
Private Database Queries Using Somewhat Homomorphic

Encryption

Dan Boneh∗ Craig Gentry† Shai Halevi† Frank Wang‡ David J. Wu∗

Abstract

In a private database query system, a client issues queries to a database and obtains the results with-
out learning anything else about the database and without the server learning the query. While previous
work has yielded systems that can efficiently support disjunction queries, performing conjunction queries
privately remains an open problem. In this work, we show that using a polynomial encoding of the
database enables efficient implementations of conjunction queries using somewhat homomorphic encryp-
tion. We describe a three-party protocol that supports efficient evaluation of conjunction queries. Then,
we present two implementations of our protocol using Paillier’s additively homomorphic system as well
as Brakerski’s somewhat homomorphic cryptosystem. Finally, we show that the additional homomorphic
properties of the Brakerski cryptosystem allow us to handle queries involving several thousand elements
over a million-record database in just a few minutes, far outperforming the implementation using the
additively homomorphic system.

Keywords: private database queries, somewhat homomorphic encryption

1 Introduction

Enabling private database queries is an important research problem that arises in many real-world settings.
The problem can be thought of as a generalization of symmetric private information retrieval (SPIR) [3, 11]
where clients can retrieve records by specifying complex queries. For example, the client may ask for the
records of all people with age 25 to 29 who also live in Alaska, and the server should return these records
without learning anything about the query. The client should learn nothing else about the database contents.

In this work we explore the use of somewhat homomorphic encryption (SWHE) [7] for the design of
private database query protocols. In particular, we show that certain polynomial encodings of the database
let us implement interesting query types using only homomorphic computations involving low-degree poly-
nomials. There are now several encryption schemes [1, 2] that efficiently support the necessary low-degree
homomorphic computations on encrypted data needed for our constructions.

Unfortunately, being a generalization of SPIR, private database queries is subject to all the same inherent
inefficiency constraints as SPIR. To understand these limitations let us consider the two parties involved in
the basic setup: the client and the server. The server has a database and the client has a query. We seek
a protocol that gives the client only those records that match its query without the server learning any
information about the query. In this setting the server must process the entire database for every query;
otherwise, it would learn that the unprocessed records do not match the query. Moreover, the server has to
return to the client as much data as the number of records in the database, or else the database would learn
some information about the number of records that match the query. Thus, for large databases, the server
is forced to do a considerable amount of work, rendering such systems impractical in most scenarios.

To overcome these severe limitations we modify the basic model a bit and consider a setting in which the
database server is split into two entities called the “server” and the “proxy.” Privacy holds as long as these

∗Stanford University - {dabo,dwu4}@cs.stanford.edu
†IBM Research - craigbgentry@gmail.com, shaih@alum.mit.edu
‡MIT - frankw@mit.edu

1

two entities do not collude. This approach was taken by De Cristofaro et al. [5], who designed a system
that supported private evaluation of a few simple query types and demonstrated performance similar to a
non-private off-the-shelf MySQL system. However, the architecture of De Cristofaro et al. could not handle
conjunctive queries: for instance, the client could ask for all the records with age=25 OR name=‘Bob’, but
could not ask for the records with age=25 AND name=‘Bob’. Another multi-party architecture for performing
private database queries is proposed in [19]. In this case, the server constructs an encrypted document index
which is stored on an index server (e.g., “proxy” in our setting). To submit queries, the client interacts with
a query router. One of the limitations of this scheme is that for each query, the server has to perform a
computation on each record in the database, which does not scale well to very large databases.

In this work, we develop protocols that can efficiently support conjunction queries over large databases
using an architecture similar to [5]. We rely on somewhat homomorphic encryption schemes [1, 2] that
efficiently support low-degree homomorphic computations on encrypted data.

1.1 Security model

The functionality that our protocol implements gives the client the indices of the records that match its
query. The client should learn nothing about the data beyond this set and the server and proxy should learn
nothing about the query beyond what is explicitly leaked.

More precisely, security for the client means that if the client issues one of two adversarially-chosen queries
with the same number of attributes, the adversarial server cannot distinguish between them. Security for the
server means that for any fixed query and two adversarially-chosen databases for which the query matches
the same set of records, the client cannot distinguish the two databases.

In this paper, we adopt the honest-but-curious security model. Our protocols can be enhanced to handle
malicious adversaries using generic tools such as [14]. It is an interesting open problem to design more
efficient protocols in the malicious settings specific to the private database queries problem. Security holds
as long as the server and the proxy do not collude. This is very similar to the assumptions made in [19].

1.2 Our Protocol

The protocol and tools we present in this work are aimed at revealing to the client the indices of the
records that match its query, leaving it to a standard follow-up protocol to fetch the records themselves.
The approach that underlies our protocol is to encode the database as one or more polynomials and then
manipulate these polynomials using the client’s query so as to obtain a new polynomial whose roots are the
indices of the matching records. This representation is well suited for conjunction queries, since it allows us
to use techniques similar to the Kissner-Song protocol for (multi-)set intersection [16].

In our protocol, the three parties consist of a client with a query, a proxy that has an inverted index
for the database, and a server that prepared the inverted index during a pre-processing step and now keeps
only the keys that were used to create this inverted index. Specifically, the server keeps some “hashing keys”
and the secret key for a SWHE scheme. For every attribute-value pair (a, v) in the database, the inverted
index contains a record (tg,Enc(A(x))) where tg is a tag, computed as tg = Hash(“a = v”), and A(x) is a
polynomial whose roots are exactly the records indices r that contain this attribute-value pair.

An example query supported by our protocol is:

SELECT ⋆ FROM db WHERE a1 = v1 AND · · · AND at = vt.

Given this query, the client (with oblivious help from the server) computes the tags tgi = Hash(“ai = vi”)
for i = 1, . . . , t and sends them to the proxy. The proxy fetches the corresponding encrypted polynomials
Ai(x) from the inverted index, chooses random polynomials Ri(x) of “appropriate degrees” and computes
the encrypted polynomial B(x) =

∑t
i=1 Ri(x)Ai(x). The proxy returns the encrypted B to the client, who

again uses oblivious help from the server to decrypt B, and then factors it to find its roots, which are the
indices of the matching records (with high probability).

One drawback of this protocol is that the proxy can tell when two different queries share the same
attribute-value pair (since the client will send the same tag in both). In Section 3.3, we show that using

2

quadratic-homomorphic encryption, we can mitigate this drawback somewhat, providing a privacy/bandwidth
tradeoff that the client can tune to its needs.

Bandwidth reduction and other optimizations. Another drawback of the protocol above is that the
degree of the encrypted polynomial B returned by the proxy (which determines the size of the response)
depends on the largest number of records that match any of the attribute-value pairs in the query. For exam-
ple, if the client query was “SELECT ⋆ FROM db WHERE gender=‘male’ AND zipcode=12345,” the response
size will be at least as large as the number of males in the database, even if there are only a few people with
zipcode 12345.

In Section 3.2, we describe how to reduce this degree (and bandwidth) by observing that the minimum-
degree polynomial that encodes the intersection is the gcd of the Ai’s. We show that the somewhat homo-
morphic properties of the cryptosystem can be used to approximate the gcd. Our discussion here will lead
to a storage/homomorphism tradeoff. We present additional optimizations in Section 3.3. In Section 3.4 we
show that we can take advantage of homomorphic batching [8, 20]) to further speed up the computation.

Implementation and performance results. We implemented our three-party protocol using both the
additive homomorphic Paillier cryptosystem [18] and a variant of Brakerski’s system [1] that supports a single
multiplicative homomorphism. Our implementation, described in Section 4, shows that the use of multiplica-
tive homomorphisms greatly improves performance and bandwidth over the strictly additive implementation
using Paillier.

2 Preliminaries

2.1 Homomorphic Encryption

Fix a particular plaintext space P which is a ring (e.g., P = F2). Let C be a class of arithmetic circuits
over the plaintext space P. A somewhat homomorphic (public-key) encryption relative to C is specified
by the procedures KeyGen,Enc,Dec (for key generation, encryption, and decryption, respectively) and the
additional procedure Eval that takes a circuit from C and one ciphertext per input to that circuit, and returns
one ciphertext per output of that circuit.

The security requirement is the usual notion of semantic security [12]: it should be hard to distinguish
between the encryption of any two adversarially-chosen messages, even if the public key is known to the
adversary. The functionality requirement for homomorphic schemes [7] is that for every circuit π ∈ C and
every set of inputs to π, if we choose at random the keys, then encrypt all the inputs, then run the Eval
procedure on these ciphertexts and decrypt the result, we will get the same thing as evaluating π on this set
of inputs (except perhaps with negligible probability). An important property of SWHE schemes is circuit
privacy, which means that even the holder of the secret key cannot learn from the evaluated ciphertext
anything about the circuit, beyond the output.

