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Abstract. Semantic-security of individual bits under a ciphertext are fundamental notion in modern
cryptography. In this work we present the first results about this fundamental problem for Order-
Preserving Encryption (OPE): “what plaintext information can be semantically hidden by OPE en-
cryptions?” While OPE has gained much attention in recent years due to its usefulness in secure
databases, any partial-plaintext indistinguishability (semantic security) result for it was open. Here, we
propose a new indistinguishability-based security notion for OPE, which can ensure secrecy of lower
bits of a plaintext (under essentially a random ciphertext probing setting). We then propose a new
scheme satisfying this security notion (while earlier schemes do not satisfy it!). We note that the known
security notions tell us nothing about the above partial- plaintext indistinguishability because they are
limited to being one-way-based. In addition, we show that our security notion with specific parameters
implies the known security notion called WOW, and further, our scheme achieves WOW with better
parameters than earlier schemes.

Keywords: Order-preserving encryption, secure encryption, security notions, indistinguishability,
one-way, foundations.

1 Introduction

1.1 Backgrounds

Securing data of outsourced databases while keeping their functions is critical to the emerging
“cloud computing” and “database as a service” paradigms, describing a setting where users’ data
is kept in remote servers and is employed when needed. These databases often contain sensitive
financial, medical, legal, scientific, and intellectual property data, and security may even be required
by law, e.g., HIPPA [26].

The prototypical new problem in this modern setting is that the database manager may be un-
trusted, in spite of the fact that it holds users’ data. This is a fundamentally different concern than
merely the secure end-to-end communication of traditional cryptography. Securing cloud database
with untrusted cloud servers, therefore, needs to hide information from the database manager itself,
and has resulted in new research areas, such as: verifiable computations [13,2], proofs of data pos-
sessions [3,28,5], searchable encryptions [43,20,23,21,42], deterministic encryptions [8,10,19], proxy
re-encryptions [14,4], prefix-preserving encryptions [50,7], and PIRs [30,22,35].

Order-Preserving Encryption (OPE): This is one of the most promising new primitives in
the area of encrypted database processing [1,36,6,16,18,51]. It is a symmetric encryption over the
integers such that ciphertexts preserve the numerical orders of the corresponding plaintexts. That
is, ∀m,m′{m < m′ ⇒ EncK(m) < EncK(m′)}. OPE was originally studied heuristically in the
database community by Agrawal, Kiernan, Ramakrishnan, Srikant and Xu [1], and seemed like a
clever heuristics. Remarkably, its careful foundational study was initiated with surprising formal
cryptographic models and proofs by Boldyreva, Chenette, Lee, and O’Neill [16,18]. Overall, it has
received much recent attention in the cryptographic community [16,18,51], in the database com-
munity [1,36,6], as well as in other applied areas such as sensor networks [46], multimedia content
protections [25,31], and so on [50,42,45].



OPE is attractive since it allows one to simultaniously perform very efficiently over encrypted
data numerous fundamental database operations: sorting, simple matching (i.e., finding m in a
database), range queries (i.e., finding all messages m within a given range {i, . . . , j}), and SQL
operations [1,40,41,44]. In cotrast, each of the other primitives mentioned above enables at most one
of these operations. Furthermore, OPE is more efficient than these other primitives. For instance,
the simple matching operation realized by OPE only requires logarithmic time in the database size
[1], while the same operation realized by, say, searchable encryption [21,42], needs linear time in
the size, which is too costly for a database containing a few millions data items [27].

1.2 Security of OPE

Despite its importance, security of OPE is far from being understood at this time. Even the most
fundamental problem: “what plaintext information can be semantically hidden” is open because
security of OPE is quite different from that of other primitives. Indeed, a naturally defined indis-
tinguishability notion for OPE, indistinguishability under ordered CPA attack (IND-O-CPA) [16],
was not only unachievable but it was shown that any OPE under this notion is broken with over-
whelming probability if the OPE scheme has a super-polynomial size message space. In other
words, OPE cannot ensure this naturally defined indistinguishability at all or has to have a very
small message space (to a point of losing its utility).

OPE is an inherently “leaky” method: The reason that an OPE scheme cannot achieve a
natural indistinguishable notion is that an OPE scheme has to reveal something about plaintexts
other than their order: i.e., information about the distance between the two plaintexts. By definition
(as stated above) an OPE scheme’s encryption function EncK has to satisfy the monotone increasing
property, m0 < m1 ⇒ EncK(m0) < EncK(m1). Hence, the difference EncK(m1)− EncK(m0) of two
ciphertexts has to become noticeably large if the difference m1−m0 of the corresponding plaintexts
becomes large. The negative result of [16] mentioned above is, in fact, proved using an attack based
on this observation.

To date, no one can tell what exactly OPE has to leak and what it can protect. Our motivation is
the fact that the existing security notions (which we list next) are not really helpful in understanding
this simple question.

IND-O-CPA [16]: This notion is defined as follows: an adversary selects plaintexts by herself
adaptively (her queries have to satisfy some order-preserving property), she gets their corresponding
ciphertexts, and then guesses a secret bit of the challenger. However, as we stated above, this notion
is not achievable for schemes with a super-polynomial size message space [16].

POPF-CCA [16]: Intuitively, this indistinguishability-based notion says that outputs of an en-
cryption and decryption oracles are indistinguishable from those of an order-preserving random
oracle and its inverse, even when an adversary queries the oracle in a CCA fashion. However, this
notion does not tell us what information of the plaintext is hidden and what is leaked, as was
already pointed out by [18].

(r, q+1)-WOW [17] (Window One-Wayness): This is defined as follows4: An adversary A gets
q+1 encryptions C∗, C1, . . . , Cq of uniformly randomly selected unknown messages and outputs an
interval I such that the length of I is not more than r. A is considered to win iff DecK(C∗) ∈ I.

4 Boldyreva et.al. [17] gave two definitions of the window one-wayness notion in Section 3 and Appendix B of [17]
and the first one can be reduced to the second one and vise versa (due to Lemma B.1 of [17]). We adopt the
definition given in Appendix B of [17], which they called (specified) window one-wayness, because it is simpler.
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This notion is important for OPE since it captures the following natural database setting:
Randomly selected q + 1 elements are stored in a database system in their encrypted form and
an adversary A who wants to know one of them breaches the database and gets all ciphertexts
in it. On the other hand, this notion does not ensure anything about secrecy of internal plaintext
information, since it is “one-way-based” in nature.

(r, q + 1)-WDOW [17]: (r, q + 1)-WDOW is another one-way-based notion defined in [17]. But
since it is one-way-based, it also does not tell us what information about the plaintexts is hidden.

1.3 Our Indistinguishability Notion — (X , θ, q)-Indistinguishability

This paper presents the first attempt to give a new perspective to the fundamental open problem:
“go beyond one-wayness security and investigate what internal plaintext information OPE can
hide.” Y Here we propose the first (achievable) indistinguishability notion for OPE regarding partial
plaintext information hiding. More specifically: our notion can assure secrecy of lower bits of a
plaintext in some natural setting.

Our Approach to Defining Indistinguishability: Our starting points are two known security
notions for OPE, namely, (r, q + 1)-WOW [18] and IND-O-CPA [16]. The former is achievable (by
the scheme of [16]), is useful in certain database settings, but it is inherently one-way-based. The
latter is indistinguishability-based, but is too strong and hence cannot be achieved by any OPE
scheme with a super-polynomial size message space.

Our approach defines a new security notion, by considering (in some sense) a “hybrid” of
the above two approaches: Our adversary plays an indistinguishability game, although she is in
the setting of WOW: That is, she is given EncK(m∗

b), EncK(m1), . . ., EncK(mq), where messages
m1, . . . ,mq are selected randomly by the challenger (not the adversary!).

Then, our security notion is of the same natural setting as that of WOW, but is indistinguishability-
based and is weaker than IND-O-CPA. This is our initial goal (since we want a realizable notion).
Then, we improve the above notion so as to make our definition stronger and to avoid the known
attack related to the inherent leaky nature of OPE (reviewed in of Section 1.2). This will be desribed
in more details in the sequel. In turn, we will show that our indistinguishability notion can ensure
secrecy of the plaintext’s lower order bits.

Definition: Our indistinguishability notion, (X , θ, q)-indistinguishability, is as follows: Let X =
(Xi) be a tuple of message distributions. Consider two polynomial time machines A and Mg, named
adversary and message generator and consider the following game: first: (m∗

0,m
∗
1, info) ← Mg,

and then: m1
$← X1, . . ., and mq

$← Xq. Then a bit b is chosen at random, and A wins iff
A(EncK(m∗

b), (EncK(mi))i=1..q, info) succeeds in outputting b. Here info is a bit string which in-
tuitively contains some information about messages m∗

0 and m∗
1. We say that an OPE scheme is

(X , θ, q)-indistinguishable if the advantage of A (guessing the bit beyond probability 1/2) is negli-
gible for any A and for any Mg whose output satisfies

|m∗
1 −m∗

0| ≤ θ. (1.1)

Note that, when mi ∈ [m∗
0..m

∗
1] holds for some i, an OPE scheme under the above notion

is broken trivially by an adversary simply checking EncK(m∗
b) > Enck(mi). However, this is not

big issue since we employ this security notion only when the probability that mi ∈ [m∗
0..m

∗
1] is

negligible.
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In the above definition, the restriction (1.1) is imposed in order to avoid the known attack [16]
reviewed in Section 1.2. Recall that this known attack applies only when the distance between m∗

0

and m∗
1 is large. Hence, (1.1) prevents an adversary from executing this attack.

The above definition is improved in three ways. First, we allow an adversary to access the
plaintexts m1, . . . ,mq, secondly, we consider the case where m1, . . . ,mq are selected from any given
distributions X1, . . . ,Xq: these improvements make our security notion stronger and more general,
and finally, we impose restriction (1.1) as mentioned before.

Low-order Bits Can be Hidden: Our security notion ensures the secrecy of the least significant
⌊log2 θ⌋ bits of a plaintext, due to the following: Let L = ⌊log2 θ⌋ and take any (maximal) interval
I satisfying the following property: for any two elements of I, all bits of them except the least
significant L bits are the same. That is, I can be written as

I = {2Lu+ x | x ∈ [0..2L − 1]}

for some u. By definition the length of I is not more than θ.

Next, recall that our security notion ensures the indistinguishability of ciphertexts of m∗
0 and

m∗
1 for any m∗

0 and m∗
1 satisfying |m∗

0 −m∗
1| ≤ θ. This fact, in particular, means that a ciphertext

of any element m∗
0 of I is indistinguishable from that of a uniformly random element m∗

1 of I. Since
the least significant L bits of uniformly random element m∗

1 of I distribute uniformly at random
on the L-bit space [0..2L − 1], the indistinguishability of m∗

0 and m∗
1 can ensure secrecy of the least

significant L bits of m∗
0. Note that, by similar semantic-security-like arguments, we can also ensure

the secrecy of other information of m∗
0 as well: e.g., the least significant ⌊log2 θ⌋ bits of m∗

0 + s for
any fixed s.

Our security notion does not ensure the secrecy of higher bits of the plaintext, and ,in fact,
there is no known scheme which can ensure the secrecy of higher bits of the plaintext, since the
scheme of [16] also reveals higher bits of it [18].

Application: Our (X , θ, q)-indistinguishability notion captures, in fact, the same natural setting
as that of WOW mentioned before. That is, consider a database containing q + 1 data elements
m∗,m1, . . . ,mq in their encrypted forms, where these messages are distributed according to given
distributions, and an adversary A who wants to know m∗ breaches a database system and gets all
ciphertexts in it. In this setting, our (X , θ, q)-indistinguishability notion can ensure a stronger fact
that WOW cannot assure, namely: that A cannot learn the least significant ⌊log2 θ⌋ bits of m∗ even
when she has (partial or all) information about the other data elements m1, . . . ,mq. (We note that
our notions as well as previous notions do not deal with guaranteeing anything about messages
depending on the known plaintexts, such as m1 + 1, (whether notions which can deal with such
strong dependencies are possible is left open)).

1.4 Our Scheme and Its Security

The known scheme [16] is designed based on a remarkable idea but this scheme is irrelevant to our
goal since we show that it cannot satisfy our security notion, for good parameters at least (Moreover,
there is no evidence that this scheme satisfies our security notion even for bad parameters, since
our goal is new). See Section 1.6 and Appendix 4.2 for the details.

Hence, we propose a new OPE scheme Eβ,t parameterized by two values β and t (to be elaborated
on in the sequel) and study its (X , θ, q)-indistinguishability. Our scheme is constructed based on a
pseudo-random function PRF, and its security is shown by reduction to the function’s security.
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First, we show that our scheme Eβ,t with β = 1 satisfies the following theorem in the very
important case where X is the tuple of uniform distributions on the message space. Below, λ is a
security parameter.

Theorem 1. Let Uq = (U , . . . ,U) be the tuple of q uniform distributions on the message space
[1..M ] and 0 ≤ t < 1 be any constant. Then our proposed scheme E1,t satisfies

∀Mg∀A∃B : Adv.Exp
(Uq,M t,q)-indis.
E1,t (Mg,A) ≤ O

(
q

M
1−t
3

)
+ Adv.ExpPRF(B) + neg(λ). (1.2)

Here neg() is some negligible function.

Next, we generalize Theorem 1 as follows. Below, H∞(Y) denotes the min-entropy of Y, that
is, H∞(Y) = − log2 maxx Pr[m

$← Y : m = x].

Theorem 2. Let β > 0 be any constant and X = (X1, . . . ,Xq) be any tuple of distributions on the
message space [1..M ] such that X1, . . . ,Xq are independent from each other (and one can take a
sample from Xi in time polynomial in λ). Suppose that X = (X1, . . . ,Xq) satisfies

∀i ∈ [1..q] : H∞(Xi) ≥ β log2M. (1.3)

Then, for any constant t < β our scheme Eβ,t satisfies

∀Mg∀A∃B : Adv.Exp
(X ,M t,q)-indis.

Eβ,t (Mg,A) ≤ O

(
q

M
β−t
3

)
+ Adv.ExpPRF(B) + neg(λ). (1.4)

The right hand sides of these theorems become negligible under the condition that the message
space size M is super-polynomial of λ: which is exactly the same condition assumed by Boldyreva
et.al.[18] to get their results.

