
A preliminary version of this paper appears in the proceedings of CRYPTO 2013. This is a revised and
updated full version, available as IACR Cryptology ePrint Archive Report 2013/424.

Instantiating Random Oracles via UCEs

Mihir Bellare1 Viet Tung Hoang2 Sriram Keelveedhi3

May 20, 2014

Abstract

This paper provides a (standard-model) notion of security for (keyed) hash functions, called UCE, that
we show enables instantiation of random oracles (ROs) in a fairly broad and systematic way. Goals and
schemes we consider include deterministic PKE, message-locked encryption, hardcore functions, point-
function obfuscation, OAEP, encryption secure for key-dependent messages, encryption secure under
related-key attack, proofs of storage and adaptively-secure garbled circuits with short tokens. We can
take existing, natural and efficient ROM schemes and show that the instantiated scheme resulting from
replacing the RO with a UCE function is secure in the standard model. In several cases this results in
the first standard-model schemes for these goals. The definition of UCE-security itself asks that outputs
of the function look random given some “leakage,” even if the adversary knows the key, as long as the
leakage is appropriately restricted.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in part by NSF
grants CNS-0904380, CCF-0915675, CNS-1116800 and CNS-1228890.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: vth005@eng.ucsd.edu. URL: http://csiflabs.cs.ucdavis.edu/~tvhoang/. Supported in
part by NSF grants CNS-0904380, CCF-0915675, CNS-1116800 and CNS-1228890. Part of this work was done when Hoang
was a Ph.D. student at University of California, Davis and supported in part by NSF grants CNS-0904380 and CNS-1228890.

3 Work done while at UCSD, supported in part by NSF grants CCF-0915675 and CNS-1116800.

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 The core problem and previous work . 3
1.3 UCE . 4
1.4 Applications . 4
1.5 Constructing UCE-secure families . 6

2 Perspective and discussion 7

3 Preliminaries 10

4 UCE 10
4.1 Syntax . 10
4.2 UCE security . 11
4.3 Simple unpredictability . 14
4.4 Relations . 15
4.5 From FOL to VOL . 18
4.6 mUCE security . 20

5 Applications of UCE 21
5.1 Hardcore functions for any OWF . 21
5.2 Instantiating the BR93 PKE scheme . 22
5.3 Deterministic encryption . 23
5.4 Message-locked encryption . 25
5.5 Point-function obfuscation . 27
5.6 Security for key-dependent messages . 28
5.7 Security against related-key attack . 29
5.8 OAEP . 31
5.9 Proofs of storage . 36
5.10 Correlated-input hash functions . 37
5.11 Adaptively secure garbling with short tokens . 38

6 Constructions of UCE families 46
6.1 Achieving UCE in the ROM . 46
6.2 Practical constructions . 49

2

1 Introduction

This paper provides a new notion of security for (keyed) hash functions called UCE (Universal Compu-
tational Extractor). UCE-security is the first well-defined, standard-model security attribute of a hash
function shown to permit the latter to securely instantiate ROs across a fairly broad spectrum of schemes
and goals.

Under the random-oracle paradigm of Bellare and Rogaway (BR93) [23], a “real-world” or instantiated
scheme is obtained by implementing the RO of the overlying ROM scheme via a cryptographic hash function.
The central (and justified) critique of the paradigm [49] is that the instantiated scheme has only heuristic
security. This paper offers proven security for the (standard model) instantiated schemes. The proof is
based on the (standard-model) assumption that the instantiating function is UCE-secure.

UCE of course does not always work.1 But we show that it works across a fairly large, diverse and
interesting spectrum of schemes and goals including deterministic PKE, message-locked encryption, hard-
core functions, point-function obfuscation, encryption of key-dependent messages, encryption secure under
related-key attack, OAEP, correlated-input secure hashing, adaptively-secure garbled circuits, and proofs
of safe storage. In all these cases we can use UCE to obtain standard-model solutions, in most cases instan-
tiating known, natural and efficient schemes, and in several cases getting the first standard-model schemes
for the goals in question.

UCE is quite simple and natural, yet powerful. The basic intuition is that the output of a UCE-secure
function looks random even given the key and some “leakage,” as long as the leakage is appropriately
restricted. Different restrictions give rise to different specific assumptions in the UCE family. Let us now
step back to provide some background and then return to our contributions.

1.1 Background

The random-oracle paradigm of BR93 [23] has two steps: (1) Design your scheme, and prove it secure, in
the ROM, where the scheme algorithms and adversary have access to a RO denoted RO (2) Instantiate the
RO to get the standard model scheme that is actually implemented and used. We will consider instantiation
via a family of functions H, which means that the instantiated scheme is obtained by replacing RO calls
of the ROM-scheme algorithms by evaluations of the deterministic function H.Ev(hk, ·) specified by a
key hk←$ H.Kg(1λ), where λ is the security parameter. The key hk is put in the public key of the
instantiated scheme if the latter is public key, else enters in some scheme-dependent way. The suggestion
of BR93 was that if H “behaved like a RO,” the instantiated scheme would be secure in the standard
model. They suggested to obtain such instantiations, heuristically, via cryptographic hash functions. The
fundamental subsequent concern has been the lack of a proof of security for the instantiated scheme. Canetti,
Goldreich and Halevi (CGH98) [49] show that this lack in some cases cannot be overcome because there exist
schemes secure in the ROM but which no family of functions can securely instantiate. Advocates for the
defense counter by pointing out that the counter-example schemes are artificial, and in-use instantiations
of “natural” ROM schemes are unbroken. This has led to examples that are in one way or another less
artificial [98, 73, 13, 50, 59, 88].

It is not the purpose of this paper to take sides in this debate. We want instead to make a scientific
contribution towards better grounding the security of instantiated ROM schemes.

1.2 The core problem and previous work

The lack of a proof of security for the instantiated scheme is, we submit, a consequence of an even more
fundamental lack, namely that of a definition, of what it means for a family of functions to “behave like a
RO,” that could function as an assumption on which to base the proof. The PRF definition [71], which has
worked so well in the symmetric setting, is inadequate here because PRF-security relies on the adversary
not knowing the key. And collision-resistance (CR) is far from sufficient in any non-trivial usage of a RO.

1 “Work” means allow the instantiated scheme to be proven secure, and “always works” means works for all schemes secure
in the ROM. Indeed, we note that neither UCE nor any other achievable, standard-model security attribute of a family of
functions can always work. This is implied by known impossibility results [49, 96].

3

Canetti [47] was the first to articulate this position and seek a standard-model primitive sufficient to
capture some usages of a RO. The applicability of notions such as Perfectly One-Way Probabilistic Hash
Functions (POWHFs) and non-malleable hash functions [47, 52, 48, 30, 32] has, however, been limited.
Another direction [33, 32, 87] has been to try to instantiate the RO in particular schemes like OAEP [24].

Our position is philosophically different from that of [47, 52]. These works aimed for security notions
that they could achieve under standard assumptions. Expectedly, applicability was limited. We aim to
maximize applicability and are willing to see our notion (UCE) as an assumption rather than something to
achieve under other assumptions.

1.3 UCE

Our definition considers an adversary S, called the source, who is given an oracle Hash, the latter being
H.Ev(hk, ·) for key hk←$ H.Kg(1λ) if the challenge bit b is 1, and a RO otherwise. If security now asks
that S not figure out b, then, if we deny it hk, we would be back to PRFs, and if we give it hk, security would
be unachievable. So we don’t ask S to figure out b. Instead, it must pass to an accomplice adversary D,
called the distinguisher, some information L called the leakage. The distinguisher is given the key hk and
must figure out b. For a class S of sources, let us say that H ∈ UCE[S], or is UCE[S]-secure, if, for all S ∈ S
and all PT D, the advantage of S,D in figuring out b, in the game sketched above, is negligible.

Clearly, UCE[S]-security is not achievable if S is the class of all PT sources. For example, the source
could include in L a point x and the result y = Hash(x) of its oracle on x, and D, having hk, can
test whether or not y = H.Ev(hk, x). We seek, accordingly, classes S small enough that the assumption
of UCE[S]-security —that is, that this set is non-empty— is plausible, yet large enough that the same
assumption is useful for applications. Our classes are obtained by restricting the source. We introduce
restrictions we call unpredictability and reset-security. Unpredictability of S requires that it be infeasible
for a predictor adversary P , given the leakage produced by the source in the random (b = 0) game, to find
any of the inputs queried by S to its oracle. Note that unpredictability is a property of the source, not of the
family of functions H, the latter not figuring in the definition at all. We let Scup and Ssup be, respectively,
the classes of computationally and statistically unpredictable PT sources (in the first case predictors are
restricted to PT but in the second case they are not) leading to UCE classes UCE[Scup] ⊆ UCE[Ssup].
Reset-security gives rise, correspondingly, to UCE[Scrs] ⊆ UCE[Ssrs]. In the basic definitions, only a single
hashing key is involved, and we also define mUCE, a multi-key analogue.

The particular UCE assumption made —that is, the source class for which UCE[S]-security is assumed—
will depend on the application and be specified in the theorem. Because smaller classes of sources correspond
to weaker assumptions —S1 ⊆ S2 implies UCE[S2] ⊆ UCE[S1]— we sometimes define and use subsets of the
four main source classes above. In particular we always do this for computational unpredictability and reset
security, assuming UCE[Scup∩S] or UCE[Scrs∩S] security for some appropriate S, because the existence of
an indistinguishability ofbuscator for all circuits [9, 67] is shown by BFM [45] to imply that full UCE[Scup]
and UCE[Scrs] security are not achievable.

UCE security is thus not a single, monolithic assumption but a framework in which different classes of
sources give rise to different particular assumptions in the family. We use the term UCE-security loosely to
refer to some assumption from the UCE family, with theorem statements clarifying exactly what assumption
from the family is used by a particular application.

1.4 Applications

Fig. 1 summarizes the applications we now discuss.

1. Deterministic PKE. The EwH deterministic PKE (D-PKE) ROM scheme of BBO07 [12] encrypts mes-
sage m under public key ek by applying the RO to ek‖m to get coins r and then encrypting m with an
IND-CPA PKE scheme under ek and coins r. They showed that this achieved their PRIV notion of se-
curity in the ROM. Our instantiation adds hk←$ H.Kg(1λ) to the public key and then replaces the RO
with H.Ev(hk, ·). We show that if H is UCE-secure then this instantiated D-PKE scheme is PRIV-secure

4

Goal Result

D-PKE Instantiation of the ROM EwH scheme of [12] to obtain the first standard model deter-
ministic PKE scheme providing full IND [15] and PRIV [12] security. Section 5.3.

MLE Instantiation of the ROM convergent encryption scheme of [62, 18], showing this in-use
message-locked encryption scheme meets the IND$-CDA goal of [18]. Section 5.4.

HC A UCE-secure family is hardcore for any one-way function and allows for extraction of
any number of hardcore bits. Section 5.1.

BR93 PKE Instantiation of a natural ROM PKE scheme from BR93 [23] showing it is IND-CPA-
secure. Section 5.2.

PFOB Instantiation of a ROM point-function obfuscation scheme of [93] to obtain a secure
standard-model scheme. Section 5.5.

KDM Instantiation of the ROM BRS scheme [28] to get an efficient and natural standard-model
symmetric scheme for encryption of key-dependent messages. Section 5.6.

RKA An efficient standard-model symmetric encryption scheme providing best-possible secu-
rity against related-key attacks. Section 5.7.

CIH Construction from UCE of correlation-intractable hash functions meeting the strongest
notion of [77]. Section 5.10.

STORE Instantiation of a natural ROM proof of storage scheme from [103]. Section 5.9.

OAEP IND-CPA-KI security of OAEP [24] assuming partial one-wayness (with unpredictability)
or one-wayness (with reset-security) of the underlying trapdoor function. Section 5.8.

GB Standard-model adaptively secure garbling with short tokens. Section 5.11.

Figure 1: Applications of UCE: We summarize results for different goals.

in the standard model. This is the first standard-model PRIV-secure scheme (previous standard-model
D-PKE schemes achieve only restricted notions of blocksource-PRIV-security [31, 15, 43, 66]).

2. Message-locked encryption. In convergent encryption (CE) [62, 18], message m is encrypted using a
deterministic symmetric encryption scheme with the key derived, via a RO, from the message itself.
CE is the most natural and prominent embodiment of message-locked encryption (MLE) and is in
current use by commercial cloud-storage providers to provide secure deduplicated storage. The scheme
is shown in [18] to meet, in the ROM, a formal notion of MLE-security called PRV$-CDA. We instantiate
with a UCE-family, putting the key in public parameters, and show that the resulting MLE scheme is
PRV$-CDA in the standard model.

3. Hardcore functions. A RO is an ideal hardcore function, with RO(x) returning any number of bits that
remain pseudorandom given f(x) where f is one-way. UCE families can securely instantiate the RO
here, meaning are secure hardcore functions for any one-way function, able to extract as many bits as
desired.

4. BR93 PKE. A simple and natural ROM IND-CPA PKE scheme from [23] encrypts m by picking
random x and returning (f(x),RO(x)⊕m) where f is a trapdoor function in the public key. We show
that instantiating the RO with a UCE-secure family preserves the IND-CPA security.

5. Point-function obfuscation. A point function has non-⊥ output on just one point. Lynn, Prabhakaran,
and Sahai [93] give a ROM point-function obfuscation scheme. We UCE-instantiate their construction
to obtain a standard-model point-function obfuscation scheme.

6. KDM-secure SE. Black, Rogaway and Shrimpton (BRS) [28] showed that the following simple and
efficient symmetric encryption (SE) scheme is KDM-secure in the ROM: to encrypt message m under
key K, pick a random r and return (r,RO(r‖K)⊕m). We instantiate by letting the random value r in
the BRS scheme take on the role of a fresh hash key, so that, to encrypt m, we pick hk←$ H.Kg(1λ) and
return (hk,H.Ev(hk,K)⊕m). We prove that if H is UCE-secure then this instantiated scheme is KDM
secure in the standard model. (We achieve non-adaptive KDM security, but this includes popular cases
such as key-cycles.) This scheme is more practical than other standard-model KDM-secure encryption

5

schemes such as [42, 5, 10, 94, 4].

7. RKA-secure SE. Symmetric encryption schemes secure against related-key attack (RKA) must preserve
security even when encryption is performed under keys derived from the original key by application of
a key-deriving function. Previous schemes [6, 22] provided security for algebraic key-deriving functions
such as linear or polynomial functions over a keyspace that is a particular group depending on the
scheme. We provide a scheme that has “best possible” security, in that key-deriving functions are
arbitrary subject only to a condition necessary for security, namely to have unpredictable outputs.
Furthermore, in our scheme, keys are binary strings rather than group elements, so we cover the most
common practical attacks, such as XORing a constant to the key. We assume only a UCE-secure family
of functions.

8. Correlation-intractable secure hashing. Goyal, O’Neill and Rao (GOR) introduced the notion of correlated-
input hash (CIH) function families [77] and proposed several notions of security for them. GOR provided
constructions achieving limited CIH security from the q-DHI assumption of [36] and from RKA-secure
blockciphers, but achieving full CIH security in the standard model has remained open. We solve this
problem, showing that UCE-secure function families are selective (pseudorandomness) CIH secure in
the terminology of GOR.

9. Secure storage. Ristenpart, Shacham and Shrimpton [103] give a ROM protocol allowing a client to
check that a server is storing its file in its entirety, its interest being that constructions indifferentiable
from a RO [96, 55] may fail to securely replace the RO. In contrast, we show that UCE instantiation
succeeds. (Our instantiation lets the challenge in the protocol be a key naming a member of a UCE-
secure family of functions.)

10. OAEP. OAEP [24] has been a benchmark for RO instantiation [33, 32, 87]. We instantiate OAEP by
adding hk←$ H.Kg(1λ) to the public key and then implementing both the ROs via H.Ev(hk, ·). Under
unpredictability-based UCE, we get IND-CPA-KI security under the partial-domain one-wayness, and
hence by [65] under standard one-wayness, of RSA; under reset-security based UCE we get it directly
under standard one-wayness. IND-CPA-KI is IND-CPA when challenge messages are not allowed to
depend on the public key.2 Kiltz, O’Neill and Smith (KOS) [87] show that RSA-OAEP is IND-CPA-
secure if its two ROs are replaced with t-wise independent hash functions and RSA is Φ-hiding [46]. In
comparison our results for RSA are under the standard one-wayness assumption.

11. Adaptively-secure garbling. Verifiable outsourcing [68], as well as one-time programs [74], call for garbling
schemes that are adaptively secure [16]. Standard-model adaptively-secure garbling has however so far
been at the cost of large tokens, meaning ones as large as the circuit being garbled [16, 76]. This is
not only inefficient but makes the resulting verifiable outsourcing “trivial” in that the client does as
much work as the server. We provide a UCE-based garbling scheme that is adaptively secure and has
short tokens. This is the first standard-model garbling scheme with these properties and it results in
the first non-trivial instantiation of the outsourcing scheme of [68]. Our garbling scheme is obtained
by instantiating a ROM garbled circuit construction of [101].

1.5 Constructing UCE-secure families

We provide a ROM construction of a family of functions shown to achieve all the forms of UCE we use in
this paper.

This at first may seem like a step backwards; wasn’t the purpose of UCE to avoid the ROM? As
explained in more depth in Section 2, it is a step forward because the security we require from families
of functions in implementations has moved from something heuristic and vague, namely to “behave like a
RO,” to something well defined, namely to be UCE-secure.

In practice we would aim to instantiate UCE-secure families via blockciphers or cryptographic hash
functions. We explain that direct instantiation with a blockcipher (e.g. AES) is not secure due to the

2 More precisely, they are not allowed to depend on hk but are allowed to depend on the RSA part of the public key. This
limitation arises because in UCE the strings being hashed by the source cannot depend on the hashing key. We note that this
UCE feature does not always prevent us from achieving full IND-CPA. Indeed, we do achieve it for the BR93 PKE scheme,
because there the inputs to the RO do not depend on the messages.

6

Random Oracle Model

UCE[Scup ∩ Sprl
τ,σ,q] mUCE[Ssup-m] UCE[Ssrs]

MLED-PKE OAEP KDMRKA PFOB GB

BDH SDH DLIN SD BDHE

IBE SS GS NIZK BE

Generic Group Model

Figure 2: The layered-cryptography paradigm for the ROM (top) and for pairing-based cryp-
tography (bottom). Assumptions are validated in the idealized model and then used to attain end goals
entirely in the standard model. Definitions of the UCE classes depicted above are in Section 4. SS refers to
the short signatures of [35]; BE refers to the broadcast encryption scheme of [40]; NIZK refers to the NIZK
arguments of [78]. See text for other abbreviations.

invertibility of the blockcipher. Cryptographic hash functions, being unkeyed, do not directly provide
instantiations either. We suggest that HMAC [14, 11] is a suitable instantiation for some of our forms of
UCE.

2 Perspective and discussion

We explain why UCE is step forward even if we can (currently) only achieve it in the ROM, and how UCE
relates to other assumptions.

Layered cryptography. Currently, RO-based design directly proves schemes (for end goals) secure in
the ROM. We are instead advocating and using what we call a layered approach. In this approach, base
primitives with standard-model security definitions are validated in the ROM. End goals are then reached
from the base primitives purely in the standard model, the ROM being entirely dispensed with in the second
step. This is illustrated in Fig. 2. We are showing that UCE can function as such a base primitive, and a
powerful one at that, since many goals may be reached from it. In implementations, we would instantiate
families assumed UCE-secure via appropriately-keyed cryptographic hash functions whenever these appear
to meet the particular UCE notion being used.

We claim this layered approach is still an important advance on direct ROM-based design. This is
because the property we desire from the object (family of functions) actually being used in the implemen-
tation has moved from something heuristic and vague (“behave like a random oracle”) to something precise
and meaningful (be UCE-secure). Cryptanalytic validation of UCE security, even if difficult, is at least
meaningful, while cryptanalytic evaluation of “behaving like a RO” is not even meaningful because the
phrase in quotes is not well defined.

We make an analogy with pairing-based cryptography. Here we have seen the proposal of a large number
of standard-model assumptions, including BDH [39], DLIN [38], SDH [38], BDHE [37] and SD (Subgroup
Decision) [41] to name just a small fraction. These assumptions are (ubiquitously) validated in the generic-
group model, end goals then reached from the assumptions in the standard model. But the generic-group
model is subject to issues, critiques and counter-examples analogous to those for the ROM [63, 58]. We

7

believe that the (deserved) success and acceptance of pairing-based cryptography, and that it has not come
under as much fire as ROM-based cryptography, are due in part to what, in our terminology, is its layered
approach (again illustrated in Fig. 2). Namely, schemes for end goals, rather than being directly validated
in the generic model (the un-layered or direct approach), are based on standard-model assumptions that
are themselves validated in the generic-group model and amenable to cryptanalysis.

It is perhaps curious that the layered approach has not been explicitly articulated and widely used for
ROM-based cryptography, while it has been widely used (even if not explicitly articulated) in pairing-based
cryptography. The benefits are identical in the two cases. We view our work as making layered cryptography
an explicit approach for ROM-based design.

Unification. The ability to UCE-instantiate the RO across different schemes and goals shows that these
ROM schemes have something in common, meaning they are in some way relying on the same attributes
of the RO for security. This was not obvious to us prior to conceiving UCE. UCE thus leads to a better
understanding of what properties of the RO schemes rely on, and enables us to unify different usages under
a common umbrella.

Assumption degree and achieving UCE. In the UCE definition, the adversary consists of stages
(source and distinguisher) that (due to the imposed restrictions on the source such as unpredictability or
reset-security) cannot completely share state. We refer to this as a second-degree assumption, as opposed
to a first-degree assumption, where the adversary is a single algorithm. Put another way, a first-degree
assumption can be specified via an interaction (game) between an adversary and a challenger. (In some
places [81, 100] this is called a “standard” or “falsifiable” assumption, but we think this is less clear than
“first degree.”) UCE cannot. This distinction is crucial to its power and to why various negative results
are circumvented. Thus, Wichs [105] shows that first-degree assumptions do not suffice for PRIV-secure
D-PKE, but our proof that UCE does suffice is not a contradiction because UCE is not first-degree.

A corollary is that UCE itself cannot be achieved based on first-degree assumptions. This does not
necessarily mean that UCE is an implausible assumption. (A second-degree assumption does not have to
be implied by a first-degree one to be true.)

Without ROs. There is a large body of work on cryptography without random oracles. (A Google Scholar
search shows 286 papers with the phrase “without random oracles” in the title, and 3,640 with this phrase
somewhere in the paper, as of June 6, 2013.) More often than not, the without-RO schemes of such works
are completely different from, and less efficient than, RO ones. While UCE also serves, of course, to get
without-RO schemes, it does more, permitting these to be obtained by actual instantiation of the RO in a
ROM scheme, so that the efficiency and practicality of the starting ROM scheme is preserved.

Discussion, limitations and related work. That the source adversary in UCE does not get the key
is important in avoiding impossibility results like those in [49, 96]. (For example, UCE does not imply
correlation intractability as defined, and shown to be unachievable in the standard model, by [49].)

UCE is not a panacea in the sense that it can replace ROs everywhere. UCE helps in cases where the
RO is applied to inputs hidden (at least in part) from the adversary. As far as we know, UCE will not help
for tasks like instantiating the RO in FDH signatures [25]. This is consistent with impossibility results [59].
We note that it is possible to instantiate the RO in FDH signatures directly [83].

Curiously, UCE-based proofs for instantiated schemes are sometimes simpler than the proofs for the
starting ROM schemes. This is the case for D-PKE. The intuition for the ROM security of the EwH scheme
of [12] is simple enough, but a rigorous ROM proof is in our view less straightforward than our proof of
Theorem 5.3 for the UCE-based instantiation of EwH.

The term “computational extractor” has been used for primitives that extract pseudorandomness from
distributions that have computational min-entropy [56, 90, 64]. A UCE-secure family instead extracts
pseudorandomness from distributions constrained in other ways, for example being unpredictable. These
may or may not have computational min-entropy in the sense of [79, 84] but we viewed UCE as similar
in spirit and so preserved the “extractor” name. “Universal” refers to the ability to get randomness from
starting distribution subject to a variety of conditions.

Programmable hash functions [82] are an information-theoretic tool that in some way mimic the “pro-

8

grammability” of ROs and were used by [82] to build signature schemes with short signatures in the standard
model. They do not serve to instantiate ROs in the kinds of applications we consider. Several works [69, 34]
define new security properties of hash functions tailored for their own particular applications.

As indicated above, in some parts of the literature, an assumption is called “falsifiable” if it is described
by a game between an adversary and a challenger, and “non-falsifiable” otherwise. The understanding
underlying the terminolgy appears to be that “falsifiable” assumptions can be proven false, or invalidated,
but there is no way to do this for “non-falsifiable” ones, making “falsifiable” ones preferable. This view
appears somewhat misconceived. “Non-falsifiable” assumptions have in fact been successfully and convinc-
ingly proved false [21, 27]. “Non-falsifiability” of UCE hasn’t prevented successful cryptanalysis of some
forms of UCE [45]. Such results validate our thesis that UCE-style assumptions are “falsifiable,” not in
the formal sense of the word in quotes, but in the sense that cryptanalysis can be used to invalidate them,
which was indeed one of the goals of our approach and what differentiates it from working directly in the
ROM. We note that BFM [45] independently suggested the statistical versions of unpredictability and reset
security as counter-measures to their attacks. For reasons such as those just discussed, we prefer the terms
“single-stage,” and “multi-stage” to “falsifiable” and “non-falsifiable.”

