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Abstract We construct new randomized algorithms to find the exact solutions to the shortest and

closest vector problems (SVP and CVP) in Euclidean norm (`2) for integral lattices. Not only the minimal

`2-norm of non-zero lattice vectors in SVP and the minimal `2-distance in CVP, but also how many lattice

vectors reach those minimums can be simultaneously computed by the algorithms. Our approach is based

on special properties of the generating function of lattice vectors’ `2-norms, the lattice-associated theta

function, which is used in prior works mainly for hardness analysis on lattice problems but rarely for

computational purposes. Such function’s modular properties are exploited to develop our SVP and CVP

solvers. In computational complexity perspective and take our SVP solver as an example, for the integral

lattice family {Λn} of dimension dimΛn = n and level hn = l(Λn) (the minimal positive integer such that

the dual lattice Λ∗n scaled by h
1/2
n is integral) polynomial in n, this algorithm can find the minimal `2-norm

of non-zero lattice vectors and the number of such shortest vectors in Λn with success probability 1-ε in

the asymptotic space-complexity of polynomial in n and asymptotic time-complexity of nO(n) log(1/ε).

In addition, the only contribution to the algorithm’s exponential time complexity nO(n) log(1/ε) comes

from independently repeating a randomized lattice vector sampler nO(n) log(1/ε) times. All the rest of

operations contribute to the algorithm’s time-complexity only with an additive polynomial in n. Similar

situations occur when solving the exact CVP by our algorithm. As a result, our solvers can be easily

parallelized to be polynomial in time complexity, and a variant of our CVP solver can solve the closest

vector problem with preprocessing (CVPP) in polynomial time and nO(n) log(1/ε) space complexity.

Keywords Lattice Algorithms, SVP, CVP, Modular Forms, Theta Function

1 Introduction

Lattice problems take important roles in combinatorial optimization, public-key cryptography and

many other fields in computer science [5, 7, 9–12, 17, 19]. In the shortest lattice vector problem (SVP), a

∗This work is supported by China NSF 61272173
†Network Department, Software School, Dalian University of Technology, P.R.China. Email:tianyuan ca@sina.com

xueyongzhu409@gmail.com and sunrongxin7666@163.com

1



Tian Yuan et al Modular Form Approach to Solving Lattice Problems

non-zero lattice vector x in BZn is to be found to minimize |x | on input the lattice basis matrix B with

respect to some specific norm || in Rn. In the closest lattice vector problem (CVP), a lattice vector x

is to be found to minimize |u − x | on input the basis matrix B and a target vector u in Rn. In recent

years, lots of cryptographic schemes and protocols have been devised with proofs of security under the

assumption that there is no (probabilistic and sometimes quantum) polynomial-time algorithm to solve

arbitrary instances of variants of SVP and CVP.

From a computational hardness perspective, SVP, CVP and other related variants are NP-hard under

deterministic (e. g., CVP) or randomized (e. g., SVP) reductions [1,10,17,22]. Even some approximation

variants of these problems are proven to be NP-hard if the approximation factor is within some specific

range. Despite of these facts, finding new algorithms to solve lattice problems exactly are still interesting

and meaningful both because many applications (e. g., in mathematics and communication theory) involve

lattices in relatively small dimensions, and because approximation algorithms for high dimensional lattices

for which the exact solution is infeasible typically involve the exact solution of low dimensional sub-

problems. In this paper we develop randomized algorithms to find the exact solutions to SVP and CVP.

1.1 Basic Results

We develop new randomized algorithms to find the exact solutions to SVP and CVP in Euclideans

norm (`2) for any integral lattice. Not only the minimal `2-norm of non-zero lattice vectors in SVP and

the minimal `2-distance in CVP, but also how many lattice vectors reach those minimums(e. g., the kissing

number in SVP) can be simultaneously computed by the algorithms. More concretely and take SVP as

an example, for the integral lattice family {Λn} which dimension dimΛn = n and level hn = l(Λn) (the

minimal positive integer such that the dual lattice Λn
∗ scaled by h

1/2
n is integral) is polynomial in n, the

case frequently occurring in applications, this algorithm can find the minimal `2-norm of non-zero lattice

vectors and the number of such shortest vectors in Λn with success probability 1 − ε in the asymptotic

space-complexity of polynomial in n and asymptotic time-complexity of nO(n) log(1/ε). Interestingly, the

only contribution to the algorithm’s exponential time complexity nO(n) log(1/ε) comes from independently

repeating a randomized lattice vector sampler nO(n) log(1/ε) times. All the rest of operations contribute

to the time-complexity with only an additive polynomial in n. Similar situations occur when solving the

exact CVP by our algorithm. As a result, our solvers can be (very easily) parallelized to be polynomial

in time-complexity. Due to the same feature, a variant of our CVP solver can solve the closet lattice

vector problem with preprocessing (CVPP) in polynomial time and nO(n) log(1/ε) space complexity.
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1.2 A Sketch on Our Approach

Our approach is based on some special properties of the generating function of lattice vectors’ `2-

norms. This function is a measure used in previous works mainly for hardness analysis on lattice and

related problems [1, 4, 18] but rarely for computational purposes. For SVP, such function is defined as:

ϑ(τ ; Λ) ≡
∑
~x∈Λ

exp(2πiτ |~x|2)

where |x| denotes the vector x’s `2-norm and τ = σ+ it is a complex variable on the upper-half complex

plane(i. e., t > 0). If Λ is integral, i. e., all |~x|2s are integers for any ~x in Λ (an assumption without any

loss in generality when we only deal with rational lattices), this function can be equivalently represented

as a Fourier expansion (with complex variable τ)

ϑ(τ ; Λ) =
∑
m≥0

a(m) exp(2πiτm)

where a(0) = 1 and a(m) is the number of lattice vectors in Λ which squared `2-norms equal m. From

this viewpoint, solving SVP on Λ reduces to finding its theta function’s first non-zero Fourier coefficient

a(m) among its non-constant items.

The technical support to the above idea comes from the fact that, as a function of complex variable

τ(Imτ > 0), θ(τ ; Λ) is a so-called modular form of weight n/2 ( details in section 2.2 ) and therefore has

a series of special properties. The modularity comes from its transformation law

ϑ(τ + 1; Λ) = ϑ(τ ; Λ)

ϑ(τ/(4hτ + 1); Λ) = (4hτ + 1)n/2ϑ(τ ; Λ)

where h is some positive integer, the level of Λ. As a result, the theta function can be expanded on

a polynomial (in the lattice’s level h and dimension n) number of base functions and then its Fourier

coefficients a(m) can be efficiently computed from the linear combination of a set of the basis’ Fourier

coefficients.

For CVP, when restricting the target vector u to be the integral vector (without any loss in generality

when we only work in the rational number field), the same idea applies to the non-homogenous theta

function

ϑ(τ ; Λ, ~u) ≡
∑
~x∈Λ

exp(2πiτ |~x− ~u|2) =
∑
m≥1

b(m)exp(2πiτm)

which is also a modular form, where b(0) = 0 (except for the trivial case that u ∈ Λ) and b(m) is the

number of lattice vectors in Λ which squared `2-distance to u is m. From this viewpoint, solving CVP on
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input Λ and u reduces to finding the non-homogenous theta function’s first non-zero Fourier coefficient

b(m).

1.3 Related Works

To find the exact solutions to lattice problems, so far three main families of SVP and CVP solvers

exist which are listed in Table 1 together with our algorithms developed in this paper in comparison.

Among these solvers, MV and Kannan algorithms are deterministic while AKS (and our) algorithms

are randomized. All algorithms work in `2-norm (only AKS algorithm can work in other norms, e. g.,

`∞). The core of MV algorithm [16] is to compute the Voronoi cell of the lattice [5], whose knowledge

facilitates the tasks to solve SVP and CVP. Kannan algorithm [11,12] relies on a deterministic procedure

to enumerate all lattice vectors below a prescribed norm, or within a prescribed distance to the target

vector. This procedure uses the Grahm-Schmidt orthogonalization of the input lattice basis to recursively

bound the integer coordinates of the candidate solutions.

The AKS algorithm [2] was the first single-exponential time algorithm for SVP which can be de-

scribed as follows: Let γ < 1 be a constant and S be a set of N lattice vectors sampled in the `2-ball of

radius R = 2O(n)λ1(Λ) where λ1(Λ) is the minimal norm of non-zero lattice vectors in Λ. For sufficiently

large N , there exists a pair of lattice vectors u , v such that |u − v | < γR, so u − v is shorter in Λ. The

core of the algorithm is to chose a subset C in S such that |C| is not too large and for any u in S\C there

exists v in C such that |u −v | < γR. This is used to produce a set of lattice vectors S1 in the ball γRBn
2

with |S1| = |S| − |C|. This procedure can be applied a polynomial number of times to obtain lattice

vectors of norms less than aλ1(Λ) for some constant a. Recently this algorithm has been significantly

improved and the currently best time complexity is 22.465n+o(n) [9]. However, the AKS variant solver

for CVP only finds the (1 + ε)-approximate solution for arbitrary ε > 0 in time complexity bounded by

(2 + 1/ε)O(n) [3, 20].

As a randomized algorithm, our solver outperforms the sieve algorithms in the aspects that it has

space complexity only polynomial in n and can solve both SVP and CVP precisely. Another characteristic

of our algorithm is its ability to be parallelized to be polynomial in time complexity. As noticed in

section 4.1, when sampling the lattice by calling N independent Gaussian samplers in concurrency rather

than in sequence, the whole algorithm to solve SVP or CVP becomes polynomial in time complexity

(but exponential in parallelism). Another variant of our CVP solver can solve CVPP in polynomial time

and nO(n)log(1/ε) space complexity with success probability 1-ε. Such characteristics will be valuable in

practices, e. g., in solving lattice problems of moderately high dimensions. So far with our understanding
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no other solvers can be parallelized to be polynomial in time complexity. For example, the critical

component in the elegant MV algorithm [16] is an iterative subroutine to operate at most 2n times, which

is hard to be parallelized due to its iterative nature. The core of AKS algorithm and its variants [2,3,20],

the sieve subroutine which dominates the algorithm’s time complexity, is also hard to be parallelized to

be polynomial. Similar situations occur for Kannan algorithm. From this viewpoint, an interesting and

importnat open question is: is there any parallel (deterministic or randomized) SVP/CVP solver which is

of polynomial time complexity in n with 2O(n) processors? The last (but not the least) important feature

of our approach is its potential to apply to SVP and CVP for the ideal lattices in algebraic number field

where the theta functions have more special properties to exploit. Table 1 summarizes the main features

of these algorithms in comparison with each other.

1.4 Roadmap

In section 2 we give necessary backgrounds in lattice geometry and modular forms. In section 3,

we give a sketch on our approach which technical details are elaborated in section 4. The complete

algorithms to solve SVP and CVP are presented in section 4.3 and the complexity analysis is given

in section 5. In section 6, we discuss some extensions from our approach to solve more generalized or

specialized problems.

