From Theorem 3.2, the bentness of quadratic Boolean func-
tions depends on the corresponding linearized permutation
polynomial (12). Hence, many results and techniques on
linearized permutation polynomials, such as theories of non-
commutative polynomials [19], [20], can be used to study
quadratic bent functions. New results on linearized permuta-
tion polynomials can be found in [24]. So far, bent functions
constructed of the form (11) generally satisfy that ci ∈ GF (2).
We will present some bent functions with the form (11) with
ci ∈ GF (2n)\GF (2) for some i.

Theorem 3.3: Let i be an integer satisfying 1 ≤ i ≤ n
2 − 1.

Let α ∈ GF (2n)∗ and n = 2v0n0, where n0 is odd. Let f(x)
be a quadratic Boolean function of the form

f(x) = Trn1 (αx
1+2i).

Then
(1) There exists α ∈ GF (2n) making f(x) bent if and only

if 2v0 - i.
(2) Let 2v0 - i. Then f(x) is bent if and only if α satisfies

α(2n−1)(2gcd(i,n)−1)/(2gcd(2i,n)−1) = α(2n−1)/(2gcd(i,n)+1) ̸= 1.

In particular, let α be a primitive element in GF (2n), then
f(x) is bent.

Proof: From the definition of f(x),

Lf (x) = αx2i + α2n−i

x2n−i

.

From Theorem 3.2, we just consider the sufficient and neces-
sary condition for

Kf = {x ∈ GF (2n) : Lf (x) = 0} = {0}.

Since x 7→ x2i is an isomorphism for GF (2n), then Kf = {0}
if and only if K2i

f = {0}. Further,

K2i

f ={x ∈ GF (2n) : α2ix22i + αx = 0}

={0} ∪ {x ∈ GF (2n) : x22i−1 = (
1

α
)2

i−1}

={0} ∪K
′
,

where K
′
= {x ∈ GF (2n) : x22i−1 = ( 1

α )
2i−1}. Then K2i

f =

{0} if and only if K
′
= ∅, that is,

x22i−1 = (
1

α
)2

i−1, x ∈ GF (2n)

has no solution. Equivalently,

(
1

α
)2

i−1 /∈{x22i−1 : x ∈ GF (2n)∗}

={xgcd(22i−1,2n−1) : x ∈ GF (2n)∗}

={x2gcd(2i,n)−1 : x ∈ GF (2n)∗}.
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That equals that

(
1

α
)(2

n−1)(2i−1)/(2gcd(2i,n)−1) ̸= 1,

or

(
1

α
)(2

n−1)(2gcd(i,n)−1)/(2gcd(2i,n)−1) ̸= 1. (13)

Note that

(2gcd(i,n) − 1) | (2gcd(2i,n) − 1) | (2n − 1).

There exists α satisfying (13) if and only if (2gcd(i,n) − 1) <
(2gcd(2i,n) − 1), that is, gcd(i, n) < gcd(2i, n). Equivalently,
2v0 - i. Hence, Result (1) follows. If 2v0 - i, f(x) is bent if
and only if α satisfies (13). From 2v0 - i,

gcd(2i, n) = 2 · gcd(i, n).
Hence, Result (2) follows.

Theorem 3.4: Let α ∈ GF (2n)∗ and (α + α−4) ∈
GF (2n/2), the Boolean function

f(x) = Trn1 (x
1+2n/2−2

) + Tr
n
2
1 ((α+ α−4)x1+2n/2

)

is bent if and only if α(2n−1)/3 ̸= 1.
Proof: From the Boolean function f(x),

Lf (x) = x2n/2−2

+ (α+ α−4)x2n/2

+ x2n/2+2

,

After some transformation, the factorization of the linear
transform Lf (x) is

Lf (x) = Tα−4(Tα(x
2n/2−2

)),

where Tα(x) = x + αx22 , Tα−4(x) = x + α−4x22 . Since
x 7→ x2n/2−2

is an invertible linear transformation, Lf (x) is
invertible if and only if both Tα(x) and Tα−4(x) are invertible.
It is easily verified that both Tα(x) and Tα−4(x) are invertible
if and only if α(2n−1)/3 ̸= 1. From Theorem 3.2, this theorem
follows.

Remark (i) If n
2 is even, then 3|(2n

2 − 1) and 3 - (2n
2 + 1).