Future directions and open questions. Achieving UCE under other assumptions is an interesting and
important direction for future work. We suggest to begin by targeting restricted versions of UCE, starting
with independent sources (ones whose oracle queries consist of uniform, independent strings) and moving
on to block sources (each oracle query retains high min-entropy even given previous ones) [53]. In these
cases, we may hope to achieve security under first-degree assumptions. An indication (but not a proof)
that this may be possible is that D-PKE that is IND-secure for these kinds of sources has been achieved
under first-degree assumptions [15, 31, 43, 66]. Full UCE security would, of course, require second-degree
assumptions.

Another interesting direction is to find further applications of UCE, in particular to instantiate ROs or
build schemes without random oracles.

UCE is a framework permitting definitional variants beyond the ones we have formalized. One could
define variants with extractability, which may be useful for further applications. A tempting variant is
to allow some communication back from the distinguisher to the source. This opens the door to many
interesting applications, but is a dangerous path to tread, for any version we, at least, have formalized,
we have also broken, even for forms of communication that seemed highly restricted. (By “broken” we
mean that we have found attacks showing that no family can meet the definition.) Beyond this the larger
agenda is to further layered cryptography for the ROM by finding other standard-model definitions for
hash families that permit these families to instantiate ROs in applications. A target of particular interest
is instantiation of the RO in FDH signatures [25, 54, 59, 86].

Determining the relationship between UCE and mUCE is an interesting open question. That is, given
a family of functions H that is UCE-secure relative to a particular form of UCE, is it mUCE-secure relative
to the multi-key extension of the same form? We conjecture that the answer is “yes” for a version of mUCE
in which the number of keys is a constant independent of the adversary, but in general the answer is “no.”
To demonstrate the latter would require a counter-example, meaning a family H that is UCE-secure but
not mUCE-secure.

We have shown in Section 4.5 how to build a VOL (variable output length) UCE family from a FOL
(fixed output length) UCE family. An interesting direction is the analog for input lengths, namely the
problem usually called domain extension: build a UCE-secure family taking arbitrary-length inputs from
one taking fixed-length inputs. Domain extension has been a popular topic for many primitives in the past.

We have suggested in Section 6.2 that HMAC [14, 91] is a candidate for a practical instantiation of
a UCE-secure family. An interesting problem is to either refute this via an attack or validate it in an
idealized model, namely prove that HMAC meets our ROM-based UCE definitions of Section 6.1 assuming
the compression function underlying the hash function is ideal. Since we have shown in Section 6.1 that
a RO is effectively UCE-secure, one might hope to obtain the desired result for HMAC based on the
indifferentiability of the latter from a RO [61], but, as per [103, 57], indifferentiability [96, 55] may not
suffice since UCE is a second-degree primitive whose security definition is underlain by a multi-stage game.

9

Thus some other approach or a direct analysis may be needed. Indeed this question has subsequently been
resolved by Mittelbach [97], who shows that HMAC and some other Merkle-Damg̊ard style constructions
are UCE-secure in a model where the compression function is ideal.

In further subsequent work, Matsuda and Hanaoka [95] show that UCE can yield simplifications and
efficiency improvements in achieving IND-CCA-secure PKE.

Finally, UCE needs further cryptanalysis to test the plausibility of the various assumptions being made.

3 Preliminaries

Notation. By λ ∈ N we denote the security parameter. If n ∈ N then 1n denotes its unary representation.
We denote the size of a finite set X by |X|, the number of coordinates of a vector x by |x|, and the length
of a string x ∈ {0, 1}∗ by |x|. We let ε denote the empty string. If x is a string then x[i] is its i-th bit and
x[1, `] = x[1] . . . x[`]. By x‖y we denote the concatenation of strings x, y. If x is a string and 0 ≤ ` ≤ |x|,
then y‖`z ← x denotes letting y and z be strings such that |y| = ` and y‖z = x. If X is a finite set, we
let x←$X denote picking an element of X uniformly at random and assigning it to x. Algorithms may be
randomized unless otherwise indicated. Running time is worst case. “PT” stands for “polynomial-time,”
whether for randomized algorithms or deterministic ones. If A is an algorithm, we let y ← A(x1, . . . ; r)
denote running A with random coins r on inputs x1, . . . and assigning the output to y. We let y←$A(x1, . . .)
be the resulting of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of
all possible outputs of A when invoked with inputs x1,

For a, b ∈ N and a ≤ b, let [a, b] denote the set {a, a + 1, . . . , b}. We say that f : N → R is negligible
if for every polynomial p, there exists np ∈ N such that f(n) < 1/p(n) for all n > np. An adversary is an
algorithm or a tuple of algorithms.

Games. We use the code based game playing framework of [26] augmented with explicit Main procedures
as in [103]. (See Fig. 3 for an example.) By GA(λ)⇒ y we denote the event that the execution of game G
with adversary A and security parameter λ results in output y, the game output being what is returned by
Main. We abbreviate GA(λ)⇒ true by GA(λ), the occurrence of this event meaning that A wins the game.
The running time of an adversary A in a game G is a function that associates to λ ∈ N the worst-case
number of steps executed in GA(λ). Oracle queries are charged the cost of writing the query and reading
the response, meaning a query x getting response y is charged time O(|x|+ |y|) where the big-oh hides an
absolute constant. Thus, the running time of game procedures is not included in the running time of the
adversary.

4 UCE

We introduce the general UCE definitional framework and then discuss specific UCE classes (assumptions).
We provide some simplifications and relations with other notions. We then discuss multi-UCE.

4.1 Syntax

A family of functions H specifies the following. On input the unary representation 1λ of the security
parameter λ ∈ N, key generation algorithm H.Kg returns a key hk ∈ {0, 1}H.kl(λ), where H.kl: N → N
is the keylength function associated to H. The deterministic, PT evaluation algorithm H.Ev takes 1λ, a
key hk ∈ [H.Kg(1λ)], an input x ∈ {0, 1}∗ with |x| ∈ H.IL(λ), and a unary encoding 1` of an output
length ` ∈ H.OL(λ) to return an output H.Ev(1λ,hk, x, 1`) ∈ {0, 1}`. (The syntax in the Introduction had
simplified by dropping the first and last inputs.) Here H.IL is the input-length function associated to H, so
that H.IL(λ) ⊆ N is the (non-empty) set of allowed input lengths, and similarly H.OL is the output-length
function associated to H, so that H.OL(λ) ⊆ N is the (non-empty) set of allowed output lengths. The latter
allows us to cover fixed output length (FOL) functions, captured by H.OL(λ) being a set of size one, or
variable output length (VOL) functions, where H.OL(λ) could be larger and even be N. We say that H has
input-length `: N → N if H.IL(λ) = {`(λ)} for all λ ∈ N, and if such an ` exists we denote it by H.il. We

10

Main UCES,DH (λ)

b←$ {0, 1} ; hk←$ H.Kg(1λ)

L←$ SHash(1λ)

b′←$D(1λ,hk, L)

Return (b′ = b)

Hash(x, 1`)

If T [x, `] = ⊥ then

If b = 1 then T [x, `]← H.Ev(1λ,hk, x, 1`)

Else T [x, `]←$ {0, 1}`
Return T [x, `]

Main PredPS (λ)

done← false ; Q← ∅
L←$ SHash(1λ) ; done← true

Q′←$ PHash(1λ, L)

Return (Q ∩Q′ 6= ∅)

Hash(x, 1`)

If done = false then Q← Q ∪ {x}
If T [x, `] = ⊥ then

T [x, `]←$ {0, 1}`
Return T [x, `]

Main SPredP
′

S (λ)

Q← ∅
L←$ SHash(1λ)

x←$ P ′(1λ, L)

Return (x ∈ Q)

Hash(x, 1`)

Q← Q ∪ {x}
If T [x, `] = ⊥ then

T [x, `]←$ {0, 1}`
Return T [x, `]

Figure 3: Games UCE, Pred used to define UCE security of family of functions H, and game
SPred defining the simplified but equivalent form of unpredictability. Here S is the source, D is
the distinguisher, P is the predictor and P ′ is the simple predictor.

say H has output-length `: N → N if H.OL(λ) = {`(λ)} for all λ ∈ N, and if such an ` exists we denote it
by H.ol.

4.2 UCE security

Framework. Let H be a family of functions. Let S be an adversary called the source and D an adversary
called the distinguisher. We associate to them and H the game UCES,DH (λ) of Fig. 3. The source has
access to an oracle Hash and we require that any query x, 1` made to this oracle satisfy |x| ∈ H.IL(λ) and
` ∈ H.OL(λ). When the challenge bit b is 1 (the “real” case) the oracle responds via H.Ev under a key hk
that is chosen by the game and not given to the source. When b = 0 (the “random” case) it responds as
a RO. The source communicates to its accomplice distinguisher a string L ∈ {0, 1}∗ we call the leakage.
The distinguisher does get the key hk as input and must now return its guess b′ ∈ {0, 1} for b. The game
returns true iff b′ = b, and the uce-advantage of (S,D) is defined for λ ∈ N via

AdvuceH,S,D(λ) = 2 Pr[UCES,DH (λ)]− 1 . (1)

One’s first thought may now be to say that H is UCE-secure if AdvuceH,S,D(·) is negligible for all PT S and
all PT D. But an obvious attack shows that no H can meet this definition. Indeed, S can pick some x
and `, let h← Hash(x, 1`) and return leakage L = (x, h, 1`) to D. The latter, knowing hk, can return 1 if
h = H.Ev(1λ, hk, x, 1`) and 0 otherwise.

To obtain useful and potentially achievable definitions of UCE-security for H, we will restrict the adver-
saries. There are many ways to do this, so that UCE will be not a single definition but rather a framework
in which many definitions are possible.

Let S be a class of sources and D a class of distinguishers. Then we let UCE[S,D] be the set of all H such
that AdvuceH,S,D(·) is negligible for all (S,D) ∈ S × D. To say that H is UCE[S,D]-secure simply means that

H ∈ UCE[S,D]. We let Spoly be the class of all PT sources and Dpoly the class of all PT distinguishers. We
will almost always restrict attention to the latter and it is thus convenient to let UCE[S] = UCE[S,Dpoly].
The following simple fact will often be used:

Proposition 4.1 Suppose S1 ⊆ S2. Then UCE[S2] ⊆ UCE[S1].

Put another way, the smaller the set of allowed sources, the weaker the assumption of UCE-security. Now
we consider different choices of S for which we will make UCE[S]-security assumptions. We restrict sources
in two basic ways, namely by requiring either unpredictability or reset-security, as we discuss next.

Unpredictable sources. Let S be a source. Consider game PredPS (λ) of Fig. 3 associated to S and an
adversary P called a predictor. Given the leakage, the latter outputs a set Q′. It wins if this set contains

11

Main ResetRS (λ)

Dom← ∅ ; L←$ SHash(1λ) ; b←$ {0, 1}
If b = 0 then // reset the array T

For all (x, `) ∈ Dom do T [x, `]←$ {0, 1}`

b′ ← RHash(1λ, L) ; Return (b′ = b)

Hash(x, 1`)

Dom← Dom ∪ {(x, `)}
If T [x, `] = ⊥ then T [x, `]←$ {0, 1}`

Return T [x, `]

Main mResetRS (λ)

Dom← ∅; (1n, t)←$ S(1λ, ε);L←$ SHash(1λ, t); b←$ {0, 1}
If b = 0 then // reset the array T

For all (x, `, i) ∈ Dom do T [x, `, i]←$ {0, 1}`

b′←$RHash(1λ, 1n, L) ; Return (b = b′)

Hash(x, 1`, i)

Dom← Dom ∪ {(x, `, i)}
If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

Figure 4: Left: Game defining reset security of a source. Right: Game defining reset security of a multi
source.

any Hash-query of the source. For λ ∈ N we let

AdvpredS,P (λ) = Pr[PredPS (λ)] .

We say that P is a computational predictor if it is PT, and we say it is a statistical predictor if there exist
polynomials q, q′ such that for all λ ∈ N, predictor P makes at most q(λ) oracle queries and outputs a set
Q′ of size at most q′(λ) in game PredPS (λ). We stress that in this case the predictor need not be PT. We

say S is computationally unpredictable if AdvpredS,P (·) is negligible for all computational predictors P . We say

S is statistically unpredictable if AdvpredS,P (·) is negligible for all statistical predictors P . We let Scup be the
class of all PT, computationally unpredictable sources and Ssup ⊆ Scup the class of all PT, statistically
unpredictable sources. This gives our first UCE classes, namely UCE[Scup] ⊆ UCE[Ssup].

We stress that in the prediction game, the Hash oracle of the source is a RO like in the random game,
and the predictor gets the same oracle. The family H is not involved in the definition of unpredictability: the
latter is a property of the source.

Reset-secure sources. Let S be a source. Consider game ResetRS (λ) of Fig. 4 associated to S and an
adversary R called a reset adversary. The latter wins if it can distinguish between the RO Hash used by
the source S and an independent RO. For λ ∈ N we let

AdvresetS,R (λ) = 2 Pr[ResetRS (λ)]− 1 .

We say R is a computational reset adversary if it is PT, and we say it is a statistical reset adversary if there
exists a polynomial q such that for all λ ∈ N, reset adversary R makes at most q(λ) oracle queries in game
ResetRS (λ). We stress that in this case the reset adversary need not be PT. We say S is computationally
reset-secure if AdvresetS,R (·) is negligible for all computational reset adversaries R. We say S is statistically
reset-secure if AdvresetS,R (·) is negligible for all statistical reset adversaries R. We let Scrs be the class of all PT,
computationally reset-secure sources and Ssrs ⊆ Scrs the class of all PT, statistically reset-secure sources.
This gives our next UCE classes, namely UCE[Scrs] ⊆ UCE[Ssrs].

For some intuition, recall that unpredictability was introduced as a way to rule out unpreventable
success. The example we gave is the source S1 that queries to its Hash oracle a point x to get back y
and returns L = (x, y) as the leakage. S1 is “insecure” in the sense that there is PT distinguisher D
such that AdvuceH,S,D is high. But this does not violate UCE[Scup]-security or UCE[Ssup]-security since S1 is
unpredictable. Now, let source S2 query x and get back y but return only L = x as the leakage. UCE[Scup]
and UCE[Ssup] put this source out of consideration because it is predictable. Yet, this source is “secure”
in the sense that a PT distinguisher, given L, has no advantage in determining the challenge bit. This
indicates that unpredictability is sometimes too strong a requirement. However S2 is (statistically) reset
secure. Thus, UCE[Scrs] and UCE[Ssrs] allow us to “use” S2. This ability to use a larger class of sources
strengthens the notion and is useful in some applications. The following shows that that reset-security based
UCE is (strictly) stronger than unpredictability-based UCE. Part (2) below assumes that UCE[Ssup] 6= ∅.

Proposition 4.2 (1) UCE[Ssrs] ⊆ UCE[Ssup] and UCE[Scrs] ⊆ UCE[Scup] (2) UCE[Ssup] 6⊆ UCE[Ssrs].

12

Source SHash(1λ)

(L0,x, 1
`)←$ S0(1λ)

For i = 1, . . . , |x| do y[i]←$ Hash(x[i], 1`[i])
L1←$ S1(1λ,y) ; L← (L0, L1)
Return L

Figure 5: The split source S = Splt[S0, S1] associated to S0, S1.

Proof of Proposition 4.2: For part (1), let Pstat and Rstat denote the classes of all predictors and
reset adversaries respectively. Recall that UCE[Ssup] = UCE[Spoly ∩ Pred[Pstat],Dpoly] and UCE[Ssrs] =
UCE[Spoly ∩ Reset[Rstat],Dpoly]. By Proposition 4.1 it suffices to show that Pred[Pstat] ⊆ Reset[Rstat]. In
other words, we want to show that every statistically unpredictable source S is also statistically reset secure.
Intuitively, this is because a reset adversary will be unable to query its oracle at any point where the source
queried its oracle, except with negligible probability, and hence will usually have the same view both when
its oracle is reset and when it is not. Formally, given a reset adversary R we build a predictor P such that
AdvresetR,S (·) ≤ AdvpredS,P (·). Predictor P is on the left below:

PHash(1λ, L)

Q′ ← ∅ ; b′←$RHashSim(1λ, L)
Return Q′

HashSim(x, `)

Q′ ← Q′ ∪ {x} ; T [x, `]←$ {0, 1}`
Return T [x, `]

Main GS,R
0 (λ) / GS,R

1 (λ)

Q← ∅ ; L←$ SHash(1λ) ; b′ ← RHash(1λ, L)
Return (b′ = 1)

Hash(x, `)

If T [x, `] = ⊥ then T [x, `]←$ {0, 1}`

Else bad← true ; T [x, `]←$ {0, 1}`
Return T [x, `]

For the analysis, assume neither S nor R repeat an oracle query, and consider games GS,R
0 (λ),GS,R

1 (λ)

above, where GS,R
1 (λ) includes the boxed code and GS,R

0 (λ) does not. The games are identical-until-bad, so
by the Fundamental Lemma of Game Playing [26],

AdvresetR,S (·) = Pr[GS,R
0 (·)]− Pr[GS,R

1 (·)] ≤ Pr[GS,R
1 (·) sets bad] ≤ AdvpredS,P (·)

as desired. Moreover, P makes no Hash queries, and the size of the set Q′ returned by P is equal to the
number of HashSim queries made by R, which in turn is bounded by a polynomial. We also have that
UCE[Scrs] ⊆ UCE[Scup] by noting that if R is a PT algorithm, then so is P .

For part (2), consider H ∈ UCE[Ssup]. Define a hash function family H as follows: H.Kg = H.Kg
and H.Ev(1λ,hk, 0λ, 1λ) = 0λ, and H.Ev(1λ, hk, x, 1`) = H.Ev(1λ,hk, x, 1`) otherwise. It follows that
H ∈ UCE[Ssup], as an unpredictable source cannot query Hash(0λ, 1λ). However, H 6∈ UCE[Ssrs]. A
source S can get y = Hash(0λ, 1λ), and leak 1 if y = 0λ, and leak 0 otherwise. The distinguisher simply
echoes the leakage. We claim that the source above is reset-secure. Let R be an arbitrary reset adversary.
In game ResetRS (λ), the leakage is 0 with probability 1 − 2−λ, regardless of the challenge bit. Moreover,
when the challenge bit is 0, if R queries (0λ, 1λ) to Hash, the chance that it gets 0λ is at most 2−λ. Hence
AdvresetR,S (λ) ≤ 21−λ.

Further restrictions on sources. At this point we have suggested four main classes of sources, namely
Scup,Ssup,Scrs,Ssrs. We use the UCE[Ssup] and UCE[Ssrs] assumptions directly. In the computational case,
however, we use instead assumptions of the form UCE[Scup ∩ S] and UCE[Scrs ∩ S] for appropriate S,
representing a further restriction on the sources that, by Proposition 4.1, weakens the assumptions. This
is because full UCE[Scup] and UCE[Scrs] security may not be achievable [45].

One such restriction is split sources, which we now define. Let S0, S1 be algorithms, neither of which
have access to any oracles. The split source S = Splt[S0, S1] associated to S0, S1 is defined on the top

13

left of Fig. 5. Here S0 returns two vectors of the same length, the second consisting of unary-encoded
integers, meaning 1` denotes the vector whose i-th entry 1`[i] is the unary-encoding of an integer `[i]. The
first adversary creates the oracle queries for the source S, the latter making these queries and passing the
replies to the second adversary to get the leakage. In this way, neither S0 nor S1 have an input-output
pair from the oracle, limiting their ability to create leakage useful to the distinguisher. A source S is
said to belong to the class Ssplt if there exist PT S0, S1 such that S = Splt[S0, S1], meaning is defined as
above. The associated UCE classes are UCE[Scup ∩ Ssplt] and UCE[Scrs ∩ Ssplt], meaning UCE-security for
computationally unpredictable, split sources or computationally reset-secure, split sources.

Relation to extractors. The UCE framework captures many well-known primitives as special cases.
One of these is (strong, randomness) extractors. We will use an asymptotic version of the definition
of [99]. Namely, a family H with input length H.il and output length H.ol is an extractor if, whenever x ∈
{0, 1}H.il(λ) is drawn from a distribution X(λ) such that 2H.ol(·)−H∞(X(·)) is negligible, then the distributions
(hk,H.Ev(1λ, hk, x, 1H.ol(λ)) and (hk, U(λ)) are statistically close, where hk←$ H.Kg(1λ) and U(λ) is the
uniform distribution on {0, 1}H.ol(λ). We will define classes Sext,Dext such that a family H is an extractor
if and only if H ∈ UCE[Sext,Dext]. We let Dext be the class of all distinguishers, meaning a distinguisher is
computationally unbounded. A source S is in the class Sext if (1) It makes exactly one oracle query, and
returns the response as the leakage (2) For every simple statistical predictor P ′ (cf. Section 4.3) the function

2H.ol(·) · AdvspredS,P ′ (·) is negligible. (The oracle query plays the role of the input x and the second condition

captures the min-entropy requirement.) Then H ∈ UCE[Sext,Dext] if and only if H is an extractor as per the
asymptotic definition we sketched above. By allowing the leakage to also include a function of the oracle
query x, we can capture average-case extractors as defined in [60]. Similarly one can define classes S,D
such that UCE[S,D] captures computational extractors as per [56, 90, 64]. We can also capture hardcore
predicates. These relations influenced our choice of the term “universal computational extractor” for our
framework and show that the UCE framework can function as an umbrella abstraction for many notions in
the literature.

4.3 Simple unpredictability

Applications of unpredictability-based UCE assumptions will involve proving the unpredictability of sources
we construct. This task is simplified by using a simpler formulation of unpredictability, called simple
unpredictability, that is equivalent to the original. The formalization considers game SPredP

′
S (λ) of Fig. 3

associated to source S and an adversary P ′ called a simple predictor. There are two simplifications: the
simple predictor does not have access to the RO Hash, and its output is a single string x rather than a set
of strings. It wins if x is a Hash-query of the source. For λ ∈ N we let

AdvspredS,P ′ (λ) = Pr[SPredP
′

S (λ)] .

We say that P ′ is computational if it is PT, and we say it is statistical if it may or may not be PT. We
say that source S is simple computationally unpredictable if AdvspredS,P ′ (·) is negligible for all computational

simple predictors P ′. We say that source S is simple statistically unpredictable if AdvspredS,P ′ (·) is negligible
for all statistical simple predictors P ′. The following says that simple unpredictability is equivalent to
unpredictability in both cases.

Lemma 4.3 Let S be a source. Then S is computationally unpredictable if and only if it is simple
computationally unpredictable, and S is statistically unpredictable if and only if it is simple statistically
unpredictable.

Proof of Lemma 4.3 : Suppose P ′ is a simple predictor. Let PHash(1λ, L) run x←$ P ′(1λ, L) and return

{x}. Then AdvspredS,P ′ (·) ≤ AdvpredS,P (·). This shows that if S is unpredictable then it is also simple unpredictable,
whether this be computational or statistical. Turning to the converse, let P be a predictor. We may assume
wlog that S and P never repeat Hash queries. We may also assume wlog that the output Q′ of P contains
every x for which there exists ` such that Hash-query (x, 1`) was made by P . (This is wlog because we

14

Main PRFAH (λ)

hk←$ H.Kg(1λ)

b←$ {0, 1} ; b′←$AHash(1λ)

Return (b′ = b)

Hash(x, 1`)

If T [x, `] = ⊥ then

If b = 1 then

T [x, `]← H.Ev(1λ,hk, x, 1`)

Else T [x, `]←$ {0, 1}`

Return T [x, `]

Main CRA
H (λ)

hk←$ H.Kg(1λ)

(x0, x1)←$A(1λ,hk)

If (x0 = x1) then return false

Return (H.Ev(1λ,hk, x0, 1
H.ol(λ)) = H.Ev(1λ,hk, x1, 1

H.ol(λ)))

Figure 6: Games defining PRF and CR security of family of functions H.

can modify P to include all such x in Q′.) Let q be a polynomial that bounds the number of elements in
the output Q′ of P . Game GS,P

1 (λ) below includes the boxed code while game GS,P
2 (λ) does not:

P ′(1λ, L)

Q′←$ PHashSim(1λ, L) ; x←$Q′ ; Return x

HashSim(x, 1`)

y←$ {0, 1}` ; Return y

Main GS,P
1 (λ) , GS,P

2 (λ)

Q← ∅ ; L←$ SHash1(1λ) ; Q′←$ PHash2(1λ, L)
Return (Q ∩Q′ 6= ∅)
Hash1(x, 1`)

Q← Q ∪ {x} ; T [x, `]←$ {0, 1}` ;
Return T [x, `]

Hash2(x, 1`)

If x ∈ Q then bad← true ; Return T [x, `]
y←$ {0, 1}` ; Return y

Game GS,P
1 (λ) is identical to PredPS (λ), except that it separates the Hash procedures used by S and P ,

while maintaining consistency. Setting bad has no effect on the outcome of the game. Games GS,P
1 (λ) and

GS,P
2 (λ) are identical-until-bad. From the fundamental lemma of game-playing [26],

AdvpredS,P (·) = Pr[GS,P
1 (·)] ≤ Pr[GS,P

2 (·)] + Pr[GS,P
2 (·) sets bad].

From the assumption that Q′ contains every x such that P queried some (x, 1`) to Hash, if game G2 sets
bad then P will surely win. Hence Pr[GS,P

2 (·) sets bad] ≤ Pr[GS,P
2 (·)]. Now, consider the simple predictor P ′

as above. Then

AdvspredS,P ′ (·) =
1

q
Pr[GS,P

2 (·)] ≥ 1

2q
AdvpredS,P (·) .

Note that if P is computational so is P ′ and if P is statistical then so is P ′. This concludes the proof.

4.4 Relations

We look at how UCE relates to standard notions of security for families of hash functions, namely PRF
and CR. We focus on UCE[Ssup],UCE[Ssrs], leaving relations involving other classes we have introduced as
open questions.