Theorems 1 and 2 ensure that we can show stronger security when t is closer to 1 and β
respectively, though the advantage bound decrease is slower in this case. The values β and t affect
neither the ciphertext length, nor the encryption, nor decryption costs. They only affect the order
of the advantage bound and the strength of the security notion.

The value log2M in (1.3) represents the maximum of the min-entropy because any distribution
Y on [1..M ] satisfies H∞(Y) ≤ log2 M . Hence, the value β in (1.3) represents a lower bound of
the ratio of H∞(Xi) to the maximum log2 M . Note that the maximum log2M is achieved by the
uniform distribution and we therefore can set β to 1 in this case. Hence, Theorem 1 is reduced to
Theorem 2 in the case of the uniform distributions.

Any Fraction of Low-order Bits Are Hidden in the Uniform Distribution Case: Recall
that the discussion of Section 1.3 shows that (X ,M t, q)-indistinguishability implies secrecy of the
least significant ⌊logM t⌋ bits of a plaintext. Moreover, the maximum bit length of a message is
⌊log2M⌋+1 since the message space is [1..M ]. Hence, Theorem 1 and 2 show that our scheme with
the above parameters can ensure secrecy of the fraction

⌊logM t⌋
⌊log2 M⌋+ 1

≈ t (1.5)

of the least significant bits of a plaintext. Since 0 ≤ t < 1 is an arbitrary value in Theorem 1,
our scheme can ensure secrecy of any fraction of the least significant bits of the plaintext in this
significant case where plaintexts distribute uniformly at random.
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Fraction t < β of Lower Bits Are Hidden in the General Case: Similarly, Theorem 2 shows
that our scheme can ensure secrecy of the fraction t < β of the least significant bits of a plaintext,
where β is the value given in (1.3).

Importance of Theorem 2 in Database Security: This theorem can ensure some indistin-
guishability when we are uncertain about values. Namely, (X ,M t, q)-indistinguishability of our
scheme Eβ,t is achieved even when we do not have the complete knowledge of the tuple X of plain-
text distributions (whose min-entropies are larger than β). This fact is very important in the main
application of OPE, the database security, because we cannot know the plaintext distributions com-
pletely in advance when, for instance, plaintexts are names of new students (with the lexicographic
order) or scores of some examination. Our scheme can ensure the secrecy of the least significant
t < β bits of plaintexts even in this case.

Allowing Decryption Queries: As in [18], we can naturally make our scheme secure even when
we allow the adversary to make decryption queries at any time, using the “Encryption-then-Mac”
composition (adding MAC data) [11], which, essentially, privately “signs” messages. See Appendix
3.3 for details.

1.5 Stronger Variant of (r, q)-WOW Security [17]

Finally, we define a stronger variant of (r, q)-WOW notion, called (r, q)-WOWM, which is informally
discussed in [17]. Then, we show the relationship between our basic results and the known result
using this notion [17].

Definition: (r, q)-WOWM (WOW viewing Messages) is defined as follows: an adversary A is fed
EncK(m∗) and (m1,EncK(m1)), . . ., (mq,EncK(mq)) and outputs an interval I such that the length
of I is not more than r. A is considered to win iff m∗ ∈ I. This notion is stronger than (r, q)-WOW
because (r, q)-WOWM allows an adversary to watch m1, . . . ,mq while (r, q)-WOW prohibits her
from doing this.

Relationship with (X , θ, q)-indistinguishability: Below, Succ.ExpS(A) denotes the success prob-
ability of A in the experiment of a security notion S.
Theorem 3. Let Uq be the tuple of q uniform distributions on the message space [1..M ]. Then,
for any r and θ satisfying 0 ≤ r < θ ≤ M and for any OPE E, (Uq, θ, q)-indistinguishability of E
implies (r, q + 1)-WOWM of it if r/θ, θ/M , and q/M are negligible. Specifically,

∀A∃Mg∃B : Succ.Exp
(r,q+1)-WOWM
E (A) ≤ Adv.Exp

(Uq,θ,q)-indis
E (Mg,B) +O

(r
θ

)
+O

( θ

M

)
+O

( q

M

)
.

(1.6)

By definitions, the following property holds as well for any adversary A for (r, q + 1)-WOW:

Succ.Exp
(r,q+1)-WOW

E (A) ≤ Succ.Exp
(r,q+1)-WOWM

E (A). (1.7)

(Mρ, q + 1)-WOWM of our Proposed Scheme for 0 ≤ ρ < 1: The following theorem quite
immediately follows from Theorems 2 and 3.

Theorem 4. For any constant
0 ≤ ρ < 1,

our scheme Eβ,t with (β, t) = (2− ρ, (ρ+ 1)/2) is (Mρ, q + 1)-WOWM. Specifically,

∀A∃B : Succ.Exp
(Mρ,q+1)-WOWM

Et,θ (A) ≤ O

(
q

M
1−ρ
2

)
+ Adv.ExpPRF(B) + neg(λ). (1.8)
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This fact seems interesting since it was proved in [18] that the scheme of [16] was not able to
achieve (Mρ, q)-WOW (and therefore (Mρ, q)-WOWM) for any ρ > 1/2 although (1, q)-WOW of
this scheme was proved.

1.6 Comparisons with the Known Scheme [16]

The earlier results on OPE are indeed remarkable and opened the door to our investigation, but
there are some crucial differences which we would like to point out explicitly.

About Our Security Notion: Our scheme satisfies (Uq,M t, q)-indistinguishability for any 0 ≤
t < 1, where the tuple Uq of the uniform distributions on the message space. This means that it
can hide any fraction t of the least significant bits of a plaintext in our setting with uniformly
randomly selection of plaintexts. We also show the secrecy of lower bits of a plaintext for non-
uniform distributions based on min-entropy of the distributions.

On the other hand, we can prove that the known scheme [16] cannot satisfy (Uq,M t, q)-
indistinguishability for t > 1/2, which means that (due to the discussion of Section 1.3) the scheme
has to reveal any bit of plaintext other than the lower half bits of it with non-negligible advantage
in the same setting. This is because Theorem 3 shows that (Uq,M t, q)-indistinguishability implies
(Mρ, q+1)-WOW for suitable parameter ρ > 1/2 and it is proved [18] that the known scheme [16]
cannot achieve (Mρ, q + 1)-WOW for ρ > 1/2. See Appendix 4.2 for the details.

There is no known partial-plaintext indistinguishability result other than ours, in particular not
about the earlier scheme [16]. However, even if the scheme can hide something, the proof of this
fact seems to us to be very hard, given that even the one-wayness (WOW) proof for that scheme
is very long and elaborated.

About WOW [17]: Our scheme satisfies a stronger variant of (Mρ, q+1)-WOW, namely, (Mρ, q+
1)-WOWM, for any constant 0 ≤ ρ < 1. On the other hand it is proved that the known scheme
[16] cannot achieve (Mρ, q + 1)-WOW [17] (and therefore (Mρ, q + 1)-WOWM) for any ρ > 1/2
although it satisfies (1, q+1)-WOW (and (1, q+1)-WOWM as well, due to the informal discussion
in Section 4.1 of [17]).

About POPF-CCA [16]: Our scheme does not satisfy this notion, but, as pointed out above,
this notion tells nothing about secrecy of plaintext partial information [18].

1.7 Other Related Works

We note the following results which are beyond the scope of this work.

Other Known Results about OPE [49,51,48]: Yum, Kim, Kim, Lee and Hong [51] propose
a more efficient method to compute the encryption and decryption functions of the known scheme
[16]. Xiao, Yen, and Huynh [49] study OPE in a multi-user setting. Xiao and Yen [48] estimates
the min-entropy of an unknown plaintext encrypted by the known scheme [16], but this is very
different from our approach since, first, this does not tell us which bits of a plaintext are hidden;
secondly, it is about the known scheme [16]; and thirdly, it is not about indistinguishability.

Property Preserving Encryption [37]: This notion, introduced by Pandey and Rouselakis, is a
variant of the OPE whose encryption function preserve some given property. The security notions
for this scheme can be considered as those for OPE. However, almost the same attack as that of [16]
can break any OPE scheme under these security notions when the scheme has a super-polynomial
size message space. See Appendix 4.1 for details.
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CEOE and MOPE [18]: These notions achieve stronger security than OPE by sacrificing some
functionalities of it: CEOE requires that the set of plaintexts be encrypted is pre-determined and
static. MOPE does not tell us the order of plaintexts themselves although it tells us their order
modulo the message space size. These notions are of independent interests and beyond our scope.

mOPE and stOPE [38,39]: These notions, introduced by Popa, Li, and Zeldovich, are interactive
protocols which allow a user to store plaintexts to a database in their encrypted forms and to
compare the sizes of plaintexts in the database. These protocols can be run without revealing
any information about plaintexts except their order. However, they are different from and more
specialize than the original OPE, since they are interactive and they employ stateful encryption
functions.

GOPE[47]: GOPE schemes, introduced by Xiao and Yen, also achieve a stronger security by
changing the model of OPE. But their schemes can be used in the very restrictive cases where the
message space size is less than polynomial in the security parameter, or all encryption queries are
within some polynomial size interval.

2 Preliminaries

2.1 Notations and Terminologies

We next introduce notations and terminology used throughout this paper.

Intervals: For integers a and b ≥ a, interval [a..b] is the set {a, . . . , b}. [b], (a..b], [a..b), and (a..b)
denote [1..b], [a+ 1..b], [a..b− 1], and [a+ 1..b− 1], respectively.

Order-Preserving Encryption: AnOPE scheme is a symmetric key encryption E = (Kg,Enc,Dec)
whose message space M and ciphertext space are intervals in N and which satisfies m < m′ ⇒
EncK(m) < EncK(m′) for any m,m′ ∈ M and any possible output K of Kg. Here “<” represents
the numerical order. Throughout this paper, we assume w.l.o.g. that the message space M of E
can be written as [1..M ].

2.2 Notations, Definitions, and Known Facts about Probabilities

Probabilities: We denote by X ∼ P when a random variable X follows a distribution P. For a

probability distribution P, a random variable X, and a finite set A, we write x
$← P, x $← X, and

x
$← A to denote that x is, respectively, sampled according to P, distribution of X, and the uniform

distribution on A.

Binomial and Hypergeometric Distributions: For natural numbers n and real number 0 ≤
p ≤ 1, the binomial distribution B(n, p) is the probability distribution of the number of heads in
a sequence of n independent coin flips, each of which yields head with probability p. For natural
numbers n, and k, ℓ ≤ n, the hypergeometric distribution HG(n, t, ℓ) is a probability distribution of
the number of drawn black balls in a sequence of ℓ draws without replacement from a bin which
contains n− t white balls and t black balls. It is well known that if X ∼ B(n, p) and Y ∼ HG(n, t, ℓ)
then

Pr[X = i] =

(
n

i

)
pi(1− p)n−i, Pr[Y = i] =

(
ℓ

i

)(
n− ℓ

t− i

)/(
n

t

)
. Here

(
n

k

)
=

n!

(n− k)!k!
.
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Statistical Distance: For random variables X and Y , SD(X,Y ) denote the statistical distance of
X and Y , that is,

SD(X,Y ) =
∑

z

|Pr[X = z]− Pr[Y = z]|

2.3 Known Facts About Probabilities

Proposition 5 (Conditional Distribution of Binomial is Hypergeometric) Let a, b, and
c ≤ a + b be natural numbers. Let α and β be independent random variables which follow B(a, q)
and B(b, q) respectively. Then the distribution of α given the condition α+ β = c is HG(a+ b, c, a)
(regardless of the value q).

Proof (Proposition 5). By definitions, α ∼ B(a, q) and β ∼ B(b, q) hold and α and β are indepen-
dent. Since the sum of independent binomial random variables is also binomial random variable,
α+ β ∼ B(a+ b, q) holds. From α ∼ B(a, q), β ∼ B(b, q), and α+ β ∼ B(a+ b, q), it follows that

Pr[α = i]=

(
a

i

)
qi(1− q)a−i, Pr[β = j]=

(
b

j

)
qj(1− q)b−j , Pr[α+ β = c]=

(
a+ b

c

)
qc(1− q)a+b−c.

Set j = c− i. Then, it follows that

Pr[α = i | α+ β = c]=
Pr[α = i ∧ α+ β = c]

Pr[α+ β = c]
=
Pr[α = i] Pr[β = c− i]

Pr[α+ β = c]
=

(
a

i

)(
b

c− i

)/(
a+ b

c

)
.

⊓⊔

Proposition 6 (Large Uniform Randomness Hides Small Values) Let θ and L > 2θ be
natural numbers. Then, for all α, β ∈ [−θ..θ], the statistical distance between the random vari-

ables α+ δ and β + ζ for δ, ζ
$← [1..L] is less than O(θ/L).

Proof (Proposition 6). Take δ, ζ ← [1..2λθ] and set U ← α + δ and V ← β + ζ. W.l.o.g. we can
assume α ≥ β. Then clearly, (Pr[U = z],Pr[V = z]) is (0, 1/L), (1/L, 1/L), (1/L, 1/L), and (0, 0),
if β < z ≤ α, α < z ≤ L+ β, L+ β < z ≤ L+ α, and otherwise respectively. Hence, the following
equations hold. Below, SD(U, V ) denote the statistical distance and the last equation follows from
the assumption α, β ∈ [−θ..θ].

SD(U, V ) =
∑

z

|Pr[U = z]− Pr[V = z]| =
∑

β<z≤α

1

L
+

∑

L+β<z≤L+α

1

L
=

2(α− β)

L
= O(θ/L) ⊓⊔

3 Security Notions and Their Relationships

Next, we introduce (X , θ, q)-indistinguishability and (r, q)-WOWM, whose intuitive meanings are
given in Sections 1.3 and 1.5 respectively. Then we will prove Theorem 3.

3.1 Security Definitions

Below, λ is a security parameter and E = (Kg,Enc,Dec) is an OPE scheme.