Let w be the largest integer satisfying 3w|(2n
2 − 1) and ζ3w

be a primitive 3w-th root of unity. Take

α = βζi3w (14)

where β ∈ GF (2
n
2 ), 3 - ord(β) and 3 - i. Then (α+ α−4) ∈

GF (2n/2). It is easily verified that α(2n−1)/3 ̸= 1. Hence,
α satisfies Theorem 3.4 and f(x) in Theorem 3.4 is a bent
function.

(ii) If n
2 is odd, then 3|(2n

2 + 1) and 3 - (2n
2 − 1). Let w

be the largest integer satisfying 3w|(2n
2 + 1). Take

α = (Trnn/2u)
3/5u (15)

where u ∈ GF (2n), u1+n
2 = 1 and 3w|ord(u). Note that

5 - 2n
2 −1 and gcd(5, ord(Trnn/2u)) = 1. Then (Trnn/2u)

3/5 is
well defined. Since 3w|ord(u), u /∈ GF (2

n
2 ). Let λ = u+u2m ,

then the minimal polynomial of u over GF (2
n
2 ) is

u2 + λu+ 1 = 0. (16)

Since λ = Trnn/2u ∈ GF (2
n
2 ) and 3 - (2

n
2 − 1), then α

satisfies that α(2n−1)/3 ̸= 1. From Identity (16),

α+ α−4 = λ− 12
5 (λ4 + λ2 + 1) ∈ GF (2

n
2 ).

Hence, f(x) defined in Theorem 3.4 is bent.

B. A subclass of quadratic bent functions

In this subsection, we will consider a special subclass of
Boolean functions in (11). This subclass can be seen as a
generalization of functions in [10], [17]. Let m be even and
n = me for this subsection.

Theorem 3.5: Let f(x) be a Boolean function defined by

f(x) =

m
2 −1∑
i=1

Trn1 (cix
1+2ei) + Tr

n/2
1 (cm/2x

1+2n/2

) (17)

where ci ∈ GF (2e), then f(x) is bent if and only if
gcd(cf (x), x

m + 1) = 1, where

cf (x) =

m
2 −1∑
i=1

ci(x+ xm−i) + cm/2x
m/2. (18)

In particular, if f(x) is bent, then cm/2 ̸= 0.
Proof: Since m is even and e = n

m divides n
2 , then

cm
2

∈ GF (2e) ⊆ GF (2
n
2 ). Note that Trnn/2(·) is surjective

from GF (2n) to GF (2
n
2 ). Then there exists c′m/2 ∈ GF (2n)

satisfying cm/2 = Trnn/2(c
′
m/2) = c′m/2 + c′2

n/2

m/2 . Hence,

f(x) =

m
2 −1∑
i=1

Trn1 (cix
1+2ei) + Trn1 (c

′
m/2x

1+2n/2

).

From the similar proof of Theorem 3.1,

Lf (x) =

m
2 −1∑
i=1

ci(x
2ei+x2e(m−i)

)+cm/2x
2em/2

=
m−1∑
i=1

aix
2ei ,

where

ai =

{
ci, 1 ≤ i ≤ m/2,

cm−i, m/2 < i ≤ m− 1.

Let α ∈ GF (2n) be a regular element in GF (2e), that
is, {α, α2e , α2e·2 , . . . , α2e(m−1)} is a basis of GF (2n) over
GF (2e), then the matrix associated with the linear transfor-
mation Lf (x) under this basis is

A =


0 a1 a2 · · · am−1

am−1 0 a1 · · · am−2

am−2 am−1 0 · · · am−3

...
...

... · · ·
...

a1 a2 a3 · · · 0


Hence Lf (x) is a linearized permutation polynomial if and
only if A is non-singular. From the theory of cyclic codes in
[1], A is non-sigular if and only if the dimension m−gcd(0+
a1x+ a2x

2, · · · , am−1x
m−1, xm − 1) of the cyclic code over

GF (2e), generated by rows of A, is m, i.e. gcd(cf , xm+1) =
gcd(0 + a1x + a2x

2, · · · , am−1x
m−1, xm − 1) = 1. Finally,

if cm/2 = 0, then (x+ 1)|cf (x).
Hence, this theorem follows.
Theorem 3.6: Let m = 2v0 , where v0 ≥ 1. The Boolean

function

f(x) =

m
2 −1∑
i=1

Trn1 (cix
1+2ei) + Tr

n/2
1 (cm/2x

1+2n/2

) (19)
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is bent if and only if cm/2 ̸= 0. Further, the number of bent
functions with this form over GF (n) is (2e − 1)2e

m−2
2 .