In this work we use “low degree” somewhat homomorphic encryption, namely homomorphic encryption
schemes relative to the class of low degree polynomials. While our basic protocol requires only additive
homomorphism, some of our optimizations require that the scheme support polynomials of higher degree.

2.2 Polynomial Arithmetic and Set-Intersection

We provide a brief overview of the techniques underlying the Kissner-Song set-intersection protocol [16]. Our
setting is different than that considered in [16], hence also our use of these techniques is somewhat different.
Roughly, Kissner and Song considered the case where each party has a set and they want to compute the
intersection of all their sets. In our case we have one party holding all the sets (the server), and another
party that determines which of these sets should participate in the intersection (the client).

The idea behind the Kissner-Song protocol is to fix a large field F and represent a set S ⊂ F by a
polynomial AS that has zeros in all the elements of S, that is AS(x) =

∏
s∈S(x − s). To compute the

3

intersection of many sets Si, we construct a polynomial B whose zeros are the intersection of these sets.
Clearly, if some point s ∈ F is contained in all the sets Si, then ASi(s) = 0 for all i, and therefore, if we
compute B as a linear combination of the ASi ’s, then also B(s) = 0. On the other hand, if ASi(s) ̸= 0 for
some i and B is a random linear combination of the ASi ’s, then with high probability B(s) ̸= 0.

The Kissner-Song approach is therefore to choose the field F sufficiently larger than the “universe” U of
valid points (e.g., we have Si ⊆ U (F), then take B to be a random linear combination of the ASi ’s, and
show that with high probability, the only roots of B that come from U are the ones corresponding to the
intersection of the Si’s. The following lemma is easy to prove using the above arguments:

Lemma 1. Fix a finite field F and a “universe” U ⊂ F, let S1, . . . , St ⊆ U be subsets of the universe and
for each Si, let ASi(x) =

∏
s∈Si

(x− s).

(i) Let ρ1, . . . , ρt−1 be random scalars in F, let A′(x) = ASt +
∑

i<t ρiASi(x), and denote the set of roots
of A′ by SA′ . Then Pr[SA′ ∩ U =

∩
i Si] ≥ 1− |U |/|F|.

(ii) Let R1, R2 be random polynomials in F[x] of some given degrees d1, d2 ≥ 0. Let B(x) = A1(x)R1(x) +
A2(x)R2(x), and SB be the set of roots of B. Then Pr[SB ∩ U = S1 ∩ S2] ≥ 1− |U |/|F|.

The harder part is to show that the random linear combination B does not leak information on the ASi ’s
beyond their intersection. For this to hold, the coefficients of the linear combination cannot be scalars in F,
they must be themselves polynomials of high-enough degree. Specifically, we use the following lemma which
is a slight generalization of [16, Lemma 1]:

Lemma 2. Fix a finite field F and two co-prime polynomials A1(x), A2(x) ∈ F[x], of degrees d1 = deg(A1)
and d2 = deg(A2). Also, fix some integer D1 ≥ d1 − 1, and let D2 = d2 +D1 − d1. Next, choose uniformly
at random a degree-D2 polynomial R1(x) ∈ F[x] and a degree-D1 polynomial R2(x) ∈ F[x] and set B(x) =
A1(x) · R1(x) + A2(x) · R2(x). Then, B(x) is distributed uniformly among all the polynomials of degree
d1 +D2 = D1 + d2 over F.
Proof. Omitted due to space constraints. See appendix of the full version.

Corollary 3. Fix a finite field F and two polynomials A1(x), A2(x) ∈ F[x], with degrees d1 and d2, respec-
tively. Let G(x) = gcd(A1(x), A2(x)). Also fix some integer D1 ≥ d1 − 1, and let D2 = d2 +D1 − d1. Then
choosing uniformly at random a degree-D2 polynomial R1(x) ∈ F[x] and a degree-D1 polynomial R2(x) ∈ F[x]
and setting B(x) = A1(x) · R1(x) + A2(x) · R2(x), the polynomial B(x) is distributed uniformly among all
the polynomials of degree d1 +D2 over F which are divisible by G(x).

Proof. Follows by applying Lemma 2 to the co-prime polynomials A′
1(x) = A1(x)/G(x) and A′

2(x) =
A2(x)/G(x).

Intersection of two sets. If AS1(x), AS2(x) are polynomials that represent sets S1, S2, respectively, then
gcd(AS1 , AS2) is the polynomial that represents their intersection. In this case, Corollary 3 says that setting
B = AS1R1 + AS2R2 for R1, R2 of “appropriate degrees” yields a random multiple of G(x) that leaks “no
information” about A1, A2 beyond their intersection and the sum of their sizes.1

Intersection of many sets. In this setting, we are given the polynomials ASi , i = 1, 2, . . . , t, with
di = deg(ASi). Without loss of generality, let dt be the largest degree. We first choose random scalars,
ρi ∈ F for i = 2, . . . , t, and compute the degree-dt polynomial A′(x) = ASt(x) +

∑
2≤i<t ρiASi(x). Then

we choose two random polynomials R1(x) of degree dt − 1 and R′(x) of degree d1 − 1 and set B(x) =
AS1(x)R1(x) +A′(x)R′(x).

Clearly gcd(AS1 , AS2 , . . . , ASt) divides gcd(AS1 , A
′). Also Lemma 1 (applied to U = S1 and S′

i = Si∩S1)
implies that with probability at least 1 − d1/|F| we have gcd(AS1 , A

′) = gcd(AS1 , AS2 , . . . , ASt). It follows
from Corollary 3 that when the size of F is super-polynomially larger than d1, the distribution of B(x) is
statistically close to uniform over the degree-(d1 + dt − 1) polynomials divisible by gcd(AS1 , AS2 , . . . , ASt).

1We can pad to a pre-determined degree to hide the information about the sizes.

4

Reducing the degree. To reduce the degree of the resulting polynomials, instead of using A′(x) =∑
i ρiASi(x), we compute the polynomial A′′(x) = A′(x) mod AS1(x) of degree d1 − 1. Choosing at random

R1(x) of degree d1 − 1 and R′′(x) of degree d1, we set B(x) = A1(x)R1(x) + A′′(x)R′′(x). Correctness and
secrecy follow from the observation that since A′′(x) = A′(x) mod AS1(x), gcd(AS1 , A

′′) = gcd(AS1 , A
′).

3 The Three-Party Protocol

In this section, we describe the three-party setting that we adopt in this paper (which is similar to the
“Isolated-Box” architecture in [5]). In this architecture, in addition to the client and server there is a third
party, a proxy, that holds an “encrypted” inverted index of the database records. For each attribute-value
pair in the database, the proxy holds a tag that identifies the pair, along with a set of record indices that
contain the pair. Specifically, for each attribute-value pair in the database (e.g., “name=Joe”), the inverted
index contains the following:⟨

PRFs(“name=Joe”), encrypted-set-of-record-indices
⟩

(1)

where the PRF key s is held by the server and the set of record indices contains all the records where the
attribute “name” has value “Joe.”

When the client wants to fetch the records with name=Joe, it engages in a protocol for oblivious-PRF-
evaluation with the server and learns the tag PRFs(“name=Joe”). It then engages in a protocol with the
proxy to learn the set of indices corresponding to this tag. To make a conjunction query, the client sends
multiple tags to the proxy and at the end of the protocol, learns the records in the intersection of all the
sets.

3.1 Our Basic 3-Party Protocol

The task of computing conjunctions is closely related to set intersection. Indeed, an attribute-value pair
(e.g., “name=Joe”) implicitly defines a set of records that contains this pair. The proxy needs to send the
intersection of all these sets to the client, without learning anything about the sets themselves.

Using the technique of Kissner and Song described in Section 2.2, we represent each set as a polynomial
whose roots are the elements of that set. Thus, in the row of the inverted index with tag PRFs(“name=Joe”),
we do not store the set of indices S containing this attribute-value pair, but rather the polynomial AS(x) =∏

s∈S(x − s), encrypted using our SWHE scheme. Note that the SWHE scheme is used to encrypt each
coefficient of the polynomial AS . To issue a conjunctive query (say, “name=Joe” and “age=28”), the client
does the following:

1. Use oblivious-PRF-evaluation to obtain from the server the tags tg1, . . . , tgt corresponding to each of
the attribute-value pairs. The client sends all the tags to the proxy.

2. The proxy collects the encrypted polynomials Ai corresponding to the tags tgi and then computes a
polynomial B(x) as a “random linear combination” of the Ai(x)’s:

(i) Letting di = deg(Ai) and assuming that the Ai’s are ordered by degree (d1 ≤ d2 ≤ · · · ≤ dt), the
proxy first chooses random scalars ρ2, . . . , ρt−1 and computes the degree-dt polynomial A′(x) =
At +

∑
2≤i<t ρiAi(x).