9



Definition 7 ((X , θ, q)-indistinguishability) For a non-negative real numbers θ = θ(λ) ≥ 0,
a polynomial q = q(λ), and a tuple X = (Xi)i∈[1..q] of distributions on the message space of
E , E is said to be (X , θ, q)-indistinguishable if for any polynomial time machine Mg whose out-
puts (m∗

0,m
∗
1, info) satisfies |m∗

1 − m∗
0| ≤ θ and m∗

0 < m∗
1, and any polynomial time adver-

sary A, |Pr[Exp(X ,θ,q)-indis.
E (Mg,A, 1) = 1] − Pr[Exp

(X ,θ,q)-indis.
E (Mg,A, 0) = 1]| is negligible. Here

Exp
(X ,θ,q)-indis.
E (Mg,A, b) is defined as follows.

K ← Kg(1λ), (m∗
0,m

∗
1, info)← Mg(1λ),m1

$← X1, . . . ,mq
$← Xq,

d← A(EncK(m∗
b), (mi,EncK(mi))i∈[1..q], info),Return d.

Above, info is a bit string whose intuitive meaning is any information about messages m∗
0 m∗

1.
Due to the bit string info, we can re-interpret the above definition such that algorithms Mg and A

are the “guess stage” and the “find stage” of a single adversary (Mg,A) and info is her state.
An OPE scheme under this notion is broken trivially when mi ∈ [m∗

0..m
∗
1] holds for some i but

we employ the above security notion only when mi ∈ [m∗
0..m

∗
1] holds with negligible probability.

Next, we define (r, q)-WOWM notion based on the definition of (specified) (1, q)-WOW given
in Appendix B of [17], (which can be reduced to (1, q)-WOW given in Section 3 of [17] and vise
versa).

Definition 8 ((r, q)-WOWM) Let Combq+1(M) be the set of (q +1)-element subset of the mes-
sage space [1..M ] of E . We say that E satisfies (1, q)-WOWM (Window One-Wayness viewing

Messages) if for any polynomial time adversary A, Pr[Exp
(r,q)-WOWM
E (A) = 1] is negligible. Here,

experiment Exp
(r,q)-WOWM
E (A) is defined as follows:

K ← Kg(1λ),m
$← Combq+1(M),m∗

$←m, (mL,mR)← A(EncK(m∗), (m,EncK(m))m∈m\{m∗}),

Return 1 iff m∗ ∈ S(mL,mR), where S(mL,mR) =

{
[mL..mR] if mL ≤ mR

[1..mR] ∪ [mL..M ] otherwise.

Here “m∗
$←m” means that “choose a message m∗ from the tuple m uniformly at random”. The

output (mL,mR) of A has to satisfy #S(mL,mR) ≤ r.

3.2 Proof of Theorem 3

We now prove Theorem 3 presented in Section 1.

Proof. Since (1.7) holds by definition, we show (1.6). Consider game Game, which is the same as the
game of (r, q+1)-WOWM except that the challenger of it selects m1, . . . ,mq not from Combq+1(M)
but from the uniform distributions. In other words, while the challenger of the (r, q + 1)-WOWM
game draws q different elements of [1..M ], that of the Game draws q elements of [1..M ] (with
repetition). By definitions, the difference between the advantages of an adversary in the (r, q + 1)-
WOWM game and the Game game is only O(q/M).

We next construct Mg and B for (X , θ, q)-indistinguishability by using A for Game as follows:

Mg(1λ) selects m∗
0

$← [1..M ] and s
$← [0..θ] uniformly at random, sets m∗

1 to m∗
0 + s and info to

the null string, and outputs (m∗
0,m

∗
1, info) if m

∗
1 ≤ M holds. Otherwise, Mg outputs fail. Then the

challenger selects m1, . . . ,mq uniformly at random and compute their ciphertexts C1, . . . , Cq and
the challenge ciphertext C∗.
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B gets (C∗, (mi, Ci)i∈[1..q]) and info as inputs and computes (mL,mR) ← A(C∗, (mi, Ci)i∈[1..q]).
If there exists d ∈ {0, 1} such that m∗

d ∈ S(mL,mR) but m
∗
1−d /∈ S(mL,mR), B outputs d, where

S(mL,mR) is the set given in Definition 8; otherwise, B selects d
$← {0, 1} uniformly at random

and outputs d.

By simply calculating, Pr[m∗
1 = m] = 1/M holds for any m ∈ [θ,M ]. Hence, m∗

1 is uniformly
distributed under the condition that m1 ∈ [θ..M ] holds. All other data, mi and m∗

0, are uniformly
distributed as well by definition. Therefore, with probability Pr[m∗

1 ∈ [θ..M ]] = 1− θ
M , B succeeds

in simulating correctly the view of A, where all data have to be selected uniformly at random. (Note
that Mg does not output fail either, when m∗

1 ∈ [θ..M ].)
We let Good be the event that m∗

1 ∈ [θ..M ] holds thereafter and let ε ← Pr[A wins | Good].
Then, the probability that the output d of B equals b is

Pr[d = b | Good] ≥ Pr[(1) | Good] + Pr[(2) | Good] = ε ·
(
1− r

θ

)
+ (1− ε) ·

(
1− r

θ

)
· 1
2
≥ 1 + ε

2
− r

θ
,

where (1) and (2) are the following events:

(1) m∗
b ∈ S(mL,mR) and m∗

1−b /∈ S(mL,mR).

(2) m∗
b /∈ S(mL,mR) and m∗

1−b /∈ S(mL,mR). But, fortunately, the bit d selected by B is equal to
b.

Since |Pr[E] − Pr[E | Good]| ≤ Pr[¬Good] holds [12] for any event E, the advantage of B =
|Pr[d = 1 | b = 1] − Pr[d = 1 | b = 0]| = 2|Pr[d = b] − 1

2 | satisfying (1.6), which completes the
proof.

3.3 Encryption-then-Mac Makes Security of Our Scheme Stronger

Next, we show that an OPE scheme be secure even when an adversary can make decryption queries
any time, using the “Encryption-then-Mac” composition (adding MAC data) [11], which, essentially,
privately “signs” messages.

Definitions:

Definition 9 (Message Authentication Code (MAC)) A message authentication code is a
tuple MAC = (Gen, Tag, Ver) of algorithms whose inputs and outputs are as follows: Gen takes
1λ as an input and outputs key K. Tag takes K and a message m and outputs tag σ on m. Ver
takes K, m, and a candidate of tag σ′ on m and outputs accept or reject.MAC has to satisfy the
correctness property, VerK(m,TagK(m)) = accept for any message m and any possible output K of
Gen.

Definition 10 (Strong Unforgeability) We say that MAC = (Gen,Tag,Ver) is strongly un-
forgeable (under chosen message attack) if for any polynomial time adverasary A, the probability
that the following game outputs 1 is negligible. Below, (m,σ) has to be different from any pair of
TagK-query of A and its answer from the oracle.

K ← Gen(1λ), (m,σ)← ATagK(·),VerK(·,·)(1λ). Return 1 iff VerK(m,σ) = accept.

Definition 11 (Encrypt-then-MAC) For OPE scheme E = (Kg,Enc,Dec) and message authen-
tication codeMAC = (Gen, Tag, Ver), the “Encrypt-then-MAC” composition E ′ = (Kg′,Enc′,Dec′)
[11] of them is as follows:

11



– Kg′(1λ) : K ← Kg(1λ), L← Gen(1λ). Output K ′ ← (K,L).

– Enc′K ′(m) : Parse K ′ as (K,L). Compute C ← EncK(m). Output C ′ ← (C,TagL(C)).

– Dec′K ′(C ′) : Parse K ′ and C ′ as (K,L) and (C, σ). If VerL(C, σ) = accept, output DecK(C).
Otherwise, output ⊥.

A ciphertext of E ′ is a pair of C and σ while the definition of OPE requires that a ciphertext is
an integer. However, we loosely say that “E ′ is an OPE scheme”, because the first element C of a
ciphertext satisfies the order preserving property (in addition, we can embed the two elements in a
larger domain integer, where the first element determines the high order bits).

Result: Let (X , θ, q)-indis-dec be the same notion as (X , θ, q)-indistinguishability except that a
message generator and an adversary can make decryption queries any time (if the decryption
queries are different from the challenge ciphertext). (Here we consider the case where both a message
generator and an adversary can make decryption queries, so as to make our result strong, although
the message generator making decryption queries may not be natural.)

Then, we can show that if an OPE scheme E is (X , θ, q)-indistinguishable then E with the
“Encryption-Then-MAC” satisfies (X , θ, q)-indis-dec. The intuition is that successful decryption
query breaks the MAC, and formally, we can show the following theorem:

Theorem 12. Let E be an OPE scheme, M be a strongly unforgeable MAC, and E ′ be the OPE
scheme obtained from them by “Encrypt-then-MAC” composition [11]. Then

∀Mg ∀A ∃Mg† ∃A† ∃B :

Adv.Exp
(X ,θ,q)-indis-dec
E ′ (Mg,A) ≤ Adv.Exp

(X ,θ,q)-indis
E (Mg†,A†) + Succ.Expstrong unforge.

M (B)

holds. Here Mg and Mg† denote message generators for (X , θ, q)-indis-dec of E ′ and (X , θ, q)-
indistinguishability of E respectively, A, A† and B respectively denote adversaries for (X , θ, q)-indis-
dec of E ′, (X , θ, q)-indistinguishability for E, and strong unforgeability for M, and Adv.ExpS and
Succ.ExpT denote the advantage and the success probability in the experiments for the security
notion S and T .

Proof (Theorem 12). Take any message generator Mg and any adversary A for (X , θ, q)-indis-dec.
W.l.o.g. we assume that neither Mg nor A send an answered ciphertext C ′ from the encryption
oracle to the decryption oracle, because they already know DecK ′(C ′).

Let Game(0)(Mg,A) be the game of (X , θ, q)-indis-dec and Game(1)(Mg,A) be the same game as
Game(0)(λ), except that A is considered to win if A can make a decryption query whose answer is
not ⊥. We construct an adversary B forM satisfying

Adv.Game(0)(Mg,A) ≤ Adv.Game(1)(Mg,A) + Succ.Expstrong unforge.
E (B). (3.1)

B(1λ) generates K ← Kg(1λ) and executes Mg(1λ). Each times Mg makes decryption query C ′ =
(C, σ), B sends (C, σ) to VerL oracle. If the answer from VerL is accept, B outputs (C, σ) and
terminates. Otherwise, she sends ⊥ back to Mg.

When Mg outputs the challenge query (m∗
0,m

∗
1) and bit string info, B randomly takes b ∈ {0, 1}

and m1
$← X1, . . . ,mq

$← Xq, computes C∗ ← EncK(m∗
b), C1 ← EncK(m1), . . ., Cq ← EncK(mq)

using K, sends them to TagL oracle, gets σ∗, σ1, . . ., σq as answers, sets C ′
∗ ← (C∗, σ∗), C ′

1 ←
(C1, σ1), . . ., C

′
q ← (Cq, σq), and sends C∗, (m1, C

′
1), . . ., (mq, C

′
q) and info to A. B simulates the

decryption oracle in the same way as she did with Mg. If A terminates, the attack of B fails.

12



The output (C, σ) of B is different from (C∗, σ∗) because A does not send to the decryption oracle
a ciphertext answered by the encryption oracle and because A is not allowed to send C ′

∗ = (C∗, σ∗)
to the decryption oracle. That is, B follows the rule of strong unforgeability. Since the success
probability of B is equal to the difference between the advantages of A in Game(0) and that of
Game(1), (3.1) holds.

Let Mg† be the same message generator as Mg except that Mg† does not make a decryption
query. Specifically, Mg†(1λ) executes Mg(1λ) as a subroutine, answers ⊥ to Mg each time Mg makes
a decryption query, passes all other queries of Mg to oracles, and returns the output of Mg. We
define A† from A in a similar manner to Mg†. Clearly, Mg† and A† are a message generator and an
adversary for the game of (X , θ, q)-indistinguishability and the advantage of (Mg†,A†) in this game
is equal to Adv.Game(1)(Mg,A). Hence, the theorem follows from (3.1).⊓⊔

4 Unachievability of Security Notions

4.1 Unachievability of the Security Notions of [37] for OPE with Super-Polynomial
Size Message Space

The subject of this section is to show that all the security notions proposed by Pandey and Rouse-
lakis [37] are unachievable for any OPE scheme with a super-polynomial size message space.

To this end, we review the study of Pandey and Rouselakis [37]. They introduced a generalized
variant of the OPE, property preserving encryption (PPE), whose encryption function preserved
some given property. Then they proposed several security notions for PPE, such as FtG and sLOR,
and showed that for any security notion S defined by them, either “S ⇒ sLOR” or “S ⇒ FtG”
held.

Therefore, we will review the definition of sLOR and FtG and will show that they are unachiev-
able for any OPE scheme with a super-polynomial size message space. Then, from [37] it follows
that no security notion defined by them is achievable for such OPE schemes.

About sLOR: Their sLOR notion (for OPE) is a weaker variant of IND-O-CPA [16] such that an
adversary has to proclaim which one of the i-th encryption query and the j-th encryption query
are larger for any i and j in advance. She then can make encryption queries (m0

1,m
1
1), . . ., (m

0
q ,m

1
q)

to Left-Or-Right oracle adaptively, gets answers EncK(mb
1), . . ., EncK(mb

q), and outputs d. She is
considered to win iff b = d holds and (mu

1 , . . . ,m
u
q ) satisfies the proclaimed rules for any u ∈ {0, 1}.

It is easy to see that the adversary [16] for IND-O-CPA can be re-interpret as an adversary for sLOR.
Hence, sLOR cannot be achieved by any OPE scheme with the super-polynomial size message space
either.