Proof: Since m = 2v0 , xm + 1 = (x + 1)2
v0 . Then

gcd(cf (x), x
m +1) = 1 if and only if (x+1) - cf (x), that is,

cf (1) ̸= 0. Note that cf (1) = cm/2. From Theorm 3.5, f(x)
is bent if and only if cm/2 ̸= 0. From the random choice of
ci ∈ GF (2e) (1 ≤ i ≤ m−2

2 ) , the number of bent functions
is (2e − 1)2e

m−2
2 . This theorem follows.

Theorem 3.7: Let n = 2v0m0, where m0 is odd. Let λ ∈
GF (22e)∗ satisfying λ + 1

λ ∈ GF (2e)∗. Then the Boolean
function

f(x) = Trn1 (x
1+2ei) + Tr

n
2
1 ((λ+

1

λ
)x1+2n/2

)

is bent if and only if λm0/gcd(i,m0) ̸= 1.
Proof: From the definition of f(x),

cf (x) =(xi + xm−i) + (λ+
1

λ
)xm/2

≡(xi + x−i) + (λ+
1

λ
)

≡
x2i + (λ+ 1

λ )x
i + 1

xi

≡
(xi + λ)(xi + 1

λ )

xi
mod xm0 + 1,

Then gcd(cf (x), x
m+1) = 1 if and only if gcd(xi+λ, xm0 +

1) = gcd(xi+ 1
λ , x

m0+1) = 1. From gcd(xi+λ, xm0+1) = 1,
we have equivalently

λ /∈{xi : x ∈ GF (2), xm0 = 1}
={x : x ∈ GF (2), xm0/gcd(i,m0) = 1},

that is,
λm0/gcd(i,m0) ̸= 1.

Similarly, gcd(xi + 1
λ , x

m0 + 1) = 1 if and only if
λ−m0/gcd(i,m0) ̸= 1. Note that λm0/gcd(i,m0) ̸= 1 if and only
if λ−m0/gcd(i,m0) ̸= 1. Hence, this theorem follows.

We will consider how to construct new quadratic bent
functions from known quadratic bent functions.

Theorem 3.8: Let ci ∈ GF (2e) for 1 ≤ i ≤ m/2 and
β ∈ GF (2e)∗, then

f(x) =

m
2 −1∑
i=1

Trn1 (cix
1+2ei) + Tr

n/2
1 (cm/2x

1+2n/2

)

is bent if and only if

fβ(x) =

m
2 −1∑
i=1

Trn1 (βcix
1+2ei) + Tr

n/2
1 (βcm/2x

1+2n/2

)

is bent.
Proof: We have

cf (x) =

m
2 −1∑
i=1

ci(x+ xm−i) + cm/2x
m/2,

cfβ (x) =β(

m
2 −1∑
i=1

ci(x+ xm−i) + cm/2x
m/2) = βcf (x).

Since β ̸= 0, then

gcd(cf (x), x
m + 1) = gcd(cfβ (x), x

m + 1).

From Theorem 3.5, this theorem follows.

Remark This theorem can explain the relationship of bent
functions presented by Hu and Feng[10] and bent functions
constructed by Ma, Lee and Zhang [17].

Theorem 3.9: Let ci ∈ GF (2e) for 1 ≤ i ≤ m/2 and
β ∈ GF (2e). Then

f(x) =

m
2 −1∑
i=1

Trn1 (cix
1+2ei) + Tr

n/2
1 (cm/2x

1+2n/2

)

is bent if and only if

f+(x) = f(x) +

m
2 −1∑
i=1

Trn1 (βx
1+2ei)

is bent.
Proof: We have

cf+(x) =cf (x) + β

m
2 −1∑
i=1

(xi + xm−i)

=cf (x) + β(xm/2 + 1)

m
2 −1∑
i=1

xi

For any polynomial g(x), gcd(g(x), xm + 1) = 1 if and only
if gcd(g(x), xm/2 + 1) = 1. Then

gcd(cf+(x), x
m/2 + 1)

=gcd(cf (x) + β(xm/2 + 1)

m
2 −1∑
i=1

xi, xm/2 + 1)

=gcd(cf , x
m/2 + 1)

Hence, this theorem follows.
From Theorem 3.9, we have a generalization of Theorem 5 in
[10].

