
On Tight Security Proofs for Schnorr Signatures

Nils Fleischhacker Tibor Jager Dominique Schröder

April 7, 2014

Abstract

The Schnorr signature scheme is the most efficient signature scheme based on the discrete loga-
rithm problem and a long line of research investigates the existence of a tight security reduction for
this scheme. Almost all recent works present lower tightness bounds and most recently Seurin (Euro-
crypt 2012) showed that under certain assumptions the non-tight security proof for Schnorr signatures
by Pointcheval and Stern (Eurocrypt 1996) is essentially optimal. All previous works in this direction
rule out tight reductions from the (one-more) discrete logarithm problem. In this paper we introduce a
new meta-reduction technique, which shows lower bounds for the large and very natural class of generic
reductions. A generic reduction is independent of a particular representation of group elements and most
reductions in state-of-the-art security proofs have this desirable property. Our approach shows uncondi-
tionally that there is no tight generic reduction from any natural computational problem Π defined over
algebraic groups (including even interactive problems) to breaking Schnorr signatures, unless solving Π
is easy.

Keywords: Schnorr signatures, black-box reductions, generic reductions, algebraic reductions, tight-
ness.

1 Introduction

The security of a cryptosystem is nowadays usually confirmed by giving a security proof. Typically, such a
proof describes a reduction from some (assumed-to-be-)hard computational problem to breaking a defined
security property of the cryptosystem. A reduction is considered as tight, if the reduction solving the hard
computational problem has essentially the same running time and success probability as the attacker on the
cryptosystem. Essentially, a tight reduction means that a successful attacker can be turned into an efficient
algorithm for the hard computational problem without any significant increase in the running time and/or
significant loss in the success probability.1 The tightness of a reduction thus determines the strength of the
security guarantees provided by the security proof: a non-tight reduction gives weaker security guarantees
than a tight one. Moreover, tightness of the reduction affects the efficiency of the cryptosystem when
instantiated in practice: a tighter reduction allows to securely use smaller parameters (shorter moduli, a
smaller group size, etc.). Therefore it is a very desirable property of a cryptosystem to have a tight security
reduction.

In the domain of digital signatures tight reductions are known for many fundamental schemes, like
Rabin/Williams signatures (Bernstein, Eurocrypt 2008 [5]), many strong-RSA-based signatures (Schäge,
Eurocrypt 2011 [23]), and RSA Full-Domain Hash (Kakvi and Kiltz, Eurocrypt 2012 [16]). The Schnorr

1Usually even a polynomially-bounded increase/loss is considered as significant, if the polynomial may be large. An in-
crease/loss by a small constant factor is not considered as significant.

1



signature scheme [24, 25] is one of the most fundamental public-key cryptosystems. Pointcheval and Stern
have shown that Schnorr signatures are provably secure, assuming the hardness of the discrete logarithm
(DL) problem [20], in the Random Oracle Model (ROM) [3]. However, the reduction of Pointcheval and
Stern from DL to breaking Schnorr signatures is not tight: it loses a factor of q in the time-to-success ratio,
where q is the number of random oracle queries performed by the forger.

A long line of research investigates the existence of tight security proofs for Schnorr signatures. At
Asiacrypt 2005 Paillier and Vergnaud [19] gave a first lower bound showing that any algebraic reduction
(even in the ROM) converting a forger for Schnorr signatures into an algorithm solving some computational
problem Π must lose a factor of at least q1/2. Their result is quite strong, as they rule out reductions even for
adversaries that do not have access to a signing oracle and receive as input the message for which they must
forge (UF-NM, see Section 2.1 for a formal definition). However, their result also has some limitations:
It holds only under the interactive one-more discrete logarithm assumption, they only consider algebraic
reductions, and they only rule out tight reductions from the (one-more) discrete logarithm problem. At
Crypto 2008 Garg et al. [14] refined this result, by improving the bound from q1/2 to q2/3 with a new analysis
and show that this bound is optimal if the meta-reduction follows a particular approach for simulating the
forger. At Eurocrypt 2012 Seurin [26] finally closed the gap between the security proof of [20] and known
impossibility results, by describing an elaborate simulation strategy for the forger and providing a new
analysis. All previous works [19, 14, 26] on the existence of tight security proofs for Schnorr signatures
have the following in common:

1. They only rule out the existence of tight reductions from certain strong computational problems,
namely the (one-more) discrete logarithm problem [1]. Reduction from weaker problems like, e.g.,
the computational or decisional Diffie-Hellman problem (CDH/DDH) are not considered.

2. The impossibility results are themselves only valid under the very strong OMDL hardness assumption.
3. They hold only with respect to a limited (but natural) class of reductions, so-called algebraic reduc-

tions.
It is not unlikely that first the inexistence of a tight reduction from strong computational problems is

proven, and later a tight reduction from some weaker problem is found. A concrete recent example in the
domain of digital signatures where this has happened is RSA Full-Domain Hash (RSA-FDH) [4]. First, at
Crypto 2000 Coron [7] described a non-tight reduction from solving the RSA-problem to breaking the secu-
rity of RSA-FDH, and at Eurocrypt 2002 [8] showed that under certain conditions no tighter reduction from
RSA can exist. Later, at Eurocrypt 2012, Kakvi and Kiltz [16] gave a tight reduction from solving a weaker
problem, the so-called Phi-Hiding problem. The leverage to circumvent the aforementioned impossibility
results used by Kakvi and Kiltz was to assume hardness of a weaker computational problem. As all previous
works rule out only tight reductions from strong computational problems like DL and OMDL, this might
happen again with Schnorr signatures and the following question was left open for 25 years:

Does a tight security proof for Schnorr signatures based on any weaker computational problem
exist?

Our contribution In this work we answer this question in the negative ruling out the existence of tight
reductions for virtually all natural computational problems defined over abstract algebraic groups. Like pre-
vious works, we consider universal unforgeability under no-message attacks (UF-NM-security). Moreover,
our results hold unconditional. In contrast to previous works, we consider generic reductions instead of
algebraic reductions, but we believe that this restriction is marginal: The motivation of considering only
algebraic reductions from [19] applies equally to generic reductions. In particular, to the best of our knowl-
edge all known examples of algebraic reductions are generic.

2



Our main technical contribution is a new approach for the simulation of a forger in a meta-reduction,
i.e., “a reduction against the reduction”, which differs from previous works [19, 14, 26] and which allows
us to show the following main result:

Theorem (informal). For almost any natural computational problem Π, there is no tight generic reduction
from solving Π to breaking the universal unforgeability under no-message attacks of Schnorr signatures.

Technical approach. We begin with the hypothesis that there exists a tight generic reduction R from
some hard (and possibly interactive) problem Π to the UF-NM-security of Schnorr signatures. Then we
show that under this hypothesis there exists an efficient algorithmM, a meta-reduction, which efficiently
solves Π. This implies that the hypothesis is false. The meta-reductionM =MR runs R as a subroutine,
by efficiently simulating the forger A forR.

All previous works in this direction [19, 14, 26] followed essentially the same approach. The difficulty
with meta-reductions is that M = MR must efficiently simulate the forger A for R. Previous works
resolved this by using a discrete logarithm oracle provided by the OMDL assumption, which allows to
efficiently compute valid signatures in the simulation of forgerA. This is the reason why all previous results
are only valid under the OMDL assumption, and were only able to rule out reductions from the discrete log
or the OMDL problem. To overcome these limitations, a new simulation technique is necessary.

We revisit the simulation strategy of A applied in known meta-reductions, and put forward a new tech-
nique for proving impossibility results. It turns out that considering generic reductions provides a new
leverage to simulate a successful forger efficiently, essentially by suitably re-programming the group repre-
sentation to compute valid signatures. The technical challenge is to prove that the reduction does not notice
that the meta-reduction changes the group representation during the simulation, except for some negligi-
ble probability. We show how to prove this by adopting the “low polynomial degree” proof technique of
Shoup [27], which originally was introduced to analyze the complexity of certain algorithms for the discrete
logarithm problem, to the setting considered in this paper.

This new approach turns out to be extremely powerful, as it allows to rule out reductions from any (even
interactive) representation-invariant computational problem. Since almost all common hardness assump-
tions in algebraic groups (e.g., DL, CDH, DDH, OMDL, DLIN, etc.) are based on representation-invariant
computational problems, we are able to rule out tight generic reductions from virtually any natural computa-
tional problem, without making any additional assumption. Even though we apply it specifically to Schnorr
signatures, the overall approach is general. We expect that it is applicable to other cryptosystems as well.

Generic reductions vs. algebraic reductions Similar to algebraic reductions, a generic reduction per-
forms only group operations. The main difference is that the sequence of group operations performed by an
algebraic reduction may (but, to our best knowledge, in all known examples does not) depend on a particular
representation of group elements. A generic reduction, however, is required to work essentially identical for
any representation of group elements. Generic reductions are by definition more restrictive than algebraic
ones, however, we explain below why we do not consider this restriction as very significant.

An obvious question arising with our work is the relation between algebraic and generic reductions. Is a
lower bound for generic reductions much less meaningful than a bound for algebraic reductions? We argue
that the difference is not very significant. The restriction to algebraic reductions was motivated by the fact
most reductions in known security proofs treat the group as a black-box, and thus are algebraic [19, 14, 26].
However, the same motivation applies to generic reductions as well, with exactly the same arguments. In
particular, virtually all examples of algebraic reductions in the literature are also generic.

3



The vast majority of reductions in common security proofs for group-based cryptosystems treats the
underlying group as a black-box (i.e., works for any representation of the group), and thus is generic. This is
a very desirable feature, because then the cryptosystem can securely be instantiated with any group in which
the underlying computational problem is hard. In contrast, representation-specific security proofs would
require to re-prove security for any particular group representation the scheme is used with. Therefore
considering generic reductions seems very reasonable.