Table 1: Comparing the existed families of SVP and CVP solvers and our algorithms

Solvers
Time

complexity

upper bound

Space

complexity

upper bound

Remarks

Kannan nO(n) poly(n) deterministic;

[9, 11,12] the O-constant is

improved as small as 1/2e

MV [9,16] 22n+o(n) 2O(n) deterministic

AKS SVP: 22.465n+o(n) SVP: 21.325n+o(n) randomized;

[2, 3, 9, 20] CVP: (2 + 1/ε)O(n) CVP: (1 + 1/ε)O(n) solves (1 + ε)-CVP only

Our algorithm

nO(n) poly(n) for lattice level h = poly(n)

(nh)O(n) poly(n) for arbitrary lattice level h

The O-constant is 2 + δ,δ > 0.

Easy to be parallelized to be

polynomial-time to solve SVP,

CVP and CVPP.
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2 Preliminaries

2.1 Lattices

General: The set of integers is denoted by Z and rational numbers by Q. In the Euclidean space

Rn, a n-dimensional rational lattice, denoted Λ(B) where B is a matrix with column vectors (b1, . . . , bn),

is the set of vectors {x1b1 + . . . + xnbn : x1, . . . , xn ∈ Z} where the scalar products < bi, bj > are all

rational numbers. The lattice with basis b1, . . . , bn is also denoted Zb1 + . . . + Zbn. Without loss of

generality in computer science, in this work we only consider the integral lattice in which < bi, bj > are

all integers.

For any lattice Λ = Zb1 + . . . + Zbn, the lattice Λ∗ ≡ Zb∗1 + . . . + Zb∗n where < b∗i , bj >= δij

for all i, j = 1, . . ., n is called Λ’s dual lattice. Equivalently, Λ∗ is a discrete set of vectors y such that

< x ,y >∈ Z for all x ’s in Λ. The dual Λ∗ of a rational lattice Λ is always rational, but Λ∗ may not be

integral even when Λ is integral. When Λ has a base matrix B = (b1, . . . , bn), its dual lattice Λ∗ will

have a base matrix Λ∗ = (b∗1, . . . , b
∗
n) = B−T so both Λ and Λ∗ are integral iff det(B) = det(B∗) = ±1.

Another important property is that Λ∗∗ = Λ.

For any vector u = (u1, . . . , un) in Rn, its `2-norm < u ,u >1/2= (u2
1 + . . . + u2

n)1/2 is denoted |u |.

The squared `2-norm of any lattice vector in an integral lattice is always an integer.

Lattice ProblemsµGiven a lattice Λ(B) = Zb1 + . . .+ Zbn, let

λ1(Λ) ≡ min{|x | : x in Λ and non-zero} (2.1)

be the minimal value of `2-norms of non-zero lattice vectors in Λ(B). The optimization (`2-) shortest

vector problem, SVP(Λ) in brief, is to find λ1(Λ). The search (`2-) shortest vector problem, s-SVP(Λ) in

brief, is to find a lattice vector x in Λ such that |x | = λ1(Λ).

Given a lattice Λ(B) and a rational target vector u in Qn, let

dist(Λ;u) ≡ min{|x − u | : x in Λ} (2.2)

be the minimum `2-distance between u and all lattice vectors in Λ. The optimization (`2-)closest vector

problem, CVP(Λ,u) in brief, is to find dist(Λ;u). The search (`2-)closest vector problem, s-CVP(Λ,u) in

brief, is to find a lattice vector x in Λ such that |x − u | = dist(Λ;u).

The covering radius of a lattice, µ(Λ), is defined as the maximal distance between any vector and

the lattice. The covering radius problem, CRP(Λ) in brief, is to find

µ(Λ) ≡ max{dist(Λ;u) : u in Qn} (2.3)
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In this paper we focus on the algorithm to solve SVP and CVP problems. It has been known that

these problems are computationally hard [1, 10,15,17,22]. However, there is:

Theorem 2.1. [15, 17, 22] (1)s-SVP can be solved in polynomial time given the oracle to solve

s-CVP. (2)s-CVP can be solved in polynomial time given the oracle to solve (optimization) CVP.

In consequence, the algorithm for optimization CVP can be used as the cornerstone to solve both

search problems. In this paper we focus on constructing the randomized algorithms for optimization SVP

and CVP with similar ideas and techniques.

General Bounds: For any n-dimensional lattice Λ, one of the most important general fact is the

Mincowski’s inequality [5, 22]:

V ol(Bn
2 )λ1(Λ)n ≤ 2n|det(Λ)|

where V ol(Bn
2 ) is the n-dimensional volume of the unit Euclidean ball Bn

2 , e. g., πn/2/(n/2)!, and

|det(Λ)| is the determinant of the lattice’s base matrix B, numerically equal to the lattice’s elementary

parallelotope’s volume. It follows that

λ1(Λ) ≤ cn1/2|det(Λ)|1/n (2.4)

where c(≤ 1) is some absolute constant.

Another important general property is the transference theorem [4,22]

λ1(Λ∗)µ(Λ) ≤ dn (2.5)

where d(≤ 1/2) is some absolute constant. In particular, let h be some positive integer such that the

lattice h1/2Λ∗ is integral, then due to λ1(h1/2Λ∗) ≥ 1 we have

µ(Λ) ≤ dn/λ1(Λ∗) ≤ dnh1/2/λ1(h1/2Λ∗) ≤ dnh1/2 (2.6)

Lattice Level: Let Λ be an integral lattice. In this case the dual lattice Λ∗ is rational so there exists a

positive integer h such that h1/2Λ∗ is integral.

Definition 2.1. Given an integral lattice Λ, the level of this lattice, denoted l(Λ), is defined as the

minimal positive integer h such that h1/2Λ∗ is integral.

It’s easy to see that l(Λ) is an invariant of Λ, i. e., independent of Λ’s basis choice.

Let B and B∗ be Λ’s and Λ∗’s base matrix respectively (so B∗ = B−T ), so the dual lattice Λ∗’s

Grahm matrix A∗ = B∗TB∗ = B−1B−T = A−1, the inverse of the lattice Λ’s Grahm matrix. Notice that

h1/2Λ∗ is integral means that hA∗ is an integral matrix, and since (detA)A∗ = Aadj is always integral

(because the adjoint matrix Aadj ’s entries are all integers), it follows that h|det(A). On the other hand,
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the fact that M = hA∗ is an integral matrix deduces that hI = MA and then we have detA|hn. In

summary, the level h satisfies h|(detΛ)2|hn.

Moreover, the level h can be computed by h = det(A)/g where g = gcd(Aadj)=the greatest common

divisor of all the entries in A’s adjoint matrix Aadj .

2.2 Modular Forms

In this section we present a very brief description about its concepts and facts of one-variable modular

forms needed in our work.

General: Let

SL2(Z) ≡ {γ =

a b

c d

 : a, b, c, d ∈ Z and ad− bc = 1}

be the group of 2×2 integer matrices with determinant 1. For any γ in SL2(Z) there is an related action

on the upper-half complex plane H ≡ {σ + it : t > 0} defined as:

γ(τ) ≡ (aτ + b)/(cτ + d) : H→ H

Notice that ±γ induces the same action γ(τ). SL2(Z) is a finitely generated group with two generators [6]

γ1 =

1 1

0 1

 , γ2 =

0 −1

1 0


i. e., any action γ(z) can be composed by the actions γ1(τ) = τ + 1 and γ2(τ) = −1/τ .

Instead of SL2(Z), in our work we consider its congruence subgroup of a given positive integer N :

Γ(N) ≡ {γ ∈ SL2(Z) : γ =

1 0

0 1

mod N},Γ1(N) ≡ {γ ∈ SL2(Z) : γ =

1 b

0 1

mod N} (2.7)

Both Γ(N) and Γ1(N) are finite-index subgroups in SL2(Z) [6, 13].

Definition 2.2. [6, 24] Let k be some positive integer or half-integer, Γ be a subgroup in SL2(Z)

and Γ(N) ⊆ Γ, f(τ) : H → C be a complex function holomorphic on the upper-half plane H. Let

f [γ]k ≡ (cτ + d)−kf(γ(τ)) for γ in SL2(Z), f is defined as a modular form of weight k with respect to

Γ, if both the following properties hold:

(1) f [γ]kis bounded at the infinity point, i. e., lim
t→∞
|f [γ]k(σ+it)| exists for any γ in Γ and real number

σ;

(2) f [γ]k = f , i. e., f(γ(τ)) = (cτ + d)kf(τ) for any γ in Γ and τ in H
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The set of such functions is a linear space and is denoted Mk(Γ).

For Γ = Γ(N) or Γ1(N), there’s always an integer w such that1 w

0 1

 ∈ Γ

As a result, f(τ + w) = f(τ) for any f in Mk(Γ) hence there is always the Fourier expansion

f(τ) =
∞∑
m=0

a(m)qm/w where q = exp(2πiτ)

Example:Consider the case Γ = SL2(Z), then f(τ) is in Mk(SL2(Z)) iff it satisfies the above conditions

(1) and (2) for all γ’s in SL2(Z). Because SL2(Z) is generated by two generators γ1(τ) = τ + 1 and

γ2(τ) = −1/τ , the modularity condition (2) is equivalent to the transformation law f(τ + 1) = f(τ) and

f(−1/τ)) = (1/τ)kf(τ).

Finiteness of Modular Form Space’s Dimension: The transformation law under the congruence

group’s action imposed on the modular forms is a very strong restriction, so strong as to imply lots of

special properties of the modular forms. One of the most important consequences followed is that the

function space Mk(Γ) is finite dimensional.

Theorem 2.2. [6, 14, 24] For any positive integer N , positive integer or half-integer k, Mk(Γ) is a

finite-dimensional linear space on the complex field with dimCMk(Γ) ≤ dimCMk(Γ(N)) = 8kN3/3.

Remarks: More precisely, for any integer k ≥ 3 [6, 14]:

dimCMk(Γ(N)) = (
N

24
(k − 1) +

1

4
)N2

∏
p|N,primes

(1− 1

p2
)

dimCMk(Γ1(N)) =
N2

24
(k − 1)

∏
p|N,primes

(1− 1

p2
) +

1

4

∏
d|N

ϕ(d)ϕ(N/d)

where ϕ(n) is the Euler function. When k is half-integer, the dimension formulas are more complicated

but the asymptotic relations with k and N are of the same type,i. e., O(kN3). Details can be seen in,

e. g., [24].