Definitions. We begin by recalling the definitions. Let H be a hash family with output length H.ol. We
say that H is PRF-secure if AdvprfH,A(·) is negligible for all PT A, where AdvprfH,A(λ) = 2 Pr[PRFAH(λ)] − 1

and game PRFAH(λ) is shown in Fig. 6. Here we require that a query (x, `) to Hash satisfy |x| ∈ H.IL(λ)
and ` = H.ol(λ). We say that H is collision-resistant (CR) if AdvcrH,A(·) is negligible for all PT A, where

15

AdvcrH,A(λ) = Pr[CRA
H(λ)] and game CRA

H(λ) is shown in Fig. 6. Here we require that |x0|, |x1| ∈ H.IL(λ).
Let PRF be the set of all families H that are PRFs and CR the set of all H that are collision-resistant.

Results. The following says that UCE[Ssup]-security neither implies, nor is implied by, PRF-security, and
similarly for collision resistance. In any non-containment B 6⊆ A, we assume B 6= ∅.
Proposition 4.4 (1) UCE[Ssup] 6⊆ PRF (2) PRF 6⊆ UCE[Ssup] (3) UCE[Ssup] 6⊆ CR (4) CR 6⊆ UCE[Ssup].

Proof of Proposition 4.4: For simplicity, we only consider hash families of fixed input and output length.
Intuitively, the reason (1) is true is that a UCE[Ssup]-secure family could map a particular input, say 0H.il(λ),
to 0H.ol(λ), under all keys. This clearly violates PRF-security but would not contradict UCE[Ssup]-security
because the “bad” input is predictable. The counter-example for (3) is a family H where H(1λ,hk, ·, 1H.ol(λ))
maps 0H.il(λ) and 1H.il(λ) to the same output. Collision-resistance obviously fails, but since the “bad” inputs
are predictable, UCE[Ssup]-security can be retained. Formally, for parts (1) and (3), let H be a UCE[Ssup]-
secure hash family. Define H as follows. Let H.il = H.il; let H.ol = H.ol; let H.Kg = H.Kg; and let H.Ev be
as shown on the left below:

H.Ev(1λ,hk, x, 1H.ol(λ))

y ← H.Ev(1λ, hk, x, 1H.ol(λ))

If x ∈
{

0H.il(λ), 1H.il(λ)
}

then

y ← 0H.ol(λ)

Return y

SHash(1λ)

L←$ S
HashSim

(1λ) ; Return L

HashSim(x, 1H.ol(λ))

If x ∈
{

0H.il(λ), 1H.il(λ)
}

then

Return 0H.ol(λ)

Else return Hash(x, 1H.ol(λ))

Main GS,D
1 (λ) , GS,D

2 (λ)

L←$ S
HashSim

(1λ) ; b′←$D(1λ, L)
Return (b′ = 0)

HashSim(x, 1H.ol(λ))

If x ∈
{

0H.il(λ), 1H.il(λ)
}

then

bad← true ; T [x]← 0H.ol(λ)

If T [x] 6= ⊥ then T [x]←$ {0, 1}H.ol(λ)

Return T [x]

We claim that H 6∈ PRF and H 6∈ CR but H ∈ UCE[Ssup], which establishes (1) and (3). The reason H 6∈ PRF
is that an adversary can obtain an advantage of 1/2 by querying 0H.il(λ) to Fn and returning 1 if and only
if the first bit of the result is 0. The reason H 6∈ CR is that an adversary can output (0H.il(λ), 1H.il(λ)) to
win with advantage 1. To see that H ∈ UCE[Ssup], let S be a statistically unpredictable PT source, and
D be a PT distinguisher. Consider the source S constructed above. Since S is statistically unpredictable,
so is S. Let PHash(1λ, L) be a predictor that always outputs {0H.il(λ), 1H.il(λ)} regardless of the leakage L.

Consider games GS,D
1 (λ) and GS,D

2 (λ) above. Let b and c be the challenge bits of game UCES,D
H

(λ) and

game UCES,DH (λ) respectively. The two games are identical-until-bad so by the Fundamental Lemma of
Game Playing [26] we have:

Advuce
H,S,D

(·) = Pr[UCES,D
H

(·) | b = 1] + Pr[UCES,D
H

(·) | b = 0]− 1

= Pr[UCES,D
H

(·) | b = 1] + Pr[GS,D
1 (·)]− 1

≤ Pr[UCES,D
H

(·) | b = 1] + Pr[GS,D
2 (·)]− 1 + Pr[GS,D

1 (·) sets bad]

= Pr[UCES,DH (·) | c = 1] + Pr[UCES,DH (·) | c = 0]− 1 + Advpred
S,P

(·)

= AdvuceH,S,D(·) + Advpred
S,P

(·) .

The claim then follows from the assumption that H ∈ UCE[Ssup] and that S is statistically unpredictable.

For part (2), the counter-example is a PRP, which is also a PRF but will be efficiently invertible given the
key. Formally, the assumption PRF 6= ∅ implies that there is an H ∈ PRF that is a PRP. (This follows
from [92].) This means H.il = H.ol and there is a PT deterministic algorithm H.Inv which is the inverse
of H.Ev, meaning H.Inv(1λ,hk,H.Ev(1λ, hk, x, 1H.ol(λ)), 1H.ol(λ)) = x for all λ ∈ N, all hk ∈ [H.Kg(1λ)] and
all x ∈ {0, 1}H.il(λ). To show that H 6∈ UCE[Ssup], consider source S and distinguisher D below, where x[1]
denotes the first bit of x:

16

SHash(1λ)

x←$ {0, 1}H.il(λ) ; y ← Hash(x, 1H.ol(λ))
L← (x[1], y) ; Return L

D(1λ,hk, L)

(d, y)← L ; x← H.Inv(1λ,hk, y, 1H.ol(λ))
If x[1] = d then return 1 else return 0

The source S is statistically unpredictable, but AdvuceH,S,D(·) = 1/2.

For part (4), the counter-example is a collision-resistant family all of whose function-outputs have some
common structure, for example beginning with a 1-bit, which is enough to violate UCE[Ssup]-security.
Formally, let H ∈ CR and define H as follows: let H.il = H.il; let H.ol = H.ol + 1; let H.Kg = H.Kg; and let
H.Ev(1λ, hk, x, 1H.ol(λ)) = 1 ‖H.Ev(1λ,hk, x, 1H.ol(λ)) for all λ ∈ N, all hk ∈ [H.Kg(λ)] and all x ∈ {0, 1}H.il(λ).
Then H ∈ CR. On the other hand, we claim that H 6∈ UCE[Ssup]. Let source S pick x←$ {0, 1}H.il(λ) and

return the first bit of Hash(x, 1H.ol(λ)) as the leakage. Then S is statistically unpredictable. Let D be a
distinguisher that returns the leakage L. Then Advuce

H,S,D
(λ) = 1/2.

We remark that a trivial counter-example for (3) is a family H ∈ UCE[Ssup] with λ ∈ H.IL(λ) and H.ol(λ) = 1
for all λ ∈ N, such a family trivially not being in CR. The above counter-example H is more meaningful
because 2−H.ol could be negligible.

The following is a reset-security analog of Proposition 4.4, showing that UCE[Ssrs] security neither
implies, nor is implied by collision resistance. PRF security doesn’t imply UCE[Ssrs] security, but whether
UCE[Ssrs] security implies PRF security remains open. As usual, any non-containment B 6⊆ A assumes
B 6= ∅.

Proposition 4.5 (1) PRF 6⊆ UCE[Ssrs], (2) UCE[Ssrs] 6⊆ CR, and (3) CR 6⊆ UCE[Ssrs].

Proof: Parts (1) and (3) are direct corollaries of Propositions 4.2 and 4.4. For part (2), a trivial counter-
example is a family H ∈ UCE[Ssrs] with λ ∈ H.IL(λ) and H.ol(λ) = 1 for all λ ∈ N, such a family trivially not
being in CR. We’d like however to give a more meaningful counter-example, namely an H ∈ UCE[Ssrs] \CR
with 2−H.ol negligible. Towards this, let H ∈ UCE[Ssrs] be a family with output length H.ol such that 2−H.ol is
negligible and H.IL(·) = N. Define a hash family H as follows: (i) H.Kg = H.Kg and (ii) H.Ev(1λ,hk, x, 1`) =
H.Ev(1λ, hk, x, 1`) if x 6= hk, and H.Ev(1λ,hk,hk, 1`) = H.Ev(1λ,hk, hk, 1`), where hk is the complement
of hk. Note H.ol = H.ol and H.IL = H.IL. Then H 6∈ CR, as H.Ev(1λ, hk,hk, 1`) = H.Ev(1λ, hk,hk, 1`). To
prove that H ∈ UCE[Ssrs], consider arbitrary PT statistically reset-secure source S and PT distinguisher D.
Assume that S never repeats an oracle query. Let q be a polynomial such that the number of oracle queries

of S in game UCES,D
H

(λ) is at most q(λ) for all λ ∈ N. We’ll construct statistically reset-secure source S
and distinguisher D such that

Advuce
H,S,D

(·) ≤ AdvuceH,S,D(·) +
q

2H.ol
. (2)

The claim then follows from the assumption that H ∈ UCE[Ssrs] and 2−H.ol is negligible. The constructions
of S and D are shown below:

SHash(1λ)

done← false ; L←$ S
HashSim

(1λ)
If done then return 1

Return 0 ‖L
HashSim(x, 1`)

y ← Hash(x, 1`)

If (|x| = H.kl(λ) and y = H.Ev(1λ, x, x, 1H.ol(λ))) then done← true
Return y

DHash(1λ,hk, L)

If L[1] = 0 then

L← L[2, |L|]
b′←$D(1λ,hk, L)
Return b′

Return 1

17

H.Ev(1λ,hk, x, 1`)

l← d`/H.ol(λ)e
For i = 1, . . . , l do

yi ← 1` ‖ 0 ‖ 1i ‖ 0 ‖x ; hi ← H.Ev(1λ,hk, yi, 1
H.ol(λ))

h← h1 ‖ · · · ‖hl ; Return h[1, `]

Figure 7: Construction of a VOL family H from a FOL family H.

Let b and b be the challenge bits of game UCES,D
H

(λ) and game UCES,DH (λ) respectively. Then

Pr[UCES,DH (·) | b = 1] ≥ Pr[UCES,D
H

(·) | b = 1]

Pr[UCES,DH (·) | b = 0] ≥ Pr[UCES,D
H

(·) | b = 0]− q

2H.ol
.

Summing yields Equation (2). What’s left is to prove that S is statistically reset-secure. Let R be a
reset-adversary. Consider the following reset-adversary R:

R
Hash

(1λ, L)

b′←$RHash(1λ, 0 ‖L) ; Return b′

Let c and c be the challenge bits of game ResetR
S

(λ) and ResetRS (λ) respectively. Then

Pr[ResetRS (·) | c = 1] ≤ Pr[ResetR
S

(·) | c = 1] +
q

2H.ol

Pr[ResetRS (·) | c = 0] ≤ Pr[ResetR
S

(·) | c = 0] +
q

2H.ol
.

Hence AdvresetR,S (·) ≤ Advreset
R,S

(·) + 2q/2H.ol.

4.5 From FOL to VOL

We show that we can build a UCE-secure family with variable output length (VOL) from a UCE-secure
family with fixed output length (FOL). The construction is simple, namely to run the FOL evaluation
algorithm in counter mode. Details follow.

Let H be the given FOL function family, having output length H.ol. For simplicity assume H.IL(λ) = N
for all λ ∈ N, meaning inputs of any length are allowed. We build a VOL function family H = Extend[H],
also with H.IL(λ) = N, but now with H.OL(λ) also equal to N for all λ ∈ N, meaning output lengths can
be arbitrary. We let H.Kg = H.Kg, meaning keys for the new family are those of the old family. The new
evaluation algorithm H.Ev is described in Fig. 7.

Theorem 4.6 (1) If H ∈ UCE[Ssup], then Extend[H] ∈ UCE[Ssup], and (2) If H ∈ UCE[Ssrs], then Extend[H] ∈
UCE[Ssrs].

Proof: Let H = Extend[H]. Let S be a source and D a distinguisher. We construct a source S such that

Advuce
H,S,D

(·) = AdvuceH,S,D(·) . (3)

Without loss of generality, we assume that S never repeats an oracle query. We build S from S as shown
below:

SHash(1λ)

L←$ S
HashSim

(1λ)
Return L

HashSim(x, 1`)

l← d`/H.ol(λ)e
For i = 1, . . . , l do

yi ← 1` ‖ 0 ‖ 1i ‖ 0 ‖x ; hi ← Hash(yi, 1
H.ol(λ))

h← h1 ‖ · · · ‖hl ; Return h[1, `]

18

The assumption that S never repeats an oracle query implies that the oracle queries made by S are all
distinct. (This follows from the way these queries are encoded.) Letting b, b denote the challenge bits in

games UCES,D
H

(·) and UCES,DH (·) respectively, we thus have

Pr[UCES,DH (·) | b = 0] = Pr[UCES,D
H

(·) | b = 0]

Pr[UCES,DH (·) | b = 1] = Pr[UCES,D
H

(·) | b = 1] .

This yields Equation (3). For part (1), suppose that S is statistically unpredictable. We’ll show that S is
also statistically unpredictable. By Lemma 4.3 it suffices to show that S is simple statistically unpredictable.
Given a simple predictor P ′ for S, we build a simple predictor P

′
for S such that AdvspredS,P ′ (·) ≤ Advspred

S,P
′ (·).

The conclusion follows because we assumed that S is statistically unpredictable and Lemma 4.3 says it is
thus also simple statistically unpredictable. Predictor P

′
(1λ, L) lets w←$ P ′(1λ, L). It then parses w as

1`‖0‖1i‖0‖x and returns x. The claimed bound is easily verified. For part (2), suppose that S is statistically
reset-secure. We’ll show that S is also statistically reset-secure. Consider an arbitrary reset-adversary R.
Wlog, assume that R doesn’t repeat an oracle query. We’ll build a reset-adversary R from R as shown
below:

R
Hash

(1λ, L)

b′←$RHashSim(1λ, L)
Return b′

HashSim(x, 1H.ol(λ))

If (x = 1` ‖ 0 ‖ 1i ‖ 0 ‖ v) and (i ≤ d`/H.ol(λ)e) then

l← d`/H.ol(λ)e ; y ← Hash(v, 1`) ; r←$ {0, 1}lH.ol(λ)−`

If i < l then return y[(i− 1)H.ol(λ) + 1, iH.ol(λ)]
Else return y[(i− 1)H.ol(λ) + 1, `] ‖ r

z←$ {0, 1}H.ol(λ) ; Return z

Hence Pr[ResetRS (·) | a = 0] = Pr[ResetR
S

(·) | a = 0], where a, a denote the challenge bits in games ResetR
S

(·)
and ResetRS (·) respectively. We claim that

Pr[ResetRS (·) | a = 1] = Pr[ResetR
S

(·) | a = 1],

Subtracting, we have AdvresetS,R (·) = Advreset
S,R

(·). To justify this claim, consider games G1 and G2 below.

Main GS,R
1 (λ)

L←$ S
Hash

(1λ) ; b′ ← RHashSim(1λ, L)
Return (b′ = 1)

Hash(x, 1`)

y←$ {0, 1}` ; l← d`/H.ol(λ)e ; r←$ {0, 1}lH.ol(λ)−`

For i = 1 to l do
yi ← 1` ‖ 0 ‖ 1i ‖ 0 ‖x
If i < l then T [yi]← y[(i− 1)H.ol(λ) + 1, iH.ol(λ)]
Else T [yi]← y[(i− 1)H.ol(λ) + 1, `] ‖ r

Return y

HashSim(x, 1H.ol(λ))

If T [x] = ⊥ then T [x]←$ {0, 1}H.ol(λ)

Return T [x]

Main GS,R
2 (λ)

L←$ S
Hash

(1λ) ; b′ ← RHashSim(1λ, L)
Return (b′ = 1)

Hash(x, 1`)

y←$ {0, 1}` ; l← d`/H.ol(λ)e
For i = 1 to l do
yi ← 1` ‖ 0 ‖ 1i ‖ 0 ‖x
If i < l then T [yi]← y[(i− 1)H.ol(λ) + 1, iH.ol(λ)]
Else V [yi]← y[(i− 1)H.ol(λ) + 1, `]

Return y

HashSim(x, 1H.ol(λ))

If V [x] 6= ⊥ then

r←$ {0, 1}H.ol(λ)−|V [x]| ; T [x]← V [x] ‖ r
If T [x] = ⊥ then T [x]←$ {0, 1}H.ol(λ)

Return T [x]

The two games are identical, as the source S never reads strings r, so we can postpone creating them

until R makes queries to read them. Moreover, Pr[GS,R
1 (·)] = Pr[ResetRS (·) | a = 1], and Pr[GS,R

2 (·)] =

Pr[ResetR
S

(·) | a = 1]. The claim then follows.

19

Main mUCES,DH (λ)

(1n, t)←$ S(1λ, ε)

For i = 1 to n do hk[i]←$ H.Kg(1λ)

b←$ {0, 1} ; L←$ SHash(1n, t)

b′←$D(1λ,hk, L)

Return (b′ = b)

Hash(x, 1`, i)

If T [x, `, i] = ⊥ then

If b = 1 then T [x, `, i]← H.Ev(1λ,hk[i], x, 1`)

Else T [x, `, i]←$ {0, 1}`
Return T [x, `, i]

Main mPredPS (λ)

(1n, t)←$ S(1λ, ε)

done← false ; Q← ∅
L←$ SHash(1n, t) ; done← true

Q′←$ PHash(1λ, 1n, L)

Return (Q ∩Q′ 6= ∅)

Hash(x, 1`, i)

If done = false then Q← Q ∪ {x}
If T [x, `, i] = ⊥ then

T [x, `, i]←$ {0, 1}`
Return T [x, `, i]

Main mSPredP
′

S (λ)

(1n, t)←$ S(1λ, ε)

Q← ∅
L←$ SHash(1n, t)

x←$ P ′(1λ, 1n, L)

Return (x ∈ Q)

Hash(x, 1`, i)

Q← Q ∪ {x}
If T [x, `, i] = ⊥ then

T [x, `, i]←$ {0, 1}`
Return T [x, `, i]

Figure 8: Games mUCE,mPred, and mSPred used to define mUCE security of family of func-
tions H, and game mSPred defining the simplified but equivalent form of unpredictability.
Here S is the multi-source, D is the distinguisher, P is the predictor and P ′ is the simple predictor.

4.6 mUCE security

In UCE, there is a single target key hk. Some of our applications will depend on an extension involving
multiple keys. Here we define this mUCE extension of UCE.

Framework. Let H be a family of functions. Consider game mUCES,DH (λ) of Fig. 8 involving a multi-
source S and distinguisher D. Adversary S now begins by returning a unary-encoded integer n ≥ 1
indicating the number of instances, together with state information t. The game creates n, independent
keys. The oracle Hash given to S now allows it to query any instance i ∈ [1, n] of its choice. As before S
returns leakage L based on which the distinguisher D, now given the entire vector hk of keys, returns its
guess bit b′. The mUCE-advantage of (S,D) is defined for λ ∈ N by

Advm-uce
H,S,D(λ) = 2 Pr[mUCES,DH (λ)]− 1 . (4)

Let S be a class of multi-sources and D a class of distinguishers. Then we let mUCE[S,D] be the set of all
H such that Advm-uce

H,S,D(·) is negligible for all (S,D) ∈ S × D. We let mUCE[S] = mUCE[S,Dpoly].

Classes. The classes defined in the single-key case have natural multi-key analogues, as we now explain.
For λ ∈ N we let Advm-pred

S,P (λ) = Pr[mPredPS (λ)] where game mPredPS (λ) is in Fig. 8. We say that P is a
computational predictor if it is PT, and we say it is a statistical predictor if there exist polynomials q, q′

such that for all λ ∈ N, predictor P makes at most q(λ, n) oracle queries and outputs a set Q′ of size at
most q′(λ, n) in game PredPS (λ), where the number of keys n is defined via the output of S in the first line
of the game. We stress that in this case the predictor need not be PT. We say S is computationally (resp.,

statistically) unpredictable if Advm-pred
S,P (·) is negligible for all computational (resp., statistical) predictors

P . We let Scup-m be the class of all PT, computationally unpredictable multi sources and Ssup-m ⊆ Scup-m

the class of all PT, statistically unpredictable multi sources. The associated classes (assumptions) are
mUCE[Scup-m] ⊆ mUCE[Ssup-m].

As with UCE, unpredictability is equivalent to simple unpredictability. In detail, consider game
mSPredP

′
S (λ) of Fig. 8 and let Advm-spred

S,P ′ (λ) = Pr[mSPredP
′

S (λ)]. Say that P ′ is computational if it is
PT, and say it is statistical if it may not be PT. We say that multi-source S is simple computationally
(resp., statistically) unpredictable if Advm-spred

S,P ′ (·) is negligible for all simple computational (resp., statisti-
cal) predictors P ′. The following analogue of Lemma 4.3 shows equivalence of simple unpredictability and
unpredictability for multi-sources. The proof of Lemma 4.7 is similar to the proof of Lemma 4.3 and is
omitted.

Lemma 4.7 Let S be a multi-source. Then S is computationally unpredictable if and only if it is simple

20

Main HCAF,H(λ)

b←$ {0, 1} ; fk←$ F.Kg(1λ) ; hk←$ H.Kg(1λ)

x←$ {0, 1}F.il(λ) ; y ← F.Ev(1λ, fk, x, 1F.ol(λ))

If b = 1 then r ← H.Ev(1λ,hk, x, 1H.ol(λ)) else r←$ {0, 1}H.ol(λ)

b′←$A(1λ, fk,hk, y, r) ; Return (b = b′)

Figure 9: Game defining security of H as a hardcore function for F.

computationally unpredictable and S is statistically unpredictable if and only if it is simple statistically
unpredictable.

We likewise define reset security for multi-sources. Consider game mResetRS (λ) of Fig. 4. Let Advm-reset
S,R (λ) =

2 Pr[mResetRS (λ)]− 1. We say R is a computational reset adversary if it is PT, and we say it is a statistical
reset adversary if there exists a polynomial q such that for all λ ∈ N, reset adversary R makes at most
q(λ) oracle queries in game mResetRS (λ). We say multi source S is computationally (resp., statistically)
reset-secure if AdvresetS,R (·) is negligible for all computational (resp., statistical) reset adversaries R. We let
Scrs-m be the class of all PT, computationally reset-secure sources and Ssrs-m ⊆ Scrs-m the class of all PT,
statistically reset-secure sources. The associated classes (assumptions) are mUCE[Scrs-m] ⊆ mUCE[Ssrs-m].
The analogue of Proposition 4.2 holds also in the multi-key case.

One may also define the multi-key analogue of the split sources, leading to class Ssplt-m. Since we don’t
use this class in this paper, we omit its definition.

5 Applications of UCE

We show how UCE- or mUCE-secure families can securely instantiate ROs to yield (new) standard-model
solutions for a variety of goals. Specifically, we detail the claims of Section 1.4.

5.1 Hardcore functions for any OWF

A hardcore function for a one-way function f extracts from x bits that are indistinguishable from random
even given f(x) [29, 107, 75]. The concept has been central in the development of the theory of public-key
encryption, and hardcore functions have been sought and found for many specific one-way functions [29,
107, 75, 80, 3]. Goldreich and Levin [72] present a hardcore function able to extract a single bit from any
one-way function. But ROs are “ideal” hardcore functions, able to extract as many pseudorandom bits as
desired from any one-way function. We show how the RO here can be UCE-instantiated. Thus, we show
that UCE-secure families are hardcore functions for any one-way function f , allowing us to extract from x
any number of bits that remain indistinguishable from random to an adversary given f(x).

Definitions. Let F be a family of functions with input length F.il and output length F.ol. We say that F
is one-way if AdvowF,I(·) is negligible for all PT I, where AdvowF,I(λ) = Pr[I(1λ, fk, y) = x] in the experiment

fk←$ F.Kg(1λ) ; x←$ {0, 1}F.il(λ) ; y ← F.Ev(1λ, fk, x). Let OW be the set of all F that are one-way. Let H
be a family of functions with the same input length as F and output length H.ol. We say that H is hardcore
for F if AdvhcF,H,A(·) is negligible for all PT A, where AdvhcF,H,A(λ) = 2 Pr[HCA

F,H(λ)]− 1 and game HCA
F,H(λ)

is in Fig. 9. Let HC[F] be the set of all H that are hardcore for F.

Results. The following says that if F is one-way and H is UCE-secure then H is hardcore for F. The
assumption used is a weak version of UCE[Scup ∩ Ssplt]-security, namely UCE[Scup ∩ Ssplt ∩ Sone]-security,
where Sone is the class of sources that make at most one oracle query to Hash.

Theorem 5.1 If H ∈ UCE[Scup ∩ Ssplt ∩ Sone] and F ∈ OW then H ∈ HC[F].

Proof of Theorem 5.1: Given a PT adversary A for game HCA
F,H(·), we build a source S ∈ Scup∩Ssplt∩

Sone and a distinguisher D ∈ Dpoly such that

AdvhcF,H,A(·) = AdvuceH,S,D(·) . (5)

21

Main IND-CPAA
PKE(λ)

b←$ {0, 1}
(ek,dk)←$ PKE.Kg(1λ)

b′←$ALR(1λ, ek)

Return (b = b′)

LR(m0,m1)

c←$ PKE.Enc(1λ, ek,mb)

Return c

PKE.Kg(1λ)

(ek,dk)←$ TF.EKg(1λ)

hk←$ H.Kg(1λ)

Return ((ek,hk), (dk,hk))

PKE.Enc(1λ, (ek,hk),m)

x←$ {0, 1}TF.il(λ)

w ← H.Ev(1λ,hk, x, 1H.ol(λ))

Return (TF.Ev(1λ, ek, x), w⊕m)

PKE.Dec(1λ, (dk,hk), (y, z))

x← TF.Inv(1λ,dk, y)

Return H.Ev(1λ,hk, x, 1|z|)⊕z

Figure 10: Left: The IND-CPA game. Right: PKE scheme PKE = BR93[H,TF].