Generic reductions vs. security proofs in the generic group model. We stress that we model only the
reduction R as a generic algorithm. We do not restrict the forger A in this way, as commonly done in
security proofs in the generic group model. It may not be obvious that this is possible, because A expects
as input group elements in some specific encoding, while R can only specify them in the form of random
encodings. However, the reduction only gets access to the adversary as a blackbox, which means that the
adversary is external to the reduction, and the environment in which the reduction is run can easily translate
between the encodings used by reduction and adversary. Further note, that while some reduction from a
problem Π may be generic, the actual algorithm solving said problem is notR itself, but the composition of
R andA which may very well be non-generic. In particular, this means that any results about equivalence of
interesting problems in the generic group model do not apply to the reduction. See Section 2.4 and Figure 2
for further explanation.

Further related work. Dodis et al. [9] showed that it is impossible to reduce any computational prob-
lem to breaking the security of RSA-FDH in a model where the RSA-group Z∗N is modeled as a generic
group. This result extends [10]. Coron [8] considered the existence of tight security reductions for RSA-
FDH signatures [4]. This result was generalized by Dodis and Reyzin [11] and later refined by Kiltz and
Kakvi [16].

In the context of Schnorr signatures, Neven et al. [18] described necessary conditions the hash func-
tion must meet in order to provide existential unforgeability under chosen-message attacks (EUF-CM), and
showed that these conditions are sufficient if the forger (not the reduction!) is modeled as a generic group
algorithm.

In [12] Fischlin and Fleischhacker presented a result also about the security of Schnorr signatures which
is orthogonal to our result. They show, again under the OMDL assumption, that a large class of reductions
has to rely on re-programming the random oracle. Essentially they prove that in the non-programmable
ROM [13] no reduction from the discrete logarithm problem can exist that invokes the adversary only ever
on the same input. This class is limited, but encompasses all forking-lemma style reductions used to prove
Schnorr signatures secure in the programmable ROM. As said before, the result is orthogonal to our main
result, as it considers reductions in the non-programmable ROM.

2 Preliminaries

Notation. If S is a set, we write s ←$ S to denote the action of sampling a uniformly random element s
from S. If A is a probabilistic algorithm, we denote with a←$ A the action of computing a by running A.
We denote with ∅ the empty string, the empty set, as well as the empty list, the meaning will always be clear
from the context. We write [n] to denote the set of integers from 1 to n, i.e., [n] := {1, . . . , n}.

4



2.1 Schnorr Signatures

Let G be a group of order p with generator g, and letH : G×{0, 1}k → Zp be a hash function. The Schnorr
signature scheme [24, 25] consists of the following efficient algorithms (Gen, Sign,Vrfy).
Gen(g): The key generation algorithm takes as input a generator g of G. It chooses x ←$ Zp, computes

X := gx, and outputs (X,x).
Sign(x,m): The input of the signing algorithm is a private key x and a message m ∈ {0, 1}k. It chooses a

random integer r ←$ Zp, sets R := gr as well as c := H(R,m), and computes y := x · c+ r mod p.
Vrfy(X,m, (R, y)): The verification algorithm outputs the truth value of gy ?

= Xc ·R, where c = H(R,m).

Universal Unforgeability under No-Message Attacks. Consider the following security experiment in-
volving a signature scheme (Gen, Sign,Vrfy), an attacker A, and a challenger C.

1. The challenger C computes a key-pair (X,x) ←$ Gen(g) and chooses a message m ←$ {0, 1}k
uniformly at random. It sends (X,m) to the adversary A.

2. Eventually, A stops, outputting a signature σ.

Definition 1. We say thatA (ε, t)-breaks the UF-NM-security of (Gen, Sign,Vrfy), ifA runs in time at most
t and

Pr [A(X,m) = σ : Vrfy(X,m, σ) = 1] ≥ ε.

Note that UF-NM-security is a very weak security goal for digital signatures. Since we are going to prove a
negative result, this is not a limitation, but makes our result only stronger. In fact, if we rule out reductions
from some problem Π to forging signatures in the sense of UF-NM, then the impossibility clearly holds for
stronger security goals, like existential unforgeability under adaptive chosen-message attacks [15], too.

2.2 Computational Problems

Let G be a cyclic group of order p and g ∈ G a generator of G. We write desc(G, g) to denote the list of
group elements desc(G, g) = (g, g2, . . . , gp) ∈ Gp. We say that desc(G, g) is the enumerating description
of G with respect to g.

Definition 2. A computational problem Π in G is specified by three (computationally unbounded) proce-
dures Π = (GΠ,SΠ,VΠ), with the following syntax.
GΠ(desc(G, g)) takes as input an enumerating description of G, and outputs a state st and a problem in-

stance (the challenge) C = (C1, . . . , Cu, C
′) ∈ Gu × {0, 1}∗. We assume in the sequel that at least

C1 is a generator of G.
SΠ(desc(G, g), st,Q) takes as input desc(G, g), a state st, and Q = (Q1, . . . , Qv, Q

′) ∈ Gv×{0, 1}∗, and
outputs (st′, A) where st′ is an updated state and A = (A1, . . . , Aν , A

′) ∈ Gν × {0, 1}∗.
VΠ(desc(G, g), st, S, C) takes as input (desc(G, g), st, C) as defined above, and S = (S1, . . . , Sw, S

′) ∈
Gw × {0, 1}∗. It outputs 0 or 1.

If SΠ always responds with A = ∅ (i.e., the empty string), then we say that Π is non-interactive. Other-
wise it is interactive. The exact description and distribution of st, C,Q,A, S depends on the considered
computational problem.

Definition 3. An algorithmA (ε, t)-solves the computational problem Π ifA has running time at most t and
wins the following interactive game against a (computationally unbounded) challenger C with probability at
most ε, where the game is defined as follows:

5



1. The challenger C generates an instance of the problem (st, C)←$ GΠ(desc(G, g)) and sends C toA.
2. A is allowed to issue an arbitrary number of oracle queries to C. To this end, A provides C with a

query Q. C runs (st′, A)←$ SΠ(desc(G, g), st,Q), updates the state st := st′, and responds with A.
3. Finally, algorithm A outputs a candidate solution S. The algorithm A wins the game (i.e., solves the

computational problem correctly) iff VΠ(desc(G, g), st, C, S) = 1.

Example 4. The discrete logarithm problem in G is specified by the following procedures. GΠ(desc(G, g))
outputs (st, C) with st = ∅ andC = (g, h), where h←$ G is a random group element. SΠ(desc(G, g), st,Q)
always outputs (st′, A) = (st, ∅). VΠ(desc(G, g), st, C, S) interprets S = S′ ∈ {0, 1}∗ canonically as an
integer in Zp, and outputs 1 iff h = gS

′
.

Example 5. We describe the u-one-more discrete logarithm problem (u-OMDL) [2, 1] in G with the fol-
lowing algorithms. GΠ(desc(G, g)) outputs (st, C) where C = (C1, . . . , Cu) ←$ Gu consists of u ran-
dom group elements and st = 0. The algorithm SΠ(desc(G, g), st,Q) takes as input state st and group
element Q ∈ G. It responds with st′ := st + 1 and A = A′ ∈ {0, 1}∗, where A′ canonically inter-
preted as an integer in Zp satisfies gA

′
= Q. The verification algorithm VΠ(desc(G, g), st, C, S) interprets

S = (S′1, . . . , S
′
u) ∈ {0, 1}∗ canonically as a vector of u integers in Zp, and outputs 1 iff st < u and

gi = gS
′
i for all i ∈ [u].

Example 6. The UF-NM-forgery problem for Schnorr signatures in G with hash function H is specified by
the following procedures. GΠ(desc(G, g)) outputs (st, C) with st = m and C = (g,X,m) ∈ G2×{0, 1}k,
where X = gx for x ←$ Zp and m ←$ {0, 1}k. SΠ(desc(G, g), st,Q) always outputs (st′, A) = (st, ∅).
The verification algorithm VΠ(desc(G, g), st, C, S) parses S as S = (R, y) ∈ G× Zp, sets c := H(R, st),
and outputs 1 iff Xc ·R = gy.

2.3 Representation-Invariant Computational Problems

In our impossibility results given below, we want to rule out the existence of a tight reduction from as large
a class of computational problems as possible. Ideally, we want to rule out the existence of a tight reduction
from any computational problem that meets Definition 2. However, it is easy to see that this is not achievable
in this generality: as Example 6 shows, the problem of forging Schnorr signatures itself is a problem that
meets Definition 2. However, of course there exists a trivial tight reduction from the problem of forging
Schnorr signatures to the problem of forging Schnorr signatures! Therefore we need to restrict the class of
considered computational problems to exclude such trivial, artificial problems.

We introduce the notion of representation-invariant computational problems. This class of problems
captures virtually any reasonable computational problem defined over an abstract algebraic group, even
interactive assumptions, except for a few extremely artificial problems. In particular, the problem of forging
Schnorr signatures is not contained in this class (see Example 9 below).

Intuitively, a computational problem is representation-invariant, if a valid solution to a given problem
instance remains valid even if the representation of group elements in challenges, oracle queries, and solu-
tions is converted to a different representation of the same group. More formal is the following definition:

Definition 7. Let G, Ĝ be groups such that there exists an isomorphism φ : G → Ĝ. We say that Π is
representation-invariant, if for all isomorphic groups G, Ĝ and for all generators g ∈ G, all C = (C1, . . . ,
Cu, C

′) ←$ GΠ(desc(G, g)), all st = (st1, . . . , stt, st
′) ∈ Gt × {0, 1}∗, and all S = (S1, . . . , Sw, S

′) ∈
Gw × {0, 1}∗ holds that VΠ(desc(G, g), st, C, S) = 1 ⇐⇒ VΠ(desc(Ĝ, ĝ), ŝt, Ĉ, Ŝ) = 1, where ĝ =
φ(g) ∈ G′, Ĉ = (φ(C1), . . . , φ(Cu), C ′), ŝt = (φ(st1), . . . , φ(stt), st

′), and Ŝ = (φ(S1), . . . , φ(Sw), S′).

6



Observe that this definition only demands the existence of an isomorphism φ : G→ Ĝ and not that it is
efficiently computable.