2.3 Lattice-Associated Theta Function and Its Modularity

One of the relations between (integral) lattices and modular forms is through the theta function,

defined as

ϑ(τ ; Λ) ≡
∑
~x∈Λ

exp(2πiτ |~x|2) (2.8)
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where || denotes the `2 norm and τ = σ+ it is a complex variable on the upper-half complex plane. Since

Λ is integral, its Fourier expansion is

ϑ(τ ; Λ) =
∑
m≥0

a(m)qm, where q = exp(2πiτ)

where a(0) = 1 and a(m) is the number of lattice vectors in Λ which squared `2-norms equal m. From

this viewpoint, solving SVP on Λ reduces to finding its theta function’s first non-zero Fourier coefficient

a(m) among non-constant items.

It’s easy to prove that such theta function absolutely and uniformly converges in any compact

subset of the upper half-plane H and is bounded at +i∞, as a result, holomorphic on H. Another obvious

property is

ϑ(τ + 1; Λ) = ϑ(τ ; Λ) due to Λ′s integrality (2.9)

Let n = dimΛ and Λ∗ be the dual lattice of Λ. By Poisson formula (proven in the Appendix), we

have

ϑ(τ ; Λ) = (i/2τ)n/2detΛ∗ϑ(−1/4τ ; Λ∗) (2.10a)

or equivalently

ϑ(τ ; Λ∗) = (i/2τ)n/2detΛϑ(−1/4τ ; Λ) (2.10b)

Let h be any positive integer such that h1/2Λ∗ is also an integral lattice. Since h|y|2 is an integer

for any y in Λ∗, for any η in H we have

ϑ(η + h; Λ∗) =
∑
~y∈Λ∗

exp(2πi(η + h)|~y|2) =
∑
~y∈Λ∗

exp(2πiη|~y|2) = ϑ(η; Λ∗)

let ξ ≡ −(h+ 1/4τ),then by ( 2.10a ) and the above h-periodicity

ϑ(τ/(4hτ + 1); Λ) = ϑ(−1/4ξ; Λ)

= (2ξ/i)n/2detΛ∗ϑ(ξ; Λ∗)

= (2ξ/i)n/2detΛ∗ϑ(−1/4τ ; Λ∗)

= (2ξ/i)n/2detΛ∗(2τ/i)n/2detΛϑ(τ ; Λ)

= (−4ξτ)n/2ϑ(τ ; Λ)

= (4hτ + 1)n/2ϑ(τ ; Λ)
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A more general relation between (integral) lattices and modular forms is through the following

parameterized theta function, defined as

ϑ(τ ; Λ∗, ~u,~v) =
∑
~x∈Λ

exp(2πiτ |~x− ~u|2 + 2πi < ~x,~v >) (2.11)

where || denotes the `2 norm, u and v are parameter vectors in Rn and τ = σ + it is a complex variable

on the upper-half complex plane. By Poisson formula (proven in the appendix) we have

ϑ(τ ; Λ, ~u,~v) = (i/2τ)n/2detΛ∗ exp(2πi < ~u,~v >)ϑ(−1/4τ ; Λ∗, ~v,−~u) (2.12a)

and equivalently

ϑ(τ ; Λ∗, ~u,~v) = (i/2τ)n/2detΛ exp(2πi < ~u,~v >)ϑ(−1/4τ ; Λ, , ~v,−~u) (2.12b)

By calculations similar as before, it can be derived that

ϑ(τ/(4hτ + 1); Λ, ~u,~v) = (4hτ + 1)n/2 exp(−4πi < ~u,~v >)ϑ(τ ; Λ,−~u,−~v) (2.13)

Let ϑ(τ ; Λ, ~u) ≡ ϑ(τ ; Λ, ~u, 0) =
∑
~x∈Λ

exp(2πiτ |~x− ~u|2) ,the above identity derives that

ϑ(τ/(4hτ + 1); Λ, ~u) = (4hτ + 1)n/2ϑ(τ ; Λ,−~u) = (4hτ + 1)n/2ϑ(τ ; Λ, ~u) (2.14)

In summary, we have proven:

Lemma 2.3. For any n-dimensional integral lattice Λ, the integer h such that that h1/2Λ∗ is integral

and an integral vector u in Zn, ϑ(τ ; Λ, ~u) is a modular form of weight n/2 with respect to the congruence

subgroup generated by 1 1

0 1

 and

 1 0

4h 1


Remarks: Let such generated congruence subgroup be denoted J(h). The lemma states that

ϑ(τ ; Λ, ~u) ∈Mn/2(J(h))

Since Γ(4h) ⊂ J(h) ⊂ Γ1(4h), it follows that Mn/2(Γ1(4h)) ⊂ Mn/2(J(h)) ⊂ Mn/2(Γ(4h)) and by the

dimension formulas (theorem 2.2) when n is even we have

Anh2 ≤ dimCMn/2(Γ1(4h)) ≤ dimCMn/2(J(h)) ≤ dimCMn/2(Γ(4h)) ≤ 8nh3/3 (2.15)

where A < 1 is some positive absolute constant. When n is odd we have the same upper-bound by the

dimension formulas of the space of modular forms with weight half-integer n/2 [24].

In practice, h can be selected as the lattice level l(Λ), the minimal positive integer such that h1/2Λ∗

is integral, a lattice invariant which can be efficiently computed (section 2.1).

11
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3 Our Approach’s Framework

In this section we present our approach in a heuristic way, leaving technical details in next sections.

To make the idea clear and easy to understand, we present this approach at first to solve two basic

problems in section 3.1 and section 3.2 then apply the subroutines to solve the optimization SVP and

CVP in section 3.

3.1 Basic Problems

Definition 3.1. Given an integral lattice Λ(B) = Zb1 + . . .+ Zbn in Qn and a positive integer m,

the `2- vector counting problem, V CP (Λ,m) in brief, is to find the number of lattice vectors in Λ(B)

which squared `2-norms equal m, i. e., to find a(m) = |{x in Λ : |x|2 = m}|.

Definition 3.2. Given an integral lattice Λ(B) = Zb1 + . . .+ Zbnin Qn, a vector u in Zn such that

2Bu also in Zn, a positive integer m, the `2- non-homogenous vector counting problem, n-V CP (Λ,m,u)

in brief, is to find the number of lattice vectors in Λ(B) which squared `2-distances to u equal m, i. e., to

find b(m) = |{x in Λ : |x− u|2 = m}|.

Remark: As long as both the lattice matrix B and the target vector u have only rational entries, it’s

easy to satisfy all the above requirements by scaling the original lattice Λ(B) and u simultaneously

with some appropriately large integer. In this case, i. e., for an integral lattice Λ(B) = Zb1 + . . . + Zbn

in Qn and a vector u in Zn such that 2Bu also in Zn, the squared distance |x − u|2 = |Bz − u|2 =

zTBTBz− 2zTBu + uTu (z in Zn) is always an integer.

3.2 Solving the Basic Problems

Given an integral lattice Λ(B) = Zb1 + . . .+ Zbn of dimension n and a positive integer m, consider

how to solve V CP (Λ,m) at first. Assume the level of Λ is h. By lemma 2.3 the lattice-associated theta

function ϑ(τ ; Λ) ( 2.8 ) is in Mn/2(J(h)), it follows that

ϑ(τ ; Λ) =

M∑
α=1

hα(Λ)ϕα(τ) (3.1)

where M = dimMn/2(J(h)) and ϕα(τ) ’s are basis of the space Mn/2(J(h)). Let

ϕα(τ) =

∞∑
m=0

aα(m)qm, where q = exp(2πiτ) (3.2)

The basis {ϕα(τ) : α = 1, . . . ,M} and therefore their Fourier coefficients aα(m) only depend on the

congruence subgroup J(h), which can be determined even in preprocessing when h is fixed. Then the
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m-th Fourier coefficient a(m), i. e., the solution to the problem V CP (Λ,m), can be computed by the

formula

a(m) =
M∑
α=1

hα(Λ)aα(m) (3.3)

In this viewpoint, as long as the linear combination coefficients hα(Λ) are known, the solution a(m) is

obtained.

Then arises the second question: how to compute {hα(Λ)}α=1,...,M ? Suppose we know M(=

dimMn/2(J(h))) points τ1, . . . , τM on the upper-half plane H and the values of the theta function at

these points, θ(τ1; Λ), . . . , θ(τM; Λ). As long as det(ϕα(τβ)) 6= 0, by solving the linear system of equations

ϑ(τα; Λ) =

M∑
β=1

hβ(Λ)ϕβ(τα) α = 1, . . . ,M (3.4)

all of hα(Λ), α = 1, . . . ,M can be efficiently obtained.

Now the third question: for a given lattice Λ and any given point τ on the upper-half plane H , how

to determine the value of θ(τ ; Λ)? By definition θ(τ ; Λ) depends on the norms of all lattice vectors in

Λ including those to be found in question, how to determine such an object prior to determining some

of its unknown constituents? It is to solve this (and only this) sub-problem that the randomness in our

algorithm is introduced.

The idea is to estimate θ(τ ; Λ) by appropriate random sampling over the lattice Λ. Note that when

t > 0:

1/ϑ(it; Λ) = 1/
∑
x∈Λ

exp(−2π|x|2t) = E[δ(x)]
x←DΛ,1/t

where δ(x) is the delta-function on Λ, vanishing at all non-zero lattice vectors and having the value 1 at

x = 0:

δ(x) = 1 if x = 0; δ(x) = 0 if x 6= 0 (3.5)

and DΛ,1/t(x) is the discrete Gaussian probabilistic distribution over lattice Λ:

DΛ,1/t(x) ≡ exp(−2π|x|2t)/
∑
x′∈Λ

exp(−2π|x′|2t) for x in Λ

As a result, 1/ϑ(it; Λ) might be estimated by statistical averaging over a set of δ(x j)’s where each x j is

a lattice vector independently sampled from Λ with distribution DΛ,1/t. However, the existed Gaussian

samplers [8,21] requires that t in this case be sufficiently small, potentially incompatible with some other

requirements and practical considerations in our algorithm construction. Instead, we consider another

13
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way to estimate θ(it; Λ). The starting point is Poisson formula ( 2.10a ):

ϑ(it; Λ) = (1/2t)n/2detΛ∗ϑ(i/4t; Λ∗)

1/ϑ(i/4t; Λ∗) = 1/
∑
y∈Λ∗

exp(−2π|y|2/4t) = E[δ(y)]
y←DΛ∗,4t

(3.6)

where δ(y) is the delta-function on the dual lattice Λ∗ and DΛ∗,4t(y) is the discrete Gaussian distribution

over the dual lattice Λ∗:

DΛ∗,4t(x) ≡ exp(−2π|y|2/4t)/
∑
y′∈Λ∗

exp(−2π|y′|2/4t) for y in Λ∗ (3.7)

Borrowing the techniques developed in [8,21], 1/θ(i/4t; Λ∗) hence 1/θ(it; Λ) can be estimated by efficient

random sampling algorithms as long as t is appropriately large. In this case θ(it; Λ) = O(1), i. e. 1/θ(it; Λ)

is not too small hence θ(i/4t; Λ∗) can be estimated by 1/θ(i/4t; Λ∗)−1 with sufficiently small errors. Once

θ(i/4t; Λ∗) can be estimated with given t > 0, by the following equation (derived in section 4)

θ(σ+ it; Λ) = (i/2(σ+ it))n/2det(Λ∗)θ(it/4(σ2 + t2); Λ∗) E
y←DΛ∗,4(σ2+t2)/t

[exp(−2πiσ|y|2/4(σ2 + t2))] (3.8)

θ(τ ; Λ) can be estimated at τ = σ + it(t > 0) where in the expectation (replaced by statistical average

when doing estimation) lattice vectors are distributed with the probability DΛ∗,4(σ2+t2)/t(y) over Λ∗(with

appropriately large t). Up to this point, the basic problem V CP (Λ,m) is completely solved.