Corollary 3.10: Let m0 be the largest odd integer dividing
m. Let 1 ≤ k ≤ m/2 − 1, d ≥ 1, β1 ∈ GF (2e)∗ and β2 ∈
GF (2e). The Boolean function

f(x) =

m/2−1∑
i=1

Trn1 (β2x
1+2ei)

+ Tr
n
2
1 (β1x

1+2n/2

) +

k∑
i=1

Trn1 (β1x
1+2edi)

is bent if and only if gcd((2k + 1)d,m0) = gcd(d,m0).
Proof: From Theorem 3.9 and Theorem 4 in [10], this

theorem follows.
Theorem 3.11: Let ai, bi ∈ GF (2e) for 1 ≤ i ≤ m/2. Two

Boolean functions f1(x) and f2(x) are defined by

f1(x) =

m
2 −1∑
i=1

Trn1 (aix
1+2ei) + Tr

n/2
1 (am/2x

1+2n/2

),

f2(x) =

m
2 −1∑
i=1

Trn1 (bix
1+2ei) + Tr

n/2
1 (bm/2x

1+2n/2

),
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Let (
∑m

2 −1
i=1 ai(x+xm−i)+am/2x

m/2)(
∑m

2 −1
i=1 bi(x+xm−i)+

bm/2x
m/2)xm/2 ≡

∑m−1
i=0 cix

i mod xm + 1, where ci ∈
GF (2e). Let a0 = b0 = 0. Let am−j = aj , bm−k = bk for
m/2 + 1 ≤ j, k ≤ m. Then

ci =
∑

j + k ≡ i + m/2 mod m
0 ≤ j, k ≤ m − 1

ajbk.

Further,
(1) c0 = 0 and cm−i = ci for 1 ≤ i ≤ m− 1;
(2) f1∗2(x) =

∑m
2 −1
i=1 Trn1 (cix

1+2ei) +

Tr
n/2
1 (cm/2x

1+2n/2

) is bent if and only if both f1(x)
and f2(x) are bent.

Proof: We have

c0 =
∑

j + k ≡ m/2 mod m
0 ≤ j, k ≤ m − 1

ajbk

=a1bm/2−1 + · · ·+ am/2−1b1 + am/2b0

+ am/2+1bm−1 + · · ·+ am−1bm/2+1

=a1bm/2−1 + · · ·+ am/2−1b1 + am/2 · 0
+ am/2−1b1 + · · ·+ a1bm/2−1

=0.

For 1 ≤ i ≤ m− 1,

cm−i =
∑

j + k ≡ m/2 − i mod m
0 ≤ j, k ≤ m − 1

ajbk

=
∑

j + k ≡ m/2 − i mod m
0 ≤ j, k ≤ m − 1

am−jbm−k

=
∑

(m − j) + (m − k) ≡ m/2 + i mod m
0 ≤ j, k ≤ m − 1

am−jbm−k

=
∑

j + k ≡ m/2 + i mod m
0 ≤ j, k ≤ m − 1

ajbk

=ci.

Hence, Result (1) follows. From the definition of f1∗2(x),

cf1∗2(x) =

m−1∑
i=0

cix
i.

Further,

cf1∗2(x) ≡ cf1(x) · cf2(x) mod xm + 1.

Then

gcd(cf1∗2(x), x
m + 1) = gcd(cf1(x) · cf2(x), xm + 1).

Hence, gcd(cf1∗2(x), x
m + 1) = 1 if and only if

gcd(cf1(x), x
m + 1) = gcd(cf1 · cf2(x), xm + 1) = 1. From

Theorem 3.5, Result (2) follows.
Corollary 3.12: Let m0 be the largest integer dividing m,

then the Boolean function

f(x) =Trn1 (x
1+2ed1 ) + Trn1 (x

1+2ed2 ) + Trn1 (x
1+2e(d1+d2+m/2)

)

+ Trn1 (x
1+2e(d1−d2+m/2)

) + Tr
n
2
1 (x1+2n/2

)

is bent if and only if gcd(3d1,m0) = gcd(d1,m0) and
gcd(3d2,m0) = gcd(d2,m0).

Proof: From Theorem 3.11 and Theorem 4 in [10], this
corollary follows.

IV. THE ENUMERATION FOR BENT FUNCTIONS IN CASE
m = 2v0pr AND gcd(e, p− 1) = 1

In this section, we will consider the enumeration of bent
functions in (17). In [10], [25], cyclotomic polynomials and
their factorization are used in the enumeration. Our method
can be generalized for general cases. Before the enumeration,
some knowledge on monic self-reciprocal polynomials is given
first.