Example 8. The discrete logarithm problem is representation-invariant. Let C = (g, h) ∈ G2 be a discrete
log challenge, with corresponding solution S′ ∈ {0, 1}∗ such that S′ canonically interpreted as an integer
S′ ∈ Zp satisfies gS

′
= h ∈ G. Let φ : G→ Ĝ be an isomorphism, and let (ĝ, ĥ) := (φ(g), φ(h)). Then it

clearly holds that ĝŜ
′

= ĥ, where Ŝ′ = S′.

Virtually all common hardness assumptions in algebraic groups are based on representation-invariant
computational problems. Popular examples are, for instance, the discrete log problem (DL), computational
Diffie-Hellman (CDH), decisional Diffie-Hellman (DDH), one-more discrete log (OMDL), decision linear
(DLIN), and so on.

Example 9. The UF-NM-forgery problem for Schnorr signatures with hash functionH is not representation-
invariant for any hash function H . Let C = (g,X,m) ←$ GΠ(desc(G, g)) be a challenge with solution
S = (R, y) ∈ G× Zp satisfying Xc ·R = gy, where c := H(R,m).

Let Ĝ be a group isomorphic to G, such that G ∩ Ĝ = ∅ (that is, there exists no element of Ĝ having
the same representation as some element of G).2 Let G → Ĝ denote the isomorphism. If there exists any
R such that H(R,m) 6= H(φ(R),m) in Zp (which holds in particular if H is collision resistant), then we
have

gy = XH(R,m) ·R but φ(g)y 6= φ(X)H(φ(R),m) · φ(R).

Thus, a solution to this problem is valid only with respect to a particular given representation of group
elements.

The UF-NM-forgery problem of Schnorr signatures is not representation-invariant, because a solution to
this problem involves the hash value H(R,m) that depends on a concrete representation of group element
R. We consider such complexity assumptions as rather unnatural, as they are usually very specific to certain
constructions of cryptosystems.

2.4 Generic Reductions

In this section we recall the notion of generic groups, loosely following [27] (cf. also [17, 22], for instance),
and define generic (i.e., representation independent) reductions.

Generic groups. Let (G, ·) be a group of order p and E ⊆ {0, 1}dlog pe be a set of size |E| = |G|. If
g, h ∈ G are two group elements, then we write g ÷ h for g · h−1. Following [27] we define an encoding
function as a random injective map φ : G → E. We say that an element e ∈ E is the encoding assigned to
group element h ∈ G, if φ(h) = e.

A generic group algorithm is an algorithmR which takes as input Ĉ = (φ(C1), . . . , φ(Cu), C ′), where
φ(Ci) ∈ E is an encoding of group element Ci for all i ∈ [u], and C ′ ∈ {0, 1}∗ is a bit string. The algorithm
outputs Ŝ = (φ(S1), . . . , φ(Sw), S′), where φ(Si) ∈ E is an encoding of group element Si for all i ∈ [w],
and S′ ∈ {0, 1}∗ is a bit string. In order to perform computations on encoded group elements, algorithm
R = RO may query a generic group oracle (or “group oracle” for short). This oracle O takes as input two
encodings e = φ(G), e′ = φ(G′) and a symbol ◦ ∈ {·,÷}, and returns φ(G ◦G′). Note that (E, ·O), where
·O denotes the group operation on E induced by oracle O, forms a group which is isomorphic to (G, ·).

2Such a group Ĝ can trivially be obtained for any group G, for instance by modifying the encoding by prepending a suitable
fixed string to each group element, and changing the group law accordingly.

7



PROC O(e, e′, ◦)
(e, e′, ◦) ∈ E × E × {·,÷}
(i, j) := GETIDX(e, e′)

return ENCODE(LGi ◦ LGj )

PROC GETIDX(~e)

parse ~e = (e1, . . . , ew)

for j = 1, . . . , w do

pick first i ∈ [|LE |]
such that LEi = ej

ij := i

return (i1, . . . , iw)

PROC ENCODE(G)

parse G = (G1, . . . , Gu)

for j = 1, . . . , u do

if ∃i s.t. LGi = Gj

ej := LEi
else

ej ←$ E \ LE

append ej to LE

append Gj to LG

return (e1, . . . , eu)

Figure 1: Procedures implementing the generic group oracle.

It will later be helpful to have a specific implementation of O. We will therefore assume in the sequel
that O internally maintains two lists LG ⊆ G and LE ⊆ E. These lists define the encoding function φ as
LEi = φ(LGi ), where LGi and LEi denote the i-th element of LG and LE , respectively, for all i ∈ [|LG|]. Note
that from the perspective of a generic group algorithm it makes no difference whether the encoding function
is fixed at the beginning or lazily evaluated whenever a new group element occurs. We will assume that the
oracle uses lazy evaluation to simplify our discussion and avoid unnecessary steps for achieving polynomial
runtime of our meta-reductions.
Procedure ENCODE takes a list G = (G1, . . . , Gu) of group elements as input. It checks for each Gj ∈ L

if an encoding has already been assigned to Gj , that is, if there exists an index i such that LGi = Gj .
If this holds, ENCODE sets ej := LEi . Otherwise (if no encoding has been assigned to Gj so far), it
chooses a fresh and random encoding ej ←$ E \ LE . In either case Gj and ej are appended to LG
and LE , respectively, which gradually defines the map φ such that φ(Gj) = ej . Note also that the
same group element and encoding may occur multiple times in the list. Finally, the procedure returns
the list (e1, . . . , eu) of encodings.

Procedure GETIDX takes a list (e1, . . . , ew) of encodings as input. For each j ∈ [w] it defines ij as the
smallest3 index such that ej = LEij , and returns (i1, . . . , iw).4

The lists LG and LE are initially empty. Then O calls (e1, . . . , eu) ←$ ENCODE(G1, . . . , Gu) to
determine encodings for all group elements G1, . . . , Gu and starts the generic group algorithm on input
R(e1, . . . , eu, C

′).
RO may now submit queries of the form (e, e′, ◦) ∈ E×E×{·,÷} to the generic group oracleO. In the

sequel we will restrictR to issue only queries (e, e′, ◦) toO such that e, e′ ∈ LE . It determines the smallest
indices i and j with e = ei and e′ = ej by calling (i, j) = GETIDX(e, e′). Then it computes LGi ◦ LGj and
returns the encoding ENCODE(LGi ◦LGj ). Furthemore, we require thatR only outputs encodings φ(Si) such
that φ(Si) ∈ LE .

Remark 10. We note that the above restrictions are without loss of generality. To explain this, recall that
3Recall that the same encoding may occur multiple times in LE .
4Note that GETIDX may receive only encodings e1, . . . , ew which are already contained in LE , as otherwise the behavior of

GETIDX is undefined. We will make sure that this is always the case.

8



R
A

O

Environment

C1, . . . , Cl, C
′

φ(C1), . . . , φ(Cl), C
′

(φ(i), φ(j), ◦)

φ(i ◦ j)

φ(X),m, ω X,m, ω

A,mφ(A),m

φ(B) = H(φ(A),m) B

(R, y)(φ(R), y)S1, . . . , Sw, S
′

φ(S1), . . . , φ(Sw), S′

Figure 2: An example of the interaction between a generic reduction R and a non-generic adversay A
against the unforgeability of Schnorr signatures. All group elements – such as the challenge input, random
oracle queries, and the signature output by A – are encoded by the environment before being passed to R.
In the other direction, encodings of group elements output byR – such as the public key that is the input of
A, random oracle responses, and the solution output byR – are decoded before being passed to the outside
world.

the assignment between group elements and encodings is random. An alternative implementation O′ of O
could, given an encoding e 6∈ LE , assign a random group element G←$ G\LG to e by appending G to LG
and e to LE , in which case R would obtain an encoding of an independent, new group element. Of course
R can simulate this behavior easily when interacting with O, too.

Generic reductions. Recall that a (fully black-box [21]) reduction from problem Π to problem Σ is an
efficient algorithmR that solves Π, having black-box access to an algorithm A solving Σ.

In the sequel we consider reductions RA,O having black-box access to an algorithm A as well as to a
generic group oracle O. A generic reduction receives as input a challenge C = (φ(C1), . . . , φ(C`), C

′) ∈
Gu × {0, 1}∗ consisting of u encoded group elements and a bit-string C ′. R may perform computations
on encoded group elements, by invoking a generic group oracle O as described above, and interacts with
algorithm A to compute a solution S = (φ(S1), . . . , φ(Sw), S′) ∈ Gw × {0, 1}∗, which again may consist
of encoded group elements φ(S1), . . . , φ(Sw) and a bit-string S′ ∈ {0, 1}∗. Reductions from an interac-
tive computational problem Π may additionally have access to an oracle SΠ corresponding to Π, we write
RA,O,SΠ .

We stress that the adversary A does not necessarily have to be a generic algorithm. It may not be
immediately obvious that a generic reduction can make use of a non-generic adversary, considering that A
might expect a particular encoding of the group elements. However, this is indeed possible. In particular,
most reductions in security proofs for cryptosystems that are based on algebraic groups (like [20, 6, 28], to
name a few well-known examples) are independent of a particular group representation, and thus generic.

Recall thatR is fully blackbox, i.e.,A is external toR. Thus, the environment in which the reduction is
run can easily translate between the two encodings. Consider as an example the reduction shown in Figure 2
that interacts with a non-generic adversary A. We stress that the actual algorithm solving the problem Π,
which is a composition ofR and A is therefore not generic.

9



3 Unconditional Tightness Bound for Generic Reductions

In this section, we investigate the possibility of finding a tight generic reductionR that reduces a representation-
invariant computational problem Π to breaking the UF-NM-security of the Schnorr signature scheme. Our
results in this direction are negative, showing that it is impossible to find a generic reduction from any
representation-invariant computational problem. This includes even interactive problems.

3.1 Single-Instance Reductions

We begin with considering a very simple class of reduction that we call vanilla reductions. A vanilla reduc-
tion is a reduction that runs the UF-NM forger A exactly once (without restarting or rewinding) in order to
solve the problem Π. This allows us to explain and analyze the new simulation technique. Later we turn to
reductions that may executeA repeatedly, like for instance the known security proof from [20] based on the
Forking Lemma.