The assumption H ∈ UCE[Scup∩Ssplt∩Sone] implies the right-hand side of Equation (5) is negligible, which
yields the theorem. The constructions of S and D are shown below:

SHash(1λ)

fk←$ F.Kg(1λ) ; x←$ {0, 1}F.il(λ)

y ← F.Ev(1λ, fk, x) ; r ← Hash(x, 1H.ol(λ))
L← ((fk, y), r) ; Return L

D(1λ,hk, L)

((fk, y), r)← L
b′←$A(1λ, fk, hk, y, r)
Return b′

I(1λ, fk, y)

r←$ {0, 1}H.ol(λ)

x′←$ P ′(1λ, ((fk, y), r))
Return x′

Equation (5) is easily verified, and S makes only a single query to Hash. Now we claim that S is computa-
tionally unpredictable. By Lemma 4.3 it suffices to show that S is simple computationally unpredictable.
Given a simple computational predictor adversary P ′ we define I as shown above. Then we have

AdvspredS,P ′ (·) = AdvowF,I(·) .

But the assumption F ∈ OW implies the right-hand-side is negligible, which shows that S is simple compu-
tationally unpredictable. Finally we exhibit, below, PT algorithms S0, S1 such that S = Splt[S0, S1]—

S0(1λ)

fk←$ F.Kg(1λ) ; x←$ {0, 1}F.il(λ)

y ← F.Ev(1λ, fk, x) ; x[1]← x ; `[1]← H.ol(λ)
Return ((fk, y),x, 1`)

S1(1λ,y)

r ← y[1]
Return r

This shows that S ∈ Ssplt, concluding the proof.

5.2 Instantiating the BR93 PKE scheme

BR93 [23] gave a simple PKE scheme which encrypts m by picking x at random and returning (f(x),RO(x)
⊕m) where the public key f is an injective trapdoor function whose inverse is the secret key. They showed
that this is IND-CPA when RO is a RO. We show that instantiating RO with a UCE family maintains
IND-CPA security. We note that we show full (adaptive) IND-CPA, not IND-CPA-KI. This is because the
points to which the RO is applied in this scheme do not depend on the messages.

Definitions. A family of functions TF with input length TF.il and output length TF.ol is said to be
trapdoor if there are (additional) PT algorithms TF.EKg,TF.Inv, the second deterministic, such that the
following hold. Extended key-generation algorithm TF.EKg(1λ) returns a pair (ek, dk) of keys, the second
called the trapdoor. The usual TF.Kg(1λ) algorithm lets (ek,dk)←$ TF.EKg(1λ) and returns ek. Finally
TF.Inv(1λ,dk,TF.Ev(1λ, ek, x)) = x for all λ ∈ N, all (ek,dk) ∈ [TF.EKg(1λ)] and all x ∈ {0, 1}TF.il(λ).

A PKE scheme PKE as usual specifies a triple of PT algorithms, the last deterministic. Via (ek,dk)←$

PKE.Kg(1λ) we generate keys. Via c←$ PKE.Enc(1λ, ek,m) we can encrypt a message m ∈ {0, 1}PKE.il(λ)

where PKE.il: N → N is the message-length function of the scheme. Via m ← PKE.Dec(1λ, dk, c) we

decrypt. We say that PKE is IND-CPA-secure if Advind-cpaPKE,A (·) is negligible for all PT A, where Advind-cpaPKE,A (λ) =

2 Pr[IND-CPAA
PKE(λ)]− 1 and game IND-CPAA

PKE(λ) is shown in Fig. 10. Messages m0,m1 queried to LR

22

Main INDA
DE(λ)

b←$ {0, 1}
(ek,dk)←$ DE.Kg(1λ)

(m0,m1)←$A1(1λ)

For i = 1 to |mb| do

c[i]←$ DE.Enc(1λ, ek,mb[i])

b′←$A2(1λ, ek, c)

Return (b = b′)

DE.Kg(1λ)

(ek,dk)←$ RE.Kg(1λ)

hk←$ H.Kg(1λ)

Return ((ek,hk),dk)

DE.Enc(1λ, (ek,hk),m)

r ← H.Ev(1λ,hk, ek ‖m, 1RE.rl(λ))

c← RE.Enc(1λ, ek,m; r)

Return c

DE.Dec(1λ,dk, c)

m← RE.Dec(1λ,dk, c)

Return m

Figure 11: Left: The IND game. Right: D-PKE scheme DE = EwH[H,RE].

are required to be of the same length and A may be assumed to make only one oracle query. Let IND-CPA
be the set of all PKE that are IND-CPA secure.

Results. Let TF be a trapdoor family of functions. Let H be a family of functions with the same input
length as F and output length H.ol. Our instantiated BR93 scheme is represented by a transform BR93
that associates to H and TF the PKE scheme PKE = BR93[H,TF] defined in Fig. 10. The message length
of the scheme is PKE.il = H.ol. The assumption, as in Theorem 5.1, is UCE[Scup ∩ Ssplt ∩ Sone]-security.

Again, the result could also be obtained under a UCE[Scup ∩ Sprl
τ,σ,q] assumption where τ, σ depend only on

TF and q = 1.

Theorem 5.2 If H ∈ UCE[Scup ∩ Ssplt ∩ Sone] and TF ∈ OW then BR93[H,TF] ∈ IND-CPA.

Proof of Theorem 5.2: Theorem 5.2 is a simple corollary of Theorem 5.1, meaning we do not have to
use UCE directly. Given an adversary A for game INDCPAA

PKE(λ), where PKE = BR93[H,TF], we build
the following adversary B for game HCB

TF,H(λ):

B(1λ, ek,hk, y, r)

d←$ {0, 1} ; d′←$ALRSim(1λ, (ek,hk))
If (d = d′) then b′ ← 1 else b′ ← 0
Return b′

LRSim(m0,m1)

Return (y, r⊕md)

Adversary A makes a single oracle query, consisting of a pair m0,m1 ∈ {0, 1}H.ol(λ) of messages, in response
to which B returns the ciphertext shown. Letting b denote the challenge bit in game HCB

TF,H(λ) we have

Pr[d = d′ | b = 1] =
1

2
+

1

2
Advind-cpaPKE,A (·) and Pr[d = d′ | b = 0] =

1

2
.

Subtracting, we have AdvhcTF,H,A(λ) = 0.5 · AdvindcpaPKE,A(λ).

5.3 Deterministic encryption

EwH is a simple and natural D-PKE scheme from [12] that deterministically encrypts m by using a ran-
domized IND-CPA scheme with the coins derived by applying a RO to m. In the ROM the scheme is
PRIV-secure [12] and equivalently IND-secure [15]. We show that instantiating the RO with a UCE hash
family results in a scheme meeting the same notion of security in the standard model. Previous standard
model schemes [31, 43] have met notions providing security only when one assumes messages are drawn
from a blocksource [53], meaning each message has high min-entropy even given previous ones. Instantiated
EwH however meets the original and full notions of [12, 15] which only make the necessary assumption that
each individual message has high min-entropy, but allow messages to be arbitrarily correlated. This is the
first standard-model scheme meeting the PRIV and IND notions.

Definitions. Let PKE be a PKE scheme as defined in Section 5.2. We say PKE is a D-PKE scheme
if the encryption algorithm PKE.Enc is deterministic. The game defining the IND notion of security for

23

D-PKE scheme DE, following [15], is in Fig. 11. An IND adversary A = (A1, A2) is a pair of PT algorithms,
where A1 on input 1λ returns a pair (m0,m1) of vectors of messages. It is required that there is a
polynomial v, depending on the adversary, such that |m0| = |m1| = v(λ) and |mb[i]| = DE.il(λ) for
all b ∈ {0, 1} and i ∈ [1, v(λ)]. It is also required that the strings (messages) m0[1], . . . ,m0[|m0|] are
distinct and the strings (messages) m1[1], . . . ,m1[|m1|] are distinct. The guessing probability GuessA(·)
of A is the function that on input λ ∈ N returns the maximum, over all b, i,m, of Pr[mb[i] = m], the
probability over (m0,m1)←$A1(1λ). We say that A has high min-entropy if GuessA(·) is negligible. We
let AdvindDE,A(λ) = 2 Pr[INDA

DE(λ)]− 1 and say that DE is IND-secure if AdvindDE,A(·) is negligible for all PT A
of high min-entropy. Let IND be the set of all IND-secure D-PKE schemes.

Results. Let RE be a PKE scheme. Let RE.ekl: N → N denote the length of its public keys, meaning
|ek| = RE.ekl(λ) for all (ek, dk) ∈ [RE.Kg(1λ)]. Let RE.rl: N → N denote its randomness-length function,
meaning RE.Enc(1λ, ·, ·) draws its coins at random from {0, 1}RE.rl(λ). Let H be a family of functions with
H.il = RE.il + RE.ekl and H.ol = RE.rl. Our standard-model instantiation of the ROM encrypt-with-hash
transform of BBO07 [12] associates to RE and H the (standard-model) D-PKE scheme DE = EwH[H,RE]
described in Fig. 11. The message length of DE is that of RE.

Assume RE ∈ IND-CPA. We can show that H being in UCE[Scup] suffices for EwH[H,RE] to be in IND.
However we would like to further restrict the class of sources in this core result to weaken the assumption,
which we do as follows. Let us say that PT algorithm M is RE-valid if M(1λ) returns a pair (m0,m1) of
vectors with |m0| = |m1| and |mb[i]| = RE.il(λ) − RE.ekl(λ) for all b ∈ {0, 1} and i ∈ [1, |mb|]. Let source
SRE,M be defined via

SHash
RE,M (1λ)

(ek,dk)←$ RE.Kg(1λ) ; d←$ {0, 1} ; (m0,m1)←$M(1λ)

For i = 1, . . . , |m0| do r[i]←$ Hash(ek‖md[i], 1
RE.rl(λ)) ; c[i]← RE.Enc(1λ, ek,md[i]; r[i])

L← ((ek, d), c) ; Return L

Let SRE = {SRE,M : M is RE-valid}. The following theorem says that EwH[H,RE] is an IND-secure D-PKE
scheme if RE is IND-CPA secure and H is UCE-secure relative to computationally unbounded sources from
the class SRE.

Theorem 5.3 Suppose RE ∈ IND-CPA. Suppose H.il = RE.il + RE.ekl and H.ol = RE.rl. If H ∈ UCE[SRE ∩
Scup] then EwH[H,RE] ∈ IND.

Proof of Theorem 5.3: Let DE = EwH[H,RE]. Given a PT high min-entropy adversary A = (A1, A2)
for game INDA

DE(·), we build a source S ∈ SRE ∩ Scup, a distinguisher D ∈ Dpoly, and a PT adversary B1

for game INDCPAB1
RE(·) such that

AdvindDE,A(·) ≤ 2AdvuceH,S,D(·) + Advind-cpaRE,B1
(·) . (6)

The theorem follows from the assumptions that H ∈ UCE[SRE ∩ Scup] and RE ∈ IND-CPA. Proceeding to
the constructions, let S = SRE,A1 . Then define D,B1 as follows:

D(1λ,hk, L)

((ek, d), c)← L ; d′←$A2(1λ, (ek, hk), c)
If (d = d′) then b′ ← 1 else b′ ← 0
Return b′

BLR
1 (1λ, ek)

(m0,m1)←$A1(1λ)
For i = 1, . . . , |m0| do c[i]← LR(m0[i],m1[i])
hk←$ H.Kg(1λ) ; b′←$A2(1λ, (ek, hk), c)
Return b′

Letting b denote the challenge bit in game UCES,DH (·) we have

Pr[d = d′ | b = 1] =
1

2
+

1

2
AdvindDE,A(·) and Pr[d = d′ | b = 0] =

1

2
+

1

2
Advind-cpaRE,B1

(·) .

The second equation above exploits the assumption that md[1], . . . ,md[n] are all distinct. Subtracting and
re-arranging terms, we have Equation (6).

24

Main IND$-CDA
A
MLE(λ)

p←$ MLE.Pg(1λ) ; b←$ {0, 1}
m←$A1(1λ)

For i = 1 to |m| do

K[i]← MLE.Kg(1λ, p,m[i])

c1[i]← MLE.Enc(1λ, p,K[i],m[i])

c0[i]←$ {0, 1}|c1[i]|

b′←$A2(1λ, p, cb)

Return (b′ = b)

CE2.Pg(1λ)

hk←$ H.Kg(1λ)

Return hk

CE2.Kg(1λ,hk,m)

K ← H.Ev(1λ,hk,m, 12λ)

Return K

CE2.Enc(1λ,hk,K,m)

c← m⊕H.Ev(1λ,hk,K, 1|m|)

Return c

CE2.Dec(1λ,hk,K, c)

m← c⊕H.Ev(1λ,hk,K, 1|c|)

Return m

CE.Tag(1λ,hk, c)

Return c

Figure 12: Left: The IND$-CDA game. Right: MLE scheme CE[H, SE].

We now show that S is computationally unpredictable. By Lemma 4.3 it suffices to show that S is simple
computationally unpredictable. Since oracle queries of S include messages created by A1, simple unpre-
dictability may seem at first to follow from the high min-entropy assumption on A. However we will
additionally exploit (once again) the assumed IND-CPA security of the randomized RE scheme. This is
because the leakage contains the ciphertexts. Thus, letting P ′ be a simple computational predictor, we
construct PT B2 such that

AdvspredS,P ′ (·) ≤ Advind-cpaRE,B2
(·) + v(·) ·GuessA(·) . (7)

The assumption thatA has high min-entropy and that RE ∈ IND-CPA mean the left-hand-side of Equation (7)
is negligible, and thus S is simple computational unpredictable. We construct B2 as follows:

BLR
2 (1λ, ek)

(m0,m1)←$A1(1λ) ; d←$ {0, 1}
For i = 1, . . . , |m0| do m2[i]←$ {0, 1}RE.il(λ) ; c[i]← LR(m2[i],md[i])
L← ((ek, d), c) ; x← P ′(1λ, L)
If x ∈ { ek ‖md[i] : 1 ≤ i ≤ v(λ) } then b′ ← 1 else b′ ← 0
Return b′

Letting b denote the challenge bit in game IND-CPAB2
RE(·) and v the polynomial assumed associated to A

as per the definitions, we have

Pr[b′ = 1 | b = 1] = AdvspredS,P ′ (·) and Pr[b′ = 1 | b = 0] ≤ v(·) ·GuessA(·) ,

Subtracting, we obtain Equation (7).

An interesting open question is whether our EwH[H,RE] scheme can also be shown to meet the notions of
security for D-PKE with respect to auxiliary inputs from [43], or, more generally, whether UCE allows one
to achieve these goals in the standard model. (Here we refer to full auxiliary-input security rather than
such security for block sources. The latter is already achieved without ROs in [43].)

D-PKE secure for adaptively-chosen plaintext distributions was considered in [102], who gave ROM
solutions. It would be interesting to see if the RO here can be instantiated to obtain standard model
schemes. The difficulty in doing this directly with UCE is that in the latter, the points being hashed may
not depend on the key.

5.4 Message-locked encryption

Message-locked encryption (MLE) [18] is a form of symmetric encryption in which the key is derived from
the message. It allows secure data deduplication. The convergent encryption (CE) MLE scheme of [62, 18]
is in use by numerous providers of cloud storage. Its security is justified in the ROM by [18]. Here we
instantiate the RO with a UCE family to get standard-model security.

25

Definitions. An MLE scheme MLE [18] specifies the following PT algorithms. Via p←$ MLE.Pg(1λ) one
generates parameters. Via K ← MLE.Kg(1λ, p,m), one deterministically derives a key K from a message
m ∈ {0, 1}MLE.il(λ). Via c ← MLE.Enc(1λ, p,K,m) one encrypts m under K to get ciphertext c. Via
m ← MLE.Dec(1λ, p,K, c) one deterministically decrypts c under K to get m ∈ {0, 1}MLE.il(λ) ∪ {⊥}. Via
t ← MLE.Tag(1λ, p, c) one deterministically generates a tag t for ciphertext c. Correctness requires the
following for all λ ∈ N, all m ∈ {0, 1}MLE.il(λ), all p ∈ [MLE.Pg(1λ)] and all K1,K2 ∈ [MLE.Kg(1λ, p,m)]: (1)
MLE.Tag(1λ, p, c1) = MLE.Tag(1λ, p, c2) for all c1 ∈ [MLE.Enc(1λ, p,K1,m)] and all c2 ∈ [MLE.Enc(1λ, p,K2,
m)], and (2) MLE.Dec(1λ, p,K2, c) = m for all c ∈ [MLE.Enc(1λ, p,K1,m)]. The IND$-CDAA

MLE(λ) game
defined in Fig. 12 is a simplification of the one of [18], without side-information. A IND$-CDA adversary
A = (A1, A2) is a pair of PT algorithms, where A1 on input 1λ returns m, a v(λ)-vector of distinct MLE.il(λ)-
bit strings, where v depends on A. The guessing probability GuessA of A is the function that on input
λ ∈ N returns the maximum, over all i,m, of Pr[m[i] = m], the probability over m←$A1(1λ). We say that
A has high min-entropy if GuessA(·) is negligible. We let Advind$-cda

MLE,A (λ) = 2 Pr[IND$-CDAA
MLE(λ)]− 1 and

say that MLE is IND$-CDA-secure if Advind$-cda
MLE,A (·) is negligible for all PT A that have high min-entropy.

We let IND$-CDA be the set of all IND$-CDA-secure MLE schemes.

Results. Let H be a family of functions with input length H.il and output length H.ol. We describe
a standard model instantiation MLE = CE[H] of the convergent encryption scheme of [62, 18] in Fig. 12
which has input (message) length MLE.il = H.il. Correctness is easy to verify. MLE schemes also have
an additional security requirement called tag consistency [18], and CE[H] as described here has perfect tag
consistency. The theorem below shows that CE[H] is IND$-CDA-secure H is UCE[Ssup]-secure.

Theorem 5.4 If H ∈ UCE[Ssup], then CE[H] ∈ IND$-CDA.

Proof of Theorem 5.4: Let A be a PT high min-entropy IND$-CDA adversary. Let v, ` be functions asso-
ciated to A as per the definitions. Let a, c be the challenge bits of games UCES,DH (·), and IND$-CDAA

CE[H](·)
respectively. Consider the source and distinguisher S,D described below.

SHash(1λ)

m←$A1(1λ)
For i = 1 to |m| do

K[i]← Hash(m[i], 1λ)

c[i]←m[i]⊕Hash(K[i], 1|m[i]|)
L← c
Return L

D(1λ, L)

a′ ← A2(1λ,hk, L)
Return a′

It can be seen that

Pr[IND$-CDAA
CE[H](·) | c = 1] = Pr[UCES,DH (·) | a = 1] ,

Pr[IND$-CDAA
CE[H](·) | c = 0] = Pr[UCES,DH (·) | a = 0] ,

leading to Advind$-cda
CE[H],A (·) = AdvuceH,S,D(·). It remains to show that S is statistically unpredictable and by

Lemma 4.3 it suffices to show that S is simple statistically unpredictable. If P ′ is a simple predictor, it
follows that AdvspredS,P ′ (·) ≤ v ·(GuessA(·) + 2−2λ). Here v is the function associated to A as per the definitions.
The simple statistical unpredictability of S then follows from the high min-entropy of A.

The scheme above does not meet the MLE security definitions of [1] which allow the messages to depend on
the public parameter, since the latter is the key for our UCE family. We remark that an IND$-CDA-secure
CE scheme can also be obtained under the UCE[Ssup] assumption, by instantiating SE via H. We omit the
details.

26

Main PFOBA,TOS (λ)

b←$ {0, 1} ; (α,β)←$A1(1λ)

For i = 1 to |α| do F[i]←$ OS.Obf(1λ, (α[i],β[i]))

If b = 1 then w←$A2(1λ,F) else w←$ TProg(1λ, |α|)
b′←$A3(1λ, w)

Return (b = b′)

Prog(i, x)

Return ∆α[i],β[i](x)

OS.Obf(1λ, (α, β))

hk←$ H.Kg(1λ)

α← H.Ev(1λ,hk, 0 ‖α, 1λ)

β ← H.Ev(1λ,hk, 1 ‖α, 1|β|)⊕β
Return (hk, α, β)

OS.Ev(1λ, (hk, α, β), x)

α∗ ← H.Ev(1λ,hk, 0 ‖x, 1λ)

If (α∗ 6= α) then return ⊥
Else return β⊕H.Ev(1λ,hk, 1 ‖x, 1|β|)

Figure 13: Left: The PFOB game defining security of point-function obfuscator OS. Right: Point-function
obfuscation scheme OS = HTC[H].

5.5 Point-function obfuscation

A point function has non-⊥ output on just one point. Lynn, Prabhakaran, and Sahai [93] showed how to
obfuscate point functions in the ROM. We mUCE-instantiate their construction to obtain a standard-model
point-function obfuscation scheme.

Definitions. For (α, β) ∈ {0, 1}∗ × {0, 1}∗ we let ∆α,β: {0, 1}∗ → {β,⊥} denote the function that on
input x ∈ {0, 1}∗ returns β if x = α and ⊥ otherwise. A point-function obfuscator OS is defined as follows.
Via F ←$ OS.Obf(1λ, (α, β)), PT obfuscation algorithm OS.Obf creates a description F of an obfuscated
version of ∆α,β. Via y←$ OS.Ev(1λ, F, x), deterministic PT algorithm OS.Ev evaluates the obfuscated
program F at x ∈ {0, 1}∗ to get output y. Correctness requires that OS.Ev(1λ,OS.Obf(1λ, (α, β)), α) = β
for all α, β ∈ {0, 1}∗ and all λ ∈ N. Security is defined via game PFOBA1,A2

OS (λ) of Fig. 13. It involves an
adversary A = (A1, A2, A3) and a simulator T . Adversary A1 outputs a pair (α,β) of vectors of the same
length, entries of both being strings, thereby describing a sequence of point functions. It is required that
there is a function `, called the function output-length of A, such that all entries of β have length `(λ),
and it is required that all entries of α are distinct. We let AdvobfOS,A,T (λ) = 2 Pr[PFOBA,T

OS (λ)] − 1. The
guessing probability GuessA of A is the function that on input λ ∈ N returns the maximum, over all i, α,
of Pr[α[i] = α], the probability over (α,β)←$A1(1λ). We say that A has high min-entropy if GuessA(·)
is negligible. We say that OS is a secure point-function obfuscator if for all PT high min-entropy A there
is a PT simulator T such that AdvobfOS,A,T (·) is negligible. Let PFOB denote the set of all secure point-
function obfuscators. The high min-entropy condition makes the problem “interesting” in that without it
the adversary knows α and thus there is nothing to gain by obfuscation. This definition is from [93, 51],
adapted to our notation.

Results. Let H be a family of functions with H.IL = H.OL = N. Our Hash-then-Compare point-obfuscation
scheme OS = HTC[H] is described in Fig. 13. The following says that multi-key UCE security of H suffices
for OS to be secure:

Theorem 5.5 If H ∈ mUCE[Ssup-m] then HTC[H] ∈ PFOB.

Proof of Theorem 5.5: Let A = (A1, A2, A3) be a PT adversary and let ` be its function output-length.
We’ll construct a PT statistically unpredictable multi-source S, a PT distinguisher D, and a PT simulator T
such that

AdvobfOS,A,T (·) = Advm-uce
H,S,D(·) . (8)

The theorem then follows from the assumption that H ∈ mUCE[Ssup-m]. The constructions of S,D, and T
are shown below.

27

Main KDMA
SE(λ)

(1n, t)←$A1(1λ, ε)

For i = 1 to n do k[i]←$ {0, 1}SE.kl(λ)

(s,m0,m1)←$A1(1λ, (t,k))

b←$ {0, 1}
For i = 1 to |mb| do

c[i]←$ SE.Enc(1λ,k
[
s[i]
]
,mb[i])

b′←$A2(1λ, t, c) ; Return (b = b′)

Main RKAA
SE(λ)

(m0,m1, t)←$A1(1λ, ε)

k←$ {0, 1}SE.kl(λ)

k←$A1(1λ, (t, k)) ; b←$ {0, 1}
For i = 1 to |mb| do

c[i]←$ SE.Enc(1λ,k[i],mb[i])

b′←$A2(1λ, t, c) ; Return (b = b′)

SE.Enc(1λ, k,m)

hk←$ H.Kg(1λ)

h← H.Ev(1λ,hk, k, 1H.ol(λ))

c← (hk, h⊕m) ; Return c

SE.Dec(1λ, k, (hk, z))

h← H.Ev(1λ,hk, k, 1|z|)

m←$ h⊕z ; Return m

Figure 14: Left: The KDM game. Middle: The RKA game. Right: The SE scheme SE = HtX[H].

TProg(1λ, a)

For i = 1 to a do
hk[i]←$ H.Kg(1λ)
α[i]←$ {0, 1}λ
β[i]←$ {0, 1}`(λ)

F[i]← (hk[i],α[i],β[i])
w←$A2(1λ,F)
Return w

SHash(1λ)

(α,β)←$A1(1λ)
For i = 1 to |α| do
α[i]←$ Hash(0‖α[i], 1λ, i)

β[i]←$ β[i]⊕Hash(1‖α[i], 1|β[i]|, i)

L← (α,β)
Return L

D(1λ,hk, L)

(α,β)← L
For i = 1 to |α| do

F[i]← (hk[i],α[i],β[i])
w←$A2(1λ,F)
b′←$A3(1λ, w)
Return b′

Note that T does not call its oracle, the latter being in fact unnecessary to prove security. Let b and c be
the challenge bits of games mUCES,DH (λ) and PFOBA,T

OS (λ) respectively. Then

Pr[mUCES,DH (·) | b = 1] = Pr[PFOBA,T
OS (·) | c = 1]

Pr[mUCES,DH (·) | b = 0] = Pr[PFOBA,T
OS (·) | c = 0]

Summing yields Equation (8). We now show that S is statistically unpredictable. By Lemma 4.7 it suffices
to show that S is simple statistically unpredictable. Let P ′ be a simple predictor. Let v be a polynomial
such that |α| ≤ v(λ) in game PFOBA,T

OS (λ), for all λ ∈ N. Then AdvspredS,P ′ (·) ≤ v · GuessA(·), so the high
min-entropy assumption on A implies that S is simple statistically unpredictable.

