
Break WEP Faster with Statistical
Analysis

Rafik Chaabouni

School of Computer and Communication Sciences

Semester Project

June 2006

Responsible
Prof. Serge Vaudenay

EPFL / LASEC

Supervisor
Martin Vuagnoux
EPFL / LASEC

2

Contents

1 Introduction 5

2 RC4 7
2.1 KSA . 7
2.2 PRGA . 8
2.3 RC4 analysis . 9

3 WEP 11

4 Korek attacks 15
4.1 1st attack: Korek A s5 1 . 16
4.2 2nd attack: Korek A s13 . 17
4.3 3rd attack: Korek A u13 1 . 18
4.4 4th attack: Korek A u5 1 . 20
4.5 5th attack: Korek A u5 2 . 22
4.6 6th attack: Korek A u13 2 . 23
4.7 7th attack: Korek A u13 3 . 25
4.8 8th attack: Korek A u5 3 . 26
4.9 9th attack: Korek A s3 . 28
4.10 10th attack: Korek A u15 . 30
4.11 11th attack: Korek A s5 2 . 32
4.12 12th attack: Korek A s5 3 . 35
4.13 13th attack: Korek A 4 s13 . 37
4.14 14th attack: Korek A 4 u5 1 . 40
4.15 15th attack: Korek A 4 u5 2 . 42
4.16 16th attack: Korek A u5 4 . 45
4.17 17th attack: Korek A neg . 48

4.17.1 . 48
4.17.2 . 48
4.17.3 . 49
4.17.4 . 50

5 New attacks? 51
5.1 18th attack: Mansor A 4 s5 1 . 51

6 Conclusion 55

3

4 CONTENTS

Chapter 1

Introduction

The WEP (Wired Equivalent Privacy) protocol has been created in order
to provide privacy to the 802.11 based wireless space. This protocol is a
weak version of RC4, because the initial vector used before the secret key,
to generate the output stream, needs to be public. In this analysis we will
first give an overview of what is RC4, to be able to fully understand the
WEP protocol, then we will present the first generalized attack done on it,
know as the Fluhrer, Mantin and Shamir (FMS). In the next chapter we
will explain the recent attacks presented by Korek as a piece of code on the
NetStumbler forum. And finally, we will present a new attack and we will
try to demonstrate how new potential attacks can still be found.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

RC4

RC4 is a stream cipher designed by Ron Rivest in 1987, kept trade secret
until an anonymous release in 1994. This stream cipher is decomposed
into two parts: a Key Scheduling Algorithm (KSA) and a Pseudo-Random
Generation Algorithm (PRGA). The KSA is fed with a key, which will set
up an internal state for the PRGA. PRGA will then be able to generate a
pseudo-random output sequence. Here is a high level overview of the RC4
scheme:

key K −→ KSA −→Internal State−→ PRGA −→ Key Stream

In the following chapter we will deeper the mechanism above explaining
KSA and PRGA.

2.1 KSA

This algorithm takes as input the secret key K of length l, begins with the
initialization of the internal state S to set it as the identity permutation,
and then uses the key K to scramble S.

KSA(K)
Initialization:

For i = 0 to N − 1
S[i] = i

j = 0
Scrambling:

For i = 0 to N − 1
j = (j + S[i] + K[i mod l]) mod N
Swap(S[i], S[j])

7

8 CHAPTER 2. RC4

After the initialization, the internal state S looks like this:

0 1 2 3 ... N − 1

Then the index i and j are reset to 0, in order to proceed with the scrambling.
This is done by stepping i across S, while updating the value of j with its
previous value, plus the element of S at position i, plus the ith modulo l
element of K. This j computed value is used modulo N to swap the elements
of S pointed by i and j. Let us denote each round of this loop as being a
step. For instance if we have the following key K:

0 1 2 3 ...
4 8 242 254 ...

The internal state will evolve this way:

Initial S:
0 1 2 3 4 ... N-1
0 1 2 3 4 ... N − 1

The first step will give us i = 0 and j = 0 + S[0] + K[0] = 0 + 4 = 4:

0 1 2 3 4 ... N-1
4 1 2 3 0 ... N − 1

The second step will give us i = 1 and j = 4 + S[1] + K[1] = 4 + 1 + 8 = 13:

0 1 2 3 4 ... N-1
4 13 2 3 0 ... N − 1

The internal state is a permutation of size N = 2n of all possible n bits
word. This gives us a space of size 2n!. Along with it i and j take a value
between 0 and 2n−1, resulting to a total space size of 2n! ·28 ·28 = 2n! ·(28)2.

2.2 PRGA

Similarly to the KSA, the PRGA initializes i and j to 0 and enter into an
infinite loop that produces the key output stream.