(ii) Then the proxy chooses two random polynomials R1(x) of degree dt−1 and R′(x) of degree d1−1
and sets B(x) = A1(x)R1(x) +A′(x)R′(x).

The proxy uses the additive homomorphism of the scheme to compute the encrypted coefficients
of the polynomial B from the encrypted coefficients of the Ai’s and the plaintext ρi, R1 and R′.
The proxy sends the encrypted B(x) to the client.

3. The client and server engage in another protocol to decrypt B(x) (encrypted under the server’s key).
At the conclusion of this protocol, the client knows B(x) and the server knows nothing.

5

4. The client factors B(x) and finds its roots, which are the indices of the records that the client is
interested in. While B(x) may have superfluous roots, we use a large-enough space so that with high
probability these roots are identified as invalid and discarded.

Once the client knows the indices of the records that match its query, it can use PIR/ORAM protocols to
fetch the encrypted records, then engage in another oblivious decryption protocol with the server to decrypt
them.

Security. Secrecy against an honest-but-curious proxy is ensured by the fact that the tags do not leak
to the proxy anything about the attribute-value pairs that were used to generate them (because the tag-
generation function is pseudo-random), and the encrypted polynomials do not leak anything due to the
semantic security of the SWHE cryptosystem. Note that our security model only ensures privacy for a single
query. If the client issues multiple queries then the proxy may learn relations between these queries. We
briefly discuss multiple queries in Section 3.3.

Secrecy against an honest-but-curious client follows from Corollary 3 and the circuit-privacy property of
the SWHE scheme. Specifically, Corollary 3 implies that the polynomial B by itself does not leak anything
about the Ai’s beyond their intersection (and the size d1+dt), and circuit-privacy of the cryptosystem means
that the evaluated ciphertext encrypting B does not leak anything else.

3.2 Reducing Communication via Modular Reduction

The communication complexity of the basic solution above is determined by the degree of the polynomial B,
which is tied to the size of the largest set in the intersection (e.g., the highest degree dt). Using some more
homomorphic operations, we can make the degree of B as low as 2d1 − 1, namely it can be tied to the size
of the smallest set S1 rather than the largest set St.

To this end, we use the optimization from Section 2.2, where instead of usingA′(x) = At(x)+
∑

2≤i<t ρiAi(x),
the proxy uses A′′(x) = A′ mod A1(x). We note that given the encrypted coefficients of both the polyno-
mial A′(x) of degree dt and the monic polynomial A1(x) of degree d1, we can homomorphically reduce A′

modulo A1 as long as our SWHE scheme supports formulas of degree dt − d1. To see this, notice that
given the encryption Enc(α′

dt
) of the top coefficient of A′, we can reduce the degree of A′ by one by setting

A′′ = A′ − α′
dt
· A1(x) · xdt−d1 . Clearly the degree of A′′ is one less than that of A′ and it satisfies A′′ ≡ A′

(mod A1).
However, reducing modulo A1 can be done using more limited homomorphism if the proxy is given not

just the encryption of A1 but also some other ciphertexts. For example, suppose the proxy is given the
encryption Enc(xi mod A1) for i = d1 + 1, d1 + 2, d1 + 3, . . . , dt. Then given the encryptions of all the
coefficients of A′, Enc(α′

0), . . . ,Enc(α
′
dt
), the proxy computes the encryption of the reduced polynomial as

Enc(A′ mod A1) = Enc(
∑dt

i=0 α
′
i(x

i mod A1)). Since the proxy has the encryptions of all the α′
i’s and the

(xi mod A1)’s, then it is enough if our SWHE scheme supports only quadratic formulas, such as [10, 1].
The above two procedures for computing polynomial modular reduction represent two extremes on the

storage/homomorphism tradeoff. Perhaps a better tradeoff can be obtained by storing only logarithmi-
cally many encrypted polynomials corresponding to A1, and using a SWHE scheme supporting formulas
of degree O(log dt). Denoting ∆ = dt − d1, the proxy is given the encryptions Enc(xd1+2i mod A1) for
i = 0, 1, . . . , ⌈log∆⌉. Given these encryptions and the encryptions of the coefficients of A′, reducing A′

modulo A1 homomorphically can be done in ⌈log∆⌉ steps. See appendix of full version for more details.

3.3 Other Optimizations and Variations

Returning two polynomials. The most expensive operation that the client performs in our protocol is
factoring the polynomial B. Even with the bandwidth reduction trick from above, its degree is still twice as
large as the degree of the smallest Ai, which can be much higher than the degree of the gcd of the Ai’s.

A simple trick that can be used here is to have the proxy send to the client two encrypted polynomials.
Namely, after the proxy computes the polynomial A′ in Step 2(i), it repeats Step 2(ii) twice, that is, choose

6

polynomials R1, R
′ and S1, S

′ and set B(x) = A1(x)R1(x)+A′(x)R′(x) and C(x) = A1(x)S1(x)+A′(x)S′(x).
The proxy sends the encrypted B and C to the client, who engages in an oblivious decryption protocol with
the server to decrypt both. Then the client computes the gcd of the two polynomials B and C, and with
high probability this polynomial is the gcd of all the Ai’s, which hopefully has much lower degree than B,C
themselves.

Obscuring relations between different queries. One problem with the basic solution above is that
the client sends to the proxy all the tags tgi = PRFs(attri = valuei), so the proxy can tell when a given
tgi is used in multiple queries. This problem can be mitigated by adding spurious tags to the request, but
without changing the result of the final intersection. The idea is to have the client send to the proxy pairs
(tgi, si) where tgi is a tag for an attribute-value pair and si is an encryption of a bit σi ∈ {0, 1}. By using a
quadratic-homomorphic encryption scheme (such as [10]), the proxy can choose its randomizers Ri(x) and
compute an encryption of the polynomial B(x) =

∑
i Ri(x) · (σi ·Ai(x)). The client will send some spurious

tags tgi with σi = 0, thus obscuring the tags that it is really interested in, but without changing the result
of the intersection.

3.4 Speedups via Batching

One appealing optimization that applies to the protocol in this paper is to use “batch homomorphic encryp-
tion” where a single ciphertext represents a vector of encrypted values and a single homomorphic operation
on two such ciphertexts applies the homomorphic operation component-wise to the entire vector. This way,
for the cost of a single homomorphic operation we get to compute on an entire vector of encrypted plain-
texts. This is a cryptographic analogue of the Single Instruction Multiple Data (SIMD) architecture and is
supported by recent fully homomorphic encryption systems [1, 20, 2, 8].

We take advantage of batching in our context by splitting the database into a few small partial databases
and running the same query against all parts in parallel. When using the techniques from [20, 2, 8] (for
the ring-LWE-based homomorphic encryption) we can pack in each ciphertext ℓ different plaintext elements
(where ℓ is typically in the range of 500-10,000). We can then break an r-record database into ℓ smaller
databases, each with ≈ r/ℓ records.

In the three-party setting, with each tag tgi = PRFs(“attri = vali”), we keep encryptions of ℓ different
polynomials, one for each part of the database. These are placed in the ℓ “plaintext slots” of the ciphertexts,
so the number of ciphertexts that needs to be kept is only as large as the degree of the largest of these ℓ
polynomials. (If the records are split between the parts uniformly, then we expect this degree to be roughly
a factor of ℓ smaller than it would be if we keep everything as a single database.) A client query will still
be processed in the exact same way as in the previous sections, but now the client will get back from the
proxy not a single encrypted polynomial B(x) but ℓ different polynomials Bj(x), one for each of plaintext
slot. The client gets the decryption of all these Bi’s from the server, factors them all, and takes the union
of their roots to be the set of records that match the query.

4 Implementing the Three-Party Protocol

We implemented the basic three-party protocol from Section 3 using both the Paillier cryptosystem [18] and
a variant of Brakerski’s leveled homomorphic system [1]. Because the Paillier cryptosystem only supports
additive homomorphism, we can only support the basic protocol, without the batching (Section 3.4) and
modular reduction optimizations (Section 3.2). In contrast, Brakerski’s leveled homomorphic scheme sup-
ports a bounded number of homomorphic additions and multiplications. To demonstrate the effectiveness of
our optimizations we conducted a set of experiments with batching and modular reduction using Brakerski’s
cryptosystem. Since most of our described optimizations pertain specifically to the problem of oblivious set
intersection, we focus our experimental analysis on this portion of the three-party protocol.

In this section, we show that support for batching (Section 3.4) in Brakerski’s system is critical for
evaluating large queries. Specifically, for large queries, the Paillier system becomes intractable, leaving the

7

Experiment Ring Modulus
Φm

Plaintext Slots
φ(m)

Plaintext
Modulus p

Ciphertext
Modulus q

NoMR m = 5939 φ(m) = 5938 p = 1000032577 log2 q = 181
MR, MRNoKS m = 7867 φ(m) = 7866 p = 1000021573 log2 q = 238

Table 1: Parameters used to achieve 128-bit security in the Brakerski system. The false positive rate is fixed
at 10−3.