An Inefficient AdversaryA In this section we describe an inefficient adversaryA that breaks the UF-NM-
security of the Schnorr signature scheme. Recall that a black-box reductionRmust work for any attackerA.
Thus, algorithm RA will solve the challenge problem Π, given black-box access to A. The meta-reduction
will be able to simulate this attacker efficiently for any generic reduction R. We describe this attacker for
comprehensibility, in order to make our meta-reduction more accessible to the reader.

1. The input of A is a Schnorr public-key X , a message m, and random coins ω ∈ {0, 1}κ.
2. The forgerA chooses q uniformly random group elements R1, . . . , Rq ←$ G. (We make the assump-

tion that q ≤ |G|.) Subsequently, the forger A queries the random oracleH on (Ri,m) for all i ∈ [q].
Let ci := H(Ri,m) ∈ Zp be the corresponding answers.

3. Finally, the forger A chooses an index uniformly at random α←$ [q], computes y ∈ Zp which satis-
fies the equation gy = Xcα ·Rα, and outputs (Rα, y). For concreteness, we assume this computation
is performed by exhaustive search over all y ∈ Zp (recall that we consider an unbounded attacker
here, we show later how to instantiate it efficiently).

Note that (Rα, y) is a valid signature for message m with respect to the public key X . Thus, the forger A
breaks the UF-NM-security of the Schnorr signatures with probability 1.

Main Result for Vanilla Reductions Now we are ready to prove our main result for vanilla reductions.

Theorem 11. Let Π = (GΠ,SΠ,VΠ) be a representation-invariant (possibly interactive) computational
problem with a challenge consisting of u group elements and let p be the group order. Suppose there exists
a generic vanilla reduction R that (εR, tR)-solves Π, having one-time black-box access to an attacker A
that (εA, tA)-breaks the UF-NM-security of Schnorr signatures with success probability εA = 1 by asking
q random oracle queries. Then there exists an algorithmM that (ε, t)-solves Π with ε ≥ εR − 2(u+q+tR)2

p
and t ≈ tR.

Remark 12. Observe that Theorem 11 rules out reductions from nearly arbitrary computational problems
(even interactive). At a first glance this might look contradictory, for instance there always exists a trivial
reduction from the problem of forging Schnorr signatures to solving the same problem. However, as ex-
plained in Example 9, forging Schnorr-signatures is not a representation-invariant computational problem,
therefore this is not a contradiction.

10



PROCM0(C)

# INITIALIZATION

parse C = (C1, . . . , Cu, C
′)

LG := ∅ ; LE := ∅
~R = (R1, . . . , Rq)←$ Gq

I := (C1, . . . , Cu, R1, . . . , Rq)

ENCODE(I)

Ĉ := (LE1 , . . . ,LEu , C ′)
Ŝ ←$ RO,A(Ĉ)

# FINALIZATION

parse Ŝ := (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw)

return (LGi1 , . . . ,L
G
iw , S

′)

PROC A(φ(X),m, ω)

for all i ∈ [q]

ci = R.H(φ(Ri),m)

α←$ [q]

y := loggX
cαRα

return (Rα, y).

PROC SΠ
′(Q)

parse Q = (e1, . . . , ev, Q
′)

(i1, . . . , iv) = GETIDX(e1, . . . , ev)

(A1, . . . , Aν , A
′) = SΠ(Li1 , . . . ,Liν , Q′)

(f1, . . . , fν) = ENCODE(A1, . . . , Aν)

return (f1, . . . , fν , A
′).

Figure 3: Implementation ofM0.

PROOF. Assume that there exists a generic vanilla reduction R := RO,S′Π,A that (εR, tR)-solves Π, when
given access to a generic group oracleO, an oracle S ′Π, and a forgerA(φ(X),m, ω), where the inputs to the
forger are chosen by R. Furthermore, the reduction R simulates the random oracle R.H for A. We show
how to build a meta-reductionM that has black-box access to R and to an oracle SΠ and that solves the
representation-invariant problem Π directly.

We describeM in a sequence of games, beginning with an inefficient implementationM0 ofM and
we modify it gradually until we obtain an efficient implementation M2 of M. We bound the probability
with which any reduction R can distinguish each implementationMi fromMi−1 for all i ∈ {1, 2}, which
yields thatM2 is an efficient algorithm that can useR to solve Π ifR in tight.

In what follows let Xi denote the event that R outputs a valid solution to the given problem instance Ĉ
of Π in Game i.

Game 0. Our meta-reductionM0 :=MSΠ
0 is an algorithm for solving a representation-invariant compu-

tational problem Π, as defined in Section 2.3. That is, M0 takes as input an instance C = (C1, . . . , Cu,
C ′) ∈ Gu × {0, 1}∗, of the representation-invariant computational problem Π, has access to oracle SΠ pro-
vided by Π, and outputs a candidate solution S. R is a generic reduction, i.e., a representation-independent
algorithm for Π having black-box access to an attackerA. AlgorithmM0 runs reductionR as a subroutine,
by simulating the generic group oracle O, the SΠ oracle, and attacker A for R. In order to provide the
generic group oracle forR,M0 implements the following procedures (cf. Figure 3).

INITIALIZATION OFM0: At the beginning of the game,M0 initializes two lists LG := ∅ and LE := ∅,
which are used to simulate the generic group oracle O. Furthermore,M0 chooses ~R = (R1, . . . , Rq) ←$

Gq at random (these values will later be used by the simulated attacker A), sets I := (C1, . . . , Cu,
R1, . . . , Rq), and runs ENCODE(I) to assign encodings to these group elements. ThenM0 starts the reduc-
tion R on input Ĉ := (LE1 , . . . ,LEu , C ′). Note that Ĉ is an encoded version of the challenge instance of Π

11



received byM0. That is, we have Ĉ = (φ(C1), . . . , φ(Cu), C ′). Oracle queries of R are answered byM0

as follows:

GENERIC GROUP ORACLE O(e, e′, ◦): To simulate the generic group oracle,M0 implements procedures
ENCODE and GETIDX as described in Section 2.4. WheneverR submits a query (e, e′, ◦) ∈ E×E×{·,÷}
to the generic group oracle O, the meta-reduction determines the smallest indices i and j such that e = ei
and e′ = ej by calling (i, j) = GETIDX(e, e′). Then it computes LGi ◦ LGj and returns ENCODE(LGi ◦ LGj ).

ORACLE S ′Π(Q): This procedure handles queries issued byR to S ′Π by forwarding them to oracle SΠ pro-
vided by the challenger and returning the response. That is, wheneverR submits a queryQ = (e1, . . . , ev, Q

′) ∈
Ev × {0, 1}∗ to S ′Π, the meta-reduction runs (i1, . . . , iv) := GETIDX(e1, . . . , ev) and queries SΠ to com-
pute (A1, . . . , Aν , A

′) := SΠ(Li1 , . . . ,Liν , Q′). Then M0 determines the corresponding encodings as
(f1, . . . , fν) := ENCODE(A1, . . . , Aν) and returns (f1, . . . , fν , A

′) toR.

THE FORGER A(φ(X),m, ω): This procedure implements a simulation of the inefficient attacker A de-
scribed in Section 3.1. It proceeds as follows. When R outputs (φ(X),m, ω) to invoke an instance
of A, A queries the random oracle R.H provided by R on (φ(Ri),m) for all i ∈ [q], to determine
ci = H(φ(Ri),m). Afterwards, M0 chooses an index α ←$ [q] uniformly at random, computes the the
discrete logarithm y := loggX

cαRα by exhaustive search, and outputs (Rα, y). (This step is not efficient.
We show in subsequent games how to implement this attacker efficiently.)

FINALIZATION OFM0: Eventually, the algorithm R outputs a solution Ŝ := (Ŝ1, . . . , Ŝw, S
′) ∈ Ew ×

{0, 1}∗. The algorithmM0 runs (i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw) to determine the indices of group
elements (LGi1 , . . . ,L

G
iw

) corresponding to encodings (Ŝ1, . . . , Ŝw), and outputs (LGi1 , . . . ,L
G
iw
, S′).

Analysis ofM0. Note thatM0 provides a perfect simulation of the oracles O and SΠ and it also mimics
the attacker from Section 3.1 perfectly. In particular, (Rα, y) is a valid forgery for message m and thus,
R outputs a solution Ŝ = (Ŝ1, . . . , Ŝw, S

′) to Ĉ with probability Pr[X0] = εR. Since Π is assumed to be
representation-invariant, S := (S1, . . . , Sw, S

′) with Ŝi = φ(Si) for i ∈ [w] is therefore a valid solution to
C. Thus,M0 outputs a valid solution S to C with probability εR.

Game 1. In this game we introduce a meta-reductionM1, which essentially extendsM0 with additional
bookkeeping to record the sequence of group operations performed by R. The purpose of this intermediate
game is to simplify our analysis of the final implementationM2. Meta-reductionM1 proceeds identical to
M0, except for a few differences (cf. Figure 4).

INITIALIZATION OFM1: The initialization is exactly like before, except thatM1 maintains an additional
list LV of elements of Zu+q

p . Let LVi denote the i-th entry of LV .
List LV is initialized with the u + q canonical unit vectors in Zu+q

p . That is, let ηi denote the i-th
canonical unit vector in Zu+q

p , i.e., η1 = (1, 0, . . . , 0), η2 = (0, 1, 0, . . . , 0), . . . , ηu+q = (0, . . . , 0, 1). Then
LV is initialized such that LVi := ηi for all i ∈ [u+ q].

GENERIC GROUP ORACLE O(e, e′, ◦): In parallel to computing the group operation, the generic group
oracle implemented byM1 also performs computations on vectors of LV .

Given a query (e, e′, ◦) ∈ E × E × {·,÷}, the oracle O determines the smallest indices i and j such
that e = ei and e′ = ej by calling GETIDX. It computes a := LVi � LVj ∈ Zu+q

p , where � := + if ◦ = · and
� := − if ◦ = ÷, and appends a to LV . Finally it returns ENCODE(LGi ◦ LGj ).