Similar steps are taken to solve the non-homogenous vector counting problem n-V CP (Λ;m,u) by us-

ing Fourier expansions in spaceMn/2(J(h)) and estimating the theta function θ(τ ; Λ,u) =
∑
~x∈Λ

exp(2πiτ |~x−

~u |2) in a similar randomized method.

Remark: As long as θ(τ ; Λ) can be estimated at sufficiently many points τj = σj + itj , it seems that its

Fourier coefficient a(m) can be computed directly by approximating the integral.

a(m) = exp(2πmt)

∫ 1

0
dσϑ̂(σ + it; Λ) exp(−2πimσ)

other than by ( 3.3 ), where ϑ̂(σ + it; Λ) is the estimation for ϑ(σ + it; Λ) and t > 0. However, a

complete analysis (details see section 5) concludes that this direct method has the time complexity at

least exp(2Πn2), inferior to the approach we take in ( 3.5 )-( 3.8 ) which is at most nO(n) = exp(nlogn)

in time complexity.

3.3 Solving SVP and CVP

For a given (integral) lattice Λ(B) in Qn, let m∗ = λ1(Λ)2 and by θ(τ ; Λ) ’s Fourier expansion

ϑ(τ ; Λ) =
∞∑
m=0

a(m)exp(2πimτ) = 1 + a(m∗)exp(2πim∗τ) + . . .
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solving SV P (Λ) reduces to computing the first non-zero a(m) which can be achieved by repeatedly calling

the subroutine V CP (Λ,m) described in last section from m=1,2,. . . up to some appropriate upper-bound,

e. g., the upper-bound cn|det(Λ)|2/n = O(nl(Λ)) derived from Mincowski’s theorem (section 2.1).

Similarly, let d∗ = dist(Λ;u)2, u be an integral vector such that 2Bu in Zn and u /∈ Λ, by θ(τ ; Λ,u)’s

Fourier expansion

ϑ(τ ; Λ, ~u) =

∞∑
m=1

b(m)exp(2πimτ) = b(d∗)exp(2πid∗τ) + . . .

solving CV P (Λ;u) reduces to computing the first non-zero b(m) which can be achieved by repeatedly

calling the subroutine n-V CP (Λ,m,u) described in last section from m=1,2,. . . up to some appropriate

upper-bound, e. g., the upper-bound O(n2l(Λ)) derived from the transference theorem (( 2.5 )-( 2.6) ).

In summary, our algorithms to solve SV P (Λ) and CV P (Λ,u) in n dimension can be sketched in

the following steps.

(1) Call the Gaussian sampler N times independently to get dual lattice vectors y1, . . . , yN in Λ∗.

N needs to be large enough to make the error sufficiently small.

(2) Estimate the lattice-associated theta function θ(τ ; Λ) (in case of solving SVP) or θ(τ ; Λ,u) (CVP

and CVPP) by y1, . . . , yN and u at sufficiently many points τj = σj + itj with all tj > 0. This step is

only poly(n) in time and space complexity.

(3) Compute the linear combination coefficients of the theta function on appropriately selected basis

in the modular form space. This step is also poly(n) in time and space complexity.

(4) Search the first non-zero Fourier coefficient in the theta function’s Fourier expansions.

We note that step (1) can be completely parallelized, i. e., all N Gaussian samplers can work com-

pletely in concurrency (each sampler only performs in polynomial time and space complexity [8, 21]).

For solving CV PP (Λ,u), this step can be even performed totally in preprocessing. Since each Fourier

coefficient can be computed independently, step (4) can also operate in concurrency of O(nl(Λ))(for SVP)

and O(n2l(Λ))(for CVP and CVPP) where l(Λ) is the level of lattice Λ. As a result, the whole algorithm

can be easily parallelized to be polynomial in time complexity.

So far the framework to solve (integral) lattice optimization problems SVP and CVP has been

established. All technical details and computational complexity analysis are elaborated in next sections.

4 Algorithms

In this section all notations are as before, e.g., τ = σ + it denotes the complex variable on the

upper-half plane(t > 0). However, the lattice Λ needs not to be integral in section 4.1.
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4.1 Estimating the Values of Lattice-Associated Theta Functions ϑ(τ ; Λ) and ϑ(τ ; Λ, ~u)

Recall the algorithm framework developed in section 3.2, the goal of estimating theta function’s

values is to compute the linear coefficients hα(Λ), α = 1, . . . ,M via solving the linear system of equations

( 3.4 ). Therefore, it’s adequate to do the estimation at a finite number of points τα, α = 1, . . . ,M

where M = dimMn/2(J(h)). In particular, these points in H can be selected according to computational

efficiency considerations. Our approach to do the estimation is based upon the techniques developed

in [8, 21] which basic result is presented in theorem 4.1. For all technical details, see section 4 in [8]

and [21].

Theorem 4.1. [8]:There is a probabilistic polynomial-time algorithm that, given the basis B =

(b1, . . . , bn) of n -dimensional lattice Λ, a parameter s > ω(log(n)) maxj |b̃j |2 where b̃1, . . . , b̃n is the

Gram-Schmidt orthogonalization of b1, . . . , bn, and a vector u in Rn, outputs a sample from the distri-

bution which is statistically close to the discrete Gaussian distribution

DΛ,s,u(x) ≡ exp(−2π|x− u|2/s)/
∑
x′∈Λ

exp(−2π|x′ − u|2/s) for x in Λ

When ~u = 0, DΛ,s,u(x) is simply denoted DΛ,s(x). Hereafter the sampler in theorem 4.1 is denoted

SampD(Λ(B), s,u). The original sampler [8]’s efficiency is significantly improved in [21] at a mild price

of a larger t. In this paper we neglect such efficiency differences and call SampD as a black-box. In the

following we almost always apply SampD to sample on the dual lattice Λ∗(b∗1, . . . , b
∗
n) of the input lattice

Λ(b1, . . . , bn), in this case the original condition s > ω(log n) maxj |b̃j |2 becomes s > ω(log n) maxj |b̃j |−2

because of the relationship between the Gram-Schmidt orthogonalization b̃1, . . . , b̃n of the basis b1, . . . , bn

and dn, . . . ,d1, that of the dual basis (b∗1, . . . , b
∗
n):dj = b̃j/|b̃j |2. In particular |d j | = |b̃j |−1 for j =

1, . . . , n.

Our algorithms to do the estimation are presented in four subroutines, each works with appropriately

large t > 0.

Estimating ϑ(it; Λ):The randomized algorithm to estimate θ(it; Λ) is presented as follows.

EstimTheta(it; Λ):Version ]1

Input: A pure complex number it with t > 0 and a lattice Λ with basis B = (b1, . . . , bn);

Parameter: A positive integer N ;

Output: An estimation of θ(it; Λ);

Operations:
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(1) Call SampD(Λ∗(B∗), 4t,0 ) [8] independently N times to compute the delta-function’s average, i. e.,

to obtain

η̂N (it; Λ∗) = N−1
N∑
j=1

δ(yj)

where y1, . . . ,yN are dual lattice vectors independently sampled (by SampD) under the distribution.

DΛ∗,4t(y) ≡ exp(−2π|y|2/4t)/
∑
y′∈Λ∗

exp(−2π|y′|2/4t) for y in Λ∗

(2) output ϑ̂(it; Λ) = (2t)−n/2 det(Λ∗)/η̂N (it; Λ∗).

It’s direct to see that this subroutine EstimThetacan be implemented totally in parallel and if it is

implemented on N processors, i.e., N concurrent and independent SampD’s, its total time complexity is

just a polynomial in its input size. All other estimators in the following have the same characteristic.

As explained in section 3.2, η̂N (it; Λ∗) is an estimation for 1/θ(i/4t; Λ∗) and according to the Pois-

son formula ϑ̂N (it; Λ) is an appropriate estimation for θ(it; Λ). The random estimation subroutine’s

performance is based-on the following theorem.

Theorem 4.2. Let n = dim Λ(b1, . . . , bn), c be any absolute constant satisfying c > (2π)−1/2,

t > max(c2n/λ1(Λ)2, ω(log n) maxj |b̃j |−2) where b̃1, . . . , b̃n are the Gram-Schmidt orthogonalization of

Λ′s basis b1, . . . , bn, η̂N (it; Λ∗) and ϑ̂N (it; Λ) as specified in the subroutine EstimTheta(it,Λ(b1, . . . , bn))

with parameter N . Then

P [|ϑ̂N (it; Λ)− ϑ(it; Λ)| < ε1] > 1− ε2 (4.1)

where A,β are absolute positive constants and ε1 < 2ε/((1/2)(2t)−n/2 det(Λ∗)− ε), ε2 < A exp(−βNε2) +

exp(−(N/2)(2t)−n/2 det(Λ∗)) for sufficiently small ε > 0.

Remark:Intuitively, this theorem guarantees that ϑ̂N (it; Λ∗) is a “good” estimation for ϑ(it; Λ) with

appropriately large t. In practice, one of the “appropriate largeness” condition that t > c2n/λ1(Λ)2

can be satisfied by replacing the (unkown) λ1(Λ) with some of its easy-to-estimate lower-bound, e.g.,

λ1(Λ) > minj |b̃j | [22] so it is sufficient that t > c2n/minj |b̃j |2. For the integral lattice Λ we can even

simply select t > max(c2n, ω(log n) maxj |b̃j |−2) because λ1(Λ) ≥ 1 in this case.

Theorem 4.2 ’s proof bases on the following two facts.

Lemma 4.3 (Banaszczk inequality [4]). Let n = dim Λ, c > (2π)−1/2 an absolute constant and

δn ≡ (c(2πe)1/2 exp(−πc2))n. It is true that

∑
~x∈Λ:|~x|>c

√
n

exp(−π|~x|2)/
∑
~x∈Λ

exp(−π|~x|2) < δn (4.2)
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Lemma 4.4 (Hoeffding-type inequality [23]). Let X1, . . . , XN be independent random variables

and |xj | ≤ 1 for any j, then

P [|N−1
N∑
j=1

Xj − E[X]| > ε] < A exp(−βNε2) (4.3)

where both A and β are some absolute positive constants.