5.6 Security for key-dependent messages

Black, Rogaway, and Shrimpton (BRS) [28] formalized security in the presence of key-dependent messages
(KDM) and described a simple and efficient KDM-secure symmetric encryption scheme in the ROM. We
now instantiate the RO in the BRS scheme with a mUCE family and obtain an efficient KDM-secure
symmetric encryption scheme in the standard model. There are several other standard-model KDM-secure
encryption schemes [42, 5, 10, 94, 4] but they are significantly more complex and less efficient than our
instantiated BRS scheme.

Definitions. Let SE be a symmetric encryption (SE) scheme as defined in Section 5.4. In game KDMA
SE(λ)

of Fig. 14, an adversary A = (A1, A2) is a pair of algorithms. Algorithm A1, when invoked with (1λ, ε),
returns (1n, t) where n is the number of keys it is requesting be created, and t is state information. Then
when invoked with (1λ, (t,k)) where k ∈ ({0, 1}SE.kl(λ))n is a vector of keys, it outputs a triple of vectors
s,m0,m1 satisfying the following: (1) |s| = |m0| = |m1|, and (2) s[i] ∈ [1, n] and m0[i],m1[i] ∈ SE.il(λ)
for all i ∈ [1, |s|]. We say that SE is KDM-secure if AdvkdmSE,A(·) is negligible for every PT KDM adversary

A, where AdvkdmSE,A(λ) = 2 Pr[KDMA
SE(λ)]− 1. We let KDM denote the set of all KDM-secure schemes. Our

definitions capture non-adaptive security, but this includes the cases that have been most prominent in past
work, namely key cycles and cliques [42, 5, 2, 44].

Results. BRS [28] showed that encrypting a message m under key k by picking a random r and returning
(r,RO(r ‖ k)⊕m) is KDM secure when RO is a random oracle. The natural first attempt to instanti-
ate via a family H would be to add hk←$ H.Kg(1λ) to the encryption key and then replace RO with

28

H.Ev(1λ, hk, ·, 1H.ol(λ)), but this fails because in the KDM setting the messages are chosen by A1 as a func-
tion of the encryption key(s), and UCE-security will not apply if the messages depend on hk. Instead,
we leave the key unchanged relative to the BRS scheme and view the random value r of the BRS scheme
as a key for H, so that a fresh key hk is chosen for each encryption. Given H with λ ∈ H.IL(λ) for all
λ ∈ N, our instantiated transform produces the SE scheme SE = HtX[H] whose encryption and decryption
algorithms are described in Fig. 14. (Here “HtX” stands for “Hash-then-XOR.”) Its key length is defined
by SE.kl(λ) = λ for all λ ∈ N and its input length is SE.il = H.ol. The following theorem says that HtX[H]
is KDM secure if H is mUCE[Ssup-m]-secure.

Theorem 5.6 If H ∈ mUCE[Ssup-m], then HtX[H] ∈ KDM.

Proof of Theorem 5.6: Let SE = HtX[H]. Let A = (A1, A2) be a PT KDM adversary. Assume that A1

outputs messages of length H.ol(λ). We will construct a PT statistically unpredictable multi-source S and
a PT distinguisher D such that

AdvkdmSE,A(·) ≤ 2 · Advm-uce
H,S,D(·) . (9)

The theorem then follows from the assumption that H ∈ mUCE[Ssup-m]. Let q and n be polynomials such
that, in game KDMA

SE(λ), we have |m0| ≤ q(λ) and n ≤ n(λ) for all λ ∈ N. The constructions of S and D
are shown below:

SHash(1λ, t)

If t = ε then

(1n, t′)←$A1(1λ, ε) ; Return (1q(λ), (1n, t′))
Else

(1n, t′)← t ; d←$ {0, 1}
For i = 1 to n do k[i]←$ {0, 1}λ
(s,m0,m1)←$A1(1λ, (t′,k))

For i = 1 to |md| do c′[i]← Hash(k[s[i]], 1H.ol(λ), i)⊕md[i]
L← (c′, t′, d) ; Return L

D(1λ,hk, L)

(c′, t′, d)← L
For i = 1 to |c′| do

c[i]← (hk[i], c′[i])
d′←$A2(1λ, t′, c)
If (d = d′) then b′ ← 1 else b′ ← 0
Return b′

Let b denote the challenge bit in game mUCES,DH (·). Then

Pr[mUCES,DH (·) | b = 1] = Pr[KDMA
SE(·)]

Pr[mUCES,DH (·) | b = 0] =
1

2
.

Summing yields Equation (9). It remains to show that S is statistically unpredictable. By Lemma 4.7,
it suffices to show that S is simple statistically unpredictable. Consider an arbitrary simple predictor P ′.
Given |k| and the leakage (c′, t′, d), the components of k are still uniformly and independently distributed

λ-bit strings. Hence Advm-spred
S,P ′ (λ) ≤ n(λ)/2λ for every λ ∈ N.

5.7 Security against related-key attack

Symmetric encryption schemes secure against related-key attack (RKA) must preserve security even when
encryption is performed under keys k′ = φ(k) derived from the original key by application of a key-deriving
function φ [20, 6]. Previous schemes [6, 22] provided security for algebraic key-deriving functions φ such
as linear or polynomial functions over a keyspace that is a particular group depending on the scheme. We
provide a scheme that has “best possible” security, in that key-deriving functions are arbitrary subject
only to a condition necessary for security, namely to have unpredictable outputs. (If the output can be
predicted, an adversary can guess the key k′ and decrypt.) Furthermore, in our scheme, keys are binary
strings rather than group elements, so we cover the most common practical transforms, such as XORing
a constant to the key. The scheme itself is in fact the same HtX[H] scheme that we showed KDM secure

29

in Section 5.6 and is thus quite simple and natural. We continue to assume only a mUCE[Ssup-m]-secure
family of functions.

Definitions. Let SE be a symmetric encryption (SE) scheme as defined in Section 5.4. In game RKAA
SE(λ)

of Fig. 14, an adversary A = (A1, A2) is a pair of PT algorithms. Algorithm A1, when invoked with (1λ, ε),
returns a vectors m0,m1 of messages, along with state information t. It is required that |m0| = |m1| and
that m0[i],m1[i] ∈ {0, 1}SE.il(λ) for all i ∈ [1, |m0|]. Then, when invoked with (1λ, (t, k)), it produces a
vector k ∈ ({0, 1}SE.kl(λ))|m0|, the entries of this vector being the derived, or related keys. RKA-security
is not achievable if A1 can produce arbitrary keys, as shown by impossibility results in [19], so, following
the latter, one usually parametrizes security via a class Φ of transforms that the adversary is allowed to
apply to the base key to obtain the related keys, and restricts this class appropriately to obtain results.
We will not take this Φ-parametrized approach because we can achieve security for key-deriving functions
that are arbitrary subject only to the necessary condition of being unpredictable. Define the guessing
probability GuessA of A as the function that on input λ ∈ N returns the maximum, over all k′, i and
(m0,m1, t) ∈ [A1(1λ, ε)], of Pr[k[i] = k′], the probability being over k←$ {0, 1}SE.kl(λ) ; k←$A1(1λ, t, k).
We say that A has high min-entropy if GuessA(·) is negligible. We say that SE is RKA-secure if AdvrkaSE,A(·)
is negligible for all PT A that have high min-entropy, where AdvrkaSE,A(λ) = 2 Pr[RKAA

SE(λ)]−1. We let RKA
denote the set of all RKA-secure symmetric encryption schemes.

Results. Let H be a family of functions with λ ∈ H.IL(λ) for all λ ∈ N and with output length H.ol. The
following theorem states that the SE scheme SE = HtX[H], defined in Section 5.6 and depicted in Fig. 14,
is RKA-secure, assuming only that H is mUCE[Ssup-m]-secure. Recall that SE.il = H.ol.

Theorem 5.7 If H ∈ mUCE[Ssup-m], then HtX[H] ∈ RKA.

Proof: Let SE = HtX[H]. Let A = (A1, A2) be a PT RKA adversary of high min-entropy. We will construct
a PT statistically unpredictable multi-source S and a PT distinguisher D such that

AdvrkaHtX[H],A(·) ≤ 2 · Advm-uce
H,S,D(·) . (10)

The theorem then follows from the assumption that H ∈ mUCE[Ssup-m]. Let m be a polynomial such that,
in game RKAA

SE(λ), we have |m0| ≤ m(λ) for all λ ∈ N. The constructions of S and D are shown below:

SHash(1λ, t)

If t = ε then
(m0,m1, t

′)←$A1(1λ) ; n← |m0| ; Return (1n, (m0,m1, t
′))

Else
(m0,m1, t

′)← t ; k←$ {0, 1}λ ; k←$A1(1λ, t′, k) ; d←$ {0, 1}
For i = 1 to |md| do c′[i]← Hash(k[i], 1H.ol(λ), i)⊕md[i]
L← (c′, t′, d) ; Return L

D(1λ,hk, L)

(c′, t′, d)← L
For i = 1 to |c′| do

c[i]← (hk[i], c′[i])
d′←$A2(1λ, t′, c)
If (d = d′) then b′ ← 1 else b′ ← 0
Return b′

Let b denote the challenge bit in game mUCES,DH (·). Then

Pr[mUCES,DH (·) | b = 1] = Pr[RKAA
SE(·)]

Pr[mUCES,DH (·) | b = 0] =
1

2
.

Summing yields Equation (10). It remains to show that S is statistically unpredictable. By Lemma 4.7,
it suffices to show that S is simple statistically unpredictable. Consider an arbitrary simple predictor P ′.
In the SPredP

′
S (λ) game, P ′ receives leakage (c′, t′, d), and to win, it must output a component of k (along

with a message length). Note that given |k|, the variables c′ and d are conditionally independent of k

and t′. Since A is of high min-entropy, it follows that Advm-spred
S,P ′ (·) ≤ m ·GuessA(·).

30

Main IND-CPA-KIAPKE(λ)

b←$ {0, 1}
(ek,dk)←$ PKE.Kg(1λ)

t←$A(1λ, ε)

b′←$ALR(1λ, t, ek)

Return (b = b′)

LR(m0,m1)

c←$ PKE.Enc(1λ, ek,mb)

Return c

OAEP.Kg(1λ)

(ek,dk)←$ TF.EKg(1λ)

hk←$ H.Kg(1λ)

Return ((ek,hk), (dk,hk))

OAEP.Enc(1λ, (ek,hk),m)

r←$ {0, 1}`3(λ)

t1 ← H.Ev(1λ,hk, 0‖r, 1`1(λ)+`2(λ))

x← (m ‖ 0`2(λ))⊕ t1
t2 ← H.Ev(1λ,hk, 1‖x, 1`3(λ))

y ← t2⊕r
c← TF.Ev(1λ, ek, x ‖ y, 1TF.ol(λ))

Return c

OAEP.Dec(1λ, (dk,hk), c)

c′ ← TF.Inv(1λ,dk, c, 1TF.ol(λ))

x‖`3(λ)y ← c′

t2 ← H.Ev(1λ,hk, 1‖x, 1`3(λ))

r ← y⊕t2
t1 ← H.Ev(1λ,hk, 0‖r, 1`1(λ)+`2(λ))

m‖`2(λ)z ← x⊕ t1
If (z = 0`2(λ)) then return m

Else return ⊥

Figure 15: Left: Game defining (non-adaptive) IND-CPA-KI security of public-key encryption scheme
PKE. Right: OAEP[H,TF, `1, `2, `3] scheme.

5.8 OAEP

OAEP [24] is a ROM transform of a trapdoor permutation to a PKE scheme. If the trapdoor permutation
is one-way then the associated OAEP PKE scheme is IND-CPA in the ROM [24]. We would like to
instantiate the RO in OAEP in a way that retains this result in the standard model. Here we describe
two instantiations of OAEP. The first gets us IND-CPA-KI (IND-CPA for messages that do not depend
on the public key) assuming the trapdoor permutation is partially one-way, and a hash function family
secure w.r.t unpredictable sources. The second requires the trapdoor permutation to be just one-way, but
strengthens the requirement on the hash function family to reset-secure sources. We note that for RSA,
the most popular choice of trapdoor permutation, one-wayness implies partial one-wayness anyway [65].)
Compared to KOS [87], we have relaxed the assumption on the trapdoor permutation from lossiness to plain
one-wayness. In the particular case of RSA we have relaxed the assumption from Φ-hiding to standard
one-wayness. We note that RSA-OAEP is a widely used and implemented standard.

Definitions. Let TF be a family of functions with input length TF.il and output length TF.ol. We
say that TF is p-partially one-way, where p: N → N, if AdvpowTF,p,I(·) is negligible for all PT I, where

AdvpowTF,p,I(λ) = Pr[I(1λ, ek, y) = x[1, p(λ)]] in the experiment ek←$ TF.Kg(1λ) ; x←$ {0, 1}TF.il(λ) ; y ←
TF.Ev(1λ, ek, x, 1TF.ol(λ)). We let OWp be the set of all TF that are p-partially one-way.

We say that a PKE scheme PKE is IND-CPA-KI secure if Advindcpa-kiPKE,A (·) is negligible for all PT adver-

saries A, where Advindcpa-kiPKE,A (λ) = 2 Pr[IND-CPA-KIAPKE(λ)]− 1 and game IND-CPA-KIAPKE(λ) is in Fig. 15.
Messages m0,m1 queried to LR are required to have the same length. We let IND-CPA-KI denote the set
of IND-CPA-KI-secure PKE schemes.

Results. Let TF be a trapdoor family of functions (as defined in Section 5.2) with TF.il = TF.ol. Let
`1, `2, `3: N→ N satisfy `1 + `2 + `3 = TF.il. Let H be a family of functions such that 1 + `1(λ) + `2(λ), 1 +
`3(λ) ∈ H.IL(λ) and `3(λ), `1(λ) + `2(λ) ∈ H.OL(λ) for all λ ∈ N. Our instantiated OAEP transform
associates to these the PKE scheme PKE = OAEP[H,TF, `1, `2, `3] whose algorithms are described in Fig. 15.
The scheme has message-length function PKE.il = `1. We note that we use the fact that our family H allows
variable output lengths, but we need only two different output lengths.

Assuume TF is (`1 + `2)-partially one-way and `2, `3 are super-logarithmic. We can show that H being
in UCE[Scup] suffices for OAEP[H,TF, `1, `2, `3] to be IND-CPA-KI secure. However we would like to further
restrict the class of sources to weaken the assumption, which we do as follows. Let us say that PT algorithm
A is `1-valid if A(1λ, ε) has access to an oracle that takes two inputs, its queries consist of strings of length
`1, and its output is a bit. Let source STF,`1,`2,`3,A be defined via

31

SHash(1λ)

ek←$ TF.Kg(1λ) ; d←$ {0, 1}
t←$ALRSim(1λ, ε) ; L← (ek, t, d)
Return L

LRSim(m0,m1)

r←$ {0, 1}`3(λ) ; t1 ← Hash(0‖r, 1`1(λ)+`2(λ))

x← (md ‖ 0`2(λ))⊕t1 ; t2 ← Hash(1‖x, 1`3(λ))

y ← t2⊕r ; c← TF.Ev(1λ, ek, x ‖ y, 1TF.ol(λ))
Return c

Let STF,`1,`2,`3 = { STF,`1,`2,`3,A : A is `1-valid }. The following theorem says that OAEP[H,TF, `1, `2, `3]
is IND-CPA-KI secure assuming TF is (`1 + `2)-partially one-way, `2, `3 are super-logarithmic and H is in
UCE[Scup ∩ STF,`1,`2,`3].

Theorem 5.8 Let TF,H, `1, `2, `3 be as above, and let PKE = OAEP[H,TF, `1, `2, `3]. Assume 2−`1−`2 , 2−`3

are negligible. If H ∈ UCE[Scup ∩ STF,`1,`2,`3] and TF ∈ OW`1+`2 , then PKE ∈ IND-CPA-KI.

Proof of Theorem 5.8: Let A be a PT adversary for game IND-CPA-KIAPKE(λ). Let q be the polynomial
such that q(λ) bounds the number of LR queries of A. Let

ε(λ) =
q(λ)2

21+`3(λ)
+

q(λ)2

21+`1(λ)+`2(λ)

for all λ ∈ N. We’ll construct a PT source S ∈ Scup ∩ STF,`1,`2,`3 and a PT distinguisher such that

Advindcpa-kiPKE,A (·) ≤ 2AdvuceH,S,D(·) + 2ε . (11)

The theorem follows from the assumption that H is UCE-secure and that 2−`1−`2 , 2−`3 are negligible. We
let S = STF,`1,`2,`3,A. The construction of D is shown below:

D(1λ,hk, L)

((ek, t, d), c)← L
d′←$A(1λ, t, c, (ek, hk))
If (d = d′) then b′ ← 1 else b′ ← 0
Return b′

Let b denote the challenge bit in game UCES,DH (λ). We claim that

Pr[UCES,DH (·) | b = 1] =
1

2
+

1

2
Advindcpa-kiPKE,A (·) (12)

1− Pr[UCES,DH (·) | b = 0] ≤ 1

2
+ ε . (13)

Subtracting and re-arranging terms, we have Equation (11). We turn to justifying the two equations above.
The first follows from the adversary definitions. For the second, consider the following games, where G1

includes the boxed code and G2 does not:

Main GA
1 (λ) , GA

2 (λ)

ek←$ TF.Kg(1λ)
hk←$ Kg(1λ)
d←$ {0, 1}
Q0, Q1 ← ∅
t←$ALR(1λ, ε)
d′←$A(1λ, t, (ek, hk))
Return (d = d′)

LR(m0,m1)

r←$ {0, 1}`3(λ) ; x←$ {0, 1}`1(λ)+`2(λ) ; z ← md ‖ 0`2(λ) ; t1 ← z⊕x
If (r ∈ Q0) then bad← true ; t1 ← T0[r] ; x← t1⊕z
T0[r]← t1 ; Q0 ← Q0 ∪ {r}
y←$ {0, 1}`3(λ) ; t2 ← y⊕r
If (x ∈ Q1) then bad← true ; t2 ← T1[x] ; y ← t2⊕r
T1[x]← t2 ; Q1 ← Q1 ∪ {x}
c← TF.Ev(1λ, ek, x ‖ y, 1TF.ol(λ)) ; Return c

32

The games are identical-until-bad so by the Fundamental Lemma of Game Playing [26] we have

1− Pr[UCES,DH (·) | b = 0] = Pr[GA
1 (·)]

≤ Pr[GA
2 (·)] + Pr[GA

2 (·) sets bad]

=
1

2
+ Pr[GA

2 (·) sets bad]

≤ 1

2
+
q(q − 1)

21+`3
+
q(q − 1)

21+`1+`2
,

which establishes Equation (13). It remains to show that S is computationally unpredictable. By Lemma 4.3,
it suffices to show that S is simple computationally unpredictable. Let P ′ be a PT simple predictor and
consider the invertor defined below:

I(1λ, ek, c′)

d←$ {0, 1} ; j←$ {1, . . . , q(λ)} ; i← 0
(t,m0,m1)←$A(1λ, ε)
For i = 1 to |md| do

c[i]←$ Enc(md[i])
L← ((ek, t, d), c) ; u←$ P ′(1λ, L)
Return u[2, |u|]

Enc(m)

i← i+ 1
If (i = j) then return c′

xi←$ {0, 1}`1(λ)+`2(λ) ; yi←$ {0, 1}`3(λ)

ci ← TF.Ev(1λ, ek, xi ‖ yi, 1TF.ol(λ))
Return ci

Then we claim that

AdvspredS,P ′ (·) ≤ q · AdvpowTF,`1+`2,I
(·) + ε+

q

2`3
. (14)

The simple computational unpredictability of S follows from the assumption that TF ∈ OW`1+`2 and
2−`1−`2 , 2−`3 are negligible. To justify Equation (14), consider the games whose Main procedures are
below, with LR continuing to be the same as for games GA

1 (λ),GA
2 (λ) above:

Main GA,P ′

3 (λ) , GA,P ′

4 (λ)

ek←$ TF.Kg(1λ) ; hk←$ Kg(1λ)
d←$ {0, 1} ; Q0, Q1 ← ∅ ; t←$ALR(1λ, ε)
L← (ek, t, d) ; u←$ P ′(1λ, L)
Return (u[2, |u|] ∈ Q0 ∪Q1)

Main GA,P ′

5 (λ)

ek←$ TF.Kg(1λ) ; hk←$ Kg(1λ)
d←$ {0, 1} ; Q0, Q1 ← ∅ ; t←$ALR(1λ, ε)
L← (ek, t, d) ; u←$ P ′(1λ, L)
Return (u[2, |u|] ∈ Q1)

Then

AdvspredS,P ′ (·) ≤ Pr[GA,P ′

3 (·)]

≤ Pr[GA,P ′

4 (·)] + Pr[GA,P ′

4 (·) sets bad]

≤ Pr[GA,P ′

4 (·)] + ε

≤ Pr[GA,P ′

5 (·)] + ε+
q

2`3

≤ q · AdvpowTF,`1+`2,I
(·) + ε+

q

2`3
,

establishing Equation (14).

We remark that the assumption that TF is partially one-way, rather than merely one-way, is crucial to
the proof above. This is because there is a one-way TF that makes the source S above predictable. For
example, let TF.EKg = F.EKg and TF.Ev(1λ, ek, x ‖ y, 1TF.ol(λ)) = x ‖F.Ev(1λ, ek, y, 1F.ol(λ)), where F is a
trapdoor permutation family with F.il = `3. This counter-example TF is one-way but not (`1 + `2)-partially
one-way, and makes S predictable. Theorem 5.9 shows that a version of reset-security will allow us to relax
the assumption on TF to plain one-wayness.

33

Theorem 5.9 Let TF,H, `1, `2, `3 be as in Theorem 5.8, and let PKE = OAEP[H,TF, `1, `2, `3]. Assume
2−`1−`2 , 2−`3 are negligible. If H ∈ UCE[Scrs ∩ STF,`1,`2,`3] and TF ∈ OW, then PKE ∈ IND-CPA-KI.

Proof of Theorem 5.9: Let A be a PT adversary for game IND-CPA-KIAPKE(λ). Let q, ε be as in the
proof of Theorem 5.8. We construct source S and distinguisher D exactly as in the proof of Theorem 5.8,
so that Equation (11) continues to be true. The difference is that, rather than showing S is unpredictable
assuming TF ∈ OW`1+`2 , we will now show that S is reset-secure assuming only that TF ∈ OW. The
theorem then follows from the assumption that H is UCE-secure and that 2−`1−`2 , 2−`3 are negligible.

Let R be an arbitrary PT reset adversary. Wlog, assume that R never repeats a query to its Hash
oracle. Assume further that each of R’s queries (u, 1`) to Hash satisfies the following: (i) If u[1] = 0 then
|u| = `3(λ)+1 and ` = `1(λ)+ `2(λ), and (ii) If u[1] = 1 then |u| = `1(λ)+ `2(λ)+1 and ` = `3(λ). Let p be
a polynomial such that the number of Hash queries of R in game ResetRS (λ) is at most p(λ) for all λ ∈ N.
We’ll construct a PT adversary I such that

AdvresetS,R (·) ≤ q · AdvowTF,I(·) +
p · q
2`3

+ 2ε . (15)

Then, from the assumption that TF ∈ OW and that 2−`1−`2 , 2−`3 are negligible, it follows that S ∈ Scrs.
Proceeding, consider games G1–G7 in Fig. 16. Let a be the challenge bit of game ResetRS (λ). Then

Pr[GA,R
1 (λ)] = Pr[ResetRS (λ) | a = 1] and Pr[GA,R

7 (λ)] = 1− Pr[ResetRS (λ) | a = 0]

We explain the game chain up to the terminal one. In game GA,R
2 (λ), we no longer maintain consistency

among queries: in each query to LR, the strings x and y are uniformly random, independent of anything
else. The two games GA,R

1 (λ) and GA,R
2 (λ) are identical-until-bad. Then

Pr[GA,R
1 (·)]− Pr[GA,R

2 (·)] ≤ Pr[GA,R
2 (·) sets bad] ≤

q−1∑
i=0

i

2`3
+

i

2`1+`2
≤ ε .

In game GA,R
3 (λ), we delay the writing to T0[r] until R queries Hash at this point. Then

Pr[GA,R
2 (·)] = Pr[GA,R

3 (·)] .

In game GS,R
4 (λ), we won’t write to T0[r] if R queries (0 ‖ r, 1`1(λ)+`2(λ)) before querying (1 ‖x, 1`3(λ)). Games

GS,R
3 (λ) and GS,R

4 (λ) are identical-until-bad. Before R queries (1 ‖x, 1`3(λ)), the string r is independent of
whatever R receives, and thus

Pr[GS,R
3 (·)]− Pr[GS,R

4 (·)] ≤ Pr[GS,R
4 (·) sets bad] ≤ q · p

2`3
.

In game GA,R
5 (λ), we drop the writing to T0[r] entirely. This may cause inconsistency with game GS,R

4 (λ)

only if R queries (1 ‖x, 1`3(λ)) and then (0 ‖ r, 1`1(λ)+`2(λ)) to Hash. Games GS,R
4 (λ) and GS,R

5 (λ) are
identical-until-coll. Then

Pr[GS,R
4 (·)]− Pr[GS,R

5 (·)] ≤ Pr[GS,R
5 (·) sets coll] .