PRGA(K)
Initialization:

i = 0
j = 0

Generation loop:
i = (i + 1) mod N
j = (j + S[i]) mod N
Swap(S[i], S[j])
Output z = S[(S[i] + S[j]) mod N]

2.3. RC4 ANALYSIS 9

The loop consists of increasing i by one (while respecting a maximum value
of N − 1) and j by the value S[i]. Then both values S[i] and S[j] are
swapped and the key stream output byte is computed according to this
formula: z = S[(S[i] + S[j]) mod N]. Let us continue our previous example
in KSA. We recall that our key is:

0 1 2 3 ...
4 8 242 254 ...

And let us assume that our internal state after the KSA is as follows:

0 1 2 3 4 5 ...
4 2 3 13 43 7 ...

In the initialization of PRGA, i is set to 0 as well as j. Then i is incremented
by one (i = 1) while j is incremented by S[1] = 2 (j = 2). S[i] and S[j] are
swapped resulting to the following internal state:

0 1 2 3 4 5 ...
4 3 2 13 43 7 ...

Thus the first key output byte is z = S[S[1] + S[2]] = S[5] = 7.

2.3 RC4 analysis

RC4 has initiated extensive research due to its simplicity, resulting to several
weaknesses identified. First large classes of weak keys exist. These classes
determine a large part of the internal state from a small chunk of the secret
key. The patterns resulting from the KSA fed with this weak keys are
translated with the PRGA into patterns in the prefix of the output stream.
Secondly, the knowledge of some bytes of the secret key brings a high amount
of knowledge on the other ones. This is done by analyzing encrypted packets
with several exposed values of the key. This particular case is the major flaw
in WEP because this protocol uses an Initial Vector (IV) of three bytes,
preceding the secret key and sent in clear with the encrypted packet.

10 CHAPTER 2. RC4

Chapter 3

WEP

WEP, Wired Equivalent Privacy, is a protocol based on the RC4 stream
cipher. Its purpose is to enable the encryption of packets in a wireless
environment. To do so, WEP injects a seed composed by a public Initial
Vector (IV) preceding a secret key to the RC4 module, that will generate a
key stream used in the encryption of data.

Plaintext
110011

²²
IV secret key // RC4 010101 //⊕⊕⊕

100110

²²²²

__________________________ encrypt

IV Ciphertext

100110

²²

decrypt

²²
IV secret key // RC4 010101 //⊕⊕⊕

110011
²²

Plaintext

The size of the internal state is fixed and equal to N = 256. The initial
vector is a three bytes size seed that is as random as possible in order to
prevent attacks. However their knowledge (they are sent in clear) combined
with the knowledge of the first output bytes of the PRGA, enables attacks
based on statistical analysis. The first important attack called the FMS
attack according to its authors (Fluhrer, Mantin and Shamir), started by
looking at the IVs in order to find a relation enabling them to perform an
attack. We will see in the next chapter why this approach is not as powerful

11

12 CHAPTER 3. WEP

as the one used by Korek. Thus they came with the following relation: if the
IV is of the form A + 3 255 X the key which has the index A + 3 can
be recovered. The reason of the 3 is not to take into account the bytes of
the IV. For instance if we want to recover the value of K[3] and we receive
in our network sniffing the following IV: 3 255 X we can estimate
the value of K[3] according to the information provided by the first output
byte o1. Let us follow the sequence of events that occurs during the KSA
to understand how this relation react. (Please note that we are working
modulus N, where N is equal to 256, in all the rest of this research).

Initialization of the KSA:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 3

1st step:
0 1 2 3 4 5 6 ...
3 1 2 0 4 5 6 ...

i1 = 1, j1 = 3 (recall that 255 + 1 = 0)

2nd step:
0 1 2 3 4 5 6 ...
3 0 2 1 4 5 6 ...

i2 = 2, j2 = 5 + X

3rd step:

0 1 2 3 4 5 6 ...
3 0 5 + X 1 4 5 6 ...

i3 = 3, j3 = X + 6 + K[3]
(recall that we are looking for K[3] value)

4th step:
0 1 2 3 4 5 6 ...
3 0 5 + X S3[X + 6 + K[3]] 4 5 6 ...

Where S3 represents the internal state in the 3rd step.