Proof. [Proof of Theorem 4.1] We prove theorem in several steps. (1)Under the condition that

t > c2n/λ1(Λ)2,Θ(it; Λ) is both-sides bounded. That’s because

1 < ϑ(it; Λ) =
∑
~x∈Λ

exp(−2πt|~x|2) =
∑

~x∈
√

2tΛ

exp(−π|~x|2)

= 1 +
∑

~x∈
√

2tΛ:|~x|>0

exp(−π|~x|2) = 1 +
∑

~x∈Λ:|~x|≥
√

2tλ1(Λ)

exp(−π|~x|2)

< 1 + δn
∑

~x∈
√

2tΛ

exp(−π|~x|2) (by t1/2λ1(Λ) > cn1/2and lemma 4.3)

= 1 + δn
∑
~x∈Λ

exp(−2πt|~x|2) = 1 + δnϑ(it; Λ)

It follows that

1 < ϑ(it; Λ) < 1/(1− δn) (4.4)

(2)Under the dual lattice vectors independent sampling with distribution statistically close to DΛ∗,4t(y)

on Λ∗ and t > c2n/λ1(Λ)2, η̂N (it; Λ∗) is almost always non-zero when N is sufficiently large:

P [η̂N (it; Λ∗) 6= 0] > 1− exp(−N(1− δn)(2t)−n/2 det(Λ∗)) (4.5)

This is because P [η̂N (it; Λ∗) = 0] = P [δ(y1) = . . . = δ(yN ) = 0] = P [y1 6= 0
∧
. . .

∧
yN 6= 0] = P [y 6=

0]N so

P [η̂N (it; Λ∗) = 0] = (1− P [y = 0])N = (1− 1/
∑
y∈Λ∗

exp(−2π|y|2/4t))N

= (1− (2t)−n/2 det(Λ∗)/
∑
x∈Λ

exp(−2π|x|2t))N (by Poisson formula( 2.10a ))

≤ (1− (1− δn)(2t)−n/2 det(Λ∗))N (by ( 4.4 ))

≤ exp(−N(1− δn)(2t)−n/2 det(Λ∗)) (by 1− x < exp(−x) for x > 0)
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(3)Let η(it; Λ∗) ≡ 1/θ(i/4t; Λ∗) and |η(it; Λ∗) − η̂N (it; Λ∗)| < ε. By ( 4.4 ) and the Poisson formula

we have 1/(1 − δn) > θ(it; Λ) = (2t)−n/2 det(Λ∗)θ(i/4t; Λ∗), hence η(it; Λ∗) ≡ 1/θ(i/4t; Λ∗) > (1 −

δn)(2t)−n/2 det(Λ∗), therefore

η̂N (it; Λ∗) > η(it; Λ∗)− ε > (1− δn)(2t)−n/2 det(Λ∗)− ε (4.6)

(4)Let the random variable X ≡ δ(y). Notice that |X| ≤ 1 and the expectation E[X] = η(it; Λ∗) under

the distribution DΛ∗,4t(y) on the dual lattice Λ∗, it follows from lemma 4.4 that

P [|η̂N (it; Λ∗)− η(it; Λ∗)| < ε] = P [|N−1
N∑
j=1

Xj − E[X]| < ε] > 1−A exp(−βNε2)

when |η̂N (it; Λ∗)− η(it; Λ∗)| < ε we have

|ϑ̂N (it; Λ)− ϑ(it; Λ)| = (2t)−n/2 det(Λ∗)|1/η̂N (it; Λ∗)− 1/η(it; Λ∗)|

= (2t)−n/2 det(Λ∗)|η̂N (it; Λ∗)− η(it; Λ∗)|/η̂N (it; Λ∗)η(it; Λ∗)

= θ(it; Λ)|η̂N (it; Λ∗)− η(it; Λ∗)|/η̂N (it; Λ∗) (by Poisson formula)

< ε/η̂N (it; Λ∗)(1− δn) (by ( 4.4 ))

< 2ε/((1− δn)(2t)−n/2 det(Λ∗)− ε)(by( 4.6 ))

Combined with ( 4.5 ) we obtain

P [|ϑ̂N (it; Λ)− ϑ(it; Λ)| < ε1] > P [|η̂N (it; Λ∗)− η(it; Λ∗)| < ε]P [η̂N (it; Λ∗) 6= 0]

> (1−A exp(−βNε2))(1− exp(−N(1− δn)(2t)−n/2 det(Λ∗)))

≡ 1− ε2

where ε1 = 2ε/((1− δn)(2t)−n/2 det(Λ∗)− ε) < 2ε/((1/2)(2t)−n/2 det(Λ∗)− ε) and

ε2 = A exp(−βNε2) + (1−A exp(−βNε2)) exp(−N(1− δn)(2t)−n/2 det(Λ∗))

< A exp(−βNε2) + exp(−(N/2)(2t)−n/2 det(Λ∗))

since δn < 1/2 for sufficiently large n.

Estimating ϑ(σ + it; Λ): By Poisson formula

ϑ(τ ; Λ) = (i/2τ)n/2 det Λ∗ϑ(−1/4τ ; Λ∗)

estimating θ(τ ; Λ) at τ = σ + it reduces to estimating θ(−1/4τ ; Λ∗). Note that

ϑ(−1/4(σ + it); Λ∗) =
∑
y∈Λ∗

exp(−2πiσ|y|2/4(σ2 + t2)) exp(−2πt|y|2/4(σ2 + t2))
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= ϑ(it/4(σ2 + t2); Λ∗)
∑
y∈Λ∗

exp(−2πiσ|y|2/4(σ2 + t2))DΛ∗,4(σ2+t2)/t(y)

= ϑ(it/4(σ2 + t2); Λ∗) E
y←DΛ∗,4(σ2+t2)/t

[exp(−2πiσ|y|2/4(σ2 + t2))]

This implies that ϑ(−1/4(σ + it); Λ∗)(hence ϑ(σ + it; Λ)) can be estimated on basis of the estimation

of θ(it/4(σ2 + t2),Λ∗) and the expectation of exp(2πiσ|y |2/4(σ2 + t2)) by sampling dual lattice vectors

under the distribution

DΛ∗,4(σ2+t2)/t(y) = exp(−2πt|y|2/4(σ2 + t2))/
∑
y′∈Λ∗

exp(−2πt|y′|2/4(σ2 + t2)) (4.7)

Note that when t satisfies the condition in theorem 4.2, so does (σ2 + t2)/t. As a result, similar methods

as those in EstimTheta version ]1 can be used.

EstimTheta(σ + it,Λ):Version]2

Input: A complex number σ + it with t > 0 and a lattice Λ with basis B = (b1, . . . , bn);

Parameter: A positive integer N ;

Output: An estimation of θ(σ + it; Λ);

Operations:

(1)Call SampD(Λ∗(B∗), 4(σ2 + t2)/t,0 ) N times independently to compute

η̂∗N = N−1
N∑
j=1

δ(yj)

ÊN = N−1
N∑
j=1

exp(−2πiσ|yj |2/4(σ2 + t2))

where y1, . . . ,yN are dual lattice vectors independently sampled under the distribution ( 4.7 )

(2)output ϑ̂N (σ + it; Λ) = (i/2(σ + it))n/2 det(Λ∗)ÊN/η̂
∗
N .

The complete estimation for θ(σ + it; Λ) is in form of the product of multiple estimated quantities.

In this case the error and correctness probability are related by the following general theorem.

Theorem 4.5. Let ρ̂1 and ρ̂2 be estimations for ρ1 and ρ2 respectively and

P [|ρ̂1 − ρ1| < ε1] > 1− δ1, P [|ρ̂2 − ρ2| < ε2] > 1− δ2

Suppose both ρ1 and ρ2 are bounded, i. e., |ρ1| ≤ A1 and |ρ2| ≤ A2 . Then

P [|ρ̂1ρ̂2 − ρ1ρ2| < A1ε2 +A2ε1 + ε1ε2] > 1− δ1 − δ2

20



Tian Yuan et al Modular Form Approach to Solving Lattice Problems

Proof. For any random events X and Y it’s true that P [X and Y ]+P [X or Y ] = P [X]+P [Y ], hence

P [|ρ̂1−ρ1| < ε1 or |ρ̂2−ρ2| < ε2]+P [|ρ̂1−ρ1| < ε1 and |ρ̂2−ρ2| < ε2] = P [|ρ̂1−ρ1| < ε1]+P [|ρ̂2−ρ2| <

ε2] > 1 − δ1 + 1 − δ2 = 2 − δ1 − δ2. It follows that P [|ρ̂1 − ρ1| < ε1 and |ρ̂2 − ρ2| < ε2] > 1 − δ1 − δ2.

Furthermore, when |ρ̂1 − ρ1| < ε1 and |ρ̂2 − ρ2| < ε2 we have |ρ̂1ρ̂2 − ρ1ρ2| < |ρ̂1||ρ̂2 − ρ2|+ |ρ2||ρ̂1 − ρ1|

and |ρ̂1| < |ρ1|+ ε1 < A1 + ε1, then |ρ̂1ρ̂2 − ρ1ρ2| < A1ε2 +A2ε1 + ε1ε2, hence

1− δ1 − δ2 < P [|ρ̂1 − ρ1| < ε1 and |ρ̂2 − ρ2| < ε2] ≤ P [|ρ̂1ρ̂2 − ρ1ρ2| < A1ε2 +A2ε1 + ε1ε2]

Combining theorem 4.2 and 4.5, a theorem about the relationship between the estimation error and

correctness probability similar as that established in theorem 4.2 can be easily derived for EstimTheta

Version]2, having exactly the same condition for t and the same upper-bounds for ε1 and ε2 with only

differences in some absolute constants. We simply omit all these redundant details, leaving theorem 4.2

as an universal conclusion for all these subroutines’ performances.

Estimating ϑ(it; Λ, ~u):By definition in section 2.3 and Poisson formula, we have

ϑ(it; Λ, ~u) =
∑
~x∈Λ

exp(−2πt|~x− ~u|2)

=
∑
~x′∈Λ

exp(−2πt|~x′|2) ·
∑
~x∈Λ

exp(−2πt|~x− ~u|2)/
∑
~x∈Λ

exp(−2πt|~x|2)

= ϑ(it; Λ) ·
∑
~y∈Λ∗

(exp(−2π|~y|2/4t) exp(2πi < ~u, ~y >)/
∑
~y∈Λ∗

exp(−2π|~y|2/4t))

= ϑ(it; Λ) · E
y←DΛ∗,4t

[exp(2πi < ~u, ~y >)] (4.8)

where the expectation is over the discrete Gaussian distribution DΛ∗,4t(y) on the dual lattice Λ∗. Notice

that this derives a product type of estimation as for θ(σ + it; Λ) and a theorem like theorem 4.2 can be

established in a similar way. In proving such theorem the only difference is to use a variant of lemma 4.3

(Banaszczk inequality) which is presented in the following:

Lemma 4.6. [4] : Let n = dim Λ, c > (2π)−1/2 and δn as in lemma 4.3. For any n-dimensional

vector u it is true that ∑
~x∈Λ:|~x−~u|>c

√
n

exp(−π|~x− ~u|2)/
∑
~x∈Λ

exp(−π|~x|2) < 2δn.