12



PROCM1(C)

# INITIALIZATION

parse C = (C1, . . . , Cu, C
′)

LG := ∅ ; LE := ∅ ; LV := ∅
~R = (R1, . . . , Rq)←$ Gq

I := (C1, . . . , Cu, R1, . . . , Rq)

ENCODE(I)

LVi := ηi, ∀i ∈ [u+ q].

Ĉ := (LE1 , . . . ,LEu , C ′)
Ŝ ←$ RO,A(Ĉ)

# FINALIZATION

parse Ŝ := (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw)

return (LGi1 , . . . ,L
G
iw , S

′)

PROC O(e, e′, ◦)
(e, e′, ◦) ∈ E × E × {·,÷}
i := GETIDX(e)

j := GETIDX(e′)

a := LVi � LVj ∈ Zu+q
p

append a to LV

return ENCODE(LGi ◦ LGj )

Figure 4: Meta-Reduction M1. Boxed elements show the differences to M0. All other procedures are
identical toM0 and thus omitted.

Analysis of M1. Recall that the initial content I of LG is I = (C1, . . . , Cu, R1, . . . , Rq), and that R
performs only group operations on I. Thus, any group element h ∈ LG can be written as h =

∏u
i=1C

ai
i ·∏q

i=1R
au+i

i where the vector a = (a1, . . . , au+q) ∈ Zu+q
p is (essentially) determined by the sequence of

queries issued by R to O. For a vector a ∈ Zu+q
p and a vector of group elements V = (v1, . . . , vu+q) ∈

Gu+q let us write Eval(V, a) shorthand for Eval(V, a) :=
∏u+q
i=1 v

ai
i in the sequel. In particular, it holds that

Eval(I, a) =
∏u
i=1C

ai
i ·

∏q
i=1R

au+i

i . The key motivation for the changes introduced in Game 1 is that
now (by construction ofM1) it holds that LGi = Eval(I,LVi ) for all i ∈ [|LG|]. Thus, at any point in time
during the execution ofR, the entire list LG of group elements can be recomputed from LV and I by setting
LGi := Eval(I,LVi ) for i ∈ [|LV |]. The reduction R is completely oblivious to this additional bookkeeping
performed byM1, thus we have Pr[X1] = Pr[X0].

Game 2. Note that the meta-reductions described in previous games were not efficient, because the sim-
ulation of the attacker in procedure A needed to compute a discrete logarithm by exhaustive search. In this
final game, we construct a meta-reductionM2 that simulates A efficiently. M2 proceeds exactly likeM1,
except for the following (cf. Figure 5).

THE FORGER A(φ(X),m, ω): When R outputs (φ(X),m, ω) to invoke an instance of A, A queries the
random oracle R.H provided by R on (φ(Ri),m) for all i ∈ [q], to determine ci = H(φ(Ri),m). Then
it chooses an index α ←$ [q] uniformly at random, samples an element y uniformly at random from Zp,
computes R∗α := gyX−cα , and re-computes the entire list LG using R∗α instead of Rα.

More precisely, let I∗ := (C1, . . . , Cu, R1, . . . , Rα−1, R
∗
α, Rα+1, . . . , Rq). Observe that the vector I∗

is identical to the initial contents I of LG, with the difference that Rα is replaced by R∗α. The list LG is

13



PROC A(φ(X),m, ω) :

α←$ [q]

for all i ∈ [q]

ci = R.H(φ(Ri),m)

y ←$ Zp ; R∗α := gyX−cα

I∗ := (C1, . . . , Cu, R1, . . . , Rα−1, R
∗
α, Rα+1, . . . , Rq)

for j = 1, . . . , |LG| do

LGi := Eval(I∗,LVi )

return (y, φ(R∗α))

Figure 5: Efficient simulation of attacker A byM2.

now recomputed from LV and I∗ by setting LGi := Eval(I∗,LVi ) for all i ∈ [|LV |]. Finally, M2 returns
(φ(R∗α), y) toR as the forgery.

Analysis of M2. First note that (φ(R∗α), y) is a valid signature, since φ(R∗α) is the encoding of group
element R∗α satisfying the verification equation gy = Xcα · R∗α, where cα = H(φ(R∗α),m). Next we claim
that R is not able to distinguish M2 from M1, except for a negligibly small probability. To show this,
observe that Game 2 and Game 1 are perfectly indistinguishable, if for all pairs of vectors LVi ,LVj ∈ LV

it holds that Eval(I,LVi ) = Eval(I,LVj ) ⇐⇒ Eval(I∗,LVi ) = Eval(I∗,LVj ), because in this caseM2

chooses identical encodings for two group elements LGi ,LGj ∈ LG if and only if M1 chooses identical
encodings.

Lemma 13. Let F denote the event thatR computes vectors LVi ,LVj ∈ LV such that

Eval(I,LVi ) = Eval(I,LVj ) ∧ Eval(I∗,LVi ) 6= Eval(I∗,LVj ) (1)

or

Eval(I,LVi ) 6= Eval(I,LVj ) ∧ Eval(I∗,LVi ) = Eval(I∗,LVj ). (2)

Then
Pr[F ] ≤ 2(u+ q + tR)2/p.

The proof of Lemma 13 is deferred to Section 3.2. We apply it to finish the proof of Theorem 11. By
Lemma 13, algorithmM2 fails to simulateM1 with probability at most 2(u+ q + tR)2/p. Thus, we have
Pr[X2] ≥ Pr[X1]− 2(u+ q + tR)2/p.

Note also thatM2 provides an efficient simulation of adversary A. The total running time ofM2 is es-
sentially of the running time ofR plus some minor additional computations and bookkeeping. Furthermore,
ifR is able to (εR, tR) solve Π, thenM2 is able to (ε, t)-solve Π with probability at least

ε ≥ Pr[X2] ≥ εR −
2(u+ q + tR)2

p
.

14



�

3.2 Proof of Lemma 13

The proof of this lemma is based on the observation that an algorithm that performs only a (polynomially)
limited number of group operations in an (exponential-size) generic group is very unlikely to find any “non-
trivial relation” among random group elements. This technique was introduced in [27] in a different setting,
to analyze the complexity of algorithms for the discrete logarithm problem.

AN ALTERNATIVE FORMULATION OF EVENT F . Recall that the vectors I and I∗ differ only in their
α-th component. In the sequel let us write Iα to denote the vector I, but with its α-th component Rα set
equal to 1 ∈ G. That is,

Iα := (R1, . . . , Rα−1, 1, Rα+1, . . . , Rq, g1, . . . , gu).

Then we have

Eval(I,LVi ) = Eval(Iα,LVi ) ·R
LVi,α
α and Eval(I∗,LVi ) = Eval(Iα,LVi ) · (R∗α)L

V
i,α

where LVi,α denotes the α-th component of vector LVi . In particular, for any two vectors LVi ,LVj we have

Eval(I,LVi ) = Eval(I,LVj ) ⇐⇒ Eval(Iα,LVi ) ·R
LVi,α
α = Eval(Iα,LVj ) ·R

LVj,α
α

⇐⇒ Eval(Iα,LVi − LVj ) ·R
LVi,α−LVj,α
α = 1

Thus, (1) is equivalent to

Eval(Iα,LVi − LVj ) ·R
LVi,α−LVj,α
α = 1 ∧ Eval(Iα,LVi − LVj ) · (R∗α)L

V
i,α−LVj,α 6= 1 (3)

If we take discrete logarithms to base γ ∈ G, where γ is an arbitrary generator of G, and define the
degree-one polynomial ∆i,j,α ∈ Zp[X] as

∆i,j := log Eval(Iα,LVi − LVj ) +X ·
(
LVi,α − LVj,α

)
,

then (3) (and therefore also (1)) is in turn equivalent to

∆i,j(logRα) ≡ 0 mod p ∧ ∆i,j(logR∗α) 6≡ 0 mod p. (4)

Similarly, (2) is equivalent to

∆i,j(logRα) 6≡ 0 mod p ∧ ∆i,j(logR∗α) ≡ 0 mod p. (5)

Thus, event F occurs ifR computes vectors LVi ,LVj such that either (4) or (5) holds.

15



FAILURE EVENT F1. Let F1 denote the event that (4) holds. Note that this can only happen ifR performs
a sequence of computations, such that there exist a pair (i, j) ∈ [|LV |] × [|LV |] such that the polynomial
∆i,j is not the zero-polynomial in Zp[X], but it holds that ∆i,j(Rα) ≡ 0 mod p.

At the beginning of the game R receives only a random encoding φ(Rα) of group element Rα. The
only further information that R learns about Rα throughout the game is through equality or inequality of
encodings. SinceR runs in time tR, it can issue at most tR oracle queries. Thus, at the end of the game the
list LV contains at most |LV | ≤ tR + q + u entries. Each pair (i, j) ∈ [|LV |] with i 6= j defines a (possibly
non-zero) polynomial ∆i,j . In total there are at most (tR+ q+ u) · (tR+ q+ u− 1) ≤ (tR+ q+ u)2 such
polynomials.

Since all polynomials have degree one, and logRα is uniformly distributed over Zp (because Rα is
uniformly random over G), the probability that logRα is a root of any of these polynomials is upper bounded
by

Pr[F1] ≤ (u+ q + tR)2

p
.

FAILURE EVENT F2. Let F2 denote the event that (5) holds. Since logR∗α is uniformly distributed over
Zp (because we have defined R∗α := gyX−c for uniformly y ←$ Zp), with similar arguments as before we
have

Pr[F2] ≤ (u+ q + tR)2

p
.

BOUNDING Pr[F ]. Since F = F1 ∪ F2 we have

Pr[F ] ≤ Pr[F1] + Pr[F2] ≤ 2(u+ q + tR)2

p
.

4 Multi-Instance Reductions

Now we turn to considering multi-instance reductions, which may run multiple sequential executions of the
signature forger A. This is the interesting case, in particular because the Forking-Lemma based security
proof for Schnorr signatures by Pointcheval and Stern [20] is of this type.

Again we construct a meta-reduction with simulated adversary. The main difference to our single-
instance adversary is that it does not succeed with probability 1, but tosses a biased coin that decides if it
forges for the message or not. On the first glance this approach might seem to be of little value, because
an adversary with a higher success probability should improve the success probability of the reduction.
However, it was shown in [26] that, once we consider a reduction that runs multiple sequential executions
of this adversary, this approach allows to derive an optimal tightness bound.