About FTG: FtG notion (for OPE) is defined as follows: an adversary makes a challenge query
(m∗

0,m
∗
1), gets EncK(m∗

b) as an answer, and guess b. She can makes any number of encryption
queries at any time but an encryption query has to satisfy the order-preserving property m∗

0 <
m⇔ m∗

1 < m. We additionally impose that an adversary does not make encryption queries m∗
0 and

m∗
1 because otherwise, she can break the OPE scheme, whose encryption function is deterministic,

trivially.
We can show that almost the same attack of [16] for IND-O-CPA breaks an OPE scheme under

this notion when the scheme has the super-polynomial size message space. The detailed description
of an adversary is as follows. She selects two messages m1 and m2 uniformly at random. (W.l.o.g.
we assume m1 ≤ m2). Then she makes two encryption queries m1 and m2, receives their ciphertexts
C1 < C2 as answers, makes the challenge query (m∗

0,m
∗
1) = (m1 + 1,m2 − 1), gets C∗ = EncK(m∗

b)
as an answer, and outputs 1 iff C2 − C∗ > C∗ − C1.
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An advantage of her is non-negligible. The proof of this fact is as follows. Let Exp be the
experiment of FtG, E = (Kg,Enc,Dec) be any OPE scheme on a message space [1..M ], and [1..N ]
be the ciphertext space of E . Let E be the event that m1 ≤ ⌈M/2⌉ ≤ m2 holds. Since the adversary
selects m1 and m2 uniformly at random from [1..M ], E holds with probability ≥ 1/4 −O(1/M).

When the secret bit b of the challenger is 0, the challenge ciphertext can be written as C∗ =
EncK(m∗

0) = EncK(m1 + 1) Hence, from the definition of A,

Pr[A outputs 1 | b = 0]

= Pr[EncK(m2)− EncK(m1 + 1) ≥ EncK(m1 + 1)− EncK(m1) | b = 0]

≥ 1

4
Pr[EncK(m2)− EncK(m1 + 1) ≥ EncK(m1 + 1)− EncK(m1) | b = 0 ∧ E]−O(1/M)

≥ 1

4
Pr[EncK(⌈M/2⌉) − EncK(m1 + 1) ≥ EncK(m1 + 1)− EncK(m1) | b = 0 ∧ E]−O(1/M).

We set f = EncK . By applying Lemma 3.2 of [16] to the function f |[1..⌈M/2⌉] : [1..⌈M/2⌉] → [1..N ],
we can show that the number of m1 satisfying EncK(⌈M/2⌉) − EncK(m1 + 1) < EncK(m1 + 1) −
EncK(m1) is less than logN . From the above discussion,

Pr[A outputs 1 | b = 0] ≥ 1

4

(
1−O

(
logN

M

))

holds. We can similarly show that

Pr[A outputs 0 | b = 1] ≥ 1

4

(
1−O

(
logN

M

))

Hence, the advantage of A is more than (1/4) −O(logN/M) ≥ 1/5 when M →∞.

4.2 The Known Scheme [16] Cannot Achieve (Uq,M t, q)-Indistinguishability for
1/2 < t ≤ 1

Proof. We show that the known scheme [16] cannot satisfy (Uq,M t, q)-indistinguishability for 1/2 <
t < 1. Then, since (Uq,M1, q)-indistinguishability is weaker than (Uq,M2/3, q)-indistinguishability,
it cannot satisfy (Uq,M t, q)-indistinguishability for t = 1 either.

We prove this fact by contradiction. Suppose that the known scheme [16] is (Uq,M2/3, q)-
indistinguishable. By applying (1.6) and (1.7) to (θ, r) = (M t,M (2t+1)/4), we can conclude that

∀A∃Mg∃B : Succ.Exp
(M (2t+1)/4,q+1)-WOW
E (A)

≤ Adv.Exp
(Uq ,M t,q)-indis
E (Mg,B) +O

(
1

M
2t−1

4

)
+O

(
1

M1−t

)
+O

(
q

M

)
. (4.1)

Since the second, the third, and the last terms of the right hand side of (4.1) are negligible for
any 1/2 < t < 1, and since we suppose that the scheme is (Uq,M t, q)-indistinguishable, the known
scheme [16] has to satisfy (M (2t+1)/4, q + 1)-WOW for (2t+ 1)/4 > 1/2 This fact contradicts with
the known fact [17] that (Mρ, q + 1)-WOW cannot be achieved by the known scheme [16] for any
ρ > 1/2.⊓⊔

Caveat: One may think that the above discussion is strange because the convergence speed of the
the third term 1/M1−t of (4.1) get worse when t becomes close to 1 (that is, when (Uq,M t, q)-
indistinguishability notion becomes weaker) and in particular, the third term 1/M1−t does not
converge to 0 in the weakest case, t = 1.
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But this is because our bound (4.1) becomes very loose when t is close to 1. Hence, when

t→ 1, the bound (4.1) seems to get worse although two values Succ.Exp
(M (2t+1)/4,q+1)-WOW
E (A) and

Adv.Exp
(Uq ,M t,q)-indis
E (Mg,B) actually become close in this case.

5 Sufficient Condition for (X , θ, q)-Indistinguishability

Next, we introduce a sufficient condition for (X , θ, q)-indistinguishability. It is a new security notion
called (k, θ)-FTG-O-nCPA, introduced in order to ease the security proof of our scheme, but it may
be of independent interest.

(k, θ)-FTG-O-nCPA: Is an indistinguishability notion such that, unlike (X , θ, q)-indistinguishability,
an adversary can select, both, the challenge and encryption queries by herself, but she has to se-
lect them in nCPA fashion. Here nCPA (non-adaptive CPA) [34,32,33] is a type of attacks where
an adversary is required to output all her (encryption or challenge) queries simultaneously all to-
gether, and gets their answers thereafter. The queries have to satisfy some restrictions (described
later in the formal definition) as well. We call this notion (k, θ)-FTG-O-nCPA, because it is Find-
Then-Guess-type [9,29] indistinguishability for OPE under nCPA attack. The formal definition is
as follows:

Definition 13 ((k, θ)-FTG-O-nCPA) For non-negative real numbers k = k(λ) and θ = θ(λ), E
is said to be (k, θ)-FTG-O-nCPA secure if for any polynomial time adversary A = (Afind,Aguess),

|Pr[Exp(k,θ)-FTG-O-nCPA
E (A, 1) = 1]− Pr[Exp

(k,θ)-FTG-O-nCPA
E (A, 0) = 1]| is negligible.

Here Exp
(k,θ)-FTG-O-nCPA
E (A, b) is defined as follows (below, q is an arbitrary number selected by

A):

K ← Kg(1λ), ((m∗
0,m

∗
1), (mi)i∈[1..q], st)← Afind(1

λ),

d← Aguess(EncK(m∗
b), (EncK(mi))i∈[1..q], st),Return d.

(m∗
0,m

∗
1) and m1, . . . ,mq are called a challenge query and encryption queries respectively. The

output of A has to satisfy the following (5.1), (5.2), and (5.3). We also assume (5.4) throughout
this paper w.l.o.g.

∀i : mi < m∗
0 ⇔ mi < m∗

1, (5.1)

|m∗
0 −m∗

1| ≤ θ, (5.2)

∀d ∈ {0, 1},∀i : |m∗
d −mi| ≥ kθ. (5.3)

m∗
0 < m∗

1 (5.4)

Condition (5.1) is the ordered-preserving property and condition (5.2) is the same as that
of (X , θ, q)-indistinguishability. The new restriction (5.3) requires that the distance between the
challenge message m∗

d and the encryption query mi has to be larger than a pre-determined constant
kθ.

Sufficient Condition: Our sufficient condition for (X , θ, q)-indistinguishability is as follows. Be-
low, λ is a security parameter, E is an OPE scheme on a message space [1..M ] and q = q(λ) is a
polynomial.
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Theorem 14. Let X = (X1, . . . ,Xq) is a tuple of distributions on [1..M ] such that X1, . . . ,Xq are
independent from each other and one can sample Xi in time polynomial in λ. Let β > 0 be any
constant. For k > 0 and θ > 0, if

∀i ∈ [1..q] : H∞(Xi) ≥ β log2M (5.5)

holds for any large enough λ, then

∀Mg∀A∃B : Adv.Exp
(X ,θ,q)-indis.
E (Mg,A) ≤ Adv.Exp

(k,θ)-FTG-O-nCPA
E (B) +O

(
qkθ

Mβ

)
. (5.6)

Above, A and Mg denote an adversary and a message generator for (X , θ, q)-indistinguishability,
respectively, and B denotes an adversary for (k, θ)-FTG-O-nCPA.

Hence, (k, θ)-FTG-O-nCPA implies (X , θ, q)-indistinguishability when the last term of (5.6) is
negligible.

Proof (sketch). For Mg and A for (X , θ, q)-indistinguishability, consider an adversary B for (k, θ)-

FTG-O-nCPA which takes (m∗
0,m

∗
1, info) ← Mg(1λ) and m1

$← X1, . . . ,mq
$← Xq, makes query

((m∗
0,m

∗
1), m1, . . . ,mq), gives info and an answer to the query to A, and produces the output of A.

The above B will violate the constraint (5.3) if some mi becomes |mi−m∗
d| < kθ for some d. But

the probability that B will violate (5.3) is bounded as follows: let I be the interval (m∗
0−kθ..m∗

1+kθ).

∑

i∈[1..q]
Pr[mi ← Xi : mi ∈ I] ≤ (length of I) ·

∑

i∈[1..q]
max
x∈I

Pr[mi ← Xi : mi = x]

≤
∑

i∈[1..q]

(2k + 1)θ

2H∞(Xi)
≤ O

(
qkθ

Mβ

)
.

When mi /∈ I holds, (5.1) is also satisfied. Moreover, (5.2) is always satisfied, due to the corre-
sponding constraints on (X , θ, q)-indistinguishability. Thus, Theorem 14 follows.

Proving Theorem 2 by reduction: Due to the last result, what is left is to construct a (k, θ)-
FTG-O-nCPA secure scheme for suitable k. In the next two sections (in two steps) we will construct
an OPE scheme Ek,θ using a pseudo-random function PRF and will prove the following theorem as
our central theorem.

Theorem 15. For k ≥ 1, and θ ≥ 1,

∀A∃B : Adv.Exp
(k,θ)-FTG-O-nCPA
Ek,θ (A) ≤ O

(
1√
k

)
+ Adv.ExpPRF(B) + neg(λ) (5.7)

holds. (The value θ does not affect the advantage bound.) Above, λ is a security parameter and
neg(·) is some negligible function which is determined independently of (k, θ).

Our main result, Theorem 2, in turn, follows from Theorems 14 and 15 by setting

(k, θ) = (M2(β−t)/3,M t) (5.8)

and Theorem 1 follows, as well, by setting β = 1 in (5.8).
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6 (k, θ)-FTG-O-nCPA Secure Scheme with Polysize Message Space

Next, we propose a (k, θ)-FTG-O-nCPA secure scheme Ek,θ with the advantage bound given in
Theorem 15. Due to the reductions discussed at the end of the previous Section, this scheme with
suitable parameters satisfies our main theorems, Theorems 1 and 2.

The scheme Ek,θ, however, has the restriction that the message space size must be bounded by
some polynomial in the security parameter λ. This restriction will be removed in Section 7. Note
that the scheme of this section does not use a PRF although Theorem 15 refers about it. The PRF
will be used to construct the scheme of the next section.

6.1 The Idea Behind Our Constrction

The First Tentative Scheme: The starting point of our idea is the idea spanning any OPE
scheme E = (Kg,Enc,Dec), that EncK(m) can be represented by an equation of the form

EncK(m) = R+
∑

i∈(0..m]

δi, where R = EncK(0), δi = EncK(i)− EncK(i− 1). (6.1)

We set R to a random quite larger number, much larger than δi. Say, R
$← [0..M ·2λ] and δi ← 1

where M is the message space size. Then if an adversary makes no encryption query, the secret bit
b of the challenge ciphertext C∗

b = EncK(mb) = R +
∑

i∈(0..mb]
δi is hidden from her because the

large random value R hides the smaller value
∑

i∈(0..mb]
δi.

However, if the adversary possesses a pair (m,EncK(m)) of an encryption query and its answer,
she can compute C∗

b − EncK(m) =
∑

i∈(m..mb]
δi, which does not contain R and therefore cannot

hide the challenge bit b. E.g., if δi = 1, she can recover mb from C∗
b − EncK(m) = mb −m and m.

The Second Tentative Scheme: Therefore, we choose δi satisfying the monotonically decreasing
property (MDP):

R≫ δ1 ≫ δ2 ≫ δ3 ≫ · · ·
where the notation “x≫ y” means that the randomness of x within its space of choice, statistically
hides y (or, more precisely, it means that x+ y is statistically indistinguishable from x). Then, if
m < m0,m1 holds, an adversary cannot detect b from C∗

b −EncK(m) due to the MDP of δi. In fact,
two values C∗

0 − EncK(m) =
∑

i∈(m..m0]
δi and C∗

1 − EncK(m) =
∑

i∈(m..m1]
δi contains much larger

δi than their difference ∆ = C∗
1 − C∗

0 =
∑

i∈(m0..m1]
δi and therefore, the difference ∆ is hidden by

these values in this case. (See Fig. 1.)
However, if m > m0,m1 holds, EncK(m)− C∗

0 =
∑

i∈(m0..m] δi is much larger than EncK(m)−
C∗
1 =

∑
i∈(m1..m] δi due to the MDP of δi. (Here we assume m1 > m0, w.l.o.g.) Hence, the adversary

can distinguish these values easily. If we change (δi)i of our scheme with a monotonically increasing
ones, δ1 ≪ δ2 ≪ δ3 ≪ · · · , the above problem is solved. In this case, however, an adversary can
break the scheme when m < m0,m1 in a symmetric way to the above.

Our Proposed Scheme: We solve the above dilemma by changing the bit length of δi randomly.
Specifically, we flip a random coin ρi which becomes 0 with small probability p and then samples
δi randomly from a large set [0..2λM ] if ρi = 0 and set δi ← 1 otherwise. Here M is the message
space size. We call δi large number if it is taken from [0..2λM ].

Since intervals [m0−kθ..m0] and [m1..m1+kθ] are k times larger than [m0..m1], the probabilities
that [m0−kθ..m0] and [m1..m1+kθ] will contain a large δi is much larger than the probability that
[m0..m1] will contain a large δi. Therefore, if p is taken suitably, we can ensure the three properties
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Fig. 1. The Second Tentative Schemes (left) and The Proposed Scheme (right) of Section 6. In both figures,
EncK(m0) − EncK(m), EncK(m1) − EncK(m), and the difference of them are the sum of δi in (*), (**), and (***)
respectively. Since both (*) and (**) contain a large randomness (δm0

of the left figure or δi0 of the right figure), the
difference (***), which is smaller, is hidden by this large randomness. EncK(m0)−EncK(m) and EncK(m1)−EncK(m)
are therefore indistinguishable.