.We now present the subroutine to do the random estimation.

EstimTheta(it,Λ,u) :Version]3

Input: A pure complex number it with t > 0, a lattice Λ with basis B and a vector u in Rn;
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Parameter: A positive integer N ;

Output: An estimation of θ(it; Λ,u);

Operations:

(1)Call SampD(Λ∗(B∗), 4t,0 ) N times independently to compute

η̂∗N = N−1
N∑
j=1

δ(yj)

ÊN = N−1
N∑
j=1

exp(2πi < u, yj >)

where y1, . . . ,yN are dual lattice vectors independently sampled under the distribution DΛ∗,4t.

(2)output ϑ̂N (it; Λ, u) = (2t)−n/2 det(Λ∗)ÊN/η̂
∗
N

Estimating ϑ(σ + it; Λ, ~u): By definition in section 2.3 and Poisson formula, we have

ϑ(σ + it; Λ, ~u) = (i/2(σ + it))n/2 det(Λ∗)
∑
y∈Λ∗

exp(−2πi|y|2/4(σ + it)) exp(2πi < ~u, ~y >)

=(i/2(σ + it))n/2 det(Λ∗)
∑
y∈Λ∗

exp(−2πi|y|2(σ − it)/4(σ2 + t2)) exp(2πi < ~u, ~y >)

=(i/2(σ + it))n/2 det(Λ∗)ϑ(it/4(σ2 + t2); Λ∗) · E
y←DΛ∗,4(σ2+t2)/t

[exp(
−2πiσ|y|2

4(σ2 + t2)
+ 2πi < ~u, ~y >)]

so θ(σ + it; Λ,u) can be estimated by the following subroutine.

EstimTheta(σ + it,Λ,u): Version]4

Input: A complex number σ + it with t > 0, a lattice Λ with basis B = (b1, . . . , bn) and a vector u in

Rn.

Parameter: A positive integer N ;

Output: An estimation of θ(σ + it; Λ, ~u);

Operations:

(1)Call SampD(Λ∗(B∗), 4(σ2 + t2)/t,0 ) N times independently to compute

η̂∗N = N−1
N∑
j=1

δ(yj)

ÊN = N−1
N∑
j=1

exp(−2πiσ|yj |2/4(σ2 + t2) + 2πi < yj , u >)

where y1, . . . ,yN are dual lattice vectors independently sampled under the distribution ( 4.7)

(2)output ϑ̂N (σ + it; Λ) = (i/2(σ + it))n/2 det(Λ∗)ÊN/η̂
∗
N .

Remarks: Obviously the Gaussian sampler SampD can be called completely in concurrency in all the

four EstimTheta subroutines. As a result, all the four subroutines can work in just polynomial time
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complexity with N -concurrency. In addition, by calling SampD offline, we obtain an algorithm to solve

CVPP in polynomial time and N space complexity. In section 5 we’ll see that N = nO(n).

4.2 Computing Linear Combination Coefficients hα(Λ) and hα(Λ;u)

In solving SVP, let {ϕα(τ) : α = 1, . . . ,M} be the basis of space Mn/2(J(h)), M = dimMn/2(J(h)),

ϑ̂(τi; Λ)be theta-function value estimations at points τ1, . . . τM on the upper-half plane H. As long as

det(ϕα(τβ))1≤α,β≤M 6= 0, by solving the system of linear equations

ϑ̂(τα; Λ) =

M∑
β=1

ĥβ(Λ)ϕβ(τα) α = 1, . . . ,M (4.9)

all hα(Λ)’s estimations ĥα(Λ) can be obtained.

In solving CVP the situation is similar with the only difference that we need to solve the linear

system of equations

ϑ̂(τα; Λ, u) =
M∑
β=1

ĥβ(Λ, u)ϕβ(τα) α = 1, . . . ,M (4.10)

. For simplicity hereafter we only use the notation hα instead of hα(Λ) and hα(Λ;u).

In essence, what is really needed in our algorithms is not any specific basis of space Mn/2(J(h)), but

just a set of points τ1 . . . τM such that det(ϕα(τβ))1≤α,β≤M 6= 0, a set of function values {ϕα(τβ))}1≤α,β≤M
and a set of Fourier coefficients of these basis (see section 4.3). Moreover, notice the fact that Mk(J(h))

is a subspace in Mk(Γ(4h)), in practice we can even use the basis of the much better understood space

Mk(Γ(4h)) with only moderate prices in time and space complexity (see ( 2.15 ) and complexity analysis in

next section). Given any positive integer N, the space Mk(Γ(N)) has an orthogonal decomposition (with

respect to the Petersson inner product) [6, 13,24]where Sk(Γ(N)) is the so called cusp form subspace.

Mk(Γ(N)) = Sk(Γ(N))⊕ Ek(Γ(N))

For instance, the basis of subspace Ek(Γ(N)) can be selected to be the Eisenstein functions

G
(u,v)
k (τ) =

∑
1/(cτ + d)k

(c,d):(c,d)=(u,v)mod N

=
∑
m≥0

g
(u,v)
k (m)exp(2πimτ/N)

for all integer-pairs (u, v) of order N in ZN×ZN . It’s well known that these basis have Fourier coefficients

[6, 24]

g
(u,v)
k (m) = ((−2πi)k/(k − 1)!)

∑
sgn(j)jk−1exp(2πivj/N)

j=−m,...,+m,j|m,m/j=u mod N,j 6=0

m ≥ 1
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where sgn(j )=1 when j > 0, -1 when j < 0(we neglect g
(u,v)
k (0) which is not needed in our algorithm).

It’s clear from the formulas that the m-th Fourier coefficient can be computed in at most poly(m, logk)

time complexity. In the proceeding applications to solve lattice problems, both m and k are O(n) where

n is the lattice’s dimension. Similar situation holds for Sk(Γ(N)).

Since this paper is only concentrated on the algorithm’s logic and complexity analysis, we defer to

discuss all numerical computation related details in a separate paper, only pointing out that for integer

or half-integer k there exit efficient algorithms (polynomial in logk and m) to output the m-th Fourier

coefficient of the basis in space Mk(Γ(N)).

To complete the computation, we need to confirm that the condition det(ϕα(τβ))1≤α,β≤M 6= 0 can be

really satisfied. The following lemma guarantees the existence of such points τ1, . . . , τM on the upper-half

plane H.

Lemma 4.7. Let m be a positive integer, D be a domain in the upper-half plane H, ϕ1(τ), . . . , ϕm(τ)

be complex-valued functions holomorphic in D. If ϕ1(τ), . . . , ϕm(τ) are linearly independent over the

complex field, then there exist m points τ1, . . . , τm in D such that det(ϕα(τβ))1≤α,β≤m 6= 0.

Proof. (by induction on m) For m = 1 the result is trivial. Now suppose the lemma is true for m.

For m+1 complex linearly independent functions ϕ0(τ), ϕ1(τ), . . . , ϕm(τ) holomorphic in D, by induction

there exist points τ1, . . . , τm in D such that det(ϕα(τβ))1≤α,β≤m 6= 0. Because ϕ0(τ) is holomorphic and

not identically zero in D, we can always assume (by slightly changing some τβ’s if needed) that at least

one of the ϕ0(τβ)’s is non-zero. As a result, there exist (obtained by solving the following linear system

of equations) complex values a1, . . . , am such that

ϕ0(τβ) = a1ϕ1(τβ) + . . .+ amϕm(τβ) for all β = 1, . . . ,m (4.11)

and at least one of the aβ’s is non-zero. By complex linear independency among the functions ϕ0, ϕ1, . . . , ϕm, ϕ0 6=

a1ϕ1 + . . .+ amϕm so there exists a point τ0 in D such that

ϕ0(τ0) 6= a1ϕ1(τ0) + . . .+ amϕm(τ0) (4.12)

in consequence, det(ϕα(τβ))0≤α,β≤m 6= 0 (otherwise the following matrix
ϕ0(τ0) ϕ1(τ0) . . . ϕm(τ0)

ϕ0(τ1) ϕ1(τ1) . . . ϕm(τ1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ0(τm) ϕ1(τm) . . . ϕm(τm)


is singular so there exist a1, . . . , am such that

ϕ0(τβ) = a1ϕ1(τβ) + . . .+ amϕm(τβ) for all β = 0, 1, . . . ,m

24



Tian Yuan et al Modular Form Approach to Solving Lattice Problems

But due to det(ϕα(τβ))1≤α,β≤m 6= 0, these a1, . . . , am’s are exactly those in ( 4.11 ), a contradiction to

( 4.12 )

Remark: It’s easy to derive an efficient algorithm from the lemma’s proof to output a sequence of

points τ1, . . . , τm in D such that det(ϕα(τβ))1≤α,β≤m 6= 0, given the functions ϕ1, . . . , ϕm and domain D

satisfying the conditions specified in lemma 4.7.

4.3 Complete Algorithms

Now we integrate all the components to construct the complete algorithms to solve the optimization lattice

problems. As indicated before, these algorithms find not only the classical solutions to the optimization

SVP and CVP but also the number of lattice vectors which reach the minimums.

To make the algorithm’s structure clear, we introduce an oracle to help collect necessary information.

Oracle-M(h, k,m∗, t0)

Input: A positive integer h, a positive integer or half-integer k and two positive real numbers m∗, t0.

Output:

(1)A collection of Fourier coefficients {aα(m) : α = 1, . . . ,M,m = 1, . . . ,m∗} where M = dimCMk(J(h))

with respect to some basis {ϕα(τ) : α = 1, . . . ,M} of the space Mk(J(h)). aα(m) denotes the m-th

Fourier coefficient of ϕα(τ).

(2)A collection of points τ1, . . . , τM on the upper-half complex plane H such that

Imτα > t0 for each 1 ≤ α ≤M

and

det(ϕα(τβ))1≤α,β≤M 6= 0

(3)A collection of values {Φαβ : 1 ≤ α, β ≤M, the matrix (Φαβ) = (ϕα(τβ))−1}

Remark: The oracle-M can be implemented based on and only on the knowledge about the congruence

subgroup J(h) or, as explained in section 4.2, the group Γ(4h). As explained in section 4.2, any basis of

space Mk(J(h)) or even Mk(Γ(4h)) is sufficient for our algorithmic goals so we can always select the most

appropriate and efficient basis in practice. In summary, each Fourier coefficient aα(m) can be computed

with time complexity polynomial in k and m, and the points τ1, . . . , τM can be also determined efficiently.