In the following we assume that the reduction R executes n sequential instances of the same adversary
A(φ(X),m, ω), where the public key φ(X), the message m, and the randomness ω of each instance are
chosen by R. Observe that the input to the adversary and the random oracle query/answers completely
determine the behaviour of the adversary. Thus, any successive execution of an instance of A may be
identical to a previous execution up to a certain point, where the response c = H(R,m) of the random
oracle differs from a response c′ = H(R,m) received by A in a previous execution. This point is called
the forking point [26].

16



4.1 A Family of Inefficient Adversaries AF,f
In this section, we describe a different inefficient adversary A against the UF-NM-security of the Schnorr
signature scheme. In fact, we do not describe a single adversary but a family of adversaries from which the
meta-reduction will choose one to simulate at random.

To define this family, we fix the following notations. The Bernoulli distribution of a parameter µ ∈ [0, 1]
is defined by Berµ, i.e., Pr[δ = 1] = µ and Pr[δ = 0] = 1 − µ. Let Q = G × Zp be the set of possible
random oracle queries and answers. By Si = Qi we denote the set of random oracle query sequences of

length i and the set of all possible sequences is defined as S =
q⋃
i=1

Si. Consider now the set F of all functions

F : {0, 1}k × G × {0, 1}κ × S → G. And the set E of functions f : G → {0, 1} for which the following
holds Pr[f(g) = 1|g ←$ G] = Pr[b = 1|b←$ Berµ]. For each pair (F, f) ∈ F×E we define the adversary
AF,f as follows:

1. The input of A is a Schnorr public-key X , a message m, and random coins ω ∈ {0, 1}κ.
2. The forger A sets σ := ⊥ and performs the following computations. For i = 1, . . . , q it computes
Ri := F (m,X,ω, (R1, c1), . . . , (Ri−1, ci−1)) and queries the random oracle H on (Ri,m), where
ci := H(Ri,m) ∈ Zp is the corresponding answers. If σ = ⊥, then AF,f sets Zi := XciRi
and checks if f(Zi) = 1. If this is the case, then AF,f computes yi ∈ Zp satisfying the equation
gyi = Xci ·Ri by exhaustive search and sets σ := (Ri, yi). Otherwise, if f(Zi) = 0, then it continues
with the loop.

3. Finally, the forger AF,f returns σ.
Note that (Ri, yi) is a valid signature for messagem with respect to the public keyX . Thus, the forgerAF,f
breaks the UF-NM-security of the Schnorr signatures whenever f(Zi) = 1 for at least one i ∈ [q]. This
translates to a success probability of εA = 1− (1− µ)q.

Observe that defining the adversaries as above ensures that, while different instances of the same adver-
sary will behave identically as long as their input and the answers of the random oracle are the same, as soon
as one of the inputs or one of the random oracle answers differ the behavior of two instances will be inde-
pendent of one another from that point onwards. As such, the behavior of these adversaries mimics closely
the idea behind the forking lemma and it allows us to easily simulate the adversary in our meta-reduction
below.

4.2 Main Result for Multi-Instance Reductions

In this section, we combine the approach of Seurin [26] with our simulation of signature forgeries based on
re-programming of the group representation, as introduced in Section 3.1. This allows to prove a nearly opti-
mal unconditional tightness bound for all generic reductions and any representation-invariant computational
problem Π.

Unfortunately, the combination of the elaborate techniques of Seurin [26] with our approach yields
a rather complex meta-reduction. We stress that we follow Seurin’s work as closely as possible. The
main difference lies in the way how signature forgeries are computed, namely in our case by exploiting the
properties of the generic group representation, instead of using an OMDL-oracle as in [26].

The main difference between the meta-reduction described in this section and the one presented in Sec-
tion 3.1 lies in the simulation of the Random Oracle queries issued by the adversary in different sequential
executions. In particular, the meta-reduction M := MSΠ simulates the oracles procedures (resp. oracle)
ENCODE, GETIDX, O, and S ′Π exactly as before.

Theorem ??. Let Π be a representation-invariant computational problem. Suppose there exists a generic

17



reduction RO,S′Π,AF,f that (εR, tR)-solves Π, having n-time black-box access to an attacker AF,f that
(εA, tA, q)-breaks the UF-NM-security of Schnorr signatures with success probability εA = 1− (1−µ)q in
time tA ≈ q. Then there exists an algorithmM that (ε, t)-solves Π with

ε ≥ εR −
2n(u+ nq + tR)

p
−
n ln

(
(1− εA)−1

)
q(1− p−1/4)

.

PROOF. Suppose that there exists a generic reduction R := RO,S′Π,A that (εR, tR)-solves Π, when given
access to a generic group oracle O, an oracle S ′Π, and to n instances of the same forger A(φ(X),m, ω),
where the inputs to each instance of the forger are chosen by R. As before, the random oracle R.H for A
is provided by R. We show how to build a meta-reduction M that has black-box access to R and to an
oracle SΠ and that solves the representation-invariant problem Π directly. Again we proceed in a sequence
of games, and denote withMi the implementation of algorithmM in Game i, and with Xi the event thatR
outputs a valid solution S to C in Game i. As in Section 3.1, we will bound the probability with which any
efficient reduction R can distinguish each implementationMi fromMi−1 for all i ∈ {1, 2, 3}. We start
with an inefficient implementationM0 ofM, and modify this implementation gradually until we obtain an
efficient algorithmM3 that usesR to solve Π.

Game 0. M0 := MSΠ
0 (cf. Figure 6) takes as input an instance C = (C1, . . . , Cu, C

′) ∈ Gu × {0, 1}∗
of the representation-invariant computational problem Π, it has access to oracle SΠ provided by Π, and
outputs a candidate solution S. It also maintains the encoding of the group using two lists LG ⊆ G and
LE ⊆ E. Our first instanceM0 perfectly simulates one adversary chosen from the family of adversaries
described above chosen at random. The only difference between the real and the simulated adversary is that
the meta-reduction does not fix the functions F, f at the beginning but instead defines them on the fly.

INITIALIZATION OFM0: At the beginning of the game, M0 chooses ~R = (R1,1, . . . , Rn,q) ←$ Gnq

at random (these are the values the function F will be lazily programmed to evaluate to), sets I :=
(C1, . . . , Cu, R1,1, . . . , Rn,q), and runs ENCODE(I) to assign encodings to these group elements. Fur-
thermore, M0 initializes lists T , Γgood, Γbad, and D as empty lists. Recall that R executes n sequential
instances of the simulated adversary A and that depending on the input and the query/answer pairs toR.H,
the successive execution might be identical to a certain point. The list T will be used to store the inputs
and query answer pairs of each adversary to ensure consistency of F across adversary instances. Note fur-
ther that the simulated adversary tosses a biased coin and decides whether it forges a signature or not. The
lists Γgood and Γbad are used to store these decisions whether for a given Z, the simulated adversary AF,f
will forge a signature or not. Again, they are used to ensure consistency of f across adversary instances.
Accordingly Γgood contains exactly those elements for whichM0 knows the discrete logarithms and Γbad
contains exactly those elements for which it will never compute the discrete logarithms. Finally, D is used
to store known discrete logarithms. Then, M0 runs a black-box simulation of the reduction R on input
Ĉ := (LE1 , . . . ,LEu , C ′). Note that Ĉ is an encoded version of the challenge instance of Π received byM0.
That is, we have Ĉ = (φ(C1), . . . , φ(Cu), C ′). Oracle queries of R = RO,S′Π,A are answered exactly as
described in Section 3.1, with the difference being the forger that we describe in the following.

THE FORGER A(φ(X),m, ω): The simulation of the forger A is rather technical, because M0 has to
provide a consistent simulation of the n sequential executions of A. As already discussed at the beginning
of this chapter,M0 has to emulate an identical behavior ofA up to the forking point, or the reduction might
loose its advantage. We split this algorithm up into several sup-procedures (see Figure 6). The main sub-
procedures are BEFOREFORK and AFTERFORK, with the idea that A runs the code of BEFOREFORK if the

18



forking point has not been reached yet and the simulation must be consistent with a previous execution. The
second procedure, AFTERFORK describes howM0 simulates A after the forking point.

Now we proceed with the technical description of the main procedure ofA and explain the sub-procedures
in the following. When R outputs (φ(X),m, ω) to invoke an instance of AF,f , then M0’s simulation of
AF,f initializes the list τ with its input (φ(X),m, ω) and the forgery σ it will output with ⊥. These inputs
are part of the function F and we need to store them in oder to ensure consistency with previous adversary
instances.
THE FORGER’S FIRST STAGE: BEFOREFORK(X,m): In this stage, the forger first tries to evaluate the

function F on its input using EVALF. If no previous instance with the same input exists, the in-
stance has already forked and BEFOREFORK immediately returns. If the instance has not yet forked
from all other instances, i.e., if there exists a previous instance with the same input, it receives back
the index k of the R to which F evaluates. In this case it proceeds to ask query ci = R.H(φ(Rk),m)
and appends (k, ci) to τ . If it has not already forged a signature it then computes Zi := RkX

ci . If
the forking point has been reached, the adversary now forks from the previous instances as described
in FORK. Otherwise, if Zi ∈ Γgood, then AF,f forges a signature by calling FORGE(Rk, Zi). The
algorithm will repeat the described process until the forking point is reached.

THE FORGER’S SECOND STAGE AFTERFORK(X,m): After the current instance has forked from all pre-
vious instances it proceeds as follows. Until exactly q random oracle queries have been asked, AF,f
queries ci := R.H(φ(Rj,i),m) and appends ((j, i), ci) to τ . If the adversary has not already forged a
signature, it continues to compute Zi := Rj,iX

ci . If φ(Zi) is neither in Γgood nor in Γbad, the adver-
sary decides in which set to put it by invoking DECIDE. If afterwards φ(Zi) is in Γgood, a signature
is forged. The algorithm continues in this fashion until exactly q random oracle queries have been
asked.