Message Space = [1..M ], p = 1− (1− 1/
√
k)1/θ, A = −kθ − 1.

Kg(1λ)
11. For i ∈ (A..M ],

12. ρi
$← Binom(1, 1− p).

13. If ρi = 0, then δi
$← Xλ.

14. Else δi ← 1
15. Output K ← (δi)i∈(A..M].

EncK(m)
21. Parse K as (δi)i∈(A..M].
22. Output C ←∑

i∈(A..m] δi.

DecK(C)
31. Parse K as (δi)i∈(A..M].
32. For i ∈ [0..M ],
33. If C =

∑

i∈(A..m] δi, output m.
34. Output ⊥.

Fig. 2. The Scheme of Section 6 and its Parameters

below with high probability. (See Fig.1). (Below, we say “δi = EncK(i)− EncK(i− 1) is in interval
I” to mean that both integers i−1 and i used to define δi are contained in I.)5 The three properties
are:

All δi in [m0..m1] are 1, (6.2)

Some δi0 in [m0 − kθ..m0] is large, (6.3)

Some δi1 in [m1..m1 + kθ] is large. (6.4)

Encryption querym has to satisfym ≤ m0−kθ orm ≥ m1+kθ due to the constraints (5.3) and (5.4)
of (k, θ)-FTG-O-nCPA. In the former case, the difference EncK(mb)− EncK(m) =

∑
i∈(m..mb]

δi =∑
i∈(m..m0]

δi +
∑

i∈(m0..mb]
δi contains the large dominant randomness δi0 as a summand. Since

the term
∑

i∈(m0..mb]
δi depending on b can be hidden by δi0 , an adversary cannot detect b from

EncK(mb)− EncK(m).

In the latter case, similarly, the sum EncK(m) − EncK(mb) =
∑

i∈(mb..m] δi contains the other
large dominant randomness δi1 . An adversary therefore cannot detect b from EncK(m)−EncK(mb)
due to a similar argument as above. Thus, our scheme is (k, θ)-FTG-O-nCPA secure.

5 That is, δi is in I = [a..b] iff i ∈ (a..b]. Seemingly asymmetry of the interval, which is a “left-open” one (a..b] but
is not “right open” one [a..b), comes from how we number δi. If we set δi not to EncK(i) − EncK(i − 1) but to
EncK(i+ 1)− EncK(i), it becomes a right open one [a..b).
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6.2 Description

The formal description of the scheme is given in Fig.2. Here Binom(n, p) is a binomial distribution.
Xλ is a probability distribution such that a random variable taken from it can hide other values.
Specifically, Xλ satisfies the following property (where SD denotes statistical distance):

∃ξ : (negligible func.), ∀α, β ∈ [−θ..θ], for δ $← Xλ, SD(α+ δ, β + δ) ≤ ξ(λ). (6.5)

We can use the uniform distribution on [1..2λθ] as Xλ for example. (See Section 2.3 for details.)
But we will use another distribution due to a technical reason when we will improve this scheme
in Section 7.

The value p > 0 is set as follows (so as to show the advantage bound of (5.7)):

p = 1−
(
1− 1√

k

) 1
θ

.

The sum of δi in the scheme begins from i = A+1, where A = −kθ−1 since otherwise, EncK(0)
is always 0 and the scheme, in turn, becomes insecure.

Message Space Size: The message space sizeM of this scheme has to satisfy M = poly(λ) because
the encryption cost of this scheme is clearly O(M). We will remove this restriction in Section 7.

Upper Bound on Advantage: The advantage is calculated as follows. Let E1, E2, and E3 be,
respectively, the events that condition (6.2), (6.3), and (6.4) does not hold and Bad be E1∨E2∨E3.
Then, the previous discussion showed that the advantage of an adversary for our scheme is less
than Pr[Bad] + neg(λ).

Recall that nCPA adversary has to make her challenge query (m0,m1) and encryption queries
at the same time. Hence, she has to determine her challenge query (m0,m1) without knowing any
information about ciphertexts, in particular, any information about δi. Therefore, the distributions
of (δi)i and (m0,m1) are independent. Since they are independent, E1, E2, E3 are smaller than
1 − (1 − p)θ = 1/

√
k, (1 − p)kθ = (1 − 1/

√
k)k, and (1 − p)kθ = (1 − 1/

√
k)k, respectively. Due to

the same reason, it follows that

Pr[Bad] ≤ 1√
k
+ 2

(
1− 1√

k

)k

=
1√
k
+ 2

{(
1− 1√

k

)√
k
}√

k

=
1√
k
+O

(
e−

√
k
)
= O

(
1√
k

)
,

(6.6)

which is the bound given in Theorem 15 (to formally be proven below).

About CPA Security: The above proof does not work well when we consider the CPA attack be-
cause our proof crucially relies on the independence of the distributions of challenge query (m∗

0,m
∗
1)

and (δi)i which is ensured in the nCPA setting. In fact, a CPA adversary can choose (m∗
0,m

∗
1) in the

region (mi..mi+1] where the length of (mi..mi+1] is the smallest, where m1 < . . . < mq are the en-
cryption queries. Then, since [mi..mi+1] is the smallest, EncK(mi+1)−EncK(mi) =

∑
i∈(mi..mi+1]

δi
must be small. Therefore, δi contained in (mi..mi+1] must also be small. This means that the prob-
ability that conditions (6.3) and (6.4) hold must be smaller than that of the case of nCPA, which
is the reason why our proof does not work well in this case.
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7 (k, θ)-FTG-O-nCPA Secure Scheme with No Message Space Restrictions

Finally, we improve the scheme of Section 6 and achieve an OPE scheme whose encryption and
decryption costs are O(logM), where M is the number of elements in the message space. This
improvement enables the message space size M to become a super-polynomial in the security
parameter λ, allowing the encryption and decryption algorithms to stay polynomial time even in
this case.

Idea of [15]: The starting point of our improvement is the following idea of Section 6 of [15]. They
construct a polynomial time algorithm6 Ḡ which takes two pairs (u,Cu) and (v,Cv) of messages and
their encryptions, and outputs a data whose distribution is the same as that of ciphertext Cw of w,
where w is the “midpoint” ⌈(u+ v)/2⌉ of u and v. They then compute a ciphertext Cm of m using
Ḡ based on a binary search recursion. Specifically, their improved encryption algorithm Enc(m)
takes some initial values u, v such that m ∈ (u..v] holds and Cu and Cv are known. (We denote
by Init an algorithm which outputs the encryption Cu and Cv of the initial values.) Enc(m) then
computes Cw using Ḡ, replaces interval (u..v] with (u..w] or (w..v] depending on whether m ≤ w
or not, and recursively executes Enc itself. The computational cost of Enc is O(logM), where M is
the message space size, because the binary search recursion is terminated in time O(logM). Their
decryption algorithm Dec is constructed in a similar fashion.

The Idea Behind Our Scheme: Our efficient encryption and decryption algorithms are con-
structed based on the above idea, but our innovation is that our binary search recursion Ḡ and
initializing algorithm Init are constructed based not on a ciphertext Cu itself but on Iu defined
below. This is so, since our elaborated scheme of Section 6 does not allow construction of Ḡ to be
based simply on Cu. Below, ρi, δi, and A are as defined in the scheme of Section 6.

Iu ← (C(0)
u , C(1)

u )←
( ∑

i∈(A..u]
ρi=0

δi,
∑

i∈(A..u]
ρi=1

δi

)
, (7.1)

We will construct Init and Ḡ satisfying the following properties:

Output Init is indistinguishable from (IA, IM ). (7.2)

For any u, v ∈ (A..M ] and any I ′u and I ′v, the distribution of an output of Ḡ(u, v, I ′u, I
′
v) is the same

as the conditional distribution of Iw when (Iu, Iv) = (I ′u, I
′
v) holds. Here w = ⌈(u+ v)/2⌉.

(7.3)

Then our efficient encryption algorithm can get Im in time logarithm O(logM) in the message
space size M by executing a recursion based on Init and Ḡ. It can get the ciphertext of m from

Im = (C
(0)
m , C

(1)
m ) because an encryption EncK(m) of Section 6 is

∑
i∈(A..u] δi, and therefore satisfies

EncK(m) = C(0)
m + C(1)

m . (7.4)

As in the case of [16,15], the efficient decryption algorithm is also constructed based on a similar
idea.

Ideas Behind the Construction of Init and Ḡ: The remaining issue to take care of is the
construction of Init and Ḡ(Iu, Iv). To this end, we set Xλ of (6.5) to a binomial distribution

Xλ = B(2λθ2, 1/2) (7.5)

6 To simplify, here we only consider the case where inputs of Ḡ are (u,Cu) and (v, Cv), although [15] considers more
general case due to some technical reasons.
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with suitable parameters. Note that this Xλ, in fact, satisfies (6.5), which is the property required
to ensure the security of the scheme of Section 6. Formally, the following fact holds (See Section
8.1 for the proof):

Proposition 16 (Binomial Satisfies (6.5)) There exists a negligible function ξ such that for

all α, β ∈ [−θ..θ], the statistical distance between the random variables α+ δ and β + ζ for δ, ζ
$←

B(2λθ2, 1/2) is less than ξ(λ).

(7.5) allows us to write Iu by using two binomial distributions because (7.1) shows that Iu can be
written as sums of δi, step 13 of Fig.2 and (7.5) show that δi is taken from a binomial distribution,
and the sum of binomials is also binomial. Since IA = (0, 0), this means that our algorithm Init

satisfying (7.2) can be constructed by using two binomial distributions for generating IM .
Moreover, it is also known that the conditional distributions of binomials can be written as

hypergeometric distributions. (See Section 2.3.) Hence, our algorithm Ḡ satisfying (7.3) can be
constructed by using hypergeometric distributions. Since the values which follow the binomial and
hypergeometric distributions can be generated in polynomial time [24], our algorithms Init and Ḡ
can terminate in polynomial time.

The description of our algorithms Ḡ and Init is given in Fig.3. Here Binom(n, p) and HG(a, b, c)
are algorithms whose outputs follow binomial distribution and hypergeometric distribution. We can
show that our algorithms Init and Ḡ in fact satisfy (7.2) and (7.3); see Section 8 for the proof.

Proposition 17 (Init and Ḡ Work Well) Let A and M be constants given in Fig.3. Let (δi)i∈(A..M ]

and (ρi)i∈(A..M ] be tuples which are generated as in Kg(1λ) of Fig.2. Define Iu as is (7.1). Then
(7.2) and (7.3) hold.

We denote the encryption function given in the above way by Ẽnc. Then, from (7.2), (7.3), and

the construction of Ẽnc, the following proposition holds. (See Section 8 for the formal proof.)

Proposition 18 Take A, M , Kg, Enc, Kg, and Enc as in Fig.2 and 3. Then for K̄ ← Kg(1λ)

and K ← Kg(1λ), the distributions of (ẼncK̄(i))i∈[A..M ] and (EncK(i))i∈[A..M ] are perfectly indistin-
guishable.

Finally, we replace the randomness of Ẽnc with a pseudo-random value output by a pseudo-random
function, so as to make it deterministic, as in [16,15]. Then our final encryption algorithm Enc is
obtained.

Description: The formal description of our scheme is given in Fig.3. Here k and θ are the values
which we want to show (k, θ)-FTG-nCPA security for, M is the value such that the message space is
[1..M ], and p and A are the same values used in the scheme of Section 6. Cph, in turn, is an algorithm
which computes a ciphertext Cu from Iu based on (7.4). The notation Ḡ(u, v, Iu, Iv ; cc) means that
we compute Ḡ(u, v, Iu, Iv) using cc as the random tape. PRF is a pseudorandom function.

Order-Preserving Property: The order-preserving property of Enc can be shown from the same
property for Enc of Section 6.2 because of Proposition 18.

Correctness: For C = EncK̄(m), it is shown as follows. The algorithm of DecK̄(C) is the same as
that of EncK̄(m) except that the conditional branches (52) and (56) of Fig.3 are replaced with (62)
and (66) of the same figure. However, the replaced conditions such as “C ≤ Cph(Iw)” are essentially
the same as those of the original ones such as “m ≤ w” because

m ≤ w ⇔ EncK̄(m) ≤ EncK̄(w)⇔ C ≤ Cph(Iw) (7.6)

21



Message Space = [1..M ], p = 1− (1− 1/
√
k)1/θ, A = −kθ − 1.

Kg(1λ)
41. Randomly take λ bit string K′.
42. (IA, IM )← Init(1λ).
43. Return K̄ ← (K′, A,M, IA, IM ).

EncK̄(m)
51. Parse K̄ as (K′, u, v, Iu, Iv).
52. If m = v holds,

return Cph(Iv).
53. w← ⌈(u+ v)/2⌉.
54. cc← PRFK′ (u, v)
55. Iw ← Ḡ(u, v, Iu, Iv; cc)

56. Return

{

Enc(K′,u,w,Iu,Iw)(m) if m ≤ w

Enc(K′,w,v,Iw ,Iv)(m) otherwise

DecK̄(C)
61. Parse K̄ as (K′, u, v, Iu, Iv).
62. If C = Cph(Iv) or u = v holds,

return v or ⊥ respectively.
63. w ← ⌈(u+ v)/2⌉.
64. cc← PRFK′(u, v)
65. Iw ← Ḡ(u, v, Iu, Iv; cc)

66. Return

{

Dec(K′,u,w,Iu,Iw)(m) if C ≤ Cph(Iw)

Dec(K′,w,v,Iw ,Iv)(m) otherwise

Init(1λ)

81. C
(1)
M ← Binom(M − A, 1− p),

82. C
(0)
M ← Binom(2λθ2(M − A− C

(1)
M ), 1/2),

83. IA ← (0, 0), IM ← (C
(0)
M , C

(1)
M ).

84. Output (IA, IM ).

Cph(I)
71. Parse I as (C(0), C(1)).
72. Output C(0) + C(1).