Brakerski system as the only suitable option. We also demonstrate that the modular reduction optimization
(Section 3.2) yields substantial reductions in both computation time and network bandwidth on queries where
there is a large disparity in the sizes of the record sets corresponding to the tags. In one case, we show a 4X
improvement in both processing time and bandwidth using modular reduction.

4.1 Homomorphic Encryption Schemes

Paillier cryptosystem. Recall that the Paillier cryptosystem works over Z∗
n2 for an RSA-modulus n of

unknown factorization. The scheme has plaintext space P = Zn and ciphertext space Z∗
n2 . The scheme is

additively homomorphic, with homomorphic addition implemented by multiplying the corresponding cipher-
texts in Z∗

n2 . Similarly, we can homomorphically multiply a ciphertext c ∈ Z∗
n2 by a constant a ∈ Zn by

computing ca mod n2.

Brakerski’s leveled homomorphic cryptosystem. We also use the ring-LWE-based variant of Brak-
erski’s scale-invariant homomorphic cryptosystem [1]. Specifically, our implementation operates over poly-
nomial rings modulo a cyclotomic polynomial. Let Φm(x) denote the mth cyclotomic polynomial. Then, we
work over the ring R = Z[x]/Φm(x). Specifically, we take our plaintext space to be P = Rp = Zp[x]/Φm(x)
and our ciphertext space to be Rq = Zq[x]/Φm(x) for some q > p. In this scheme, our secret keys and ci-
phertexts are vectors of elements in Rq. Homomorphic addition is implemented by adding the corresponding
ciphertexts. We can multiply a ciphertext c by a constant a ∈ Rp by computing ac. Finally, homomor-
phic multiplication is performed using a tensor product. Note that when we homomorphically multiply two
ciphertexts, the resulting ciphertext is encrypted under a tensored secret key. Using a technique called key-
switching, we can transform the product ciphertext into a regular ciphertext encrypted under the original
secret key. We refer readers to [1] for further details.

As noted in Section 3.4, one of the main advantages of using a ring-LWE-based homomorphic scheme is the
fact that we can pack multiple plaintext messages into one ciphertext using a technique called batching. To
use batching we partition a database with r records into ℓ separate databases, each containing approximately
r/ℓ records. Correspondingly, the the degrees of the polynomials in each database are reduced roughly by a
factor of ℓ. In our implementation, ℓ ≥ 5000, so this translates to a substantial improvement in performance.

We now consider a choice for the plaintext modulus p for use in the Brakerski scheme. From Lemma 1,
we have that the probability of a false positive (mistaking an element not in the intersection to be in the
intersection) is given by |U | / |Fp|. If we tolerate a false positive rate of at most 0 < λ < 1, then we require
that |Fp| ≥ 1

λ |U | =
r
λ , where r is the number of records in the database. Additionally, to maximize the

number of plaintext slots, we choose p such that p = 1 (mod m). To summarize, we choose our plaintext
modulus p such that p = 1 (mod m) and p ≥ r

λ .

4.2 Experimental Setup

We implemented the three-party protocol using both the Paillier and Brakerski cryptosystems as the under-
lying homomorphic encryption scheme. Our implementation was done in C++ using the NTL library over
GMP. Our code was compiled using g++ 4.6.3 on Ubuntu 12.04. We ran all timing experiments on cluster
machines with multicore AMD Opteron processors running at 2.1 GHz. The machines had 512 KB of cache

8

and 96 GB of available memory. All of our experiments were conducted in a single-threaded, single-processor
environment. Memory usage during the computation generally stayed below 10 GB.

In the Paillier-based scheme, we used a 1024-bit RSA modulus for all of our experiments. For the Brak-
erski system, we chose parameters m, p, q to obtain 128-bit security and a false positive rate of λ = 10−3.
See appendix of full version for derivation of parameters. Since the Brakerski system supports both the
batching and modular reduction optimizations described in Section 3.4 and Section 3.2, respectively, we
considered three different experimental setups to assess the viability of these optimizations. Below, we de-
scribe each of our experiments. The parameters used in our SWHE scheme for each setup are given in Table 1.

NoMR: Brakerski scheme without modular reduction. In the NoMR setup, we just used the batching ca-
pabilities of the Brakerski system. Note that this setup only required homomorphic addition, and not
homomorphic multiplication, and thus, allowed us to use smaller parameters in the Brakerski system.

MR: Brakerski scheme with modular reduction. In the MR setup, we considered the modular reduction
optimization from Section 3.2. In the final step of the three-party protocol, the proxy computes the poly-
nomial B(x) = A1(x)R1(x) + A′(x)R′(x) where deg(A1) ≤ deg(A′). When we perform modular reduction,
we compute A′(x) (mod A1(x)) followed by B(x) (mod A1(x)). This optimization reduces the degree of
the polynomial B(x) that the proxy sends to the client as well as the cost of the computation of B(x).
To perform this optimization, the SWHE scheme must support at least one multiplication, thus requiring
larger parameters for security. Consequently, each homomorphic operation takes longer, but since we are
performing fewer operations overall, the modular reduction can yield substantial gains for certain queries.
Due to the cost of homomorphic multiplications, we just consider the case of doing a single multiply.

MRNoKS: Brakerski scheme with modular reduction but without key switching. When we homomorphically
multiply two ciphertexts in the Brakerski system, we obtain a tensored ciphertext (e.g., a higher-dimensional
ciphertext) encrypted under a tensored secret key. Normally, we perform a key-switching operation that
transforms the tensored ciphertext into a new ciphertext encrypted under the normal secret key. If left
unchecked, the length of the ciphertexts grows exponentially with the number of successive multiplications.
Thus, the key-switching procedure is important for constraining the length of the ciphertexts. In our appli-
cation, we perform a single multiplication, and so the key-switching procedure may be unnecessary. Since
the key-switching operation has non-negligible cost, we can achieve improved performance at the expense of
slightly longer ciphertexts (and thus, increased bandwidth) by not performing the key switch.

Query type. In each of our experiments, we operated over a database with 106 records and performed
queries consisting of five tags. Let d1 ≤ d2 ≤ · · · ≤ d5 denote the number of elements associated with each
tag tg1, . . . , tg5. We profiled our system on two different sets of queries: balanced queries and unbalanced
queries. In a balanced query, the number of elements associated with each tag was approximately the same:
d1 ≈ d2 ≈ · · · ≈ d5.

In an unbalanced query, the number of elements associated with each tag varies significantly. Specifically,
d1 is at most 5% of d5. As discussed in Section 1, queries like these where we compute an intersection of a
large set with a much smaller set are very common and so, it is important that we can perform such queries
efficiently. For each query, we measured the computation time as well as the total network bandwidth
required by each of our setups. Note that due to the poor scalability of the Paillier system, we were not able
to perform the full set of experiments using the Paillier cryptosystem.

4.3 Experimental Results

Balanced queries. In the first set of experiments, we considered the run-time and bandwidth requirements
for performing balanced queries. In particular, we constructed a database with 106 records and where each
tag in the database was associated with approximately d records (for d ranging from 100 to 200,000). We

9

Q
u

e
ry

 T
im

e
 (

m
in

u
te

s)

1

10

100

1000

10000

20 200 2000 20000 200000

Approximate Number of Records Associated with Each Tag

MR: With Modular Reduc!on (Brakerski)

Paillier: Paillier System

MRNoKS: With Modular Reduc!on without Key Switching (Brakerski)

NoMR: No Modular Reduc!on (Brakerski)

Figure 1: Timing tests on balanced queries using the Paillier cryptosystem and the three setups of the
Brakerski cryptosystem described in Section 4.2. All queries were conducted over a database consisting of
106 records. Each query consisted of five tags; the approximate number of records associated with each tag
is indicated on the plot above. Note that the running time with Paillier became too large when the database
had more than 2,000 records per tag and as a result the Paillier line stops at 2,000.

20 200 2000 20000 200000

B
a

n
d

w
id

th
 (

M
B

)

Approximate Number of Records Associated with Each Tag

70

60

50

40

30

20

10

0

MR: With Modular Reduc!on (Brakerski)

Paillier: Paillier System

MRNoKS: With Modular Reduc!on without Key Switching (Brakerski)

NoMR: No Modular Reduc!on (Brakerski)

Figure 2: Bandwidth measurements on balanced queries using the Paillier cryptosystem and the three dif-
ferent setups of the Brakerski cryptosystem. Same setup as in Fig. 1.

executed these queries on the four different setups described above (Paillier, NoMR, MR, and MRNoKS).
Our timing and bandwidth measurements are summarized in Fig. 1 and Fig. 2. Because the query execution
time dominated the cost of the computation, we just present the cost of performing the query.