HANDLING THE FORKING POINT FORK(Z, k, c): When the simulation of AF,f reaches the forking point,
it first checks if φ(Z) is already in Γgood, i.e., if it already knows the discrete logarithm. If that is
the case it produces a forgery. Otherwise, it checks whether φ(Z) is also not contained in Γbad and
if φ(Z) is indeed neither contained in Γgood nor in Γbad, the simulation again decides in which set to
put it by invoking DECIDE. If afterwards φ(Z) is contained in Γgood the simulation also produces a
forgery.

DECIDING WHETHER TO FORGE DECIDE(Z, k, c): To decide whether Z belongs in Γgood or Γbad, the sim-
ulation tosses a biased coin δz ←$ Berµ. If δz = 0 then Z is added to Γbad. If δz = 1 then Z is added
to Γgood, its discrete logarithm y is computed using DLOG and (Z, y) is appended to D.

COMPUTING THE DISCRETE LOGARITHM DLOG(Z, k, c): Computation of the discrete logarithm is per-
formed by exhaustively searching for a y ∈ Zp satisfying gy = Z.

PRODUCING A FORGERY FORGE(R,Z): Actually producing a forgery is trivial, because forgeries will
only be produced for Z ∈ Γgood and for each such Z, D already contains the discrete logarithm.
Accordingly, a forgery is produced by finding the entry (Z ′, y′) ∈ D such that Z ′ = Z and returning
(R, y′)

FINALIZATION OFM0: Eventually, R outputs a solution Ŝ := (Ŝ1, . . . , Ŝw, S
′) ∈ Ĝw × {0, 1}∗. Then

M0 runs (i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw) to determine the indices of group elements (LGi1 , . . . ,L
G
iw

)

corresponding to encodings (Ŝ1, . . . , Ŝw), and outputs (LGi1 , . . . ,L
G
iw
, S′).

Analysis ofM0 Note thatM0 provides a perfect simulation of the oraclesO and SΠ and it also mimics the
inefficient attacker from Section 4.1 perfectly, the only difference being that F is chosen lazily. In particular,
(R, y′) is a valid forgery for message m and thus, RO,S′Π,AF,f outputs a solution Ŝ = (Ŝ1, . . . , Ŝw, S

′) to

19



PROCM0(C)

# INITIALIZE

parse C = (C1, . . . , Cu, C
′)

LG := ∅ ; LE := ∅
~R = (R1,1, . . . , Rn,q)←$ Gnq

I := (C1, . . . , Cu, R1,1, . . . , Rn,q)

ENCODE(I)

T := ∅ ; Γgood := ∅ ; Γbad := ∅
D := ∅ ; j := 0

Ĉ := (LE1 , . . . ,LEu , C ′)

Ŝ ←$ RO,S
′
Π,A(Ĉ)

# FINALIZATION

parse Ŝ := (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw)

return (LGi1 , . . . ,L
G
iw , S

′)

PROC FORGE(R,Z) :

Find (Z ′, y′) ∈ D s.t. Z ′ = Z

σ := (φ(R), y′)

PROC EVALF(τ) :

if 6 ∃τ ∈ T s.t. (m,φ(X), ω) ≺ τ
return ⊥

pick first i ∈ [|T |]
such that τ ≺ Ti

(k, c) := Ti,|τ |+1

return k

PROC AFTERFORK(m,X) :

while i ≤ q
ci := R.H(φ(Rj,i),m)

append ((j, i), ci) to τ

if σ = ⊥
Zi := Rj,iX

ci

ENCODE(Zi)

if φ(Zi) 6∈ Γgood ∪ Γbad

DECIDE(Zi, (j, i), ci)

if φ(Zi) ∈ Γgood

FORGE(Rj,i, Zi)

i := i+ 1

PROC A(φ(X),m, ω) :

j := j + 1

iX := GETIDX(φ(X))

τ := (φ(X),m, ω)

σ := ⊥ ; i := 1

BEFOREFORK(m,LGiX )

AFTERFORK(m,LGiX )

append τ to T
return σ

PROC FORK(Z, k, c) :

if φ(Z) ∈ Γgood

FORGE(Rk, Z)

else

if φ(Z) 6∈ Γgood ∪ Γbad

DECIDE(Z, k, c)

if φ(Z) ∈ Γgood

FORGE(Rk, Z)

PROC BEFOREFORK(m,X)

k := EVALF(τ)

while k 6= ⊥
ci := R.H(Rk,m)

append (k, ci) to τ

k′ := EVALF(τ)

if σ = ⊥
Zi := XciRk

ENCODE(Zi)

if k′ = ⊥
FORK(Zi, k, ci)

else

if φ(Zi) ∈ Γgood

FORGE(Rk, Zi)

i := i+ 1 ; k := k′

PROC DECIDE(Z, k, c) :

δz ←$ Berµ

if δz = 0

Γbad = Γbad ∪ {φ(Z)}
else

Γgood = Γgood ∪ {φ(Z)}
y := DLOG(Z, k, c)

append (Z, y) to D

PROC DLOG(Z, k, c) :

for each y ∈ Zp
if gy = Z return y

Figure 6: Meta-ReductionM0.

20



Ĉ with probability Pr[X0] = εR. Since Π is assumed to be representation-invariant, S := (S1, . . . , Sw, S
′)

is therefore a valid solution to C, where Ŝi = φ(Si) for i ∈ [w]. ThusM0 outputs a valid solution S to C
with probability εR.

Game 1. In this game we introduce an implementationM1 which extendsM0 with bookkeeping, exactly
like in Game 1 from the proof of Theorem 11. See Figure 7. Briefly summarized, we introduce an additional
list LV ⊆ Zu+nq

p to record the sequence of operations performed byA. Let ηi denote the i-th canonical unit
vector in Zu+nq

p . Then this list is initialized as LVi = ηi for i ∈ [u + nq]. Whenever R asks to perform a
computation (LEi ,LEj , ◦), thenM1 proceeds as before, but additionally appends a := LVi + LVj ∈ Zu+nq

p

(if ◦ = ·) or LVi − LVj ∈ Zu+nq
p (if ◦ = ÷) to LV .

Furthermore, in order to keep list LV consistent with LG (exactly like in the proof of Theorem 11), we
replace the generic group oracle O ofM0 with the following procedure.

GENERIC GROUP ORACLE O(e, e′, ◦): Given a query (e, e′, ◦) ∈ E×E×{·,÷}, the oracleO determines
the smallest indices i and j such that e = ei and e′ = ej by calling GETIDX. It computes a := LVi �
LVj ∈ Zu+nq

p , where � := + if ◦ = · and � := − if ◦ = ÷, and appends a to LV . Finally it returns
ENCODE(LGi ◦ LGj ).

Recall that the initial content I of LG is I = (C1, . . . , Cu, R1,1, . . . , Rn,q), and that R performs only
group operations on I. Now, by construction ofM1, it holds that

LGi = Eval(I,LVi ) for all i ∈ [|LG|].

Thus, at any point in time during the execution ofR, the entire list LG of group elements can be recomputed
from LV and I by setting LGi := Eval(I,LVi ) for i ∈ [|LV |].

Again this change is made to keep list LV consistent with LG, i.e., to ensure that LGi = Eval(I,LVi ) for
all i ∈ [|LG|], where I := (C1, . . . , Cu, R1,1, . . . , Rn,q). Clearly R is completely oblivious to this change,
thus

Pr[X1] = Pr[X0]

Game 2. In this game we introduce an implementationM2 (cf. Figure 8) which works exactly asM1,
except that it aborts when it would have to compute a new forgery at a forking point. That is, M2 aborts
when it would have to forge in the case where it queried an Ri already asked by a previous instance of the
adversary but received a different answer ci. This step is important, because in the final implementationM3
we will not be able to simulate valid signatures if this happens.
FORK(Z, k, c): If FORK is called on input φ(Z), such that φ(Z) is neither in Γgood nor in Γbad, and the

DECIDE places it in Γgood, thenM2 aborts.

Analysis ofM2. We claim that R is not able to distinguishM2 fromM1 with probability greater than
(n ln

(
(1− εA)−1

)
)/q(1 − p−1/4). To show this, observe that Game 2 and Game 1 are perfectly indistin-

guishable, as long asM2 does not abort in FORK. We use Lemma 4 of [26] to bound the probability of an
abort.

Lemma 14 (Based on Lemma 4 of [26]). The probability thatM2 aborts in FORK is at most

n ln
(
(1− εA)−1

)
q(1− p−1/4)

21



PROCM1(C)

# INITIALIZE

parse C = (C1, . . . , Cu, C
′)

LG := ∅ ; LE := ∅ ; LV := ∅
~R = (R1,1, . . . , Rn,q)←$ Gq·n

L := (C1, . . . , Cu, R1,1, . . . , Rn,q)

ENCODE(L)

LVi := ηi, ∀i ∈ [u+ nq].

T := ∅ ; Γgood := ∅ ; Γbad := ∅
D := ∅ ; j := 0

Ĉ := (LE1 , . . . ,LEu , C ′)
Ŝ ←$ RO,A(Ĉ)

# FINALIZATION

parse Ŝ := (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw)

return (LGi1 , . . . ,L
G
iw , S

′)

PROC O(e, e′, ◦)
(e, e′, ◦) ∈ E × E × {·,÷}
i := GETIDX(e)

j := GETIDX(e′)

a := LVi � LVj ∈ Zu+q
p

append a to LV

return ENCODE(LGi ◦ LGj )

Figure 7: ExtendingM0 with additional bookkeeping yieldsM1. The boxed elements show the difference
toM0. All procedures not shown are not changed.

We thus have

Pr[X2] ≥ Pr[X1]− Pr[F1] ≥ Pr[X1]−
n ln

(
(1− εA)−1

)
q(1− p−1/4)

.