Ḡ(u, v, Iu, Iv)

91. Parse Iu and Iv as (C
(0)
u , C

(1)
u ) and (C

(0)
v , C

(1)
v ). w← ⌈(u+ v)/2⌉.

92. C
(1)
w ← C

(1)
u + HG(v − u,C

(1)
v − C

(1)
u , w − u),

93. C
(0)
w ← C

(0)
u + HG(2λθ2((v − u)− (C

(1)
v − C

(1)
u )), C

(0)
v − C

(0)
u , 2λθ2((w − u) − (C

(1)
w − C

(1)
u ))),

94. Output Iw ← (C
(0)
w , C

(1)
w ).

Fig. 3. The Scheme of Section 7 and its Parameters and Subroutines

holds due to the order preserving property, (7.1), (7.4), and the definition of Cph. Hence EncK̄(m)
and DecK̄(C) execute the same recursion and compute the same data. In particular, m ∈ (u..v]
always holds in the recursion of DecK̄(C) because this property holds in tht of EncK̄(m) by defini-
tion. Since these algorithms cut (u, v] by half in each recursions, they finally assign m = v. Due to
a similar reason to (7.6), the condition C = Cph(Iv) of (62) is equivalent to m = v, which is now
satisfied. Hence, it outputs v = m at this step. (Note that the other condition u = v does not occur
at step (62) because m ∈ (u..v] always holds in the recursion and therefore u � m ≤ v.)

Security: Theorem 15 follows from Proposition 16, 17, and 18, and the security of the scheme of
Section 6. We will prove this fact formally in Section 8.6.

Ciphertext and Key Lengths: We estimate these values when M ≥ kθ, k ≥ 1, and M ≥ 1 hold,
since by (5.3) (k, θ)-FTG-O-nCPA is meaningful only when kθ is not larger than the message space
size M , (5.7) is about k → ∞, and the message space [1..M ] has to have at least one element. In
this case, the bit lengths of a ciphertext is not more than λ+⌊3 logM⌋+3, because a ciphertext can
be represented as the sum of positive numbers δA, . . . , δM , δi is not more than 2λθ2 (due to (7.5)),
and A = −kθ−1 holds. Due to similar reasons, the key length is not more than 4λ+⌊14 logM⌋+14
+ (the PRF’s key length).

8 Formal Security Proof of Our Scheme of Section 7

The goal of this section is to prove that our scheme of Section 7 is (k, θ)-FTG-O-nCPA secure with
advantage bound as given in (5.7). We prove this fact by reducing it to the security of the scheme
of Section 6. Hence, security of the scheme of Section 6 is shown as well from the proof of this
section.
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We use the notations of Section 7 throughout this section. The rest of this section is as follows.
We will prove Proposition 16 in Section 8.1. Then, we will give notation and facts for the proof of
Proposition 17 in Section 8.2, and will prove (7.2) and (7.3) in Section 8.3 and 8.4, respectively,
which, in turn, will imply Proposition 17. We will then prove Proposition 18 in Section 8.5. Finally,
we will show in Section 8.6 that our scheme is (k, θ)-FTG-O-nCPA secure whose advantage bound
is given in (5.7).

8.1 Proof of Proposition 16

To show Proposition 16, we show the following lemma:

Lemma 19 Let µ be a natural number and X be a random variable which is distributed according
to B(µ, 1/2). Then when µ→∞, it follows that

max
x

Pr[X = x] = O(
√

1/µ). (8.1)

Proof (Lemma 19). For positive valued functions f(x) and g(x), let “g = Θ(f)” denotes the fact
that both g/f and f/g converge, each to a finite non-zero value when x → ∞. Let e = 2.71828....
From Stirling series

µ! =
√

2πµ
(µ
e

)µ
(
1 +

1

12µ
+ · · ·

)
=

√
2πµ

(µ
e

)µ
(
1 +Θ

(
1

µ

))
,

it follows that

max
x

Pr[X = x] = Pr[X = ⌈µ/2⌉] = 1

2µ

(
µ

⌈µ/2⌉

)
=

µ!

2µ(⌈µ/2⌉!)2 ≤
√

2

πµ
·
1 +Θ( 1µ)

1 +Θ( 1µ)
= O(1/

√
µ).⊓⊔

Proof (Proposition 16). Let

η = 2λθ2. (8.2)

Take arbitrary

α, β ∈ [−θ..θ] (8.3)

Let U = α+ δ and V = β + ζ be random variables where δ, ζ ← B(η, 1/2). W.l.o.g. we can assume
α ≥ β. Let q(x) be the probability mass function of B(η, 1/2) and p(x) be 2ηq(x). in other words,

q(x) = Pr[δ
$← B(η, 1/2) : δ = x] =

1

2η

(
η

x

)
, p(x) =

(
η

x

)

Then the probability mass functions of the distributions of U and V are q(x − α) and q(x − β)
respectively. Let pmax be maxx p(x). Then,

pmax = max
x

p(x) = 2η max
x

q(x) =
(8.1)

O(2η/
√
η) (8.4)

Let xmid be (η/2) + (α + β)/2.
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Fig. 4. Sets A, B, G, H .

Define sets A, B, G, H ⊂ Z2 as follows. (See Fig.4.)

A = {(x, y) ∈ Z× Z≥0 | p(x− α) < y ≤ p(x− β)},
B = {(x, y) ∈ Z× Z≥0 | p(x− β) < y ≤ p(x− α)},

G = {(x, y) ∈ Z× Z≥0 | 0 ≤ y ≤ pmax, x ∈ [ρ(y) + β..ρ(y) + α]},
H = {(x, y) ∈ Z× Z≥0 | 0 ≤ y ≤ pmax, s ∈ [τ(y) + β..τ(y) + α]},

where

ρ(y) = min
x
{p(x) ≥ y}

τ(y) = max
x
{p(x) ≥ y}.

We will prove the following five facts, where #G denotes the number of elements of G:

A ⊂ G, B ⊂ H. (8.5)

#G = (β − α+ 1)(pmax + 1), #H = (β − α+ 1)(pmax + 1) (8.6)
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SD(U, V ) =
#A+#B

2η
, (8.7)

From the above facts, Proposition 16 can be shown as follows:

SD(U, V ) =
(8.7)

#A+#B

2η
≤

(8.5)

#G+#H

2η
=

(8.6)

2(β − α+ 1)(pmax + 1)

2η

=
(8.4)

O

(
β − α+ 1√

η

)
=

(8.2)
(8.3)

O(1/2λ/2).

Before proceeding, we give the intuition behind the proofs of (8.5), (8.6), and (8.7). First, (8.5)
and (8.7) clearly follow from Fig.4. The first equation of (8.6) holds because from Fig.4, the number
of elements of G (which is almost the same as “the area of G”) can be computed as the product of
“the length of the base” (β −α+1) and the “height” pmax +1. The second equation of (8.6) holds
by similar reasoning.

We finally prove (8.5), (8.6), and (8.7) formally.

proof of (8.5): Here, we only prove A ⊂ G. The proof for B ⊂ H is similar. To this end, we show
some facts which will be used in showing A ⊂ G. By the definition of ρ, the following fact holds for
any y and y′.

y ≤ y′ ⇒ ρ(y) = min
x
{p(x) ≥ y} ≤ min

x
{p(x) ≥ y′} = ρ(y′) (8.8)

That is, ρ is monotonically increasing.
Since an integer x is clearly an element of the set {u | p(u) ≥ p(x)}, it follows that for any x,

x ≥ min
u
{p(u) ≥ p(x)} = ρ(p(x)), (8.9)

where the last equation holds by the definition of ρ. Hence, it follows that

(x, y) ∈ A ⇔
def. of A

p(x− α) < y ≤ p(x− β) ⇒
(8.8)

ρ(p(x− α)) ≤ ρ(y) ≤ ρ(p(x− β))

⇒
(8.9)

ρ(p(x− α)) ≤ ρ(y) ≤ x− β. (8.10)

It is well known that the function p(x) =
(η
x

)
is monotonically increasing at x ≤ ⌊η/2⌋ and is

monotonically decreasing at x ≥ ⌈η/2⌉. Using these facts, we can show that for any x′ and x′′,

x′ ≤ x′′ ∧ p(x′) < p(x′′) ⇒ x′ ≤ ⌊η/2⌋ (8.11)

holds. This fact can be shown by contradiction. If x′ > ⌊η/2⌋, x′′ ≥ x′ > ⌊η/2⌋ holds from the
assumption. But since p(x) is monotonically decreasing on x > ⌊η/2⌋, p(x′) ≥ p(x′′) has to holds.
This contradicts the assumption p(x′) < p(x′′).

Since α ≥ β,

x− α ≤ x− β (8.12)

holds for any x. By applying (8.11) and (8.12) to x′ = x− α and x′′ = x− β, it follows that

(x, y) ∈ A ⇔
def. of A

p(x− α) < y ≤ p(x− β) ⇒
(8.11)
(8.12)

x− α ≤ ⌊η/2⌋ (8.13)
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As mentioned before, the function p(x) =
(η
x

)
is monotonically increasing at x ≤ ⌊η/2⌋ and is

monotonically decreasing at x ≥ ⌈η/2⌉. Hence, the value ρ(p(x)) = min{u | p(u) ≥ p(x)} is x itself
if x ≤ ⌊η/2⌋. That is,

if x ≤ ⌊η/2⌋, ρ(p(x)) = x (8.14)

Hence, it follows that

(x, y) ∈ A ⇒
(8.14)
(8.13)
(8.10)

x− α ≤ ρ(y) ≤ x− β ⇔ ρ(y) + β ≤ x ≤ ρ(y) + α ⇔
def. of G

(x, y) ∈ G.

This is what we want to prove.

Proof of (8.6):

#G =
∑

(x,y)∈G
1 =

∑

y∈[0..pmax]

∑

x∈[ρ(y)+β..ρ(y)+α]

1 = (pmax + 1)(β − α+ 1).

The second equation of (8.6) can be shown similarly.

Proof of (8.7):

SD(U, V ) =
∑

x

|q(x− α)− q(x− β)|

=
1

2η

∑

x

|p(x− α)− p(x− β)|

≤ 1

2η

∑

x≤xmid

(p(x− β)− p(x− α)) +
1

2η

∑

x≥xmid

(p(x− α)− p(a− β))

=
1

2η

∑

x≤xmid

∑

y∈(p(x−α)..p(x−β)]

1 +
1

2η

∑

x≥xmid

∑

y=(p(x−β)..p(x−α)]

1

=
def. of A,B

#A+#B

2η
⊓⊔

8.2 Notation and Facts for the proof of Proposition 17

Next, we present some notations and show equalities which will be used to prove Propositions 17
and 18. Let δi and ρi be values given in the statement of Proposition 17 (and therefore in Fig.2.)
For any integers s, t, we let

Is,t ← (C
(0)
s,t , C

(1)
s,t )←

( ∑

i∈(s..t]
ρi=0

δi,
∑

i∈(s..t]
ρi=1

δi

)
, (8.15)

Then the value Iu = (C
(0)
u , C

(1)
u ) given in the statement of Proposition 17 satisfies

Iu = (C(0)
u , C(1)

u ) = (C
(0)
A,u, C

(1)
A,u) = IA,u. (8.16)

The following equations clearly follow from (8.15) for any r, s, t :

C(1)
r,s +C

(1)
s,t = C

(1)
r,t C(0)

r,s + C
(0)
s,t = C

(0)
r,t (8.17)

In particular, the following equation holds, where Ir,s + Is,t denote the component-wise sum.

Ir,s + Is,t = Ir,t (8.18)
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8.3 Proof of (7.2) of Proposition 17

Let δi, ρi, A, and M be values given in the statement of Proposition 17 (and therefore in Fig.2.)

Consider the values IA and IM = (C
(0)
M , C

(1)
M ) given by (7.1). We will show that for any s, t,

(x) IA = (0, 0),

(y) C
(1)
s,t ∼ B(t− s, 1− p),

(z) C
(0)
s,t ∼ B(2λθ2(t− s− C

(1)
s,t ), 1/2).

(7.2) clearly follows from them due to (7.1), (8.15), (8.16), and the definition of Init given in Fig.3.
(x) clearly follows from (7.1). The proof of (y) is as follows.

C
(1)
s,t =

(8.15)

∑

i∈(s..t]
ρi=1

δi

=
(a)

(the number of i ∈ (s..t] satisfying ρi = 1)

=
(b)

∑

i∈(s..t]
ρi

∼
(c)
B(t− s, 1− p), (8.19)

where

– (a) holds because step 14 of Fig.2 shows that δi = 1 holds when ρi = 1.
– (b) holds because step 12 of Fig.2 ensures ρi ∈ {0, 1}.
– (c) holds because ρi follows B(1, 1 − p) from step 12 of Fig.2 and each ρi is independent from

each other and because the sum of binomial follows binomial as well.

Finally, the proof of (z) is as follows. Below, V is the number of i ∈ (s..t] satisfying ρi = 0.

C
(0)
s,t =

(8.15)

∑

i∈(s..t]
ρi=0

δi ∼
(d)
B(2λθ2V, 1/2) =

(e)
B(2λθ2(t− s− C

(1)
s,t ), 1/2). (8.20)

Above, (d) holds due to the following three reasons.

– When ρi = 0, δi ∼ B(2λθ2, 1/2) holds because step 13 of Fig.2 shows that δi for ρi = 0 is taken
from Xλ =

(7.5)
B(2λθ2, 1/2).

– The number of i ∈ (s..t] satisfying ρi = 0 is V by the definition of V .
– The sum of V values, each of which follows B(2λθ2, 1/2), is B(2λθ2V, 1/2).

(e) holds because (8.19), in particular, shows that the number of i ∈ (s..t] satisfying ρi = 1 is C
(1)
s,t ,

which means V = t− s−C
(1)
s,t .