Definition The reciprocal polynomial g∗(x) of a polynomial
g(x) of degree n is defined by g∗(x) = xng(1/x). A
polynomial is called self-reciprocal if it coincides with its
reciprocal polynomial.

Lemma 4.1: Let A(x) =
∑n1

i=0 aix
i be a monic self-

reciprocal polynomial of degree n1 and B(x) =
∑n

i=0 bix
i

be a polynomial of degree n2. Then A(x)B(x) is a monic
self-reciprocal polynomial of degree n1 + n2 if and only if
B(x) is a monic self-reciprocal polynomial.

Proof: Let C(x) = A(x)B(x) =
∑n1+n2

i=0 cix
i. Suppose

B(x) is a monic self-reciprocal polynomial, then c0 = a0b0 =
an1bn2 = cn1+n2 = 1. For 0 < k < n1 + n2,

cn1+n2−k =
∑

i+j=n1+n2−k

aibj

=
∑

i+j=n1+n2−k

an1−ibn2−j

=
∑

(n1−i)+(n2−j)=k

an1−ibn2−j

=
∑

i+j=k

aibj

=ck.

Hence C(x) is a monic self-reciprocal polynomial of degree
n1 + n2.

On the other hand, suppose that C(x) is a monic self-
reciprocal polynomial. From a0b0 = c0 = 1 and an1bn2 =
cn1+n2 = 1, b0 = 1 and bn2 = 1. If B(x) is not monic self-
reciprocal, there exists an integer k satisfying that 0 < k < n2,
bk ̸= bn2−k and bk−1 = bn2−(k−1),· · · ,b0 = bn2 . Then

0 =ck − cn1+n2−k

=(a0bk + a1bk−1 + · · ·+ akb0)

− (an1bn2−k + an1−1bn2−(k−1) + · · ·+ an1−kbn2)

=(a0bk + a1bk−1 + · · ·+ akb0)

− (a0bn2−k + a1bk−1 + · · ·+ akb0)

=bk − bn2−k,

The result bk = bn2−k contradicts the supposition of k. Hence,
B(x) is a monic self-reciprocal polynomial.

This theorem follows.
Lemma 4.2: Let A(x), g(x) ∈ GF (2e)[x] and A(x) be

monic self-reciprocal. Let g(x) be irreducible and g(x)|A(x),
then g∗(x)|A(x), where g∗(x) is the reciprocal polynomial of
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g(x). Further, if g(x) is not self-reciprocal, then g̃(x)|A(x),
where g̃(x) = g(x)g∗(x).

Proof: If g(x) is self-reciprocal, g∗(x) = g(x), the results
obviously hold.

Suppose that g(x) is not self-reciprocal. From g(x)|A(x),
g∗(x)|A∗(x) = A(x). Then g∗(x)|A(x). Since g(x) is irre-
ducible, gcd(g(x), g∗(x)) = 1 and g(x)g∗(x)|A(x). Hence,
this lemma follows.

Corollary 4.3: Let A(x) ∈ GF (2e)[x] be a monic self-
reciprocal polynomial. Then A(x) has the following factor-
ization.

A(x) =g1(x)g
∗
1(x) · · · gs(x)g∗s (x)gs+1(x) · · · gs+t(x)

=g̃1(x) · · · g̃s(x)g̃s+1(x) · · · g̃s+t(x), (20)

where gi(x), g
∗
j (x) (1 ≤ i ≤ s + t, 1 ≤ j ≤ s) are

irreducible. gi(x) is not self-reciprocal for 1 ≤ i ≤ s and
g̃i(x) = gi(x)g

∗
i (x), where g∗i (x) is the reciprocal polynomial

of gi(x). gi(x) is self-reciprocal for s + 1 ≤ i ≤ s + t and
g̃i(x) = gi(x).

Proof: From Lemma 4.1 and Lemma 4.2, this corollary
follows.

Let the monic self-reciprocal polynomial A(x) ∈
GF (2e)[x] without duplicate factors have the following fac-
torization of the form (20).