Game 3. Note that the meta-reductions described in previous games were not efficient, because the sim-
ulation of the attacker in procedure A needed to compute a discrete logarithm by exhaustive search. In this
final game, we construct an efficient meta-reductionM3 that it identical toM2, with the difference that it
simulates A efficiently.M3 proceeds exactly likeM2, except for the following (cf. Figure 9).
DLOG(Z, k, c): The DLOG procedure chooses y ←$ Zp uniformly random and computes

R∗j,i := gy ·X−c (6)

Then it reads the first u+ qn entries from LG as

(C1, ..., Cu, R
′
1,1, ..., R

′
q,n) := (LG1 , . . . ,LGu+qn),

replaces Rj,i with R∗j,i by setting

I∗ := (C1, . . . , Cu, R
′
1,1, . . . , R

′
j,i−1, R

∗
i,j , R

′
j,i+1, . . . , R

′
q,n),

and finally re-computes the entire list LG from LV by setting LGa := Eval(I∗,LVa ) for all a ∈ [|LV |].
Note that this implicitly defines Z as Z := gy, due to (6).

22



PROC FORK(Z, k, c) :

if φ(Z) ∈ Γgood

FORGE(Rk, Z)

else

if φ(Z) 6∈ Γgood ∪ Γbad

DECIDE(Z, k, c)

if φ(Z) ∈ Γgood

Abort simulation

Figure 8: The difference betweenM1

andM2.

PROC DLOG(Z, (j, i), c) :

y ←$ Zp

R∗j,i := gy ·X−c

(C1, ..., Cu, R
′
1,1, ..., R

′
q,n) := (LG1 , . . . ,LGu+qn)

I∗ := (C1, . . . , Cu, R
′
1,1, . . . , R

′
j,i−1, R

∗
j,i, R

′
j,i+1, . . . , R

′
n,q

for k = 1, . . . , |LG| do

LGk := Eval(I∗,LVk )

return y

Figure 9: The difference betweenM2 andM3.

Note that meta-reductionM3 can be implemented efficiently, as it does not have to compute discrete loga-
rithms. It remains to show that it is indistinguishable fromM2 forR with all but negligible probablility.

Analysis ofM3. First note that each σ with σ 6= ⊥ output by A is a valid signature. Moreover, we claim
that R is not able to distinguishM3 fromM2, except for a negligibly small probability. To this end, we
apply a lemma which is very similar to Lemma 13 from the proof of Theorem 11.

Lemma 15. Let F2 denote the event thatR computes vectors LVa ,LVb ∈ LV such that

Eval(I,LVa ) = Eval(I,LVb ) ∧ Eval(I∗,LVa ) 6= Eval(I∗,LVb )

or

Eval(I,LVa ) 6= Eval(I,LVb ) ∧ Eval(I∗,LVa ) = Eval(I∗,LVb ).

Then

Pr[F2] ≤ 2n(u+ nq + tR)

p
.

Before we sketch the proof of this lemma (which is very similar to the proof of Lemma 13), let us finish
the proof of Theorem 11. Note that M3 is perfectly indistinguishable from M2, unless Event F occurs.
Applying the above lemma, we thus obtain

Pr[X3] ≥ Pr[X2]− Pr[F2] ≥ Pr[X2]− 2n(u+ nq + tR)

p
.

Summing up, we thus obtain that

ε ≥ εR −
2n(u+ nq + tR)

p
−
n ln

(
(1− εA)−1

)
q(1− p−1/4)

.

�

23



Proof sketch for Lemma 15. The proof of Lemma 15 is almost identical to the proof of Lemma 13. The
main difference is that we need to simulate many (up to n) signatures in the multi-instance case. This works
well, with the same arguments as in the proof of Lemma 13, as long as we make sure that we do not need
to re-assign the same encoding twice. (In particular because this would invalidate a signature previously
computed by A, and thus be easily noticeable forR.)

By construction of M3, this can happen only if FORK receives as input a group element Z such that
φ(Z) ∈ Γgood. Note that this is exactly when event F1 occurs, in which case the game is aborted anyway,
due to the changes introduced in Game 2.

Suppose that event F1 does not occur. In this case we re-assign each encoding at most once, by replacing
in list LG a uniformly distributed group element Ri,j with another uniform group element R∗i,j , and re-
computing all group elements contained in LG. Following Lemma 13, each replacement can be noticed by
R with probability at most

2(u+ nq + tR)

p
,

where the term u + nq (instead of u + q as before) is due to the fact that in the multi-instance case LG is
now initialized with u + nq group elements. Since in total at most n encodings are re-assigned throughout
the game, a union bound yields

Pr[F2] ≤ 2n(u+ nq + tR)

p
.

Acknowledgments

Nils Fleischhacker and Dominique Schröder were supported by the German Federal Ministry of Education
and Research (BMBF) through funding for the Center for IT-Security, Privacy and Accountability (CISPA
– www.cispa-security.org).

References

[1] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-more-
RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology,
16(3):185–215, June 2003.

[2] Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 162–177, Santa Barbara,
CA, USA, August 18–22, 2002. Springer, Berlin, Germany.

[3] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on Computer and Communications
Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

[4] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How to sign with RSA
and Rabin. In Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of
Lecture Notes in Computer Science, pages 399–416, Saragossa, Spain, May 12–16, 1996. Springer,
Berlin, Germany.

24



[5] Daniel J. Bernstein. Proving tight security for Rabin-Williams signatures. In Nigel P. Smart, editor,
Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 70–87, Istanbul, Turkey, April 13–17, 2008. Springer, Berlin, Germany.

[6] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Matthew
Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer
Science, pages 443–459, Santa Barbara, CA, USA, August 15–19, 2004. Springer, Berlin, Germany.

[7] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor, Advances
in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 229–235,
Santa Barbara, CA, USA, August 20–24, 2000. Springer, Berlin, Germany.

[8] Jean-Sébastien Coron. Optimal security proofs for PSS and other signature schemes. In Lars R.
Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 272–287, Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer,
Berlin, Germany.

[9] Yevgeniy Dodis, Iftach Haitner, and Aris Tentes. On the instantiability of hash-and-sign RSA signa-
tures. In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference, volume 7194
of Lecture Notes in Computer Science, pages 112–132, Taormina, Sicily, Italy, March 19–21, 2012.
Springer, Berlin, Germany.

[10] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic insecurity of the full domain
hash. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes
in Computer Science, pages 449–466, Santa Barbara, CA, USA, August 14–18, 2005. Springer, Berlin,
Germany.

[11] Yevgeniy Dodis and Leonid Reyzin. On the power of claw-free permutations. In Stelvio Cimato,
Clemente Galdi, and Giuseppe Persiano, editors, SCN 02: 3rd International Conference on Security in
Communication Networks, volume 2576 of Lecture Notes in Computer Science, pages 55–73, Amalfi,
Italy, September 12–13, 2002. Springer, Berlin, Germany.

[12] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction technique: The case of
Schnorr signatures. EUROCRYPT 2013, 2013.

[13] Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton, Martijn Stam, and Stefano
Tessaro. Random oracles with(out) programmability. In Masayuki Abe, editor, Advances in Cryptology
– ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 303–320, Singapore,
December 5–9, 2010. Springer, Berlin, Germany.

[14] Sanjam Garg, Raghav Bhaskar, and Satyanarayana V. Lokam. Improved bounds on security reductions
for discrete log based signatures. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 93–107, Santa Barbara, CA, USA, Au-
gust 17–21, 2008. Springer, Berlin, Germany.

[15] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

25



[16] Saqib A. Kakvi and Eike Kiltz. Optimal security proofs for full domain hash, revisited. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume
7237 of Lecture Notes in Computer Science, pages 537–553, Cambridge, UK, April 15–19, 2012.
Springer, Berlin, Germany.

[17] Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P. Smart,
editor, 10th IMA International Conference on Cryptography and Coding, volume 3796 of Lecture
Notes in Computer Science, pages 1–12, Cirencester, UK, December 19–21, 2005. Springer, Berlin,
Germany.

[18] Gregory Neven, Nigel P. Smart, and Bogdan Warinschi. Hash function requirements for schnorr sig-
natures. J. Mathematical Cryptology, 3(1):69–87, 2009.

[19] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equivalent to discrete
log. In Bimal K. Roy, editor, Advances in Cryptology – ASIACRYPT 2005, volume 3788 of Lec-
ture Notes in Computer Science, pages 1–20, Chennai, India, December 4–8, 2005. Springer, Berlin,
Germany.

[20] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M. Maurer, editor,
Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science,
pages 387–398, Saragossa, Spain, May 12–16, 1996. Springer, Berlin, Germany.

[21] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between cryptographic
primitives. In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951
of Lecture Notes in Computer Science, pages 1–20, Cambridge, MA, USA, February 19–21, 2004.
Springer, Berlin, Germany.

[22] Andy Rupp, Gregor Leander, Endre Bangerter, Alexander W. Dent, and Ahmad-Reza Sadeghi. Suf-
ficient conditions for intractability over black-box groups: Generic lower bounds for generalized DL
and DH problems. In Josef Pieprzyk, editor, Advances in Cryptology – ASIACRYPT 2008, volume
5350 of Lecture Notes in Computer Science, pages 489–505, Melbourne, Australia, December 7–11,
2008. Springer, Berlin, Germany.

[23] Sven Schäge. Tight proofs for signature schemes without random oracles. In Kenneth G. Paterson,
editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 189–206, Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

[24] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor,
Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
239–252, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Berlin, Germany.

[25] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, 1991.

[26] Yannick Seurin. On the exact security of schnorr-type signatures in the random oracle model. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume
7237 of Lecture Notes in Computer Science, pages 554–571, Cambridge, UK, April 15–19, 2012.
Springer, Berlin, Germany.

26



[27] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor,
Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science,
pages 256–266, Konstanz, Germany, May 11–15, 1997. Springer, Berlin, Germany.

[28] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor,
Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 114–127, Aarhus, Denmark, May 22–26, 2005. Springer, Berlin, Germany.

27


	Introduction
	Preliminaries
	Schnorr Signatures
	Computational Problems
	Representation-Invariant Computational Problems
	Generic Reductions

	Unconditional Tightness Bound for Generic Reductions
	Single-Instance Reductions
	Proof of Lemma 13

	Multi-Instance Reductions
	A Family of Inefficient Adversaries A(F,f)
	Main Result for Multi-Instance Reductions