We compare the computational cost and network bandwidth required by each of our setups described
in Section 4.2 for evaluating balanced queries. From Fig. 1, we see that the Paillier system is faster for
small queries involving sets of several hundred records. This is due to the simplicity and low computational
overhead of the Paillier cryptosystem compared to Brakerski’s leveled homomorphic cryptosystem. However,
the run time scales quadratically with the size of the underlying sets, so for queries with over 2,000 elements,
the Paillier system becomes completely impractical. While the performance using Brakerski’s system also
scales quadratically with the number of records, batching allows us to split the main database D into ℓ

slices, each with approximately |D|
ℓ records. Thus, we were able to reduce the degree of the polynomials

we needed to multiply by a factor of approximately ℓ > 5000. In turn, batching allows for approximately a
factor of ℓ increase in the number of records the system could handle. Using Brakerski’s system, we are able
to handle queries for tags consisting of 200,000 records. These results also indicate that in terms of both
bandwidth and computation time, the modular reduction optimization from Section 3.2 is ineffective when
we have balanced queries. This is because the modular reduction optimization is designed for cases where
there is a large disparity between the sizes of the smallest and largest sets. When the size of each set is
approximately equal, the larger parameters needed to support the modular reduction optimization coupled

10

NoMR: No Modular Reduc�on MR: With Modular Reduc�on

MRNoKS: With Modular Reduc�on without Key Switching

Query 1
(2.5K, 2.5K, 5K, 10K, 50K)

Query 2
(10K, 20K, 25K, 50K, 200K)

Query 3
(2.5K, 2.5K, 5K, 5K, 350K)

Q
u

e
ry

 T
im

e
 (

m
in

u
te

s)

0

20

40

60

80

100

120

140

160

180

32.4

157.6

124.1

29.0

73.9

47.2

23.2

58.4

26.5

Figure 3: Timing tests on unbalanced queries using the three different setups of the Brakerski system
(described in Section 4.2). All queries were conducted over a database consisting of 106 records. Each
query consisted of five tags; the number of records associated with each tag is shown in parenthesis in the
corresponding graphs.

NoMR: No Modular Reduc�on MR: With Modular Reduc�on

MRNoKS: With Modular Reduc�on without Key Switching

Query 1
(2.5K, 2.5K, 5K, 10K, 50K)

Query 2
(10K, 20K, 25K, 50K, 200K)

Query 3
(2.5K, 2.5K, 5K, 5K, 350K)

B
a

n
d

w
id

th
 (

M
B

)

0

5

10

15

20

25

30

35

7.9

19.9

29.4

4.7
7.9

4.7
6.8

11.5

6.8

Figure 4: Bandwidth measurements on unbalanced queries using the three different setups of the Brakerski
system. Same setup as in Fig. 3.

with the computational cost of performing the optimization resulted in worse performance overall. Thus, for
balanced queries, it is advantageous to just use the Brakerski system without additional optimizations.

Unbalanced queries. We also considered the case where the underlying sets are unbalanced, that is,
cases where the smallest set contains at most 5% of the number of records in the largest set. Due to the
poor scalability of the Paillier system, we only performed the queries using our three Brakerski setups. Our
results are summarized in Fig. 3 and Fig. 4.

When working with unbalanced queries, the modular reduction optimization (with or without key switch-
ing) reduces the necessary bandwidth. Despite the fact that each individual ciphertext is larger when we
perform modular reduction (due to the larger parameters in the Brakerski system), the polynomials also
have much lower degree (degree given by 2d1− 1 rather than d1 + d5− 1). The larger the difference between
d1 and d5, the more substantial the bandwidth reduction. Furthermore, performing modular reduction also
translated to faster query processing. Recall that in the last step of the proxy computation, the proxy
multiplies a polynomial of degree d5 − 1 with one of degree d1 − 1. If we use modular reduction, the mul-
tiplication is instead performed on two polynomials of degree d1 and d1 − 1. From our experiments, we see
that when d1 = 10,000 and d5 = 200,000 (Query 2), the MRNoKS setup is about 2.7 times faster. When
this gap is even larger with d1 = 2,500 and d5 = 350,000 (Query 3), we observe that the MRNoKS setup is
almost 4.7 times faster than the NoMR system. Even with key switching in this case (Query 3), modular
reduction still reduces the run time by a factor of 2.6. In both MR and MRNoKS, the bandwidth on this
very unbalanced query is reduced by more than a factor of 4 compared to the baseline without the modular
reduction optimization.

11

To summarize, performing the modular reduction optimization is greatly beneficial, both in terms of
computation time as well as in terms of network bandwidth, when there is a large difference between the
sizes of the underlying sets. As we have demonstrated, it is possible to achieve over a 4X improvement in
both computation time and network bandwidth on certain queries, making modular reduction a very viable
optimization in practice.

5 The Two-Party Setting

In this section, we revisit the traditional two-party client-server setting alluded to in Section 1. In this
setting, the server has the database and the client has a query. As before, we seek a protocol that would
give the client only those records that match its query and without the server learning what the query is.
As mentioned in Section 1, in the two-party setting, the server must process the entire database on each
query and return to the client as much data as the number of records in the database. While these are
severe limitations, and such a scheme is, in general, impractical, we present the protocol to illustrate how
the methods we describe in this paper may be applied to develop a private database query protocol in the
two-party setting.

In the two-party setting, there is only a client and a single database server. The client holds a secret
key for a SWHE scheme, and the server has the corresponding public key. In addition, the server holds
a database table, consisting of a set of records. Each record is identified by an index from a universe of
indexes, r ∈ [m] = {1, 2, . . . ,m}. Each record has a set of attribute-value pairs (a, v) where the attributes
correspond to the columns of the table. For simplicity we assume that the record index r, and both a and
v are elements of a finite field F. If the attributes or values are too large, we can replace their actual value
by a hash under a collision resistant hash function that outputs elements of F. These hashes are sufficient
for answering indexing queries and the data itself can be retrieved by a different mechanism, such as PIR or
ORAM.

The database stored on the server is represented as a bivariate polynomial D ∈ F[x, y] such that D(r, a) =
v whenever record r has value v at attribute a. This polynomial D(x, y) can be computed from the database
itself using interpolation:

1. For each record r interpolate a univariate polynomial Dr ∈ F[y] such that Dr(a) = v whenever record
r has value v at attribute a.

2. Then construct D(x, y) using Lagrange interpolation on polynomials as follows:

D(x, y) =
∑
r∈[m]

λr(x) ·Dr(y) (2)

where λr(x) is the Lagrange polynomial that evaluates to 1 when x = r and evaluates to 0 at all other
r ∈ [m].

Observe that the degree of D in x is one less that the number of records m. The degree of D in y is one
less than the number of attributes per record. We denote the number of attributes by ℓ. For the protocols
below, it is more convenient to store the polynomials Dr(x) separately, rather than storing the interpolated
polynomial D itself. (Either of these representations is about as large as the original database.)

5.1 Private Conjunction Queries

Consider a conjunction query specified by the attribute-value pairs {(ai, vi) : 1 ≤ i ≤ t}, that is, the SQL
query

SELECT ⋆ FROM db WHERE a1 = v1 AND · · · AND at = vt.

12

To issue this query, the client first constructs a univariate query polynomial Q(y) such that Q(ai) = vi for
i = 1, . . . , t and sends to the server the encrypted coefficients of the polynomial Q. For simplicity, we assume
that the client also sends to the server all the attributes ai in the clear (but of course, not the corresponding
values vi).

Given the database polynomial D(x, y) and the encrypted query polynomial Q(y), the server uses the
additive homomorphism of the cryptosystem to compute the encrypted polynomial A(x, y) = D(x, y)−Q(y).
Note that for every record r in the database, and every attribute ai in the query, we have A(r, ai) = 0 if and
only if D(r, ai) = vi, namely, the record matches the condition ai = vi in the query.

The server next uses the cleartext values ai to compute the encrypted polynomials Ai(x) = A(x, ai) for
i = 1, 2, . . . , t. Again, additive homomorphism of the cryptosystem is sufficient if the ai’s are given in the
clear. As noted above, the roots of the polynomial Ai are exactly those record indices r that match the
condition ai = vi from the query. This setting fits nicely with the set-intersection techniques of Kissner and
Song [16]. Specifically, we have several sets, each encoded as the roots of some polynomial and we wish to
compute the intersection of these sets.2

Using the Kissner-Song technique, the server sets B(x) =
∑t

i=1 Ri(x)Ai(x) for random polynomials Ri(x)
of “appropriate degrees.” Since the server choose the Ri’s itself, additive homomorphism is sufficient for this
step. As shown in [16], with high probability, the roots of B are exactly the record indices that match the
conjunction query, and moreover, B hides “all information” beyond the set of matching records.