8.4 Proof of (7.3) of Proposition 17

Define Iu and Iv as in (7.1). Let w = ⌈(u + v)/2⌉. Fix two constants I ′u = (C ′(0)
u , C ′(1)

u ) and

I ′v = (C ′(0)
v , C ′(1)

v ) arbitrary. Our goal is to show that the conditional distribution of Iw under the
condition (Iu, Iv) = (I ′u, I

′
v) is the same as the distribution of the output of Ḡ(u, v, I ′u, I

′
v).
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We will achieve our goal in the following three steps. First, we detect the distribution of
(Iu,w, Iw,v) (under no condition), where Iu,w and Iw,v are values defined as in (8.15). Then, from
(8.18), if the condition (Iu, Iv) = (I ′u, I

′
v) holds, it follows that

I ′v = I ′u + Iu,w + Iw,v. (8.21)

Therefore, secondly, we detect the distribution of (Iu,w, Iw,v) under the condition (8.21).
From (8.18), if the condition (Iu, Iv) = (I ′u, I

′
v) holds, it follows that

Iw = I ′u + Iu,w (8.22)

Hence, thirdly, we can obtain the conditional distribution of Iw = I ′u+Iu,w because we already have
detected the conditional distribution of Iu,w. Then, we can check that this conditional distribution
is the same as the distribution of the output of Ḡ(u, v, I ′u, I

′
v). This is what we want to show.

Now, we prove (7.3) based on the above three steps. First, the distributions of Iu,w = (C
(0)
u,w, C

(1)
u,w)

and Iw,v = (C
(0)
w,v, C

(1)
w,v) are given as following because of (8.19) and (8.20):

C(1)
u,w ∼ B(w − u, 1− p), C(1)

w,v ∼ B(v − w, 1 − p), (8.23)

C(0)
u,w ∼ B(2λθ2(w − u− C(1)

u,w), 1/2) C(0)
w,v ∼ B(2λθ2(v − w − C(1)

w,v), 1/2). (8.24)

Hence, next, observe that the distribution of Iu,w = (C
(0)
u,w, C

(1)
u,w) under condition (8.21) is as

following due to Proposition 5:

C(1)
u,w ∼ HG(v − u,C ′(1)

v − C ′(1)
u , w − u).

C(0)
u,w ∼ HG(2λθ2(v − u− (C ′(1)

v − C ′(1)
u )), C ′(0)

v − C ′(0)
u , 2λθ2(w − u− (C ′(1)

v − C ′(1)
u ))).

Therefore, from (8.17), we can conclude that

C
(1)
A,w ∼ C

(1)
A,u +HG(v − u,C ′(1)

v − C ′(1)
u , w − u). (8.25)

C
(0)
A,w ∼ C

(0)
A,u +HG(2λθ2(v − u− (C ′(1)

v − C ′(1)
u )), C ′(0)

v − C ′(0)
u , 2λθ2(w − u− (C ′(1)

v − C ′(1)
u ))).

(8.26)

From (8.16), this means that the conditional distribution of Iw = (C
(0)
w , C

(1)
w ) given by (8.25)

and (8.26) is the same as Step 93 and 92 of Ḡ(u, v, I ′u, I
′
v) given in Fig.3. This, in fact, is what we

wanted to prove.

8.5 Proof of Proposition 18

We use the notation of Section 7.

8.5.1 Preparations

Before proving Proposition 18, we introduce notations and terminologies, and show facts used
in the proof of Proposition 18.

Successive Elements: Let U be any finite set of integers. Then, two elements u and v of U are
said to be successive elements of U if, when we write U = {s1, . . . , sn} (s1 < · · · < sn), there exists
j ∈ [1..n − 1] satisfying (u, v) = (sj , sj+1).
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Slightly Stronger Variant of (7.3) Next, we introduce the following slightly stronger variant of
(7.3), which we will use to prove Proposition 18. Below, Iw and Is are values defined as in (7.1).

Take any set U ⊂ [A..M ] and any successive elements u, v ∈ U and set w = ⌈(u+ v)/2⌉.
Take any tuple (s, I ′s)s∈U as well. Then the distribution of an output of Ḡ(u, v, I ′u, I

′
v) is

the same as the conditional distribution of Iw when (s, Is)s∈U = (s, I ′s)s∈U holds.
(8.27)

We can prove (8.27) in a similar fashion to that of (7.3) due to the following reason. By definition,
the difference between (8.27) and (7.3) is that the conditions “(s, Is) = (given value)” for (8.27)
are about s ≤ u and about s ≥ v while those for (7.3) are only for s = u and s = v. However, the
difference of them is not essential for the proof of (7.3) because the proof of (7.3) is mainly about
Iu,w and Iw,v, which are independent from the values Is for s < u and s > v due to (8.15). Hence,
we omit the proof of (8.27).

From (8.27), we can conclude the following fact as well, because if two random variable X and
Y have the same distribution under condition Z = z for any z, (Z,X) and (Z, Y ) have the same
distribution.

Take any set U ⊂ [A..M ] and any successive elements u, v ∈ U and set w = ⌈(u+ v)/2⌉.
Then the distributions of (s, Is)s∈U ∪ {(w, Ḡ(u, v, Iu, Iv))} and (s, Is)s∈U ∪ {(w, Iw)}
are the same.

(8.28)

Definition of Ẽnc: Next, we clarify the details of the definition of ẼncK̄ given in the statement
of Proposition 18. This is the algorithm which is obtained from the encryption algorithm EncK̄
of our proposed scheme of Fig.3, by replacing a pseudo-random function with the random oracle.
Specifically, ẼncK̄ is the same as EncK̄ except that in the step (54) of Fig.3, it excecutes not “
cc← PRFK ′(u, v)” but “cc←H(u, v)”, where H is a random oracle. Hence, although the OPE key

K̄ = (K ′, A,M, IA, IM ) contains a key K ′ of a pseudo-random function, K ′ is useless for ẼncK̄ by
definition.

We will re-use the step numbers of Fig.3 when we describe the steps of Ẽnc, since ẼncK̄ is almost
the same as EncK̄ .

Depth: We will use a notion, depth of a message, so as to show some lemmas based on a mathe-
matical induction about it. Let m be any message. We say that the depth of m is d if ẼncK̄(m) is

computed by calling ẼncK̄ itself d times. For example, in Fig.3, the depth of w is larger than those
of u and v because, at the step (65) of Fig.3, the value Iw is computed by using Iu and Iv, which
were computed in the previous recursions. Another example is that the depths of A and M of Fig.3
is clearly 0.

Facts and Terminologies about Is: Finally, we show lemmas about value Is given in Fig.3.

Lemma 20 Let m, m′, and w be any messages. Suppose that the value Iw is computed in both
recursions of ẼncK̄(m) and ẼncK̄(m′). Then Iw for ẼncK̄(m) and that for ẼncK̄(m′) are the same
value.

The proof is easily obtained based on a mathematical induction about the depth of w: the
value Iw is set to Ḡ(u, v, Iu, Iv ; cc) at step (65) of Fig.3 in both recursions, which means that Iw
is computed from Iu and Iv, and the values Iu and Iv for ẼncK̄(m) and those for ẼncK̄(m′) are

the same value due to the induction hypothesis. Hence, the value Iw for ẼncK̄(m) and that for

ẼncK̄(m′) has to be the same value. The induction bases are the elements of depth 0, that is, A
and M and Lemma 20 clearly holds in these cases.
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Due to the above lemma, we loosely write “Iw generated in (the recursion of) ẼncK̄” if it is

generated in the recursion of ẼncK̄(m) for some m.
Similarly, we can show the following lemma as well.

Lemma 21 Let m and w be any messages. Suppose that the value Iw is computed in the recursions
of ẼncK̄(m), and let s(w) and l(w) be values u and v of step (63). Then, the value s(w) and l(w)
are independent from m.

In other words, if the value w is computed in both recursions of ẼncK̄(m) and ẼncK̄(m′), the

values u and v of step (63) in the recursion of ẼncK̄(m) are the same as those of the same step in

the recursion of ẼncK̄(m′).
Moreover, w = ⌈(s(w) + l(w))/2⌉ holds by definition.

The proof of the above lemma is again obtained based on a mathematical induction about the
depth of w: the value w is set to w ← ⌈(u + v)/2⌉ in step (63) of Fig.3 and, since the depth of u
and v are smaller than that of w, the values u and v can be written as u = ⌈(s(u) + l(u))/2⌉ and
v = ⌈(s(v) + l(v))/2⌉, where s(u), l(u), s(v), and l(v) do not depend on m due to the induction
hypothesis. Hence, u, v, and w = ⌈(u+ v)/2⌉ themselves do not depend on m either. The proof for
the induction base is trivial.

8.5.2 Proof

Proof (Proposition 18, sketch). For any message u, consider the two values I∗u and Ĩu which are
generated in the following ways.

(1) Generate K̄ ← Kg(1λ), consider Iu generated in the recursion of ẼncK̄ (in Fig.3), and set
Ĩu ← Iu.

(2) Generate (ρi, δi)i∈(A..M ] in the same way as Kg(1λ) (and set K ← (δi)i∈(A..M ] as in Kg(1λ)).
Compute Iu based on (7.1) and set I∗u ← Iu.

Above, (1) is well-defined due to Lemma 20.
We will show the following three facts. Then Proposition 18 clearly follows from them.

∀ u : ẼncK̄(u) = Cph(Ĩu), (8.29)

∀ u : EncK(u) = Cph(I∗u), (8.30)

(s, Ĩs)s∈[A..M ] ≈ (s, I∗s )s∈[A..M ], (8.31)

where K̄ and K are keys generated by Kg(1λ) and Kg(1λ) in the above (1) and (2), Cph is a function
given in Fig.3, and “≈” means the perfect indistinguishability.

(8.29) follows because the output of ẼncK̄(u) is determined at step (62) of Fig.3. (8.30) follows
due to (7.1), the definition of Cph(·) (given in Fig.3), and the definition of the encryption function
EncK (given in Fig.2).

(8.31) will be shown based on a mathematical induction. Specifically, we will define sets U0 (
U1 ( U2 ( . . . of messages and will show the following fact based on a mathematical induction
about i:

(s, Ĩs)s∈Ui ≈ (s, I∗s )s∈Ui . (8.32)
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(8.32), in particular, means that

(s, Ĩs)s∈Uall
≈ (s, I∗s )s∈Uall

,

holds where Uall is the set of all element of the message space, that is, Uall = [A..M ]. This is what
we want to prove.

The lest of thing we have to do is to define Ui and to show (8.32) based on a mathematical
induction about i.

Definition of Ui: U0 is set to {A,M} and when Ui−1 ( [A..M ], Ui is recursively defined as follows.

Take (any) element wi /∈ Ui−1 such that s(wi) and l(wi) are in Ui−1.
Set Ui ← Ui−1 ∪ {wi}.

(8.33)

Above, we can, in fact, take wi /∈ Ui−1 satisfying s(wi), l(wi) ∈ Ui−1, when Ui−1 ( [A..M ]. E.g. if
we take wi ∈ [A..M ] \ Ui−1 such that the depth of wi is smallest in [A..M ] \ Ui−1. Then, since the
depths of s(wi) and l(wi) are smaller than wi, they have to be in Ui−1.

Before proceeding, we show the following fact, which we will use to prove (8.32):

(s(wj), l(wj)) 6= (s(wk), l(wk)) for any j 6= k. (8.34)

The proof of (8.34) is quite simple. Suppose j > k w.l.o.g. Then, wj 6= wk has to hold because
(8.33) shows that wk is element of Uk+1 ⊂ Uj while wj is not. But if (s(wj), l(wj)) = (s(wk), l(wk)),
wj = ⌈(s(wj) + l(wj))/2⌉ = ⌈(s(wk) + l(wk))/2⌉ = wk has to hold due to Lemma 21. This means
that (8.34) has to hold.

Induction Base for showing (8.32): We show that (8.32) holds for U0 = {A,M}. This fact can
be shown by tracing the definitions of Ĩu, Kg(1

λ), and ẼncK̄ and by using (7.2).

Specifically, by definition, ĨA is computed in the following two steps.

(a) generate K̄ = (K ′, A,M, IA, IM ) using Kg(1λ),

(b) consider the value IA generated in ẼncK̄ and set ĨA ← IA.

By definition of Kg(1λ), the values IA and IM in step (a) are generated using the subroutine

(IA, IM )← Init(1λ) of Kg(1λ). Hence, ẼncK̄ = Ẽnc(K ′,A,M,IA,IM) of step (b) uses the value (IA, IM )

generated by Init(1λ). Moreover, Lemma 20 shows that we can replace ẼncK̄ of step (2) with

ẼncK̄(A). Hence, by definition of ẼncK̄(A) = Ẽnc(K ′,A,M,IA,IM)(A), ĨA of step (b) is equal to IA
generated by Init(1λ). Due to a similar reason, value ĨM is equal to IM generated by Init(1λ). Since
(7.2) shows that an output (IA, IM ) of Init(1λ) is perfectly indistinguishable from (I∗A, I

∗
M ), the

above discussion shows that

(ĨA, ĨM ) ≈ (I∗A, I
∗
M )

holds. Since A and M are constants, this means that

(s, Ĩs)s∈{A,M} ≈ (s, I∗s )s∈{A,M}

holds. This is what we want to prove.

Induction Step for Showing (8.32): Fix any i ≥ 0 and assume the induction hypothesis

(s, Ĩs)s∈Ui−1 ≈ (s, I∗s )s∈Ui−1 . (8.35)
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Let H be the random oracle used in ẼncK̄ , which was replaced with PRF of step (54) of Fig.3.
Let wi be a value given in (8.33). Then, by definitions of Ĩwi , s(·), and l(·), Ĩwi is set to

Ḡ(u, v, Ĩu, Ĩv; cc) at step (55) of Fig.3, where u = s(wi), v = l(wi), and cc = H(u, v) (due to
step (54) of Fig.3). That is,

Ĩwi = Ḡ(s(wi), l(wi), Ĩs(wi), Ĩl(wi);H(s(wi), l(wi))) (8.36)

holds. Since Ui = Ui−1 ∪ {wi} holds from (8.33), this means that

(s, Ĩs)s∈Ui = (s, Ĩs)s∈Ui−1 ∪ {(wi, Ĩwi)}
= (s, Ĩs)s∈Ui−1 ∪ {(wi, Ḡ(s(wi), l(wi), Ĩs(wi), Ĩl(wi);H(s(wi), l(wi))))}. (8.37)

Due to the definition of the random oracle, (8.34) means thatH(s(wj), l(wj)) andH(s(wk), l(wk))
are independent randomness for any j 6= k. Hence, we can replace H(s(wi), l(wi)) in (8.37) with a
uniformly selected randomness cci for any i. We therefore can get

(s, Ĩs)s∈Ui ≈ (s, Ĩs)s∈Ui−1 ∪ {Ḡ(s(wi), l(wi), Ĩs(wi), Ĩl(wi); cci)}. (8.38)

From (8.33), s(wi) and l(wi) are elements of Ui−1. Hence, from the induction hypothesis (8.35),
we can replace Ĩs, Ĩui , and Ĩvi of the right hand side of (8.38) with I∗s , I

∗
ui
, and I∗vi respectively.