A(x) = g̃1(x) · · · g̃s(x)g̃s+1(x) · · · g̃s+t(x), (21)

where g̃i(x) is self-reciprocal. Further, suppose g̃i(x) is monic.
Then ni = deg(g̃i(x)) (1 ≤ i ≤ s + t) is even. For a
positive even integer k, let Rk be a set of polynomial C(x) ∈
GF (2e)[x], where C(x) satisfies the following conditions.

(i) deg(C(x)) ≤ k and deg(C(x)) is even;
(ii) C(x) is monic self-reciprocal;
(iii) gcd(C(x), x+ 1) = 1.
For an even integer h > deg(A(x)), define Ph(A(x)) as a

set

Ph(A(x)) = {C(x) ∈ Rh : gcd(C(x), A(x)) = 1}. (22)

Then we have the enumeration for #(Rk) and #(Ph(A(x))).
Lemma 4.4: Let notations be defined above, then

#(Rk) =2e
k
2 ,

#(Ph(A(x))) =2e
h
2

s+t∏
i=1

(1− (
1

2e
)

ni
2 ).

Proof: Note that the monic self-reciprocal polynomial
x2i+a2i−1x

2i−1+ · · ·+aix
i+ · · ·+a1x

1+1 of even degree
is coprime to x+1 if and only if ai ̸= 0. From the definition
of Rk, the numbers of polynomials of degree 0, 2, 4, 6, · · · , k
in Rk are 1, (2e − 1), (2e − 1)(2e)1, (2e − 1)(2e)2, · · · , (2e −
1)(2e)

k
2−1 respectively. Hence,

#(Rk) =1 + (2e − 1) + (2e − 1)(2e)1 + (2e − 1)(2e)2

+ · · ·+ (2e − 1)(2e)
k
2−1

=2e
k
2 .

To enumerate Ph(A(x)), we introduce the auxiliary set

Mh(i1, i2, · · · , ik) = {C(x) ∈ Rh :

k∏
j=1

g̃ij (x)|C(x)},

where 1 ≤ k ≤ s+ t and 1 ≤ i1 < i2 < · · · < ik ≤ s+ t.
From Lemma 4.1, for any C(x) ∈ Mh(i1, i2, · · · , ik), C(x)

can be uniquely represented by C(x) = C ′(x)
∏k

j=1 g̃ij (x),
where C ′(x) ∈ Rh−ni1−···−nik

. Then

#(Mh(i1, i2, · · · , ik)) = #(Rh−ni1−···−nik
).

Since A(x) has no duplicate factors, gcd(g̃i(x), g̃j(x)) =
1 (i ̸= j) and deg(g̃i(x)) is even. Then gcd(g̃i(x), x+1) = 1.
From the inclusion-exclusion principle,

#(Ph(A(x)))

=#(Rh)−
∑

1≤i1≤s+t

#(Mh(i1)) +
∑

1≤i1<i2≤s+t

#(Mh(i1, i2))

+ (−1)s+t#(Mh(1, 2, · · · , s+ t))

=#(Rh) +
s+t∑
k=1

(−1)k
∑

1≤i1<i2<···<ik≤s+t

#(Mh(i1, i2, · · · , is+t))

=#(Rh) +

s+t∑
k=1

(−1)k
∑

1≤i1<i2<···<ik≤s+t

#(Rh−ni1−···−nik
)

=2e
h
2 +

s+t∑
k=1

(−1)k
∑

1≤i1<i2<···<ik≤s+t

2e
h−ni1

−ni2
···−nik

2

=2e
h
2 (1 +

s+t∑
k=1

(−1)k
∑

1≤i1<i2<···<ik≤s+t

2−e
ni1

+ni2
···+nik

2 )

=2e
h
2

s+t∏
k=1

(1− (
1

2e
)

ni
2 ).

Hence, this lemma follows.
Now we consider the enumeration of bent functions. Let

m = 2v0pr and gcd(e, p − 1) = 1, where v0 > 0, r > 0
and p is an odd prime satisfying ordp(2) = p − 1 or
ordp(2) = (p − 1)/2((p − 1)/2 is odd). We first discuss the
factorization of xpr

+1 over GF (2e), which is connected with
cyclotomic polynomials [12]. The d-th cyclotomic polynomial
Qd(x), whose roots are primitive d-th roots of unity, is a monic
polynomial of order d and degree ϕ(d), where ϕ(·) is Euler-
totient function.