Note that in game GS,R
5 (λ), the answers of Hash and LR are independent. We now construct adversary I

such that

AdvowTF,I(·) ≥
1

q
Pr[GS,R

5 (·) sets coll] .

The construction of I is shown below:

34

Main GA,R
1 (λ) , GA,R

2 (λ)

ek←$ TF.Kg(1λ) ; b←$ {0, 1} ; M,Q0, Q1 ← ∅
t←$ALR(1λ) ; L← (ek, b, t) ; d′←$RHash(1λ, L)

Return (d′ = 1)

LR(m0,m1)

r←$ {0, 1}`3(λ) ; x←$ {0, 1}`1(λ)+`2(λ) ; y←$ {0, 1}`3(λ)

z ← mb ‖ 0`2(λ) ; t1 ← x⊕z
If r ∈ Q0 then bad← true ; t1 ← T0[r] ; x← t1⊕z
T0[r]← t1 ; Q0 ← Q0 ∪ {r} ; t2 ← y⊕r
If x ∈ Q1 then bad← true ; t2 ← T1[x] ; y ← t2⊕r
Q1 ← Q1 ∪ {x} ; T1[x]← t2

c← TF.Ev(1λ, ek, x ‖ y, 1TF.ol(λ)) ; Return c

Hash(u, 1`)

v ← u[2, |u|] ; s← u[1]

If Ts[v] = ⊥ then Ts[v]←$ {0, 1}`

Return Ts[v]

Main GA,R
3 (λ) , GA,R

4 (λ)

ek←$ TF.Kg(1λ) ; b←$ {0, 1} ; M,Q0, Q1 ← ∅
t←$ALR(1λ) ; L← (ek, b, t) ; d′←$RHash(1λ, L)

Return (d′ = 1)

LR(m0,m1)

x←$ {0, 1}`1(λ)+`2(λ) ; y←$ {0, 1}`3(λ)

z ← mb ‖ 0`2(λ) ; T1[x]←$ {0, 1}`3(λ) ; t2 ← T1[x]

t1 ← x⊕z ; r ← y⊕t2
V0[r]← t1 ; Q0 ← Q0 ∪ {r}
V1[x]← r ; Q1 ← Q1 ∪ {x}
c← TF.Ev(1λ, ek, x ‖ y, 1TF.ol(λ)) ; Return c

Hash(u, 1`)

v ← u[2, |u|] ; s← u[1]

If s = 0 and v ∈ Q0 then

If v ∈M then coll← true ; T0[v]← V0[v]

Else bad← true ; T0[v]← V0[v]

If s = 1 and v ∈ Q1 then r ← V1[v] ; M ←M ∪ {r}
If Ts[v] = ⊥ then Ts[v]←$ {0, 1}`

Return Ts[v]

Main GA,R
5 (λ)

ek←$ TF.Kg(1λ) ; b←$ {0, 1} ; M,Q0, Q1 ← ∅
t←$ALR(1λ) ; L← (ek, b, t) ; d′←$RHash(1λ, L)

Return (d′ = 1)

LR(m0,m1)

x←$ {0, 1}`1(λ)+`2(λ) ; y←$ {0, 1}`3(λ)

z ← mb ‖ 0`2(λ) ; T1[x]←$ {0, 1}`3(λ) ; t2 ← T1[x]

t1 ← x⊕z ; r ← y⊕t2
V0[r]← t1 ; Q0 ← Q0 ∪ {r} ; V1[x]← r ; Q1 ← Q1 ∪ {x}
c← TF.Ev(1λ, ek, x ‖ y, 1TF.ol(λ)) ; Return c

Hash(u, 1`)

v ← u[2, |u|] ; s← u[1]

If s = 0 and v ∈ Q0 then

If v ∈M then coll← true

If s = 1 and v ∈ Q1 then r ← V1[v] ; M ←M ∪ {r}
If Ts[v] = ⊥ then Ts[v]←$ {0, 1}`

Return Ts[v]

Main GA,R
6 (λ), GA,R

7 (λ)

ek←$ TF.Kg(1λ) ; b←$ {0, 1} ; M,Q0, Q1 ← ∅
t←$ALR(1λ) ; L← (ek, b, t) ; d′←$RHash(1λ, L)

Return (d′ = 1)

LR(m0,m1)

r←$ {0, 1}`3(λ) ; x←$ {0, 1}`1(λ)+`2(λ)

y←$ {0, 1}`3(λ) ; z ← mb ‖ 0`2(λ) ; t1 ← x⊕z
If r ∈ Q0 then bad← true ; t1 ← T0[r] ; x← t1⊕z
T0[r]← t1 ; Q0 ← Q0 ∪ {r} ; t2 ← y⊕r
If x ∈ Q1 then bad← true ; t2 ← T1[x] ; y ← t2⊕r
Q1 ← Q1 ∪ {x} ; T1[x]← t2

c← TF.Ev(1λ, ek, x ‖ y, 1TF.ol(λ)) ; Return c

Hash(u, 1`)

z←$ {0, 1}` ; Return z

Figure 16: Games for the proof of Theorem 5.9. Games G1,G3, and G7 contain the corresponding
boxed statements but the other games do not.

I(1λ, ek, c′)

b←$ {0, 1} ; j←$ {1, . . . q(λ)} ; i← 0
t←$ALRSim(1λ) ; Q0, Q1 ← ∅ ; RHashSim(1λ, (ek, b, t))
For r ∈ Q0, x ∈ Q1 do

y ← T1[x]⊕r ; c← TF.Ev(1λ, ek, x ‖ y, 1TF.ol(λ))
If c = c′ then return x ‖ y

HashSim(u, 1`)

v ← u[2, |u|] ; s← u[1]
Qs ← Qs ∪ {v} ; Ts[v]←$ {0, 1}` ; Return Ts[v]

LRSim(m0,m1)

i← i+ 1 ; x←$ {0, 1}`1(λ)+`2(λ)

y←$ {0, 1}`3(λ)

c← TF.Ev(1λ, ek, x ‖ y, 1TF.ol(λ))
If i = j then c← c′

Return c

35

In game GA,R
6 (λ), procedure Hash explicitly returns random answers, independent of LR. Then

Pr[GA,R
5 (·)] = Pr[GA,R

6 (·)] .

In game GA,R
7 (λ), procedure LR needs to maintain consistency among its answers, but these are still

independent of Hash. Games GA,R
6 (λ) and GA,R

7 (λ) are identical-until-bad. Then

Pr[GA,R
6 (·)]− Pr[GA,R

7 (·)] ≤ Pr[GA,R
7 (·) sets bad] ≤ ε .

Hence

AdvresetS,R (·) = Pr[ResetRS (λ) | a = 1] + Pr[ResetRS (λ) | a = 0]− 1

= Pr[GA,R
1 (·)]− Pr[GA,R

7 (·)]

=

6∑
i=1

Pr[GA,R
i (·)]− Pr[GA,R

i+1 (·)]

≤ 2ε+
p · q
2`3

+ q · AdvowTF,I(·)

yielding Equation (15).

5.9 Proofs of storage

Client Alice has uploaded her file x to a server in the cloud. She is worried that the server is malicious and,
to save space, is not actually storing x. A storage-auditing protocol [8, 85, 104] allows Alice to efficiently
verify that the server stores her file. A particularly natural and canonical protocol for this task, embodied
in the SafeStore system [89], is for Alice to send the server a random challenge hk and expect in response
H(x‖hk) where H is a hash function. Ristenpart, Shacham and Shrimpton (RSS) [103] show that this
protocol is secure if H is a RO. Interestingly, however, they show that H being indifferentiable from a
RO [96] is not enough for the protocol to be secure. We show that UCE[Ssup ∩ Ssplt]-security is enough.
Our instantiation interprets hk as a key for a UCE family H, meaning we let H(x‖hk) = H.Ev(1λ,hk, x, 1λ).
This results in a natural, simple standard model, secure storage-auditing protocol.

Definitions. The security definition of RSS [103] assumes the message (file) x is a uniformly random
string as a function of which the adversary has computed some information s that it stores. In asymptotic
terms, the requirement is then that the adversary cannot defeat the audit (meaning, provide the correct
hash value) as long as 2|s|−|x| is negligible. Real files are, however, not uniformly random strings. We
accordingly provide a stronger and more general definition that implies that of RSS.

Let H be a family of functions with H.IL(λ) = N and λ ∈ H.OL(λ) for all λ ∈ N. In game StoreAH(λ) of
Fig. 17, the adversary A = (A1, A2) is a pair of algorithms. Algorithm A1 produces the message x together
with the information s about x that it will store. (So s can be a function of x.) Then a challenge hk is
picked at random, and, to win, A2, given s and hk, must be able to provide y = H.Ev(1λ,hk, x, 1λ). We let
AdvstoreH,A (λ) = Pr[StoreAH(λ)] for all λ ∈ N. This advantage cannot be small for all A, for A1 can let s = x
and then A2 can compute the correct hash, but this corresponds to a server who does, indeed, store the
file. So let us define the guessing probability GuessA(·) of A via

GuessA(λ) =
∑
s′

Pr[s = s′] ·max
x′

Pr[x = x′ | s = s′]

for all λ ∈ N, where the probability is over (x, s)←$A1(1λ). We say that A has high min-entropy if GuessA(·)
is negligible. Having high min-entropy corresponds to A cheating, meaning not storing information sufficient
to recover the file. We say that a hash family H is storage-auditing secure if AdvstoreH,A (·) is negligible for all
PT adversaries A of high min-entropy. This captures the requirement that adversaries that fail to store
enough information to recover the file will also fail to pass the audit protocol. Let STORE denote the set
of all storage-auditing secure hash families.

36

Main StoreAH (λ)

(x, s)←$A1(1λ) ; hk←$ H.Kg(1λ) ; y′←$A2(1λ,hk, s)

y ← H.Ev(1λ,hk, x, 1λ) ; Return (y = y′)

Figure 17: Game defining storage-auditing security.

Results. The following says that UCE security implies storage-auditing security. The assumption of
UCE[Ssup]-security would suffice, but in fact we can use an even weaker assumption, namely UCE[Ssup ∩
Ssplt ∩ Sone]-security, where Sone is the class of sources that make at most one oracle query to Hash.

Theorem 5.10 Let H be a hash family. If H ∈ UCE[Ssup ∩ Ssplt ∩ Sone] then H ∈ STORE.

Proof: Let A be a PT adversary of high min-entropy. We’ll construct a PT source S ∈ Ssup ∩ Ssplt ∩ Sone

and a PT distinguisher D such that

AdvstoreH,A (λ) ≤ AdvuceH,S,D(λ) + 2−λ (16)

for every λ ∈ N. The theorem follows from the assumption that H ∈ UCE[Ssup ∩ Ssplt ∩ Sone]. The
constructions of S and D are shown below:

SHash(1λ)

(x, s)←$A1(1λ) ; y ← Hash(x, 1λ)
L← (y, s) ; Return L

D(1λ,hk, L)

(y, s)← L ; y′ ← A2(1λ, hk, s)
If (y = y′) then b′ ← 1 else b′ ← 0 ; Return b′

The source S indeed makes a single query to Hash. Let b denote the challenge bit in game UCES,DH (·).
Then for all λ ∈ N we have

Pr[UCES,DH (λ) | b = 1] = AdvstoreH,A (λ)

Pr[UCES,DH (λ) | b = 0] = 1− 2−λ .

Summing yields Equation (16). We claim that S is statistically unpredictable. By Lemma 4.3, it suffices
to show that S is simple statistically unpredictable. Consider an arbitrary simple predictor P ′. Then
AdvspredS,P ′ (·) ≤ GuessA(·). From the assumption that A is of high min-entropy, the claim follows.

Finally we exhibit, below, PT algorithms S0, S1 such that S = Splt[S0, S1]—

S0(1λ)

(x, s)←$A1(1λ) ; `[1]← H.ol(λ)
Return (s, x, 1`)

S1(1λ,y)

Return y[1]

This shows that S ∈ Ssplt, concluding the proof.

5.10 Correlated-input hash functions

Goyal, O’Neill, and Rao (GOR) [77] introduced the notion of correlated-input hash (CIH) function families
and proposed several notions of security for them. They provided constructions achieving limited CIH
security from the q-DHI assumption of [36] and from RKA secure blockciphers. But achieving full CIH
security in the standard model has remained open. Here, we show that UCE-secure function families achieve
this goal, being selective (pseudorandomness) CIH secure in the terminology of GOR.

Definitions. Let H be a function family with input length H.il and output length H.ol. Game CIHA
H(λ)

of Fig. 18 captures the selective pseudorandom correlated-input hash security notion of [77] adapted to
our setting and notation. An adversary A = (A1, A2) is a pair of algorithms. Algorithm A1 on input

37

Main CIHA
H (λ)

hk←$ H.Kg(1λ) ; b←$ {0, 1} ; m←$A1(1λ)

For i = 1 to |m| do h1[i]← H.Ev(1λ,hk,m[i], 1H.ol(λ)) ; h0[i]←$ {0, 1}H.ol(λ)

b′←$A2(1λ,hk,hb) ; Return (b′ = b)

Figure 18: The CIH game.

1λ returns m, a v(λ)-vector of distinct H.il(λ)-bit strings, where the polynomial v depends on A. The
guessing probability GuessA of A is the function that on input λ ∈ N returns the maximum, over all i,m,
of Pr[m[i] = m], the probability over m←$A1(1λ). We say that A has high min-entropy if GuessA(·) is
negligible. We let AdvcihH,A(λ) = 2 Pr[CIHA

H(λ)]− 1. We say that H is CIH-secure if AdvcihH,A is negligible for
all PT A that have high min-entropy. Note that the high min-entropy assumption on A is necessary to
achieve security. We let CIH be the set of all CIH-secure function families.

Results. Let H be a function family with input length H.il and output length H.ol. The following theorem
says that if H is UCE-secure then it is also CIH-secure. With regard to the specific UCE assumption,
UCE[Ssup] would suffice, but in fact the weaker UCE[Ssup ∩ Ssplt] is enough.

Theorem 5.11 Let H be a FOL function family. If H ∈ UCE[Ssup ∩ Ssplt] then H ∈ CIH.

Proof: Let A = (A1, A2) be a PT CIH adversary. We will construct a PT source S ∈ Ssup ∩ Ssplt and a
PT distinguisher D such that

AdvcihH,A(·) = AdvuceH,S,D(·) . (17)

The theorem then follows from the assumption that H ∈ UCE[Ssup ∩ Ssplt]. The constructions of S and D
are shown below:

SHash(1λ)

m←$A1(1λ)

For i = 1 to |m| do h[i]← Hash(m[i], 1H.ol(λ))
L← h ; Return L

D(1λ,hk, L)

h← L
b′←$A2(1λ, hk,h)
Return b′

We now show that S is statistically unpredictable. By Lemma 4.3, it suffices to show that S is simple
statistically unpredictable. Consider an arbitrary simple predictor P ′. The leakage it receives consists of
random strings unrelated to the messages that S queries to its oracle, so AdvspredS,P ′ (·) ≤ v ·GuessA(·) where
v is the polynomial associated to A as per the definition. Finally we exhibit, below, PT algorithms S0, S1

such that S = Splt[S0, S1]—

S0(1λ)

m←$A1(1λ)
For i = 1, . . . , |m| do `[i]← H.ol(λ)
Return (ε,m, 1`)

S1(1λ,y)

Return y

This shows that S ∈ Ssplt, concluding the proof.

We note that UCE security does not imply adaptive CIH security, where the inputs can depend on the key.

5.11 Adaptively secure garbling with short tokens

BHR1 [17] introduce garbling schemes as an abstraction of the garbled circuit technique that originates
with Yao [106]. They provide definitions for privacy, obliviousness and authenticity. These however capture
the standard, static-security requirements met by the standard Yao-style constructions. BHR2 [16] point

38

out that applications like one-time programs [74] and secure-outsourcing [68] require adaptive security, and
provide corresponding definitions of adaptive security (again for privacy, obliviousness and authenticity)
for garbling schemes.

Ideally, we want garbling schemes where the garbled inputs are short. (Garbling schemes take a function
to produce a garbled function, and also associate to an input a garbled input. We say that the scheme
has short garbled inputs if the size of the garbled inputs depends only on the security parameter and the
input and output lengths of the original function. We note that the secure-outsourcing protocol of [68]
requires short garbled inputs in order to be non-trivial.) Statically-secure schemes naturally have this
feature, but retaining it while providing adaptive security is challenging. Schemes with this feature have
been provided in the ROM [16, 7]. But in the standard model, known constructions achieving adaptive
security [16, 76] have long garbled inputs, meaning ones of size proportional to the size of the circuit being
garbled. Standard-model adaptively-secure garbling with short tokens has remained open.

Here we resolve this problem with schemes based on a UCE[Ssrs]-secure family. We give two garbling
schemes, GaP and GaAO, that have short tokens. The former provides adaptive privacy, while the latter
provides adaptive obliviousness and authenticity. Both assume only a UCE[Ssrs]-secure hash family.

We note that the secure-outsourcing protocol of [68] uses Fully Homomorphic Encryption [70], requiring
the garbling scheme it (also) uses to be secure in the standard model. (A ROM garbling scheme does not
work for them.) Thus we obtain the first non-trivial instantiation of the secure-outsourcing protocol of [68].

Definitions. BHR1 [17] give the following formalization of circuits. A circuit is defined as a 6-tuple
f = (n,m, q,A,B,G) where n ≥ 2 is the number of inputs, m ≥ 1 is the number of outputs, q ≥ 1 is
the number of gates, and r = n + q the number of wires. We let Inputs = [1 .. n], Wires = [1 .. n + q],
OutputWires = [n+ q−m+ 1 .. n+ q], and Gates = [n+ 1 .. n+ q]. Then A: Gates→Wires\OutputWires
is a function to identify each gate’s first incoming wire and B: Gates→Wires\OutputWires is a function to
identify each gate’s second incoming wire. Finally G: Gates×{0, 1}2 → {0, 1} is a function that determines
the functionality of each gate. We require A(g) < B(g) < g for all g ∈ Gates.

The conventions above embody all of the following. Gates have two inputs, arbitrary functionality,
and arbitrary fan-out. The wires are numbered 1 to n + q. Every non-input wire is the outgoing wire
of some gate. The ith bit of input is presented along wire i. The ith bit of output is collected off wire
n + q −m + i. The outgoing wire of each gate serves as the name of that gate. Circuit output wires, i.e.,
wires in OutputWires, cannot be circuit input wires and cannot be incoming wires to gates. No output wire
can be used twice in the output. Requiring A(g) < B(g) < g ensures that the directed graph corresponding
to f is acyclic, and that no wire feeds a gate twice. Numbering the gates produces a topological sort when
the circuit is viewed as a directed graph.

A garbling scheme GS is specified via algorithms GS.Gb,GS.En,GS.De,GS.Ev, and GS.ev [17]. The first
algorithm GS.Gb is probabilistic; the others are deterministic. Algorithm GS.Gb takes input a string f
describing a function and outputs a triple of strings (F, e, d). Here, f describes a function GS.ev(f, ·) :
{0, 1}n → {0, 1}m. The values n = f.n and m = f.m should be efficiently computable from f . The
strings e and d describe functions GS.En(e, ·) : {0, 1}n → {0, 1}∗ and GS.De(d, ·) : {0, 1}∗ → {0, 1}m ∪ {⊥}
respectively. We call λ, f, F, e, d the security parameter, initial function, garbled function, encoding function
and decoding function, respectively. For any x ∈ {0, 1}n, we require that GS.ev(f, x) = GS.De(d, Y), where
(F, e, d)←$ GS.Gb(1λ, f), X ← GS.En(e, x) and Y ← GS.Ev(F,X). The strings X and Y are called garbled
input and garbled output respectively.

We restrict attention to projective circuit-garbling schemes following the terminology of BHR1. Eval-
uation GS.ev is the canonical circuit-evaluation function cev below. Encoding GS.En(e, ·) uses the bits of
x = x1 · · ·xn to select from e = (X0

1 , X
1
1 , . . . , X

0
n, X

1
n) the subvector X = (Xx1

1 , . . . , Xxn
n). We say that a

garbling scheme has short garbled inputs if garbled input lengths depend only on the security parameter λ,
the input length n, and output length m of f .

cev(f, x)

(n,m, q,A,B,G)← f ; x1 · · ·xn ← x
For g ← n+ 1 to n+ q do
a← A(g) ; b← B(g) ; xg ← Gg(xa, xb)

Return xn+q−m+1 · · ·xn+q

39

Main Prv2GS,Φ,Sim(λ)

b←$ {0, 1} ; b′←$AGarble,Input(1λ) ; Return (b = b′)

Garble(f)

n← f.n ; Q← ∅ ; τ ← ε
If b = 1 then

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←$GS.Gb(1λ, f)

Else (F, d)←$ Sim(1λ,Φ(f), 0)
Return (F, d)

Input(i, c)

If i 6∈ {1, . . . , n} \Q then return ⊥
xi ← c ; Q← Q ∪ {i}
If |Q|=n then
x← x1 · · ·xn ; y←GS.ev(f, x) ; τ ← y

If b = 1 then Xi ← Xxi
i

Else Xi←$ Sim(1λ, τ, i, |Q|)
Return Xi

Main Obv2GS,Φ,Sim(λ)

b←$ {0, 1} ; b′←$AGarble,Input(1λ) ; Return (b = b′)

Garble(f)

n← f.n; Q← ∅; σ ← ε
If b = 1 then

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←GS.Gb(1λ, f)

Else F ← Sim(1λ,Φ(f), 0)
Return F

Input(i, c)

If i 6∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}
If b = 1 then Xi ← Xxi

i

Else Xi ← Sim(1λ, i, |Q|)
Return Xi

Main Aut2GS(λ)

Y ←$AGarble,Input(1λ)
Return (GS.De(d, Y) 6= ⊥ and Y 6= GS.Ev(F,X))

Garble(f)

n← f.n ; Q← ∅ ; σ ← ε
(F, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), d)←GS.Gb(1λ, f) ; Return F

Input(i, c)

If i 6∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}, Xi ← Xxi

i

If |Q| = n then X ← (X1, . . . , Xn)
Return Xi

Figure 19: Security notions of a garbling scheme GS. The scheme is required to be projective. The
adversary A makes a single query to Garble, followed by multiple queries to Input.

We parametrize privacy by a “knob” that measures what we allow to be revealed. The side-information
function Φ maps f to some information about it, Φ(f). We require that f.n and f.m be efficiently com-
putable from Φ(f). In this work, we consider only the side-information function Φtopo that maps a circuit
f = (n,m, q,A,B,G) to its topological circuit (n,m, q,A,B).

BHR2 [16] identify privacy, obliviousness, and authenticity as relevant security notions for garbling
schemes, and go on to show that privacy is sufficient for one-time programs [74] while obliviousness and
authenticity suffice for secure-outsourcing [68].

Let GS be a garbling scheme and let Φ be a side-information function. The first notion privacy is
defined via game Prv2GS,Φ,Sim of Fig. 19, where Sim, the simulator, is an always-terminating algorithm

that maintains state across invocations. We define Advprv2,Φ, Sim
GS,A (λ) = 2 Pr[Prv2AGS,Φ,Sim(λ)]− 1. Garbling

scheme GS is prv2-secure with respect to Φ if for any PT adversary A there exists a simulator Sim such that
Advprv2,Φ,Sim

GS,A (λ) is negligible. We let PRV2[Φ] denote the set of all garbling schemes prv2-secure over Φ.

The next notion, obliviousness, is defined through game Obv2GS,Φ,Sim of Fig. 19. Advantage is defined

through Advobv2,Φ,Sim
GS,A (λ) = 2 Pr[Obv2AGS,Φ,Sim(λ)]−1. Garbling scheme GS is obv2-secure with respect to Φ

if for all PT adversaries A there exists a simulator Sim such that Advobv2,Φ, Sim
GS,A (λ) is negligible. We let

OBV2[Φ] denote the set of all garbling schemes obv2-secure over Φ.

The third notion authenticity is defined through game Obv2GS,Φ,Sim of Fig. 19. We define Advaut2
GS,A(λ) =

Pr[Aut2AGS(λ)]. Garbling scheme GS is aut2-secure if Advaut2
GS,A(λ) is negligible for any PT adversary A. We

let AUT2 denote the set of all aut2 secure garbling schemes.