The server returns to the client the encrypted polynomial B, the client decrypts and factors B to find its
roots, thus learning the indices of the records that match its query. The client can then use PIR or ORAM
techniques to retrieve the records themselves.

5.2 Fully Private Conjunction Queries.

In the above protocol, to issue a conjunction query to the server, we required that the attributes a1, . . . , at
be sent in the clear along with the query. Here, we present a different protocol that lets us privately
answer conjunction queries when the attributes a1, . . . , at in the query must also remain hidden from the
server. The protocol uses a quadratically homomorphic encryption, that is, a SWHE scheme supporting
one homomorphic multiplication on ciphertexts. Recall that the basic two-party protocol described in the
preceding paragraph only requires additive homomorphism.

As was the case before (Section 5.1), the client begins by interpolating a univariate polynomial Q ∈ F[x]
satisfying Q(ai) = vi for i = 1, . . . , t and sends to the server the coefficients of Q encrypted using the SWHE
scheme. In addition, the client also chooses random scalars ρ1, . . . , ρt ∈ F and constructs a component-wise
encryption of the vector

v =
t∑

i=1

ρi · (1, ai, a2i , . . . , aℓ−1
i) ∈ Fd, (3)

where ℓ is the number of attributes per record. It sends Q and v to the server, both encrypted component-
wise using the SWHE.

Now, for each record index r ∈ [m] the server does the following:

1. First, the server constructs the encrypted univariate polynomial

Ar(y) = D(r, y)−Q(y) = Dr(y)−Q(y) ∈ F[y], (4)

whose degree is ℓ−1. Computing this polynomial requires only additive homomorphism. Observe that
for every record r satisfying the conjunction query, the polynomial Ar(y) has a1, . . . , at as its roots.
Therefore, the coefficient vector of Ar is orthogonal to the vectors (1, ai, a

2
i , . . . , a

ℓ−1
i) for i = 1, . . . , t.

It follows that Ar is also orthogonal to a linear combination of these t vectors. The encrypted vector
v from the client is, in fact, a random linear combination of these vectors.

2We stress that we do not make a black-box use of the set-intersection protocol; in particular, we do not know if other
protocols for set-intersection (e.g., [15, 4, 13]) can be used in our setting.

13

2. Next, the server homomorphically computes the inner product of the coefficient vector of Ar(y) and the
vector v from the client. Let σr be the inner product and note that the server only has the encryption
of σr. If record r satisfies the query then σr = 0. If record r does not satisfy the query then σr ̸= 0 with
probability 1− 1/|F| over the choice of v. To ensure that σr leaks no residual information, the server
further blinds σr by choosing a randomizer ρ ∈ F∗ and using additive homomorphism, constructs the
encryption of ρ · σr. We let cr denote the resulting ciphertext.

3. Finally, the server sends all {cr : r ∈ [m]} back to the client. The client decrypts all of them and,
with high probability, the ones that decrypt to 0 are exactly the records satisfying the query. The
probability of a false positive is 1/|F| which is negligible if |F| is sufficiently large. The client learns
nothing else about the database.

Overall, using a quadratic homomorphic system, we were able to answer the query without revealing
anything about the query to the server and with the client learning nothing beyond the answer to the query.
Note that the server’s work is proportional to the size of the database as is the amount of communication,
both of which are unavoidable if the server is to learn nothing about the query.

5.3 Testing Record Equality.

Another operation that our scheme supports is testing whether two records are equal. Given the (encrypted)
indices r1 and r2 of two records, the server constructs the encrypted univariate polynomial

∆(y) = D(r1, y)−D(r2, y). (5)

By construction, if records r1 and r2 are the same, then ∆(y) is identically zero and this fact can be tested
by evaluating ∆(y) at a random point y0 ∈ F. In more detail, the protocol works as follows:

1. The client sends to the server the encrypted 2× ⌈logm⌉ matrix:

M =

(
r
(2j)
i

)
where

{
i = 1, 2
j = 1, 2, . . . , ⌈logm⌉ − 1

(6)

where m is the number of records in the database.

2. The server constructs the encrypted vectors

(1, r1, r
2
1, . . . , r

m
1) and (1, r2, r

2
2, . . . , r

m
2). (7)

It is easy to see that this can be done using a circuit applied to the entries of M whose multiplica-
tion depth is only ⌈logm⌉. Therefore, this steps needs a SWHE system that supports only ⌈logm⌉
homomorphic multiplications.

3. Next, the server uses the two encrypted vectors from the previous step to construct the encrypted
polynomial

∆(y) = D(r1, y)−D(r2, y). (8)

This is done by homomorphically multiplying the encrypted coefficient of the term xiyj in D(x, y) by
the encryption of ri1 and similarly by the encryption of ri2 and collecting terms. This step only needs
the SWHE to support one homomorphic multiplication.

4. Finally, the server chooses a random point y0 ∈ F and a randomizer ρ ∈ F∗. It computes the encrypted
value ρ ·∆(y0) and sends the resulting ciphertext back to the client.

5. The client decrypts and tests if the plaintext is 0. If so, then the two records in question are identical
with high probability.

Since the degree of ∆ is at most m − 1, the protocol outputs an incorrect result with probability at most
(m − 1)/|F|, which is negligible assuming |F| ≫ m. Privacy is guaranteed because the final ciphertext sent
back to the client reveals nothing other than the result of the equality test.

14

5.4 Threshold Conjunction Queries.

The protocol from Section 5.1 easily generalizes to answer threshold queries of the form (written in pseudo
SQL):

SELECT ⋆ FROM db WHERE number(ai = vi for i ∈ S) > T

where S is some subset of the ℓ attributes.
Recall that in the protocol described in 5.1, the client first interpolates a polynomial Q ∈ F[y] satisfying

Q(ai) = vi for i = 1, . . . , t and sends the encrypted coefficients ofQ to the server (encrypted with an additively
homomorphic scheme) along with a1, . . . , at sent in the clear. Using only additive homomorphism, the server
computes the encrypted coefficients of the univariate polynomials Ai(x) = A(x, ai)−Q(ai) for i = 1, . . . , t.
Since the final answer is simply gcd(A1, . . . , At) the server uses the Kissner-Song technique to communicate
this gcd back to the client without revealing anything else about the database.

To respond to threshold queries we use another technique from Kissner-Song where instead of return-
ing to the client the encrypted gcd(A1, . . . , At), the server constructs the encrypted polynomial P (x) =∏

i∈S Ai(x) and then applies the Kissner-Song linear combination randomization technique (Section 2.2)

to P (x), P ′(x), P ′′(x), . . . , P (t)(x) where P (i)(x) is the ith derivative of P (x). The indices of the records
that satisfy the threshold query will then be the roots of the resulting polynomial. Computing

∏
i∈S Ai(x)

requires |S| multiplications using the SWHE, while differentiation of encrypted polynomials requires only
additive homomorphism.

5.5 Updates.

Suppose a client knows the current contents of record number r and wishes to update that record. The client
can send to the server the encrypted polynomial

U(x, y) = λr(x) ·∆(y) (9)

where λr(x) is the polynomial that evaluates to 1 on r and zero on [m] \ {r}, and

∆(y) = D(new)
r (y)−D(old)

r (y). (10)

The server adds U(x, y) to D(x, y) using the additive homomorphic property of the SWHE and has no idea
which entries were updated. Unfortunately, the coefficient matrix of U(x, y) is as big as the database and
hence this is no better than sending a new database to the server. However, if the SWHE scheme supports
a single multiplication on encrypted data then the client can send the encrypted polynomial λr(x) and
separately send the encrypted polynomial ∆(y) and the server will multiply the two encrypted polynomials
itself to obtain U(x, y). This reduces the amount of communication from O(mℓ) to O(m+ ℓ) without adding
any additional rounds of interaction.

6 Conclusion

This paper presents new protocols and tools that can be used to construct a private database query system
supporting a rich set of queries. We showed how a polynomial representation of the database allows for
efficient evaluation of private conjunction queries. The basic schemes only require an additively homomor-
phic system like Paillier, but we showed that significant performance improvements can be obtained using
a stronger homomorphic system that supports both homomorphic additions and a few homomorphic mul-
tiplications. Our experiments quantify this improvement showing a real-world example where lattice-based
homomorphic systems can outperform their factoring-based counterparts.