Now we will suppose that some values of the internal state will stay
unchanged during the rest of the KSA process. This assumption is a key
element in all the attacks because we need to have some degree of assumption
on the internal state that will be presented to the PRGA. The number of
unchanged elements and the step from which they must stay unchanged will
determine the probability of success of these attacks. In this example we
are willing that S[0], S[1] and S[3] stay unchanged after the 4th step of the
KSA, giving us a probability of success of 5.127% (we will explain in the
next chapter how to compute this approximation). If we come back to our
example, once our desired internal state will be presented to the PRGA,
a swap will be made between S[0] and S[1] because S[1] = 0. Then o1
will receive the value S[S[0] + S[1]] = S[0 + 3] = S[3] = S3[X + 6 + K[3]].
Therefore we are able to identify the value of K[3] as being equal to Si[o1]−

13

X − 6 (here Si represents the indexes of the elements in the third step of
the KSA: Si[3] = 0, Si[0] = 1). The authors of the FMS attack managed to
enhance their relation to the cases where (S[1]+S[S[1]]) mod 256 = p. The
drawback of their method is that network constructors can easily discard
packets that correspond to known IV relation.

14 CHAPTER 3. WEP

Chapter 4

Korek attacks

While discussing in an Internet forum (NetStumbler), a person under the
pseudonym of Korek published a code that describes seventeen attacks on
the WEP protocol. These attacks can be regrouped in three major parts: a
first group tries to recover key bytes based on the first outputted key byte
from the stream generated by the PRGA, while the second one also include
the knowledge of the first and the second outputted key byte. The third
group consists of reverse methods to reduce the size of the search space, also
known as “inverted attacks”.

We will explain in this section how the current attacks are done and
what is the approximation of their success rate.

The approach used to perform the attacks are now no more based on
identifiable IVs but on how they make the KSA and the PRGA behave,
hence no more blind filtering can be done at a router. In order to proceed
with each attack some preprocessing is done. Let us assume that we attack
the nth key byte (the three first ones being the IV - in the rest of this report
we will assume that n − 1 = p and in order to follow the logic of tables in
C, the first key byte being in position 0), hence the first byte of the key
unknown to an attacker. The KSA has to be run until this unknown key
byte is reached (p steps needed), which will provide us an approximation of
the final internal state (that we will denote as S) for the elements that are
at the beginning of the internal state. While doing this process we record all
the values that j takes and use this information to build a table containing
the position of each element in the approximated value of the internal state.
This last table will be denoted as Si.

The approximation done on the success rate formula, express our mo-
tivation to look at the probability that some elements of the internal state
do not get modified in the rest of the KSA. Thus after p steps we want to
estimate the probability that q elements must stay unchanged (up to the

15

16 CHAPTER 4. KOREK ATTACKS

PRGA). Thus we can estimate this probability as such:

(256−q
256)

256−p

4.1 1st attack: Korek A s5 1

Probability of success: (253
256)

256−p ≈ 5.07% (p = 3)

This first attack is the generalization of the classic FMS attack seen
previously. We hence select all the IV that has the following properties:

1. S[1] < p
This is done in order to maximize the chances that the first part of
the internal states stay unchanged.

2. (S[1] + S[S[1]]) mod 256 = p
This targets the cases where the first output byte of the key stream
(denoted o1) will be dependent of known values and the value of our
targeted key byte.

3. Si[o1] 6= 1 and 4. Si[o1] 6= S[S[1]]
Because we want the values in S[1] or S[S[1]] not to be overwritten we
set conditions 3 and 4.

As seen previously, these properties lead to two types of internal state for
an attack on K[3]:

0 1
3 0

0 1 2 ...
X 2 1 ...

Let us have a look to a concrete example in order to understand it better.
Assume we receive the following IV: 3 255 1 and that we are looking
for K[3] value (which is in our case equal to Si[o1] − S[p] − jp−1 =
Si[o1] − 7). If we follow the KSA, we will get the following moves for the
internal state:

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 3

1st step:
0 1 2 3 4 5 6 ...
3 1 2 0 4 5 6 ...

i1 = 1, j1 = 3 (recall that 255 + 1 = 0)

4.2. 2ND ATTACK: KOREK A S13 17

2nd step:
0 1 2 3 4 5 6 ...
3 0 2 1 4 5 6 ...

i2 = 2, j2 = 6

3rd step:

0 1 2 3 4 5 6 ...
3 0 6 1 4 5 2 ...

i3 = 3, j3 = 7 + K[3]
(recall that we are looking for K[3] value)

4th step:
0 1 2 3 4 5 6 ...
3 0 6 S3[7 + K[3]] 4 5 2 ...

Where S3 represents the internal state in the 3rd step.

If we look at the outputted byte, while assuming that the rest of the
KSA will not scramble the beginning of the internal state, we find that:
S[1] = 0 and S[0] = 3 thus o1 = S[S[1] + S[S[1]]] = S[3] = S3[7 + K[3]].
Therefore the attacked key byte can be computed as follow: K[p] = Si[o1]−
S[p]− jp−1, with Si[o1] being the index of o1 in the internal state computed
at step p− 1, S[p] taken in the same internal state (step p− 1).