Results. Let H be a hash family such that H.IL(λ) = N and H.ol(λ) = λ for every λ ∈ N. Fig. 20
describes the GaP[H] and GaAO[H] garbling schemes, based on the RO-model scheme Ga[h] of Pinkas,
Schneider, Smart, and Williams [101] that depends on a keyless hash h such that h(x, 1`) ∈ {0, 1}` for every

40

Ga[h].Gb(1λ, f)

(n,m, q,A′, B′, G)← f

For i← 1 to n+ q do
t←$ {0, 1} ; X0

i ←$ {0, 1}λ−1t ; X1
i ←$ {0, 1}λ−1t

For g ← n+ 1 to n+ q, i← 0 to 1, j ← 0 to 1 do
a← A′(g) ; b← B′(g)

A← Xi
a ; a← lsb(A) ; B ← Xj

b ; b← lsb(B)

T [g, a, b]← h(A ‖B ‖ g, 1λ)⊕XGg(i,j)
g

F ← (n,m, q,A′, B′, T)
e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

d← (X0
n+q−m+1, X

1
n+q−m+1, . . . , X

0
n+q, X

1
n+q)

Return (F, e, d)

Ga[h].Ev(F,X)

(n,m, q,A′, B′, T)← F , (X1, . . . , Xn)← X
For g ← n+ 1 to n+ q do
a← A′(g) ; b← B′(g)
A← Xa ; a← lsb(A) ; ; B ← Xb ; b← lsb(B)
Xg ← h(Xa ‖Xb ‖ g, 1λ)⊕T [g, a, b]

Return (Xn+q−m+1, . . . , Xn+q)

Ga[h].De(d, Y)

(Y1, . . . , Ym)← Y ; (Y 0
1 , Y

1
1 , . . . , Y

0
m, Y

1
m)← d

For i← 1 to m do
If Yi=Y 0

i then yi ← 0
Elsif Yi=Y 1

i then yi ← 1 else return ⊥
Return y ← y1 · · · ym

GaAO[H].Gb(1λ, f)

hk←$ H.Kg(1λ)
(F, e, d)←$ Ga[H.Ev(1λ,hk, ·, ·)].Gb(1λ, f)
(X0

1 , X
1
1 , . . . , X

0
n, X

1
n)← e

For i← 1 to n− 1 do Vi←$ {0, 1}|hk|
Vn ← V1⊕ · · ·⊕Vn−1⊕hk
For i← 1 to n do T 0

i ← (X0
i , Vi) ; T 1

i ← (X1
i , Vi)

Return
(
F, (T 0

1 , T
1
1 , . . . , T

0
n , T

1
n), d

)

GaAO[H].Ev(F,X∗)(
(X1, V1), . . . , (Xn, Vn)

)
← X∗

X ← (X1, . . . , Xn)
hk ← V1⊕ · · ·Vn
Y ← Ga[H.Ev(1λ,hk, ·, ·)].Ev(F,X)
Return Y

GaP[H].Gb(1λ, f)

hk←$ H.Kg(1λ)
(F, e, d)←$ Ga[H.Ev(1λ,hk, ·, ·)].Gb(1λ, f)

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e

(Y 0
1 , Y

1
1 , . . . , Y

0
m, Y

1
m)← d

For i← 1 to m do ui ← lsb(Y 0
i)

U ← u1 · · ·um ; K ← (U,hk)
For i← 1 to n− 1 do Vi←$ {0, 1}|K|
Vn ← V1⊕ · · ·⊕Vn−1⊕K
For i← 1 to n do T 0

i ← (X0
i , Vi) ; T 1

i ← (X1
i , Vi)

Return
(
F, (T 0

1 , T
1
1 , . . . , T

0
n , T

1
n), ε

)

GaP[H].Ev(F,X∗)(
(X1, V1), . . . , (Xn, Vn)

)
← X∗

X ← (X1, . . . , Xn)
(hk, U)← V1⊕ · · ·Vn
Y ← Ga[H.Ev(1λ,hk, ·, ·)].Ev(F,X)
Return (Y,U)

GaP[H].De(d∗, Y ∗)

((Y1, . . . , Ym), U)← Y ∗ ; u1 . . . um ← U
For i← 1 to m do yi ← lsb(Yi)⊕ui
Return y ← y1 · · · ym

Figure 20: Top: A conventional circuit-garbling scheme Ga. Here t denotes the complement bit of t.
Middle: Scheme GaAO that achieves aut2 and obv2 security. Bottom: Scheme GaP that achieves prv2
security. We omit their encoding functions, as they are projective. The evaluation functions of these
schemes are the canonical circuit evaluation cev.

x ∈ {0, 1}∗ and ` ∈ N.

In scheme Ga, wires carry λ-bit tokens (strings) the last bit of each is the token’s type. To garble a
circuit, we begin selecting two tokens for each wire, one of each type. One of these will represent 0—the
token is said to have semantics of 0—while the other will represent 1. The variable Xb

i names the token
of wire i with semantics of b. For every wire i, we select random tokens of opposite type, making the
association between a token’s type and its semantics random. We then compute q garbled tables, one for
each gate g. Table T [g, ·, ·] has four rows, entry a, b the row to use when the left incoming token is of type a

and the right incoming token is of type b. The token that gets encrypted for this row is the token for the
outgoing-wire with the correct semantics. Given two tokens Xa and Xb we use their types to determine
which entry of the garbled table we need to decrypt. The description of the decoding function d is the list
of the tokens at output wires.

Informally, scheme GaAO generates a key hk of a UCE-secure hash H and runs Ga[H.Ev(1λ, hk, ·, ·)].Gb

41

to produce (F, e, d). We then secret-share the key hk to n shares, distributing the shares among the input
tokens. Scheme GaP also creates a hash key hk and runs Ga[H.Ev(1λ,hk, ·, ·)].Gb to generate (F, e, d).
However, it instead uses a vacuous decoding function. Let d = (Y 0

1 , Y
1

1 , . . . , Y
0
m, Y

1
m), ui = lsb(Y 0

i) for every
i ≤ m, and U = u1 . . . um, where function lsb maps a string to its last bit. It then secret-shares (U,hk) to n
shares and distribute them among the input tokens. Later, to decode the garbled output Y = (Y1, . . . , Ym)
from procedure Ga.Ev, it will output y1 · · · ym as the final output, where yi = lsb(Yi)⊕ui for every i ≤ m.

The following says that GaP[H] is prv2-secure, and GaAO[H] is obv2 and aut2-secure.

Theorem 5.12 Let H be a hash function family such that H.IL(λ) = N and H.ol(λ) = λ for every λ ∈ N.
If H ∈ UCE[Ssrs], then (1) GaAO[H] ∈ AUT2, (2) GaAO[H] ∈ OBV2[Φtopo], and (3) GaP[H] ∈ PRIV2[Φtopo].

Proof of Theorem 5.12: For part (1), consider an arbitrary PT adversary A attacking the aut2 security
of GaAO[H]. Assume that A(1λ) uses ρ(λ) coins. We’ll construct a PT statistically reset-secure source S
and a PT distinguisher D such that

Advaut2
GaAO[H],A(λ) ≤ AdvuceH,S,D(λ) + 21−λ (18)

for every λ ∈ N. The theorem then follows from the assumption that H ∈ UCE[Ssrs]. The constructions
of S and D are shown below.

SHash(1λ)

r←$ {0, 1}ρ(λ) ; cnt← 0 ; L← ⊥
AGarble,Input(1λ; r) ; Return L

Garble(f)

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←$ Ga[Hash].Gb(1λ, f)

Return F

Input(i, c)

cnt← cnt + 1 ; Xi ← Xc
i ; Vi←$ {0, 1}H.kl(λ)

If cnt < n then return (Xi, Vi)
Vi ← ⊥ ; X ← (X1, . . . , Xn) ; V ← (V1, . . . , Vn)
(Y 0

1 , Y
1
1 , . . . , Y

0
m, Y

1
m)← d

For j = 1 to m do dj ← Y
1−yj
j [1, λ− 1]

L← (F, r,X, V, (d1, . . . , dm)) ; Return ⊥

D(1λ,hk, L)

(F, r,X, V, (d1, . . . , dm))← L ; (V1, . . . , Vn)← V
(Y1, . . . , Ym)← Y ← Ga[H.Ev(1λ,hk, ·, ·)].Ev(F,X)
(X1, . . . , Xn)← X ; Y ′←$AGarble,Input(1λ; r)
x← x1 · · ·xn ; y1 · · · ym ← y ← cev(f, x)
For j = 1 to m do

tj ← lsb(Yj) ; Y
yj
j ← Yj ; Y

1−yj
j ← dj ‖ (1− tj)

d← (Y 0
1 , Y

1
1 , . . . , Y

0
m, Y

1
m)

y′ ← Ga[H.Ev(1λ,hk, ·, ·)].De(d, Y ′)
If y′ 6= ⊥ and Y ′ 6= Y then return 1 else return 0

Garble(f)

Return F

Input(i, c)

If Vi = ⊥ then Vi ← 0H.kl(λ) ; Vi ← V1⊕ · · ·⊕Vn⊕hk
xi ← c ; Return (Xi, Vi)

Let a be the challenge bit of game UCES,DH (λ). Then

Advaut2,A
GaAO[H](λ) = Pr[UCES,DH (λ) | a = 1] .

On the other hand, in game UCES,DH (λ) with a = 0, only if A can specify some j ≤ m and the correct dj
does D output 1. However, since each dj is a uniformly random string that is independent of whatever A
receives, Pr[UCES,DH (λ) | a = 0] ≥ 1− 2−λ. Hence

AdvuceH,S,D(λ) = Pr[UCES,DH (λ) | a = 1] + Pr[UCES,DH (λ) | a = 0]− 1

≥ Advaut2
GaAO[H],A(λ)− 2−λ,

yielding Equation (18). Finally, Lemma 5.13 below shows that S is statistically reset-secure.

Lemma 5.13 For any reset-adversary R and any polynomial p that bounds the number of R’s Hash
queries, AdvresetS,R (λ) ≤ 2p(λ)/2λ for every λ ∈ N.

42

Main GA,R1 (λ)

r←$ {0, 1}ρ(λ) ; cnt← 0 ; L← ⊥
AGarble,Input(1λ) ; b′ ← RHash(1λ, L)
Return (b′ = 1)

Input(i, c)

If i > n or xi 6= ⊥ then return ⊥
Vi←$ {0, 1}H.kl(λ) ; cnt← cnt + 1 ; Xi ← Xc

i

If cnt < n then return (Xi, Vi)
For j ← 1 to m do dj ←$ {0, 1}λ−1

Vi ← ⊥ ; V ← (V1, . . . , Vn)
X ← (X1, . . . , Xn)
L← (F, r,X, V, (d1, . . . , dm))
Return ⊥

Garble(1λ, f)

(n,m, q,A′, B′, G)← f ; cnt← 0
For i← 1 to n+ q do
t←$ {0, 1} ; X0

i ←$ {0, 1}λ−1t ; X1
i ←$ {0, 1}λ−1t

For g ← n+ 1 to n+ q, i← 0 to 1, j ← 0 to 1 do
a← A′(g) ; b← B′(g)

A← Xi
a ; a← lsb(A) ; B ← Xj

b ; b← lsb(B)

T [g, a, b]←$ {0, 1}λ ; H[A‖B‖g, λ]← T [g, a, b]⊕XGg(i,j)
g

F ← (n,m, q,A′, B′, T)
Return F

Hash(w, 1`)

If H[w, `] = ⊥ then H[w, `]←$ {0, 1}`
Return H[w, `]

Main GA,R2 (λ) , GA,R3 (λ)

r←$ {0, 1}ρ(λ) ; cnt← 0 ; L← ⊥
AGarble,Input(1λ) ; b′ ← RHash(1λ, L)
Return (b′ = 1)

Input(i, c)

If i > n or xi 6= ⊥ then return ⊥
xi ← c ; cnt← cnt + 1 ; Xxi

i ← Xi←$ {0, 1}λ
If cnt < n then
Vi←$ {0, 1}H.kl(λ) ; Return (Xi, Vi)

For g ← n+ 1 to n+ q do
a← A′(g) ; b← B′(g) ; xg ← Gg(xa, xb)
Z ← H[Xa ‖Xb ‖ g, λ]←$ {0, 1}λ
X
xg
g ← Xg ← Z⊕T [g, xa, xb]

For j ← 1 to n+ q −m do

t← lsb(Xj) ; X
1−xj

j ←$ {0, 1}λ−1 ‖ t
For j ← 1 to m do
g ← n+ q −m+ j ; dj ←$ {0, 1}λ−1

t← lsb(Xg) ; X
1−xg
g ← dj ‖ t

Vi ← ⊥ ; V ← (V1, . . . , Vn)
X ← (X1, . . . , Xn)
L← (F, r,X, V, (d1, . . . , dm)) ; Return ⊥

Garble(1λ, f)

(n,m, q,A′, B′, G)← f ; cnt← 0
For g ← n+ 1 to n+ q, a← 0 to 1, b← 0 to 1 do
T [g, a, b]←$ {0, 1}λ

F ← (n,m, q,A′, B′, T)
Return F

Hash(w, 1`)

If H[w, `] 6= ⊥ then return H[w, `]
H[w, `]←$ {0, 1}`
If w = A ‖B ‖ g and ` = λ then
a← A′(g) ; b← B′(g) ; a← lsb(A) ; b← lsb(B)

If A = Xi
a and B = Xj

b then

bad← true ; H[w, `]← T [g, a, b]⊕XGg(i,j)
g

Return H[w, `]

Main GA,R4 (λ)

r←$ {0, 1}ρ(λ) ; cnt← 0 ; L← ⊥
AGarble,Input(1λ) ; b′ ← RHash(1λ, L)
Return (b′ = 1)

Input(i, c)

If i > n or xi 6= ⊥ then return ⊥
xi ← c ; cnt← cnt + 1 ; Xi←$ {0, 1}λ
If cnt < n then Vi←$ {0, 1}H.kl(λ) ; Return (Xi, Vi)
For j ← 1 to m do dj ←$ {0, 1}λ−1

Vi ← ⊥ ; V ← (V1, . . . , Vn) ; X ← (X1, . . . , Xn)
L← (F, r,X, V, (d1, . . . , dm)) ; Return ⊥

Garble(1λ, f)

(n,m, q,A′, B′, G)← f ; cnt← 0
For g ← n+ 1 to n+ q, a← 0 to 1, b← 0 to 1 do
T [g, a, b]←$ {0, 1}λ

F ← (n,m, q,A′, B′, T)
Return F

Hash(w, 1`)

If H[w, `] = ⊥ then H[w, `]←$ {0, 1}`
Return H[w, `]

Figure 21: Games for the proof of Lemma 5.13. Game G2 contains the boxed statement but game G3

does not.

43

Sim(1λ, φ, 0)

(n,m, q,A,B)← φ

For g ← n+ 1 to n+ q, a← 0 to 1, b← 0 to 1 do

T [g, a, b]←$ {0, 1}λ

hk←$ H.Kg(1λ), F ← (n,m, q,A,B, T) ; Return F

Sim(1λ, i, cnt)

Xi←$ {0, 1}λ ; Vi ← 0H.kl(λ)

If cnt < n then Vi←$ {0, 1}H.kl(λ)

Else Vi ← V1⊕ · · ·⊕Vn⊕hk
Return (Xi, Vi)

Figure 22: Constructed simulator for part (2) of Theorem 5.12.

Proof: Consider games G1–G4 in Fig. 21. Let c be the challenge bit of game ResetPS (λ). Then

Pr[GA,R1 (λ)] = Pr[ResetPS (λ) | c = 1] and Pr[GA,R7 (λ)] = 1− Pr[ResetPS (λ) | c = 0]

for every λ ∈ N. We explain the game chains up until the terminal game. In game GA,R2 (λ), we postpone
sampling the tokens and defining 4q points of the array H until they are needed. Hence

Pr[GA,R1 (λ)] = Pr[GA,R2 (λ)] .

After last Input query, one can run Ga[Hash(·, 1λ)].Ev(F,X) to obtain a token per wire. We say that these
tokens are visible, and the other tokens are invisible. A query (w, 1λ) is illegitimate if (i) w = A ‖B ‖ g,
(ii) A and B are tokens of the left- and right-incoming wires of g respectively, and (iii) at least one of A
and B is invisible. In game GA,R3 (λ), for illegitimate queries, procedure Hash gives answers independent of

Garble and Input. The two games GA,R2 (λ) and GA,R3 (λ) are identical-until-bad. Triggering bad means
specifying a non-output wire and its invisible token. As long as bad is not set, the first λ − 1 bits of each
invisible token are uniformly random and independent of whatever (A, R) receives. Hence

Pr[GA,R2 (λ)]− Pr[GA,R3 (λ)] ≤ Pr[GA,R3 (λ) sets bad] ≤ 2p(λ)

2λ
.

In game GA,R4 (λ), the visible tokens at non-input wires and all invisible tokens are unused, and thus the
code generating them can be removed. Hence

Pr[GA,R3 (λ)] = Pr[GA,R4 (λ)] .

Hence

AdvresetS,R (λ) = Pr[ResetPS (λ) | c = 1] + Pr[ResetPS (λ) | c = 0]− 1

= Pr[GA,R1 (λ)]− Pr[GA,R4 (λ)]

= Pr[GA,R2 (λ)]− Pr[GA,R3 (λ)] ≤ 2p(λ)

2λ

for every λ ∈ N.

For part (2), let Sim be the simulator constructed in Fig. 22. We’ll construct a PT statistically reset-secure
source S and a PT distinguisher D such that

Advobv2,Φtopo, Sim
GaAO[H],A (·) ≤ AdvuceH,S,D(·) . (19)

The theorem then follows from the assumption that H ∈ UCE[Ssrs]. The constructions of S and D are
shown below.

44

Sim(1λ, φ, 0)

(n,m, q,A,B)← φ

For g ← n+ 1 to n+ q, a← 0 to 1, b← 0 to 1 do

T [g, a, b]←$ {0, 1}λ

hk←$ H.Kg(1λ), F ← (n,m, q,A,B, T)

Return (F, ε)

Sim(1λ, i, τ, cnt)

Xi←$ {0, 1}λ ; K ← (0m,hk) ; Vi ← 0|K|

If cnt < n then Vi←$ {0, 1}|K|

Else

X ← (X1, . . . , Xn)

Y ← Ga[H.Ev(1λ,hk, ·, 1λ)].Ev(F,X)

(Y1, . . . , Ym)← Y ; y1 · · · ym ← τ

For j ← 1 to m do uj ← yj⊕lsb(Yj)

U ← u1 · · ·um ; K ← (U,hk)

Vi ← V1⊕ · · ·⊕Vn⊕K
Return (Xi, Vi)

Figure 23: Constructed simulator for part (3) of Theorem 5.12.

SHash(1λ)

r←$ {0, 1}ρ(λ) ; cnt← 0 ; L← ⊥
AGarble,Input(1λ; r) ; Return L

Garble(f)

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←$ Ga[Hash].Gb(1λ, f)

Return F

Input(i, c)

cnt← cnt + 1 ; Xi ← Xc
i ; Vi←$ {0, 1}H.kl(λ)

If cnt < n then return (Xi, Vi)
Vi ← ⊥ ; X ← (X1, . . . , Xn) ; V ← (V1, . . . , Vn)
L← (F, r,X, V) ; Return ⊥

D(1λ,hk, L)

(F, r,X, V)← L ; (V1, . . . , Vn)← V
(X1, . . . , Xn)← X
b′ ← AGarble,Input(1λ; r) ; Return b′

Garble(f)

Return F

Input(i, c)

If Vi = ⊥ then Vi ← 0H.kl(λ) ; Vi ← V1⊕ · · ·⊕Vn⊕hk
Return (Xi, Vi)

Let a be the challenge bit of game UCES,DH (λ), and b be the challenge bit of game Obv2AGaAO[H],Φtopo,Sim(λ).
Then

Pr[Obv2AGaAO[H],Φtopo,Sim(·) | b = 1] = Pr[UCES,DH (·) | a = 1], and

Pr[Obv2AGaAO[H],Φtopo,Sim(·) | b = 0] = Pr[UCES,DH (·) | a = 0] .

Summing up yields Equation (19). What’s left is to show that S is statistically reset-secure. Indeed, what-
ever this source leaks is also leaked by the source in part (1). Hence from Lemma 5.13, for any adversary R
and any polynomial p that bounds the number of R’s queries to Hash, it follows that AdvresetS,R (λ) ≤ 2p(λ)/2λ

for every λ ∈ N.

For part (3), let Sim be the simulator constructed in Fig. 23. We’ll construct a PT statistically reset-secure
source S and a PT distinguisher D such that

Advprv2,Φtopo, Sim
GaP[H],A (·) ≤ AdvuceH,S,D(·) . (20)

The theorem then follows from the assumption that H ∈ UCE[Ssrs]. The constructions of S and D are
shown below.

45

SHash(1λ)

r←$ {0, 1}ρ(λ) ; cnt← 0 ; L← ⊥ ; K ← (0m, 0H.kl(λ))
AGarble,Input(1λ; r) ; Return L

Garble(f)

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←$ Ga[Hash].Gb(1λ, f)

Return (F, ε)

Input(i, c)

cnt← cnt + 1 ; Xi = Xc
i ; Vi←$ {0, 1}|K|

If cnt < n then return (Xi, Vi)
Vi ← ⊥ ; X = (X1, . . . , Xn) ; V = (V1, . . . , Vn)
L← (F, r,X, V) ; Return ⊥

D(1λ,hk, L)

(F, r,X, V)← L ; (V1, . . . , Vn)← V
(X1, . . . , Xn)← X
b′ ← AGarble,Input(1λ; r) ; Return b′

Garble(f)

Return (F, ε)

Input(i, c)

xi ← c
If Vi = ⊥ then
x← x1 · · ·xn ; y1 · · · ym ← y ← cev(f, x)
Y ← Ga[H.Ev(1λ,hk, ·, ·)].Ev(F,X)
(Y1, . . . , Ym)← Y
For j = 1 to m do uj ← lsb(Yj)⊕yj
U ← u1 · · ·um
Vi ← V1⊕ · · ·Vi−1⊕Vi⊕ · · ·⊕Vn⊕(U,hk)

Return (Xi, Vi)

Let a be the challenge bit of game UCES,DH (λ), and b be the challenge bit of game Prv2AGaAO[H],Φtopo,Sim(λ).
Then

Pr[Prv2AGaAO[H],Φtopo,Sim(·) | b = 1] = Pr[UCES,DH (·) | a = 1], and

Pr[Prv2AGaAO[H],Φtopo,Sim(·) | b = 0] = Pr[UCES,DH (·) | a = 0] .

Summing up yields Equation (20). What’s left is to show that S is statistically reset-secure. Indeed, what-
ever this source leaks is also leaked by the source in part (1). Hence from Lemma 5.13, for any adversary R
and any polynomial p that bounds the number of R’s queries to Hash, it follows that AdvresetS,R (λ) ≤ 2p(λ)/2λ

for every λ ∈ N.

6 Constructions of UCE families

In this section, we describe constructions of UCE-secure function families. We provide a ROM construction
and prove that it is mUCE[Scrs-m]-secure. This means is also secure under all other UCE notions that we con-
sidered: UCE[Scup],UCE[Ssup],UCE[Ssrs],UCE[Scrs],mUCE[Ssup-m],mUCE[Scup-m],mUCE[Ssrs-m], and su-
persets of these formed by further constraining the sources. We go on to explore practical instantiations of
UCE-secure functions. We refer the reader to Section 2 for a discussion of the value of validating UCE in
the ROM as part of the layered-cryptography approach for ROM-based design.

6.1 Achieving UCE in the ROM

A random oracle RO is a stateful algorithm that maintains a table H, initially empty. When invoked with
inputs (m, 1`), it returns H[m, `] if H[m, `] is already defined. Otherwise it picks y←$ {0, 1}`, sets H[m, `]
to y and then returns y. A game in the ROM would implement RO and present an interface to access RO
for its routines as well as adversaries.

Definitions. The first step is to extend the syntax. In a ROM family of functions H, the algorithm H.Ev
has oracle access to RO. The rest is as before. We now define mUCE[Scrs-m] security of H in the ROM. The
multi-source S now has access to RO in addition to Hash, and the distinguisher gets access to RO as well.
We continue to define m-uce advantage via Equation (4), with game mUCES,DH (λ) now being that of Fig. 24.
A reset adversary now gets oracle access to RO in addition to Hash. We say that S is computationally reset-
secure if Advm-reset

S,R (·) is negligible for any PT reset adversary R, where Advm-reset
S,R (λ) = 2 Pr[mResetSR(λ)]−1

and game mResetSR(λ) is in Fig. 24. We say that H is mUCE[Scrs-m]-secure in the ROM if Advm-uce
H,S,D(·) is

46

Main mUCES,DH (λ)

(1n, t)←$ SRO(1λ, ε)

For i = 1 to n do hk[i]←$ H.Kg(1λ)

b←$ {0, 1} ; L←$ SRO,Hash(1n, t)

b′←$DRO(1λ,hk, L)

Return (b′ = b)

Hash(x, 1`, i)

If T [x, `, i] = ⊥ then

If b = 1 then T [x, `, i]← H.EvRO(1λ,hk[i], x, 1`)

Else T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

RO(v, 1`)

If H[v, `] = ⊥ then H[v, `]←$ {0, 1}`

Return H[v, `]

Main mResetRS (λ)

Dom← ∅ ; (1n, t)←$ SRO(1λ, ε)

L←$ SRO,Hash(1n, t) ; b←$ {0, 1}
If b = 0 then // reset the array T

For (x, `, i) ∈ Dom do

T [x, `, i]←$ {0, 1}`

b′←$RRO,Hash(1λ, L) ; Return (b = b′)

Hash(x, 1`, i)

Dom← Dom ∪ {(x, `, i)}
If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

RO(v, 1`)

If H[v, `] = ⊥ then H[v, `]←$ {0, 1}`

Return H[v, `]

Figure 24: Left: Game mUCE defines multi-key UCE security in the ROM. Right: Game mReset defines
multi-key reset-security in the ROM.

negligible for every PT reset-secure multi-source S and every PT D. Let mUCEro[Scrs-m] denote the set of
all ROM function families H that are mUCE[Scrs-m]-secure in the ROM.

Results. We now describe a mUCE[Scrs-m]-secure ROM family of functions. The construction H is
as follows. Let H.Kg(1λ) return hk←$ {0, 1}λ for every λ ∈ N. Let H.IL = N and H.OL = N. Let
H.EvRO(1λ, hk,m, 1`) return RO(hk ‖m, 1`) for every hk ∈ {0, 1}λ, every m ∈ {0, 1}∗, every ` ∈ N and
every λ ∈ N. The following says that H is mUCE[Scrs-m]-secure in the ROM.

Theorem 6.1 Let H be the ROM function family defined above. Then H ∈ mUCEro[Scrs-m].

Proof: Let S be a PT, computationally reset-secure multi-source and let D be a PT distinguisher. Let
n, q be polynomials such that n ≤ n(λ) and S,D between them make at most q(λ) RO-queries in game
mUCES,DH (λ), for all λ ∈ N. Assume n(λ) < 2λ for all λ ∈ N. Wlog, assume that S doesn’t repeat a query
to Hash or RO, and D does not repeat a query to RO. We’ll construct a PT reset-adversary R such that
for all λ ∈ N we have

Advm-uce
S,D,H(λ) ≤ Advmreset

S,R (λ) +
2n(λ) · q(λ) + n(λ)2

2λ
. (21)

The theorem follows from the assumption that S is computationally reset secure.