Now we present our algorithms to solve the optimization lattice problem SVP and CVP.

Algorithm to Solve Optimization SVP:

Input: an integral lattice Λ(B) = Zb1 + . . .+ Zbn in Qn.

Parameters: Positive absolute constants c ≤ 1 and c0 > (2π)−1/2.
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Output: λ1(Λ) ≡ min{|x | : x in Λ and non-zero} and a∗(Λ) = |{x in Λ : |x | = λ1(Λ)}|.

Operations:

(1)Compute h = l(Λ), the level of lattice Λ, as stated in the paragraph following definition 2.1.

(2)Set m∗ = cn|det(Λ)|2/n and t0 > max(c2
0n, ω(logn)maxj |b̃j |−2). Call Oracle-M (h, n/2, m∗, t0) to

obtain:

A collection of Fourier coefficients {aα(m) : α = 1, . . . ,M, m = 1, . . . ,m∗} whereM = dimCMn/2(J(h))

with respect to some basis {ϕα(τ) : α = 1, . . . ,M} of space Mn/2(J(h)) and aα(m) denotes the m-th

Fourier coefficient of ϕα(τ);

A collection of points {τβ = σβ + itβ : β = 1, . . . ,M} such that tβ > t0 for each 1 ≤ β ≤ M and

det(ϕα(τβ))1≤α,β≤M 6= 0;

A collection of values {Φαβ : 1 ≤ α, β ≤M, the matrix (Φαβ) = (ϕα(τβ))−1}.

(3)For each β = 1, . . . ,M call EstimTheta version#2 with input (τβ,Λ(B)) and parameter N to obtain

ϑ̂(τβ; Λ)(N depends on n = dimΛ(B) and its value will be determined according to complexity analysis

in next section).

(4)compute ĥβ =
M∑
α=1

Φαβϑ̂(τα; Λ) for each β = 1, . . . ,M .

(5)For each m = 1, 2, . . . ,m∗ do:

Compute â(m) =
M∑
β=1

ĥβaβ(m); if â(m) > 1/2 then break;

(6)Output (m1/2, [â(m)]) where [x] denotes the integer nearest to x.

Algorithm to Solve Optimization CVP:

Input: an integral lattice Λ(B) = Zb1 + . . .+Zbn in Qn, a vector u in Zn\Λ(B) such that 2Bu in Zn.

Parameters: Positive absolute constants d ≤ 1/2 and c0 > (2π)−1/2.

Output: dist(Λ;u) ≡ min{|x− u| : x ∈ Λ} and b∗(Λ) = |{x ∈ Λ : |x− u| = dist(Λ;u)}|

Operations:

(1) and (2): The same as steps (1) and (2) in the algorithm to solve the optimization SVP, except that

m∗ = dn2h. All notations are inherited.

(3)For each β = 1, . . . ,M call EstimTheta version#4 with input (τβ,Λ(B),u) and parameter N to obtain

ϑ̂(τβ; Λ, u) (N depends on n = dimΛ(B) and its value will be determined according to complexity analysis

in next section).

(4)Compute ĥβ =
M∑
α=1

Φαβϑ̂(τα; Λ, u) for each β = 1, . . . ,M .
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(5)For each m = 1, 2, . . . ,m∗ do :

Compute b̂(m) =
M∑
β=1

ĥβaβ(m); if b̂(m) > 1/2 then break;

(6)Output (m1/2, [b̂(m)]) where [x] denotes the integer nearest to x.

5 Complexity Analysis

Before delve into the algorithm’s complexity, we need a fact about the modular form’s Fourier

coefficient’s asymptotic increasing degree.

Lemma 5.1. [6, 13] Let Γ be a congruence subgroup in SL2(Z) and ϕ(τ) be a modular form in

Mk(Γ) with Fourier coefficients a(m), m ≥ 1, then

|a(m)| ≤ Amk for any m ≥ 1.

where A is a constant irrelevant with k. For cusp form ϕ(τ) in Sk(Γ) with Fourier coefficients a(m),

m ≥ 1, the inequality is

|a(m)| ≤ Amk/2 for any m ≥ 1.

Let h = l(Λ), the level of lattice Λ. Now consider the algorithm for SVP. According to step (5), for

any 1 ≤ m ≤ m∗ we have

|the error of â(m)|

≤M max
1≤β≤M

|ĥβ| max
1≤β≤M

|aβ(m)|

≤M2 max
1≤α≤M

|the estimation error of ϑ̂(τα; Λ)| max
1≤α,β≤M

|Φαβ |Am
n/2

≤constant ·M2mn/2 max
1≤α≤M

|the estimation error of ϑ̂(τα; Λ)|

≤constant · (nh3)2(nh)n/2 max
1≤α≤M

|the estimation error of ϑ̂(τα; Λ)|

≤constant · n2+n/2hn/2+6 max
1≤α≤M

|the estimation error of ϑ̂(τα; Λ)|

The second inequality is derived by step(4) and the upper-bound for |aβ(m)|. The fourth inequality

is from ( 2.11 ), i. e., m ≤ m∗ = O(n|det(Λ)|2/n) and det(Λ)2|hn).

Notice that the exact value of each a(m), the Fourier coefficient of the theta function ϑ(τ ; Λ), is a

non-negative integer so it is sufficient to get the correct solution as long as |the error of â(m)| < 1/2.

As a result, we need |the estimation error of ϑ̂(τα; Λ)|=O(n−2−n/2h−n/2−6) for all τα’s in step(3). By
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theorem 4.2 and let ε1 = n−2−n/2h−n/2−6, a direct calculation shows that this requires the number of

(dual) lattice vector samples N , i. e., the times for the Gaussian sampler to be independently called,

should be N = O(n4+2nhn+12|det(Λ)|2 log(1/ε2)) = O(n4+2nh2n+12 log(1/ε2)) to make P [|ϑ̂N (σ+ it; Λ)−

ϑ(σ+ it; Λ)| < ε1] > 1− ε2, equivalently, to make P [|â(m)−a(m)| < 1/2] > 1− ε2. In summary, we have

proven:

Theorem 5.2. For the algorithm in section 4.3 to solve the optimization SVP for integral lattice

Λ, n = dim(Λ), h = l(Λ) and 1 > ε > 0, it holds that the probability of the algorithm terminating

with the correct solution (λ1(Λ), a∗(Λ)) is at least 1 − ε, if the number of lattice vector samples N =

O(n4+2nh2n+12 log(1/ε)).

For the algorithm to solve the optimization CVP, the result is the same.

Now we can estimate the algorithm’s time and space complexity. Let T (i) and S(i) denote the time

and space complexity in step i respectively, n = dim(Λ), h = l(Λ), S = max1≤i≤n the bit size of each

entry in bi, poly denote some (multivariate) polynomial. It’s easy to verify that:

both T (1) and S(1) are poly(n, S) according to the analysis after definition 2.1.

T (2) =
∑

1≤m≤m∗ poly(m,S) = poly(n, S, h) according to m∗ = O(n|det(Λ)|2/n) and det(Λ)2|hn, the

analysis in section 4.2 and remarks on oracle-M . S(2)=the space to store the outputs from the oracle-

M = O(m∗M +M2)poly(S) = O(n2h6)poly(S) = poly(n, S, h) according to remarks on lemma 2.3, i. e.,

M = O(nh3).

T (3) = Npoly(n, S) where N = O(n4+2nh2n+12log(1/ε)) as stated in theorem 5.2 and S(3) =

poly(n, S).

T (4) = Mpoly(S) = poly(n, S, h) and S(4) = poly(n, S).

T (5) = Mm∗poly(S) = poly(n, S, h) and S(5) = poly(nS).

In summary we obtain the central result in this paper:

Theorem 5.3. There exists a randomized algorithm to solve the optimization SVP with correctness

probability at least 1− ε for integral lattice instance Λ(b1, . . . , bn) of dimension n and level l(Λ), in time

complexity of n4+2nl(Λ)2n+12poly(n, S)log(1/ε) + poly(n, S, l(Λ)) and space complexity of poly(n, S, l(Λ))

where S = max1≤i≤nbit-size of each entry in bi.

For solving the optimization CVP, the same result holds.

Remarks: It is not really necessary for the algorithms in section 4.3 to store all the outputs from the

oracle in a batch. Instead they can get these outputs in sequence when needed. As a result, the space

complexity for both algorithms can be actually reduced to only poly(n, S), independent of the level l(Λ),

while the time complexity’s asymptotic bounds are unchanged.
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For high dimensional but low level lattices, these algorithms have relatively good performance be-

cause, due to the algorithm’s logic, in this case the only exponential factor in time complexity is con-

tributed by step (3), the times N to independently sample lattice vectors. All the rest operations in the

algorithms only contribute an additive poly(n, S) to time complexity. For example, for the lattice family

of constant-bounded levels but arbitrarily high dimensions, the time complexity is n4+2n+δ log(1/ε) with

δ > 0 for the correctness probability to be higher than 1− ε (such family of integral lattices always exist

and frequently occur in practice, for example, the self-dual lattices of arbitrary dimension have their

levels only 1. Lots of such important examples with interesting applications can be found,e. g., in [5]).

We conclude the complexity results in this useful case in:

Corollary 5.4. There exists a randomized algorithm to solve the optimization SVP such that on

input the integral lattice family {Λn}n≥1 of n = dimΛn and level l(Λ) = O(nα), α > 0, the algorithm

outputs the correct solution with probability at least 1−ε in time complexity of n(α+1)2npoly(n, S) log(1/ε)

and space complexity of poly(n, S) where S = max1≤i≤nbit-size of each entry in base bi.

For solving the optimization CVP, the same result holds.

Another characteristic of our algorithm is its ability to be parallelized to be polynomial in time

complexity. As noticed in the end of section 4.1 every EstimTheta subroutine can be easily implemented

in parallel, i. e., to sample the dual lattice by calling N independent SampD ’s in concurrency, and in this

concurrent version not only each EstimTheta but also the whole algorithm to solve SVP or CVP becomes

polynomial in time complexity. Such characteristic will be valuable in practice. Notice that step (5) in

the algorithms in section 4.3 can be also parallelized on m∗ processors. In summary, we have:

Corollary 5.5. (1)There exists a randomized algorithm to solve the optimization SVP such that

on input the integral lattice family {Λn}n≥1 of n = dimΛn and level l(Λ) = O(nα), α > 0, it out-

puts the correct solution with probability at least 1 − ε in time complexity of poly(n, S) on at most

n(α+1)2npoly(n, S)log(1/ε) processors, where S = max1≤i≤nbit-size of each entry in base bi.

(2)For solving the optimization CVP, the same result holds.