Acknowledgments: This work is supported by IARPA via DoI/NBC contract number D11PC20202. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of

15

the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

References

[1] Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In:
CRYPTO (2012)

[2] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping.
In: Innovations in ITCS’12 (2012)

[3] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 45(6),
965–981 (1998)

[4] Cristofaro, E.D., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in
malicious model. In: ASIACRYPT 2010 (2010)

[5] Cristofaro, E.D., Lu, Y., Tsudik, G.: Efficient techniques for privacy-preserving sharing of sensitive
information. In: Trust and Trustworthy Computing (2011)

[6] Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomor-
phic encryption. In: CRYPTO. pp. 643–662 (2012)

[7] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009), crypto.
stanford.edu/craig

[8] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: EURO-
CRYPT (2012)

[9] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: CRYPTO. pp.
850–867 (2012)

[10] Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryptosystem from LWE. In: EURO-
CRYPT (2010)

[11] Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information
retrieval schemes. In: STOC ’98. pp. 151–160 (1998)

[12] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2),
270–299 (April 1984)

[13] Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better than custom
protocols? In: Proceedings of the Network and Distributed System Security Symposium - NDSS 2012.
The Internet Society (2012)

[14] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In:
CRYPTO. pp. 572–591 (2008)

[15] Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A., Prisco, R.D. (eds.)
Security and Cryptography for Networks - SCN 2010. Lecture Notes in Computer Science, vol. 6280,
pp. 418–435. Springer (2010)

[16] Kissner, L., Song, D.X.: Privacy-preserving set operations. In: CRYPTO (2005)

[17] Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: CT-RSA. pp.
319–339 (2011)

16

[18] Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Proc. of EU-
ROCRYPT’99. pp. 223–238 (1999)

[19] Raykova, M., Cui, A., Vo, B., Liu, B., Malkin, T., Bellovin, S.M., Stolfo, S.J.: Usable, Secure, Private
Search. IEEE Security and Privacy (October), 53–60 (2012)

[20] Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Manuscript at
http://eprint.iacr.org/2011/133 (2011)

A Proof of Lemma 2

In this section, we present a proof of Lemma 2 from the main text. We proceed via induction on the degree
D2.

Proof. Consider first the case D1 = d1− 1 and D2 = d2− 1. In this case R1 is a uniform polynomial modulo
A2 and R2 is a uniform polynomial modulo A1. Since A1, A2 are co-prime it follows that A1 ·R1 is uniform
modulo A2 and similarly A2 · R2 is uniform modulo A1. Hence B is uniform modulo both A1 and A2, and
moreover (B mod A1) and (B mod A2) are independent. This means that B is uniform modulo A1 ·A2 (by
the Chinese Remainder Theorem for polynomials). Since the degree of B in this case is d1 + d2− 1 (whereas
the degree of A1 ·A2 is d1 + d2), it follows that B is a uniformly random polynomial of its degree.

The general case follows by induction. We have already demonstrated the base case D2 = d2 − 1, so
assume that the lemma holds for some value of D2. Consider D2 + 1. Note that we can view the choice
of R1, R2 (of degrees D2 + 1, D1 + 1, respectively) as done by choosing at random R′

1, R
′′
1 of degree D2

and setting R1(x) = R′
1(x) + xR′′

1 (x), and similarly choosing at random R′
2, R

′′
2 of degree D1 and setting

R2(x) = R′
2(x) + xR′′

2 (x). Given this procedure for choosing R1, R2, we can write

B(x) = A1(x)(R
′
1(x) + xR′′

1 (x)) +A2(x)(R
′
2(x) + xR′′

2 (x))

= A1(x)R
′
1(x) +A2(x)R

′
2(x)︸ ︷︷ ︸

B′(x)

+x(A1(x)R
′′
1 (x) +A2(x)R

′′
2 (x)︸ ︷︷ ︸

B′′(x)

) (11)

With B′(x) and B′′(x) as defined in the line above, the induction hypothesis says that both B′(x), B′′(x) are
uniform polynomials of degree d1 +D2. Hence, B(x) = B′(x) + xB′′(x) is a uniform polynomial of degree
d1 +D2 + 1.

B A Storage/Homomorphism Tradeoff via Modular Reduction

In Section 3.2, we presented the modular reduction optimization as a way of both reducing the network
bandwidth as well as the computation time in the three-party protocol. In this section, we describe a
possible storage/homomorphism tradeoff in relation to the modular reduction optimization.

Recall from Section 3.2 that in the case where the SWHE scheme supports just one multiplication, we
need to provide the proxy the encryptions Enc(xi mod A1) for i = d1 +1, d1 +2, d1 +3, . . . , dt. On the other
extreme, if the SWHE scheme supports polynomials of degree dt−d1, then the proxy can reduce the degree of
the polynomial by one using a single homomorphic operation. A potentially better tradeoff can be obtained
by storing logarithmically many encrypted polynomials and using an SWHE scheme that supports formulas
of degree O(log dt). Let ∆ = dt − d1 and suppose the proxy is given the encryptions Enc(xd1+2i mod A1)
for i = 0, 1, . . . , ⌈log∆⌉. Given these encryptions and the encryptions of the coefficients of A′, reducing A′

modulo A1 homomorphically can be done in ⌈log∆⌉ steps.
Counting the steps backwards, i = ⌈log∆⌉ , . . . , 1, 0, at the beginning of the i’th step we have already

reduced A′ to a polynomial A′
i with degree smaller than d1 + 2i such that A′

i ≡ A′ (mod A1). We then

17

break A′
i into the bottom d1 + 2i−1 coefficients and the rest, A′

i(x) = Abot
i (x) + xd1+2i−1

Atop
i (x), where

deg(Abot
i) < d1 + 2i−1 and deg(Atot

i) ≤ 2r−1. Then we set

A′
i−1 = (xd1+2i−1

mod A1)︸ ︷︷ ︸
deg<d1

· Atop
i︸︷︷︸

deg≤2i−1

+ Abot
i .︸ ︷︷ ︸

deg<d1+2i−1

(12)

Clearly, the degree of A′
i−1 is smaller than d1 + 2i−1 and it satisfies A′

i−1 ≡ A′
i ≡ A′ (mod A1).

C Parameter Selection for Brakerski’s Somewhat Homomorphic
System

In Table 1, we listed the parameters we used in Brakerski’s somewhat homomorphic system to achieve 128-bit
security. In this section, we briefly describe how we selected those parameters.

As in the homomorphic encryption schemes of [8, 9, 2, 20], we work over rings modulo cyclotomic polyno-
mials R = Z[x]/Φm(x). Here, Φm(x) denotes the m’th cyclotomic polynomial. The correctness and security
analysis proceeds similar to the analysis in [9] for the closely related BGV cryptosystem [2]. Before we
begin the formal analysis, we describe the basics of the ring-LWE-based encryption scheme. As described
in Section 4.1, the ciphertexts and the secret keys are vectors of elements in Rq and the plaintext comprises
of elements of Rp. Next, we present the key-generation, encryption, and decryption mechanisms in our
cryptosystem.

KeyGen(). As in [9], we use very sparse secret keys in our implementation. Specifically, we sample a polyno-
mial s̃ ∈ Rq from a Hamming weight distribution HWT (h) where h is a parameter specifying the number
of nonzero coefficients in s̃ and where each of the nonzero coefficients of s̃ is ±1 with equal probability. The
secret key is the vector s = (1, s̃) ∈ R2

q . To generate the public key, we sample a polynomial A uniformly
from Rq and e from a noise distribution. As in other ring-LWE-based schemes [2, 9], we take our noise
distribution to be the zero-mean discrete Gaussian distribution DG(σ2) with variance σ2. Then, we compute
b = [A · s̃+ e]q and set the public key to be P = [b∥ −A] ∈ R2

q .

EncP(m).To encrypt a messagem ∈ Rp, we first sample a “small” polynomial r (a polynomial with coefficients

in {0,±1}) and e = (e0, e1) from the noise distribution DG2(σ2). Then, the encryption of m under s is given
by

c =

[
PT r+ pe+

⌊
q

p

⌋
m

]
q

(13)

where ⌊·⌋ denotes the floor function and [·]q denotes reduction modulo q.

Decs(c).To decrypt a ciphertext c encrypted under secret key s, we compute

m =

[⌊
p ·

[⟨c, s⟩]q
q

⌉]
p

. (14)

Using the above definitions, it can be shown that

⟨c, s⟩ =
⌊
q

p

⌋
m+ r · e+ p(e0 + e1s̃) (mod q). (15)

We let E = r · e+ p(e0 + e1s̃) denote the noise in the ciphertext. We say that c is a valid encryption of m
under s if E is sufficiently small (has low norm). The norm we will use to measure the size of a polynomial
f ∈ R will be the ℓ∞ norm of its canonical embedding, denoted ∥f∥can∞ . Briefly, the canonical embedding of
a polynomial f ∈ R into Cϕ(m) is the vector of evaluations of f at each of the ϕ(m) primitive m’th roots of

18

unity. We refer readers to [6, 8, 9] for a more detailed discussion of the properties of the canonical embedding
norm. By construction of the decryption function, decryption will succeed if

∥E∥can∞ ≤ ⌊q/2⌋
cm · p

, (16)

where cm is the ring constant specific to R = Z[x]/Φm(x). As demonstrated in [6], if m > 11 is prime,
cm ≈ 4/π. Thus, c is a valid encryption of m if both (15) and (16) hold.