Consider games G1–G7 in Fig. 25. We let RO1 be the interface of S to access to the random oracle, and
RO2 be that of D. Let d be the challenge bit of game mUCES,DH (·). Then

Pr[GS,D
1 (λ)] = Pr[mUCES,DH (λ) | d = 1] and Pr[GS,D

7 (λ)] = 1− Pr[mUCES,DH (λ) | d = 0] .

We explain the game chain up to the terminal one. In game GS,D
2 (λ), we sample the hash keys so that they

are distinct. The two games GS,D
1 (λ) and GS,D

2 (λ) are identical-until-bad. Then, for all λ ∈ N, we have

Pr[GS,D
1 (λ)]− Pr[GS,D

2 (λ)] ≤ Pr[GS,D
2 (λ) sets bad] ≤ n(λ)2

2λ+1
.

In game GS,D
3 (λ), for each string v, if there is i ≤ n(λ) such that v[1, λ] = k[i], instead of reading/writing

to H[v, `], we’ll use T
[
v[λ+ 1, |v|], `, i

]
. Since the keys are distinct, for every λ ∈ N,

Pr[GS,D
2 (λ)] = Pr[GS,D

3 (λ)] .

In game GS,D
4 (λ), the keys now are sampled independently. The two games GS,D

3 (λ) and GS,D
4 (λ) are

47

Main GS,D
1 (λ), GS,D

2 (λ)

M ← ∅
For i = 1 to n(λ) do

k[i]←$ {0, 1}λ

If k[i] ∈M then bad← true ; k[i]←$ {0, 1}λ\M
M ←M ∪ {k[i]}

(1n, t)←$ SRO1(1λ, ε) ; K← (k[1], . . . ,k[n])

L←$ SHash,RO1(1n, t) ; b←$DRO2(1λ,K, L)

Return (b = 1)

Hash(x, 1`, i)

v ← k[i] ‖x
If H[v, `] = ⊥ then H[v, `]←$ {0, 1}`

Return H[v, `]

RO1(v, 1`)

If H[v, `] = ⊥ then H[v, `]←$ {0, 1}`

Return H[v, `]

RO2(v, 1`)

If H[v, `] = ⊥ then H[v, `]←$ {0, 1}`

Return H[v, `]

Main GS,D
3 (λ) , GS,D

4 (λ)

M ← ∅
For i = 1 to n(λ) do

k[i]←$ {0, 1}λ

If k[i] ∈M then bad← true ; k[i]←$ {0, 1}λ\M
M ←M ∪ {k[i]}

(1n, t)←$ SRO1(1λ, ε) ; K← (k[1], . . . ,k[n])

L←$ SHash,RO1(1n, t) ; b←$DRO2(1λ,K, L) ; Return (b = 1)

Hash(x, 1`, i)

If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

RO1(v, 1`)

x← v[λ+ 1, |v|] ; K ← v[1, λ]

For i = 1 to n(λ) do

If K = k[i] then

coll← true

If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

If H[v, `] = ⊥ then H[v, `]←$ {0, 1}`

Return H[v, `]

RO2(v, 1`)

x← v[λ+ 1, |v|] ; K ← v[1, λ]

For i = 1 to n(λ) do

If K = k[i] then

If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

If H[v, `] = ⊥ then H[v, `]←$ {0, 1}`

Return H[v, `]

Figure 25: Games G1–G4 for the proof of Theorem 6.1. Games G2,G3 include the corresponding
boxed statement, while the other games do not.

identical-until-bad. Then for every λ ∈ N,

Pr[GS,D
3 (λ)]− Pr[GS,D

4 (λ)] ≤ Pr[GS,D
4 (λ) sets bad] ≤ n(λ)2

2λ+1
.

In game GS,D
5 (λ), replies from RO1 are no longer consistent with Hash replies. The two games GS,D

4 (λ)

and GS,D
5 (λ) are identical-until-coll. Then for every λ ∈ N,

Pr[GS,D
4 (λ)]− Pr[GS,D

5 (λ)] ≤ Pr[GS,D
5 (λ) sets coll] ≤ n(λ) · q(λ)

2λ
,

where the last inequality is due to the fact that the keys now are uniformly random, and independent of
whatever S receives. In game GS,D

6 (λ), in procedure RO2, we reset the entries of T before giving answers
to D. Now consider the reset-adversary R constructed below:

RHash,RO(1λ, 1n, L)

For i = 1 to n(λ) do k[i]←$ {0, 1}λ
K← (k[1], . . . ,k[n]) ; b←$DROSim(1λ,K, L)
Return b

ROSim(v, 1`)

x← v[λ+ 1, |v|] ; K ← v[1, λ]
For i = 1 to n(λ) do

If K = k[i] then return Hash(x, 1`, i)
Else return RO(v, 1`)

48

Main GS,D
5 (λ)

For i = 1 to n(λ) do k[i]←$ {0, 1}λ

(1n, t)←$ SRO1(1λ, ε) ; K← (k[1], . . . ,k[n])

L←$ SHash,RO1(1n, t) ; b←$DRO2(1λ,K, L)

Return (b = 1)

Hash(x, 1`, i)

If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

RO1(v, 1`)

x← v[λ+ 1, |v|] ; K ← v[1, λ]

For i = 1 to n(λ) do

If K = k[i] then coll← true

If H[v, `] = ⊥ then H[v, `]←$ {0, 1}`

Return H[v, `]

RO2(v, 1`)

x← v[λ+ 1, |v|] ; K ← v[1, λ]

For i = 1 to n(λ) do

If K = k[i] then

If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

If H[v, `] = ⊥ then H[v, `]←$ {0, 1}`

Return H[v, `]

Main GS,D
6 (λ), GS,D

7 (λ)

For i = 1 to n(λ) do k[i]←$ {0, 1}λ

(1n, t)←$ SRO1(1λ, ε) ; K← (k[1], . . . ,k[n])

L←$ SHash,RO1(1n, t) ; b←$DRO2(1λ,K, L)

Return (b = 1)

Hash(x, 1`, i)

If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

RO1(v, 1`)

If H[v, `] = ⊥ then H[v, `]←$ {0, 1}`

Return H[v, `]

RO2(v, 1`)

x← v[λ+ 1, |v|] ; K ← v[1, λ]

For i = 1 to n(λ) do

If K = k[i] then

If H[v, `] 6= ⊥ then bad← true ; Return H[v, `]

T [x, `, i]←$ {0, 1}` ; Return T [x, `, i]

If H[v, `] = ⊥ then H[v, `]←$ {0, 1}`

Return H[v, `]

Figure 26: Games G5,G6, and G7 for the proof of Theorem 6.1. Game G7 includes the corresponding
boxed statement, while the other games do not.

Let a be the challenge bit of game mResetRS (λ). Then for every λ ∈ N,

Pr[GS,D
5 (λ)] = Pr[mResetRS (λ) | a = 1] and Pr[GS,D

6 (λ)] = 1− Pr[mResetRS (λ) | a = 0] .

In game GS,D
7 (λ), replies from RO1 and RO2 are consistent. Games GS,D

6 (λ) and GS,D
7 (λ) are identical-

until-bad. The flag bad is set only if S queries (k[i] ‖x, 1`) to RO1, for some i ≤ n(λ). Then

Pr[GS,D
6 (λ)]− Pr[GS,D

7 (λ)] ≤ Pr[GS,D
7 (λ) sets bad] ≤ n(λ) · q(λ)

2λ
.

Hence, for every λ ∈ N,

Advm-uce
S,D,H(λ) = Pr[mUCES,DH (λ) | d = 1] + Pr[mUCES,DH (λ) | d = 0]]− 1

= Pr[GS,D
1 (λ)]− Pr[GS,D

7 (λ)]

≤
6∑
i=1

Pr[GS,D
i (λ)]− Pr[GS,D

i+1 (λ)]

≤ Advmreset
S,R (λ) +

2n(λ) · q(λ) + n(λ)2

2λ

yielding Equation (21).

6.2 Practical constructions

We consider practical, heuristic instantiations for families of functions assumed UCE secure. The UCE
framework and security definitions are asymptotic, while these real-world instantiations are based on non-

49

asymptotic blockciphers and hash functions, so we make no formal claims about security. We ignore the
security parameter and consider FOL families, so that we view H.Kg as taking no inputs and we view H.Ev
as taking only a key and an input.

A natural instantiation is via a block cipher, for example AES. Here, H.Kg would pick a random 128-
bit string K, and H.Ev(K,X) would return AES(K,X). However, as we saw in part (2) of the proof of
Proposition 4.4, this construction fails to provide UCE[Ssup] security since AES is efficiently invertible given
the key and this can be exploited to mount an attack. This is interesting in the light of the fact that it is
standard to use AES as a PRF or PRP.

One could consider instantiations based on cryptographic hash functions such as SHA256, but UCE
security requires a keyed function, and SHA256 is not keyed. This suggests that we use the HMAC con-
struction of [14, 91]. This is indeed our leading suggestion for a practical way to instantiate families assumed
UCE secure, for example for mUCE[S] where S is Ssup-m,Ssrs-m or subsets of these, or for UCE[Ssplt].

An interesting open question is whether the assumption that HMAC provides (say) mUCE[Ssup-m]-
security can be validated in an idealized model where one assumes the compression function is ideal. (If
not, the suggestion that it be used to instantiate UCE families in practice should be reconsidered.) Since
we have provided in Section 6.1 a ROM-based construct, one might hope to validate HMAC based on its
indifferentiability from a RO [61], but as per [103] indifferentiability may not be enough because UCE is a
multi-stage game, so a different approach or a direct analysis may be needed.

Acknowledgments

We thank the Crypto 2013 PC for their many valuable comments and suggestions. We thank Dan Boneh,
Adam O’Neill, Phillip Rogaway, Ananth Raghunathan and Amit Sahai for their comments. We thank Peter
Gaži for pointing out a bug in the proof of Theorem 6.1 in a prior version of this paper.

References

[1] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev. Message-locked encryption for lock-dependent
messages. In R. Canetti and J. Garay, editors, Advances in Cryptology - CRYPTO 2013, volume 8042 of Lecture
Notes in Computer Science, pages 374–391. Springer Berlin Heidelberg, 2013. 26

[2] T. Acar, M. Belenkiy, M. Bellare, and D. Cash. Cryptographic agility and its relation to circular encryption.
In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 403–422. Springer, May 2010. 28

[3] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptography against
memory attacks. In O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 474–495. Springer, Mar. 2009.
21

[4] B. Applebaum. Key-dependent message security: Generic amplification and completeness. In K. G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 527–546. Springer, May 2011. 6, 28

[5] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure encryption
based on hard learning problems. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 595–618.
Springer, Aug. 2009. 6, 28

[6] B. Applebaum, D. Harnik, and Y. Ishai. Semantic security under related-key attacks and applications. In
A. Yao, editor, ICS 2011. Tsinghua University Press, 2011. 6, 29

[7] B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions with constant online rate or how
to compress garbled circuits keys. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043
of LNCS, pages 166–184. Springer, Aug. 2013. 39

[8] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson, and D. Song. Provable data
possession at untrusted stores. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson, editors, ACM CCS 07,
pages 598–609. ACM Press, Oct. 2007. 36

[9] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the (im)possibility
of obfuscating programs. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer,
Aug. 2001. 4

50

[10] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message security. In H. Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 423–444. Springer, May 2010. 6, 28

[11] M. Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In C. Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 602–619. Springer, Aug. 2006. 7

[12] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In A. Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–552. Springer, Aug. 2007. 4, 5, 8, 23, 24

[13] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model scheme for a hybrid-
encryption problem. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS,
pages 171–188. Springer, May 2004. 3

[14] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In N. Koblitz,
editor, CRYPTO’96, volume 1109 of LNCS, pages 1–15. Springer, Aug. 1996. 7, 9, 50

[15] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption: Definitional equivalences and
constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
360–378. Springer, Aug. 2008. 5, 9, 23, 24

[16] M. Bellare, V. Hoang, and P. Rogaway. Adaptively secure garbling with applications to one-time programs
and secure outsourcing. In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
134–153. Springer, Dec. 2012. 6, 38, 39, 40

[17] M. Bellare, V. Hoang, and P. Rogaway. Foundations of garbled circuits. In ACM Computer and Communications
Security (CCS’12). ACM, 2012. 38, 39

[18] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and secure deduplication. In T. Jo-
hansson and P. Q. Nguyen, editors, Advances in Cryptology–EUROCRYPT 2013, volume 7881 of LNCS, pages
296–312. Springer, 2013. 5, 25, 26

[19] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and
applications. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, May
2003. 30

[20] M. Bellare and T. Kohno. Hash function balance and its impact on birthday attacks. In C. Cachin and
J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 401–418. Springer, May 2004. 29

[21] M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In
M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 273–289. Springer, Aug. 2004. 9

[22] M. Bellare, K. G. Paterson, and S. Thomson. RKA security beyond the linear barrier: IBE, encryption and
signatures. In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 331–348.
Springer, Dec. 2012. 6, 29

[23] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993. 3, 5, 22

[24] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis, editor, EUROCRYPT’94, volume
950 of LNCS, pages 92–111. Springer, May 1994. 4, 5, 6, 31

[25] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA and Rabin. In
U. M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 399–416. Springer, May 1996. 8, 9

[26] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, May / June
2006. 10, 13, 15, 16, 33

[27] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. Indistinguishability obfuscation vs. auxiliary-input ex-
tractable functions: One must fall. Cryptology ePrint Archive, Report 2013/641, 2013. http://eprint.iacr.
org/2013/641. 9

[28] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-dependent messages.
In K. Nyberg and H. M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 62–75. Springer, Aug. 2002. 5,
28

[29] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudorandom bits. SIAM
Journal on Computing, 13(4):850–864, 1984. 21

51

http://eprint.iacr.org/2013/641
http://eprint.iacr.org/2013/641

[30] A. Boldyreva, D. Cash, M. Fischlin, and B. Warinschi. Foundations of non-malleable hash and one-way func-
tions. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 524–541. Springer, Dec. 2009.
4

[31] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient
constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
335–359. Springer, Aug. 2008. 5, 9, 23

[32] A. Boldyreva and M. Fischlin. Analysis of random oracle instantiation scenarios for OAEP and other practical
schemes. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 412–429. Springer, Aug. 2005. 4, 6

[33] A. Boldyreva and M. Fischlin. On the security of OAEP. In X. Lai and K. Chen, editors, ASIACRYPT 2006,
volume 4284 of LNCS, pages 210–225. Springer, Dec. 2006. 4, 6

[34] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 443–459. Springer, Aug. 2004. 9

[35] D. Boneh and X. Boyen. Short signatures without random oracles and the SDH assumption in bilinear groups.
Journal of Cryptology, 21(2):149–177, Apr. 2008. 7

[36] D. Boneh and X. Boyen. Efficient selective identity-based encryption without random oracles. Journal of
Cryptology, 24(4):659–693, Oct. 2011. 6, 37

[37] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size ciphertext. In
R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 440–456. Springer, May 2005. 7

[38] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 41–55. Springer, Aug. 2004. 7

[39] D. Boneh and M. K. Franklin. Identity based encryption from the Weil pairing. SIAM Journal on Computing,
32(3):586–615, 2003. 7

[40] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and
private keys. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 258–275. Springer, Aug. 2005.
7

[41] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In J. Kilian, editor, TCC 2005,
volume 3378 of LNCS, pages 325–341. Springer, Feb. 2005. 7

[42] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from decision Diffie-Hellman.
In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 108–125. Springer, Aug. 2008. 6, 28

[43] Z. Brakerski and G. Segev. Better security for deterministic public-key encryption: The auxiliary-input setting.
In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 543–560. Springer, Aug. 2011. 5, 9, 23, 25

[44] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key
dependent messages. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 505–524. Springer,
Aug. 2011. 28

[45] C. Brzuska, P. Farshim, and A. Mittelbach. Indistinguishability obfuscation and uces: The case of computa-
tionally unpredictable sources. Cryptology ePrint Archive, Report 2014/099, 2014. 4, 9, 13

[46] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarithmic
communication. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 402–414. Springer, May
1999. 6

[47] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In B. S. Kaliski
Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 455–469. Springer, Aug. 1997. 4

[48] R. Canetti and R. R. Dakdouk. Extractable perfectly one-way functions. In L. Aceto, I. Damg̊ard, L. A.
Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP 2008, Part II, volume 5126
of LNCS, pages 449–460. Springer, July 2008. 4

[49] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited (preliminary version). In
30th ACM STOC, pages 209–218. ACM Press, May 1998. 3, 8

[50] R. Canetti, O. Goldreich, and S. Halevi. On the random-oracle methodology as applied to length-restricted
signature schemes. In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 40–57. Springer, Feb. 2004. 3

52

[51] R. Canetti, Y. T. Kalai, M. Varia, and D. Wichs. On symmetric encryption and point obfuscation. In D. Mic-
ciancio, editor, TCC 2010, volume 5978 of LNCS, pages 52–71. Springer, Feb. 2010. 27

[52] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash functions (preliminary version).
In 30th ACM STOC, pages 131–140. ACM Press, May 1998. 4

[53] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication
complexity (extended abstract). In 26th FOCS, pages 429–442. IEEE Computer Society Press, Oct. 1985. 9, 23

[54] J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, CRYPTO 2000, volume 1880 of
LNCS, pages 229–235. Springer, Aug. 2000. 9

[55] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited: How to construct a hash
function. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–448. Springer, Aug. 2005. 6, 9

[56] D. Dachman-Soled, R. Gennaro, H. Krawczyk, and T. Malkin. Computational extractors and pseudorandom-
ness. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 383–403. Springer, Mar. 2012. 8, 14

[57] G. Demay, P. Gazi, M. Hirt, and U. Maurer. Resource-restricted indifferentiability. In T. Johansson and P. Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 664–683. Springer, May 2013. 9

[58] A. W. Dent. Adapting the weaknesses of the random oracle model to the generic group model. In Y. Zheng,
editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 100–109. Springer, Dec. 2002. 7

[59] Y. Dodis, R. Oliveira, and K. Pietrzak. On the generic insecurity of the full domain hash. In V. Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 449–466. Springer, Aug. 2005. 3, 8, 9

[60] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from biometrics
and other noisy data. SIAM Journal on Computing, 38(1):97–139, 2008. 14

[61] Y. Dodis, T. Ristenpart, J. P. Steinberger, and S. Tessaro. To hash or not to hash again? (in)differentiability
results for h2 and HMAC. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 348–366. Springer, Aug. 2012. 9, 50

[62] J. Douceur, A. Adya, W. Bolosky, P. Simon, and M. Theimer. Reclaiming space from duplicate files in a
serverless distributed file system. In Distributed Computing Systems, 2002. Proceedings. 22nd International
Conference on, pages 617–624. IEEE, 2002. 5, 25, 26

[63] M. Fischlin. A note on security proofs in the generic model. In T. Okamoto, editor, ASIACRYPT 2000, volume
1976 of LNCS, pages 458–469. Springer, Dec. 2000. 7

[64] P.-A. Fouque, D. Pointcheval, and S. Zimmer. HMAC is a randomness extractor and applications to TLS. In
M. Abe and V. Gligor, editors, ASIACCS 08, pages 21–32. ACM Press, Mar. 2008. 8, 14

[65] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the RSA assumption.
Journal of Cryptology, 17(2):81–104, Mar. 2004. 6, 31

[66] B. Fuller, A. O’Neill, and L. Reyzin. A unified approach to deterministic encryption: New constructions and a
connection to computational entropy. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 582–599.
Springer, Mar. 2012. 5, 9

[67] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation
and functional encryption for all circuits. Proc. of FOCS (to appear), 2013. 4

[68] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to
untrusted workers. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer, Aug.
2010. 6, 39, 40

[69] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. In J. Stern,
editor, EUROCRYPT’99, volume 1592 of LNCS, pages 123–139. Springer, May 1999. 9

[70] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, 41st ACM STOC,
pages 169–178. ACM Press, May / June 2009. 39

[71] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM, 33:792–
807, 1986. 3

[72] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In 21st ACM STOC, pages
25–32. ACM Press, May 1989. 21

53

[73] S. Goldwasser and Y. T. Kalai. On the (in)security of the Fiat-Shamir paradigm. In 44th FOCS, pages 102–115.
IEEE Computer Society Press, Oct. 2003. 3

[74] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In D. Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 39–56. Springer, Aug. 2008. 6, 39, 40

[75] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–299,
1984. 21

[76] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography on tamper-proof hardware
tokens. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 308–326. Springer, Feb. 2010. 6, 39

[77] V. Goyal, A. O’Neill, and V. Rao. Correlated-input secure hash functions. In Y. Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 182–200. Springer, Mar. 2011. 5, 6, 37

[78] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for NP. In S. Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer, May / June 2006. 7

[79] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function.
SIAM Journal on Computing, 28(4):1364–1396, 1999. 8

[80] J. H̊astad and M. Näslund. The security of individual RSA bits. In 39th FOCS, pages 510–521. IEEE Computer
Society Press, Nov. 1998. 21

[81] D. Hofheinz. Possibility and impossibility results for selective decommitments. Journal of Cryptology, 24(3):470–
516, July 2011. 8

[82] D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. In D. Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 21–38. Springer, Aug. 2008. 8, 9

[83] S. Hohenberger, A. Sahai, and B. Waters. Replacing a random oracle: Full domain hash from indistinguishability
obfuscation. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 201–220.
Springer, May 2014. 8

[84] C.-Y. Hsiao, C.-J. Lu, and L. Reyzin. Conditional computational entropy, or toward separating pseudoentropy
from compressibility. In M. Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 169–186. Springer,
May 2007. 8

[85] A. Juels and B. S. Kaliski Jr. Pors: proofs of retrievability for large files. In P. Ning, S. D. C. di Vimercati,
and P. F. Syverson, editors, ACM CCS 07, pages 584–597. ACM Press, Oct. 2007. 36

[86] S. A. Kakvi and E. Kiltz. Optimal security proofs for full domain hash, revisited. In D. Pointcheval and
T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 537–553. Springer, Apr. 2012. 9

[87] E. Kiltz, A. O’Neill, and A. Smith. Instantiability of RSA-OAEP under chosen-plaintext attack. In T. Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 295–313. Springer, Aug. 2010. 4, 6, 31

[88] E. Kiltz and K. Pietrzak. On the security of padding-based encryption schemes - or - why we cannot prove
OAEP secure in the standard model. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
389–406. Springer, Apr. 2009. 3

[89] R. Kotla, L. Alvisi, and M. Dahlin. Safestore: A durable and practical storage system. In Usenix Technical
2007, pages 331–348. USENIX, 2007. 36

[90] H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In T. Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer, Aug. 2010. 8, 14

[91] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authentication. IETF Internet
Request for Comments 2104, Feb. 1997. 9, 50

[92] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM
Journal on Computing, 17(2), 1988. 16

[93] B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for obfuscation. In C. Cachin and
J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 20–39. Springer, May 2004. 5, 27

[94] T. Malkin, I. Teranishi, and M. Yung. Efficient circuit-size independent public key encryption with KDM
security. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 507–526. Springer, May
2011. 6, 28

54

[95] T. Matsuda and G. Hanaoka. Chosen ciphertext security via UCE. In H. Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 56–76. Springer, Mar. 2014. 10

[96] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions, and
applications to the random oracle methodology. In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages
21–39. Springer, Feb. 2004. 3, 6, 8, 9, 36

[97] A. Mittelbach. Salvaging indifferentiability in a multi-stage setting. In P. Q. Nguyen and E. Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 603–621. Springer, May 2014. 10

[98] J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing encryp-
tion case. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 111–126. Springer, Aug. 2002.
3

[99] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and System Sciences,
52(1):43–52, 1996. 14

[100] R. Pass. Limits of provable security from standard assumptions. In L. Fortnow and S. P. Vadhan, editors, 43rd
ACM STOC, pages 109–118. ACM Press, June 2011. 8

[101] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party computation is practical. In
M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer, Dec. 2009. 6, 40

[102] A. Raghunathan, G. Segev, and S. Vadhan. Deterministic public-key encryption for adaptively chosen plaintext
distributions. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology–EUROCRYPT 2013, volume
7881 of LNCS, pages 93–110. Springer, 2013. 25

[103] T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limitations of the indifferentiability
framework. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer,
May 2011. 5, 6, 9, 10, 36, 50

[104] H. Shacham and B. Waters. Compact proofs of retrievability. In J. Pieprzyk, editor, ASIACRYPT 2008, volume
5350 of LNCS, pages 90–107. Springer, Dec. 2008. 36

[105] D. Wichs. Barriers in cryptography with weak, correlated and leaky sources. In ITCS 2013, 2013. 8

[106] A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages 160–164. IEEE
Computer Society Press, Nov. 1982. 38

[107] A. C.-C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd FOCS, pages 80–91.
IEEE Computer Society Press, Nov. 1982. 21

55

	Introduction
	Background
	The core problem and previous work
	UCE
	Applications
	Constructing UCE-secure families

	Perspective and discussion
	Preliminaries
	UCE
	Syntax
	UCE security
	Simple unpredictability
	Relations
	From FOL to VOL
	mUCE security

	Applications of UCE
	Hardcore functions for any OWF
	Instantiating the BR93 PKE scheme
	Deterministic encryption
	Message-locked encryption
	Point-function obfuscation
	Security for key-dependent messages
	Security against related-key attack
	OAEP
	Proofs of storage
	Correlated-input hash functions
	Adaptively secure garbling with short tokens

	Constructions of UCE families
	Achieving UCE in the ROM
	Practical constructions