That is,

(s, Ĩs)s∈Ui ≈ (s, I∗s )s∈Ui−1 ∪ {Ḡ(s(wi), l(wi), I
∗
s(wi)

, I∗l(wi)
; cci)} (8.39)

holds. Here we use the fact that the distribution of cci is independent from those of (Ĩs) and (I∗s ).
Then by applying (8.28) to the right hand side of (8.39), we can get

(s, Ĩs)s∈Ui ≈ (s, I∗s )s∈Ui−1 ∪ {(wi, I
∗
wi
)}. (8.40)

Since Ui = Ui−1 ∪ {wi} holds from (8.33), we can conclude that

(s, Ĩs)s∈Ui ≈ (s, I∗s )s∈Ui (8.41)

holds. This is what we want to prove. ⊓⊔

8.6 Security Proof

Finally, we show that our scheme is (k, θ)-FTG-O-nCPA secure with advantage bound given in
(5.7). To prove this fact, we use the following proposition.

Proposition 22 For any natural number θ, for any probability distribution Xλ satisfying property
(6.5), and for any (even computationally unbounded) adversary D = (Dfind,Dguess), the advantage of
D in the following game is negligible for λ Below, Dfind has to select α and β satisfying α, β ∈ [−θ, θ].

(α, β, st)← Dfind(1
λ), δ, ζ

$← Xλ, (Sb, Tb)←
{
(δ, ζ) If b = 0

(δ + α, ζ + β) If b = 1
,

d← Dguess(Sb, Tb, st), return d.

Intuitively, the above proposition holds because the large randomness in δ and ζ hide small values
α and β. The formal proof is as follows.
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Proof (Proposition 22). Fix any adversary D and take (α, β, st)← Dfind(1
λ), δ, ζ

$← Xλ, (S0, T0)←
(δ, ζ), and (S1, T1)← (δ + α, ζ + β), as in the game in the proposition. We will show

SD((S0, T0, st), (S1, T0, st)) ≤ neg(λ). (8.42)

holds. In a similar manner, we can also show

SD((S0, T1, st), (S1, T1, st)) ≤ neg(λ). (8.43)

Proposition 22 clearly follows from (8.42) and (8.43). (This proposition holds even when D is
computationally unbounded because the above proof is based on the statistical distance.)

The proof of (8.42) is as following (Below, (*) holds because the distribution of δ and (α, st, ζ)
are independent):

SD((S0, T0, st), (S1, T0, st))

=
∑

u,v,w

|Pr[(S0, T0, st) = (u, v, w)] − Pr[(S1, T0, st) = (u, v, w)]|

=
∑

u,v,w

|Pr[(δ, ζ, st) = (u, v, w)] − Pr[(δ + α, ζ, st) = (u, v, w)]|

=
(∗)

∑

u,v,w

∣∣∣∣∣
∑

y

Pr[(α, st, ζ) = (y, v, w)](Pr[δ = u]− Pr[δ + y = u])

∣∣∣∣∣

≤
∑

v,w,y

Pr[(α, st, ζ) = (y, v, w)]
∑

u

|Pr[δ = u]− Pr[δ + y = u]|

=
∑

v,w,y

Pr[(α, st, ζ) = (y, v, w)]SD(δ, δ + y)

≤
(6.5)

neg(λ).

Proof (Security of Our Scheme). We show here the (k, θ)-FTG-O-nCPA security of the scheme of
Fig.3 with the advantage upper-bound given in (5.7).

Definition of Games: Define games Game(0)(λ), . . ., Game(2)(λ) as follows:

Game(0)(λ) : The same as the game of (k, θ)−FTG-nCPA.

Game(1)(λ) : The same as Game(0)(λ) except that when a challenger computes answers to encryption

and challenge queries, he uses not EncK̄ but ẼncK̄ . Here Ẽnc is an algorithm obtained from Enc

by replacing PRFK ′ of step 54 with the random oracle.

Game(2)(λ) : The same as Game(1)(λ) except that the challenger does not generate K̄ ← Kg(1λ)
of the scheme of Section 7 but K ← Kg(1λ) of the scheme of Section 6 instead, and use not

ẼncK̄ but the encryption algorithm EncK of the scheme of Section 6 instead, when he computes
answers to encryption and challenge queries.

Before proceeding, we give a caveat about the computational cost of Game(2)(λ). The chal-
lengers of Game(2)(λ) may have to use exponential time to answer to encryption query because the
computational cost of EncK of Section 6 is proportional to the message space size M and M can be
exponential. However, this fact does not become a problem because the part of the proof in which
we will use this game is purely information theoretic one.

33



Indistinguishability of Games: Let Bad be the event of Section 6.2, Adv.Game
(i)
A (1λ) be the ad-

vantage of an adversary A for Game(i), and Adv.Good.Game
(i)
A (1λ) be the advantage of an adversary

A for Game(i) under the condition that event ¬Bad holds.
We will show the following facts:

∃B : |Adv.Game
(0)
A (1λ)− Adv.Game

(1)
A (1λ)| ≤ Adv.ExpPRF(B), (8.44)

Adv.Game
(1)
A (1λ) = Adv.Game

(2)
A (1λ), (8.45)

Adv.Game
(2)
A (1λ) ≤ Adv.Good.Game

(2)
A (1λ) +O(1/

√
k). (8.46)

Adv.Good.Game
(2)
A (1λ) ≤ neg(λ). (8.47)

Then, Theorem 15 clearly follows from the above facts. The proof of (8.44), . . ., (8.46) are as follows:

– (8.44) follows because PRFK ′ is a pseudorandom function.
– (8.45) follows because the indistinguishability of outputs encryption functions (That is, Propo-

sition 18).
– (8.46) follows from the estimation (6.6) of Pr[Bad].

Finally, we prove (8.47).

Proof of (8.47): Let A = (Afind,Aguess) be an adversary for Game(2)(λ). By using A as a subroutine,
we construct a (possibly computationally unbounded) adversary D = (Dfind,Dguess) for the game
of Proposition 22. We then show that D succeeds in simulating the view of A, under the condition
that event ¬Bad holds, where Bad is the event of Section 6.2.

Note that here we can use Proposition 22 because Proposition 16 ensures that, even when we
set Xλ as in (7.5), Xλ satisfies (6.5).

Description of D: Dfind executes Afind(1
λ) and gets the challenge query (m∗

0,m
∗
1), encryption

queries m1, . . . ,mq, and the state st as outputs of Afind. Dfind makes query

(α, β) ← (m∗
1 −m∗

0,−(m∗
1 −m∗

0)) (8.48)

to the challenger of her. The above (α, β), in fact, satisfies the condition α, β ∈ [−θ, θ] of Proposition
22, because the definition of (k, θ)-FTG-O-nCPA ensures |m∗

1 −m∗
0| ≤ θ.

Then Dguess gets an answer (S, T ) to the query and randomly take7

i0
$← (m∗

0 − kθ..m∗
0], i1

$← (m∗
1..m

∗
1 + kθ].

Intuitively, i0 and i1 are the values such that δi0 and δi1 are large, whose existences are ensured by
the conditions (6.3) and (6.4) of ¬Bad of Section 6.1.

Dguess sets

δi ← 1 for i ∈ (m∗
0..m

∗
1]. (8.49)

For i /∈ (m∗
0..m

1
∗] ∪ {i0, i1}, Dguess takes δi in the same way as Kg of Section 6. That is,

ρi
$← B(1, 1− p), δi ←

{
1 if ρi = 1

Xλ otherwise.

7 As described in the footnote of Section 6.1, seeming asymmetry of the interval, which is “left-open” one (a..b] but
is not “right open” one [a..b), comes from how we number δi. If we set δi not to EncK(i) − EncK(i − 1) but to
EncK(i+ 1)− EncK(i), it becomes right open one [a..b).
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(Here Dguess has to spend super-polynomial time to compute all δi if the message space size is
super-polynomial in λ. But it is not a problem because Proposition 22 allows Dguess to use super-
polynomial time.)

Then Dguess computes

C∗ ← S +
∑

i∈(A..m∗

0]\{i0}
δi. (8.50)

The encryption queries mj of Afind has to satisfy mj ≤ m∗
0 − kθ or mj ≥ m∗

1 + kθ because of
Definition 13 of (k, θ)-FTG-O-nCPA. Dguess computes for each j ∈ [1..q],

Cj ←
{∑

i∈(A..mj ]
δi if mj ≤ m∗

0 − kθ

S + T +
∑

i∈(A..mj ]\{i0,i1} δi if mj ≥ m∗
1 + kθ

(8.51)

and sends (C∗, C1, . . . , Cq) and st to Aguess. If Aguess outputs a bit d, Dguess outputs d and terminates.

Next, we show that D succeeds in simulating the view of A, under the condition that ¬Bad
holds. Here Bad is the event given in Section 6.2.

D Succeeds in Generating (δi) Correctly: From (8.48) and the statement of Proposition 22,
(S, T ) can be written as

(S, T ) = (δ + αb, ζ + βb), (8.52)

where

(αb, βb)←
{
(0, 0) if b = 0,

(m∗
1 −m∗

0,−(m∗
1 −m∗

0)) otherwise.
(8.53)

We set

(δi0 , δi1)← (δ, ζ). (8.54)

Then, (δi)i generated in this game has the same distribution as (δi)i generated by Kg(1λ) of
Fig.2, under the condition that ¬Bad holds. In fact, the condition (6.2), (6.3), and (6.4) of ¬Bad
of Section 6.1 ensures that

– δi = 1 holds for each i ∈ (m∗
0..m

∗
1]

– there are i0 ∈ (m0 − kθ..m0] and i1 ∈ (m1..m1 + kθ] such that δi0 and δi1 are selected from Xλ.

They clearly correspond with (8.49) and (8.54). Hence Dguess generated (δi) correctly.

D Succeeds in Generating C∗ Correctly: Since δi = 1 holds for i ∈ (m∗
0..m

∗
1], it follows that if

b = 0,

(αb, βb) =
(8.53)

(m∗
1 −m∗

0,−(m∗
1 −m∗

0)) =
(8.49)

(
∑

i∈(m∗

0 ..m
∗

1]

δi,−
∑

i∈(m∗

0 ..m
∗

1]

δi). (8.55)

Hence,

C∗ =
(8.50)

S +
∑

i∈(A..m∗

0]\{i0}
δi =

(8.52)
δi0 + αb +

∑

i∈(A..m∗

0]\{i0}
δi. = αb +

∑

i∈(A..m∗

0]

δi.
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Since

αb =
(8.53)
(8.55)

{
0 if b = 0∑

i∈(m∗

0 ..m
∗

1]
δi if b = 1,

we can conclude that

C∗ =
∑

i∈(A..m∗

b ]

δi

holds. This value is equal to EncK(m∗). Hence, Dguess generated C∗ correctly.

Dguess Succeeds in Generating Answers Ci to the Encryption Queries mi Correctly: An
encryption query mj of Afind has to satisfy mj ≤ m∗

0 − kθ or mj ≥ m∗
1 + kθ because of Definition

13 of (k, θ)-FTG-O-nCPA. In the former case, Dguess answered Cj =
(8.51)

∑
i∈(A..m] δi, which is, of

course, equal to EncK(m). In the latter case, the answer C of Dguess satisfies

Cj =
(8.51)

S + T +
∑

i∈(A..mj ]\{i0,i1}
δi

=
(8.52)
(8.54)

(δi0 + αb) + (δi1 + βb) +
∑

i∈(A..mj ]\{i0,i1}
δi

= αb + βb +
∑

i∈(A..mj ]

δi.

From (8.53), we can conclude that

Cj =
∑

i∈(A..mj ]

δi

holds in both cases where b = 0 and b = 1. This value is, of course, equal to EncK(m). Hence, Dguess

generated Cj correctly.

Since Proposition 22 shows that D cannot have non-negligible advantage, (8.47) is therefore
shown.⊓⊔

9 Conclusions

Indistinguishability in encryption is a fundamental property. We proposed the first achievable in-
distinguishability notion for OPE. In fact, Our notion, (X , θ, q)-indistinguishability, ensures secrecy
of the least significant ⌊log2 θ⌋ bits of a plaintext m∗ under the following setting: the database con-
taining q+1 data m∗,m1, . . . ,mq in their encrypted forms, where these messages were distributed
according to given distributions, and an adversary who wanted to know m∗ breached the database
and got all ciphertexts in it. Here she was allowed to have (partial or all) information about the
other data elements m1, . . . ,mq as well.

Then we proposed an OPE scheme Eβ,t such that, when the (independent) distributions X1, . . . ,Xq

of m1, . . . ,mq had min-entropy β log2M , Eβ,t satisfied (X ,M t, q)-indistinguishability for any t < β
when M → ∞ where M was the message space size and X was (X1, . . . ,Xq), (although the ad-
vantage bound decreased somewhat when t became closer to β.) This meant that our scheme was
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able to hide the least significant t < β bits of the plaintext m∗. In particular, when m1, . . . ,mq

are distributed uniformly at random, the above fact meant that our scheme was able to hide any
fraction of the low order bits of the plaintext m∗.

We then showed that (X , θ, q)-indistinguishability with suitable parameters implies the known
security one-way-ness-type notion, (r, q+1)-WOW [17], (and its stronger variant (r, q+1)-WOWM
which allowed an adversary to watch the plaintext messages other than the target one). We then
showed that our scheme satisfies (r, q + 1)-WOW with better parameter than the known scheme
[17] did.

Our investigation is the first to consider indistinguishability notions for OPE and many open
questions remain.
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