Lemma 4.5: Let notations be defined above.
(1) If gcd(e, p− 1) = 1, then ordp(2

e) = ordp(2).
(2) )xpr

+ 1 has no duplicate factors.
(3) For any i ≥ 1, Qpi(x) is a monic self-reciprocal

polynomial of even degree.
(4) Let i ≥ 1. If ordp(2) = p−1, Qpi(x) is irreducible over

GF (2e). If ordp(2) = p−1
2 is odd, then Qpi(x) = gi(x)g

∗
i (x),

where gi(x), g
∗
i (x) ∈ GF (2e) are monic irreducible polyno-

mials and g∗i (x) is the reciprocal polynomial of gi(x).
(5) xpr

+1 = (x+1)Qp(x) · · ·Qpr (x) and xpr+1
x+1 is a monic

self-reciprocal polynomial.
(6) If ordp(2) = p − 1 or ordp(2) = (p − 1)/2

((p − 1)/2 is odd), then xpr+1
x+1 = Qp(x) · · ·Qpr (x) is a

factorization in the form of (20) or (21).
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Proof: (1) This can be obtained by the fact that GF (p)∗

is a cylic group of order p− 1.
(2) Since gcd(xpr

+1, (xpr

+1)′) = gcd(xpr

+1, xpr−1) =
1, then xpr

+ 1 has no duplicate factors.
(3) From its definition, Qpi(x) is monic and of even degree

ϕ(pi) = pi−1(p− 1). Qpi(x) is self-reciprocal, which can be
found in [1].

(4) This can be obtained in [6].
(5) The factorization of xpr

+1 can be found in [1]. xpr+1
x+1

is obviously monic. The self-reciprocal property of xpr+1
x+1 can

be obtained from Lemma 4.1.
(6) From Result (5) and (4), this result can be obtained.
From Theorem 3.5, the Boolean function in (17) is bent if

and only if the polynomial cf (x) in (18) is coprime to xm+1.
There exists an integer k satisfying that 1 ≤ k ≤ m/2, ck ̸= 0
and ck−1 = · · · = c1 = 0. Then we have

cf (x) =ckx
k(xm−2k +

ck+1

ck
xm−2k−1 + · · ·+

cm/2

ck
xm/2−k

+ · · ·+ ck+1

ck
x1 + 1)

=ckx
kC(x).

Hence gcd(cf (x), x
m+1) = 1 if and only if gcd(C(x), xm+

1) = 1. Note that xm + 1 = (xpr

+ 1)2
v0 . Equivalently,

gcd(C(x), xpr

+1) = 1, that is, C(x) ∈ Pm−2(
xpr+1
x+1 ). Since

ck ∈ GF (2e)∗, the number of bent function of the form (17)
is

#(GF (2e)∗)#(Pm−2(
xpr

+ 1

x+ 1
)). (23)

Hence, we have the following theorem.
Theorem 4.6: Let m = 2v0pr, where v0 ≥ 1, r ≥ 1 and p

satisfies that ordp(2) = p−1 or ordp(2) = p−1
2 (p−1

2 is odd).
Let gcd(e, p− 1) = 1. Define the Boolean function

f(x) =

m
2 −1∑
i=1

Trn1 (cix
1+2ei) + Tr

n/2
1 (cm/2x

1+2n/2

) (24)

where ci ∈ GF (2e). The number of bent functions of this
form is

(2e − 1)2e
m−2

2

r∏
i=1

(1− (
1

2e
)

pi−pi−1

2 ).

Proof: From Result (6) in Lemma 4.5,

xpr

+ 1

x+ 1
= Qp(x) · · ·Qpr (x)

is the factorization of xpr+1
x+1 in the form (21) and ni = ϕ(pi) =

pi − pi−1 (1 ≤ i ≤ r). From Lemma 4.4

#(Pm−2(
xpr

+ 1

x+ 1
)) = 2e

m−2
2

r∏
i=1

(1− (
1

2e
)

pi−pi−1

2 ). (25)

From Identity (23), the number of bent functions defined in
(24) is

(2e − 1)2e
m−2

2

r∏
i=1

(1− (
1

2e
)

pi−pi−1

2 ).

Hence, this theorem follows.

V. CONCLUSION

In this paper, we present the relationship of quadratic
Boolean functions with linearized permutation polynomials. A
large class of quadratic bent functions is discussed and studied.
Some quadratic bent functions are constructed. Further, new
quadratic bent functions can be constructed from known
quadratic bent functions. Finally, for special n, we present
the construction and enumeration of quadratic bent functions.
Our technique can be used in the study of semi-bent functions.
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