(3)For solving CVPP, there exists a randomized algorithm such that on input {(Λn,u)}n≥1 where the

integral lattice Λn’s are as in (1), it outputs the correct solution with probability at least 1 − ε in time

complexity of poly(n, S) and space complexity of n(α+1)2npoly(n, S)log(1/ε), where S = max1≤i≤nbit-size

of each entry in base bi.

Before ending the section we make a brief analysis on why the Fourier coefficient a(m) is not

computed directly by approximating the following integral

a(m) = exp(2πmt)

∫ 1

0
dσϑ̂(σ + it; Λ)exp(−2πimσ) m = 1, 2, . . . ,m∗
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where ϑ̂(σ + it; Λ) is the estimation for θ(σ + it; Λ) and t > 0. The reason is that, for the error of

all such computed a(m)’s to be within 1/2, the estimation error of ϑ̂(σ + it; Λ) needs to be within

O(exp(−2πm∗t) = O(exp(−2πl(Λ)n2)) implying that the number of lattice vector samples in step (3), N ,

needs to be N = O(exp(4πl(Λ)n2)log(1/ε)) to make the correctness probability at least 1−ε, significantly

inferior to the performance concluded in theorem 5.3.

6 Extensions and Future Works

In this paper we constructed lattice problem algorithms by exploiting the algebraic properties of

(integral) lattice associated theta functions. To solve SVP, e. g., such function is:

ϑ(τ ; Λ) ≡
∑
~x∈Λ

exp(2πiτ |x|2)

where |x | denotes the vector x ’s `2-norm and τ = σ+ it is a complex variable on the upper-half complex

plane. On one hand this approach is specific to `2-norm, on the other hand, it can be extended to solve

more generalized types of lattice problems or problems of lattices with more special algebraic structures.

In this section we give a brief description on some of these extensions.

6.1 Algorithms for Generalized SVP

SVP for (integral) lattices is a special case of the following quadratic minimization problem

min{z TAz : z in Zn and nonzero} (6.1)

where A is a given positive-definite and symmetric integral matrix. When A is the Grahm matrix of

some lattice Λ(B), e. g., A = BTB, ( 6.1 ) becomes SVP for lattice Λ. But in general cases none of the

existed algorithms to solve lattice SVP can be extended to solve ( 6.1 ) because all these solvers depend

on lattice specific geometric properties the general integral quadratic form doesn’t have. However, the

techniques in our approach still work in case of ( 6.1 ). The theta function associated with the integral

matrix A is

ϑ(τ ;A) ≡
∑
~z∈Zn

exp(2πiτzTAz) (6.2)

where τ is on the upper-half complex plane. Its first non-zero Fourier coefficient a(m) among non-constant

items, i. e., the m∗ such that a(m) = 0 for all 1 ≤ m ≤ m∗ − 1 and a(m∗) 6= 0, implies that

m∗ = min{z TAz : z in Zn and nonzero}
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and a(m∗) is exactly the number of integral solutions of the quadratic equation m∗ = z TAz . Therefore

the goal is still to compute such m∗ in order to solve ( 6.1 ) and this is feasible because of ϑ(τ ;A)’s

modularity, which is the consequence of Poisson formula (details see the (appendix A.3)

ϑ(τ ;A) = (i/2τ)n/2(detΛ)1/2ϑ(−1/4τ,A−1) (6.3)

Let h be any positive integer such that hA−1 is also an integral matrix (in practice h can be selected

to be the minimal one, denoted l(A)), by the same calculations as in section 2.3 we can get

ϑ(τ/(4hτ + 1);A) = (4hτ + 1)n/2ϑ(τ ;A) (6.4)

and ϑ(τ + 1;A) = ϑ(τ ;A)due to A′s integrality (6.5)

hence:

Lemma 6.1. For any n-by-n integral and positive-definite symmetric matrix A and the integer h

such that hA−1 is also integral, ϑ(τ ;A) is a modular form of weight n/2 with respect to the congruence

subgroup generated by 1 1

0 1

 and

 1 0

4h 1


i. e., ϑ(τ ;A) ∈Mn/2(J(h))

The algorithm to solve the generalized SVP ( 6.1 ) on input matrix A can be constructed in almost

the same way as in section 4 with the only (technical) differences that the sampling subroutines now

work in lattice Zn. For example, Dt is now a distribution for lattice vectors in Zn

Dt(z) ≡ exp(−2πzTAzt)/
∑
z′∈Zn

exp(2πiτz′TAz′t) for z inZn (6.6)

and all other sampling distributions are modified in this way. In summary we have

Theorem 6.2. There exists a randomized algorithm to solve the generalized optimization SVP ( 6.1

) with correctness probability at least 1-ε on input the n-by-n matrix instance A with level l(A), in time

complexity of n4+2nl(A)2n+12poly(n, S)log(1/ε)+poly(n, S, l(A)) and space complexity of poly(n, S, l(A))

where S = max1≤i≤nbit-size of A’s entries.

In addition, this algorithm can be parallelized to be in time complexity of poly(n, S) on n(α+1)2npoly(n, S)log(1/ε)

processors where S = max1≤i≤nbit-size of each entry in matrix A.

As remarked on theorem 5.3, it is not really necessary for the algorithm to store all the outputs from

the oracle in a batch. In stead it can get these outputs /on-line0 and in sequence when needed. As a

result, the space complexity can be actually reduced to only poly(n, S), independent of the level l(A),

while the time complexity’s asymptotic bounds are unchanged
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6.2 Dealing with SVP and CVP in Ideal Lattices

For the number field K of degree n, its integer ring OK and any (fractional) ideal J are ideal lat-

tices [5,14] of dimension n which have indispensable effect, e. g., in constructing innovative cryptography

schemes for trusted cloud computing [7] based upon variants of SVP, CVP or other related computation-

ally hard problems.

Ideal lattices have special algebraic properties the general lattices don’t have. The associated theta

functions have more special properties on which basis we might develop more efficient (and more tech-

nically involved) algorithms to estimate θ(τ ; Λ) and θ(τ ; Λ, ~u) in our framework. Applying our approach

in this paper to such case is helpful not only to developing more efficient algorithms but also to dis-

closing how the problem’s computational hardness is impacted by the number field’s intrinsic algebraic

properties, an interesting and valuable open problem for us to proceed in the future.
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Appendix A Poisson Formulas

For reading convenience, in this appendix the general Poisson formula is deduced with applications

to the lattice-associated theta functions.

A.1 The General Formula

Let n-dimensional Fourier transformation

f̃(~ξ) ≡
∫
Rn
dnxf(~x) exp(−2πi < ~x, ~ξ >)

on smooth function f(x) quickly decreasing when |x| → ∞. Let u be arbitrary vector in Rn, the most

general Poisson formula is

∑
x∈Λ

f(~x+ ~u) = detΛ∗
∑
y∈Λ∗

f̃(y)exp(2πi < ~u, ~y >) (A.1)

In particular (setting u to be zero-vector)
∑
x∈Λ

f(~x) = detΛ∗
∑
y∈Λ∗

f̃(y)

Proof. Calculate the Fourier expansion of the following Λ-periodic function

F (u; Λ) ≡
∑
x∈Λ

f(~x+ ~u) =
∑
y∈Λ∗

a(~y)exp(2πi < ~u, ~y >)

we have

a(y) = (detΛ)−1

∫
Parallelotope(Λ)

dnuF (~u; Λ)exp(−2πi < ~u, ~y >)

= detΛ∗
∑
x∈Λ

∫
Parallelotope(Λ)

dnuf(~x+ ~u)exp(−2πi < ~u, ~y >)

= detΛ∗
∑
x∈Λ

∫
x+Parallelotope(Λ)

dnuf(~u)exp(−2πi < ~u, ~y >)

= detΛ∗
∫
Rn
dnuf(~u)exp(−2πi < ~u, ~y >)

= detΛ∗f̃(~y)

Then ( A.1 ) follows

Equivalently, ( A.1 )’s generalized functional version is

∑
x∈Λ

exp(−2πi < ~x+ ~u, ~ξ >) = detΛ∗
∑
y∈Λ∗

δn(~ξ − ~y)exp(−2πi < ~u, ~y >)
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A.2 Poisson Formulas for Lattice-Associated θ(τ ; Λ, u, v):

θ(τ ; Λ, ~u,~v) ≡
∑
~x∈Λ

exp(−2πi|~x− ~u|2 + 2πi < ~x,~v >) (A.2)

where Λ is a lattice (unnecessary to be rational) in Rn, || denotes the `2 norm in Rn, u and v are arbitrary

vectors in Rn, τ = σ+ it is a complex variable on the upper-half complex plane. θ(τ ; Λ, ~u,~v) is a template

of a few lattice-associated theta functions. Its Poisson formula is:

ϑ(τ ; Λ, ~u,~v) = (i/2τ)n/2detΛ∗exp(2πi < ~u,~v >)θ(−1/4τ ; Λ∗, ~v,−~u) (A.3)

By Λ∗∗ = Λ, the equivalent version is

ϑ(τ ; Λ∗, ~u,~v) = (i/2τ)n/2detΛexp(2πi < ~u,~v >)θ(−1/4τ ; Λ∗, ~v,−~u) (A.4)

Proof. Let f(x) ≡ exp(−|x|2/2σ2), direct calculation shows that

f̃(~ξ) = (2πσ2)n/2 exp(−2π2σ2|ξ|2)

It follows from ( A.1 ) that for any real σ

∑
x∈Λ

exp(−|~x− ~u|2)/2σ2 + 2πi < ~x, ~y >)

=(2πσ2)n/2detΛ∗
∑
y∈Λ∗

exp(−2π2σ2|~y − ~v|2 − 2πi < ~u, ~y − ~v >)

=(2πσ2)n/2 exp(2πi < ~u,~v >)detΛ∗
∑
y∈Λ∗

exp(−2π2σ2|~y − ~v|2 − 2πi < ~u, ~y >)

Let 1/2σ2 = −2πiτ and because the above functions on both sides are holomorphic wherever Imτ > 0,

( A.3 ) follows due to the principle of analytic continuation.

A.3 Poisson Formula for Matrix-Associated θ(τ ; A):

ϑ(τ ;A) ≡
∑
z∈Zn

exp(2πiτzTAz) (A.5)

where A is a positive-definite symmetric matrix. Let f(x ) ≡ exp(−|xTAx|/2σ2), by calculation its

Fourier transformation

f̃(ξ) = (detA)−1/2(2πσ2)n/2 exp(−2π2σ2ξTA−1ξ)
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It follows from ( A.1 ) that for any real number Υ

∑
z∈Zn

exp(−xTAx/2σ2) = (detA)−1/2(2πσ2)n/2
∑
y∈Zn

exp(−2π2σ2yTA−1y)

By setting 1/2σ2 = −2πiτ we derive the Poisson formula

ϑ(τ : A) = (i/2τ)n/2(detΛ)1/2ϑ(−1/4τ,A−1) (A.6)
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