To perform the security and correctness analysis, we construct bounds on the noise in the ciphertexts.
In constructing these bounds, we will often have to constrain the norm on polynomials sampled from the
various distributions described above. We take the approach described in [9]. Specifically, if f ← D for some
approximately normal distribution D with variance σ2, we take 6σ to be a high-probability bound (with
probability 1− 2−55) on ∥f∥can∞ .

Using (15), we can construct a bound on the noise E0 in a clean encryption. It can be shown that

E0 ≤ 8
√
2σφ(m)︸ ︷︷ ︸

r·e term

+6σp
√
φ(m)︸ ︷︷ ︸

pe0 term

+16σp
√
h · φ(m)︸ ︷︷ ︸

pe1s̃ term

. (17)

Each homomorphic operation that we perform on the ciphertext will increase the amount of noise in the
ciphertext. Here, we summarize how each operation affects the noise. Let c1 and c2 be two ciphertexts
with noise E1 and E2, respectively. Furthermore, let E = max {E1, E2}. The full derivation of these bounds
follows from an adaptation of the analysis in [1, 9].

Addition. Recall that csum = c1 + c2. The noise Esum in csum is given by Esum ≤ E1 + E2, where E1 and
E2 denote the noise in c1 and c2, respectively.

Multiplication. Recall that cprod =
⌊
p
q · (c1 ⊗ c2)

⌉
. Letting E denote the maximum of the noise in c1 and

c2, the noise Eprod in cprod is bounded by

Eprod ≤ δ1 + δ2 + δ3, (18)

where

δ1 = p
[
2φ(m)(6

√
h+ 4) + 1

]
E (19)

δ2 =
1

2
φ(m)

(
1 + 12

√
h+ 16h

)
(20)

δ3 = p2φ2(m)
[
2(6
√
h+ 3) + 1

]
. (21)

Scalar Multiplication. To multiply a ciphertext c with noise E by a scalar a ∈ Rp, we compute cscale = ac,
which has noise Escale ≤ (φ(m) · p)E.

With this preparation, we derive the parameters needed for security and correctness. We apply the
LWE-security analysis given in [17] using the additional assumptions made by [9] for the BGV cryptosystem.
Thus, to ensure a time/advantage ratio of at least 2k, we require that

φ(m) ≥ log(q/σ)(k + 110)

7.2
. (22)

In our implementation, we consider 128 bit security, so taking k = 128, we require φ(m) ≥ 33.1 log(q/σ).
Next, we consider the correctness analysis. For notational convenience, we define N = φ(m). First con-

sider the scenario without the modular reduction optimization. Let A1, . . . , At be the encrypted polynomials

19

of degree d1 < · · · < dt corresponding to tags tg1, . . . , tgt. In the first step of the set intersection protocol,
the proxy computes

A′(x) = At +

t−1∑
i=2

ρiAi(x) (23)

where ρi ← Zp. Observe that this operations consists of t − 1 sums and t − 2 scalar multiplications.
Assuming we have fresh encryptions of the coefficients of A1, . . . , At, the noise EA′ in the encryption of A′

is then bounded by
EA′ ≤ E0 + (t− 2)(Np)E0 = [1 +Np(t− 2)]E0. (24)

Finally, the proxy computes A(x) = A1(x)R1(x) + A′(x)R′(x) where R1(x) is a random polynomial with
degree dt − 1 and R′(x) is a random polynomial with degree d1 − 1. Each coefficient in each of the products
A′(x)R′(x) and A1(x)R1(x) is given by a sum of at most d1 +1 terms, each of which is a product between a
constant coefficient and a ciphertext block. Thus, the noise E1 in the ciphertext corresponding to A1(x)R1(x)
will be bounded by (d1 + 1)NpE0 and the noise E′ in the ciphertext corresponding to A′(x)R′(x) will be
bounded by

E′ ≤ (d1 + 1)NpEA′ ≤ (d1 + 1)Np [1 +Np(t− 2)]E0. (25)

Thus, the noise E in the ciphertext corresponding to A(x) is bounded by

E ≤ E1 + E′ = (d1 + 1)NpE0 [2 +Np(t− 2)] . (26)

From (16), it is clear that decryption will succeed if q ≥ 2cmpE. As noted above, for prime m, cm ≈ 4/π < 2,
so it is sufficient to take q ≥ 4pE.

In our implementation, we take σ = 3.2 and h = 64. We operate over databases with r = 106 records
and admit a false positive rate of λ = 10−3. Therefore, we require that p ≥ r

λ = 109. For efficiency,
we use small parameters so we consider solutions where p ≤ 230. Finally, we choose p = 1 (mod m), so
there will be N = φ(m) plaintext slots. The number of records in each slice is then at most ⌈r/N⌉. Thus,
d1 ≤ ⌈r/N⌉ ≤ r/N +1. Substituting these values into (17), we have the following bound on the initial noise:

E0 ≤ 25.2N + 238.8
√
N ≤ 238N (27)

for N ≥ 5. Note that we place some lower bounds on N to simplify the expressions. It will be the case that
the solutions we obtain satisfy these bounds. Next, from (26), we have

E ≤ (r/N + 2)NpE0 [2 +Np(t− 2)]

≤ (106 + 2N)(230)(238N)
[
2 + 230N(t− 2)

]
≤ 289N + 270N2 + (2118N2 + 299N3)(t− 2)

≤ 280N2 + 2109N3(t− 2) (28)

for N ≥ 600. Thus, to ensure correctness, we require q ≥ 4pE and since p ≤ 230, it is sufficient to require
q ≥ 232E ≥ 4pE:

q ≥ 232E = 2112N2 + 2141N3(t− 2). (29)

To achieve security and correctness, we must satisfy (22) and (29). In our experiments, we work with queries
involving at most five tags, so we take t = 5. To satisfy these expressions, we must take N = φ(m) ≥ 5909.
In our implementation, we require that q be an integer power of 2. The smallest parameters m, q that satisfy
this are m = 5939 and q = 2181. In this case, N = φ(m) = 5938.

Next, we consider the parameters needed to perform the modular reduction optimization. Recall that to
perform modular reduction using just one homomorphic multiplication, the proxy computes A′′(x) = A′(x)
(mod A1) where A′(x) is given by (23). Specifically, if we let α′

i denote the encrypted coefficients of A′, the
proxy computes

dt∑
i=0

α′
i(x

i mod A1). (30)

20

Computing each of the dt + 1 terms in the summation requires a single homomorphic multiplication. First,
consider the noise Eprod in each of the product terms α′

i(x
i mod A1) of the summation. Substituting h = 64

and p ≤ 230 into (18) and letting EA′ denote the noise in the encryption of the coefficients of A′, we have

Eprod ≤ (236.8N + 230)EA′ + 29.2N + 266.7N2.

≤ 236.9NEA′ + 266.8N2. (31)

Using the bound in (24) for the noise in the encrypted coefficients of A′ and the bound in (27) for E0, we
have

Eprod ≤ 236.9N [1 +Np(t− 2)]E0 + 266.8N2

≤ 275N2 + 2104.9N3(t− 2). (32)

The key-switching operation introduces a small additive noise of order N3/2, so we can absorb this into the
N2 term on Eprod:

Eprod ≤ 275.1N2 + 2104.9N3(t− 2). (33)

Given the noise in each of the product terms α′
i(x

i mod A1) in (30), the noise in the reduced coefficients
Ereduced is given by

Ereduced ≤ (dt + 1)Eprod ≤ 210
(
275.1N2 + 2104.9N3(t− 2)

)
≤ 285.1N2 + 2114.9N3(t− 2), (34)

where we have used the fact that the maximum number of records dt in each slice is bounded by ⌈r/N⌉ ≤
r/N + 1 ≤ 210.

Finally, in the last step of the computation, we form the product A1(x)R1(x)+A′′(x)R′′(x) where R1(x)
and R′′(x) are random polynomials with degree d1 − 1 and d1 respectively. Recall that d1 − 1 ≤ r/N where
r = 106 is the number of records in the database.

E ≤ (d1 − 1)NpE0︸ ︷︷ ︸
EA1R1

+(d1 − 1)NpEreduced︸ ︷︷ ︸
EA′′R′′

= rp(E0 + Ereduced)

≤ rp
[
238N + 285.1N2 + 2114.9N3(t− 2)

]
≤ 2135.1N2 + 2164.9N3(t− 2). (35)

Finally, for decryption to succeed, we take q ≥ 232E ≥ 4pE which yields the correctness condition

q ≥ 2167.1N2 + 2196.9N3(t− 2). (36)

To satisfy both the security and correctness conditions, (22) and (36), we require that N = φ(m) ≥ 7854.
Again, we require that q be a integer power of two. The smallest parameters m and q that satisfy this are
given by m = 7867 and q = 2238. In this case, N = φ(m) = 7866.

21