4.2 2nd attack: Korek A s13

Probability of success: (254
256)

256−p ≈ 13.75% (p = 3)

In this second attack, a trick is used in the PRGA. If we end up after
the KSA with an internal state such as S[1] = p and S[p] = 0, the PRGA
will swap those values to output o1 = p. To achieve such a special case the
following requirements are necessary:

1. S[1] = p
This condition is to enable the PRGA to target for the element p in
the internal state.

2. o1 = p
By supposing that the first output byte will be p, we assume that
after the PRGA swap the value p will be in position p, enforcing the
supposition that jp is being equal to the index of 0.

Again, let us have a look on a concrete example. Consider the following
IV: 6 252 193 with K[3] as a target (in this example K[3] = Si[0]−
S[p] − jp−1 = 63). Then if we follow the KSA we will get:

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 6

18 CHAPTER 4. KOREK ATTACKS

1st step:
0 1 2 3 4 5 6 ...
6 1 2 3 4 5 0 ...

i1 = 1, j1 = 3 (recall that 6 + 252 + 1 = 3)

2nd step:
0 1 2 3 4 5 6 ...
6 3 2 1 4 5 0 ...

i2 = 2, j2 = 198

3rd step:

0 1 2 3 4 5 6 ...
6 3 198 1 4 5 0 ...

i3 = 3, j3 = 199 + K[3]
(recall that we are looking for K[3] value)

Before trying to check what happens in the 4th step, we should analyze
the behavior of the PRGA. In order to have p(= 3) outputted as o1, while
knowing that after the KSA S[1] = p(= 3), we must have S[p] = 0:

1st step of PRGA:

i = 1 and j = S[1] = 3
0 1 2 3 4 5 6 ...
6 3 198 0 4 5 1 ...

Recall that before the output
byte is given a swap is made!

0 1 2 3 4 5 6 ...
6 0 198 3 4 5 1 ...

This condition will set o1 as
S[S[1] + S[3]] = S[0 + 3] = S[3] = 3.

Hence we know that j3 = Si[0] and more generally jp = Si[0]. In
our example this will lead to a value of K[3] equal to Si[0] − S[3] − j2 =
6− 1− 198 = 63 which can be generalized as K[p] = Si[0]− S[p]− jp−1.

4.3 3rd attack: Korek A u13 1

Probability of success: (254
256)

256−p ≈ 13.75% (p = 3)

In this attack the same trick is used as the one in the second attack
(A s13), with the following conditions:

1. S[1] = p
We still target the pth element in the internal state, which will be
swapped with S[1] at the beginning of the PRGA.

2. o1 = ((1− p) mod 256)
Now we are supposing that the first output byte will be (1− p) mod

4.3. 3RD ATTACK: KOREK A U13 1 19

256. Thus we assume that after the PRGA swap our target output
will be in position 1, enforcing the supposition that jp is being equal
to the index of ((1− p) mod 256).

Consider the following IV: 0 2 185 with K[3] as a target (in this ex-
ample K[3] = Si[o1]− S[p]− jp−1 = 63). Then if we follow the KSA we
will get:

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 0

1st step:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i1 = 1, j1 = 3

2nd step:
0 1 2 3 4 5 6 ...
0 3 2 1 4 5 6 ...

i2 = 2, j2 = 190

3rd step:

0 1 2 3 4 5 6 ...
0 3 190 1 4 5 6 ...

i3 = 3, j3 = 191 + K[3]
(recall that we are looking for K[3] value)

Now if we try to identify what is happening in the PRGA, we get to find
the desired output o1 = ((1− p) mod 256) = 254. This value has to be set
in S[p] = S[3]. Therefor when the swap will be made, o1 will be such as
S[S[1]+S[S[1]]] = S[p+1− p] = S[1] = ((1− p) mod 256). Let us see what
it implies in our example:

1st step of PRGA:

Before the swap:
i = 1 and j = S[1] = 3
0 1 2 3 4 5 6 ...
0 3 190 254 4 5 6 ...

After the swap:
0 1 2 3 4 5 6 ...
6 254 190 3 4 5 1 ...

This condition will set o1 as
S[S[1] + S[3]] = S[254 + 3] = S[1] = 254

Hence we know that j3 = Si[o1] = Si[254] and more generally jp =
Si[o1] = Si[(1 − p) mod 256]. In our example this will lead to a value of
K[3] equal to Si[o1]−S[3]−j2 = 254−1−190 = 63 which can be generalized
as K[p] = Si[o1]− S[p]− jp−1.

20 CHAPTER 4. KOREK ATTACKS

4.4 4th attack: Korek A u5 1

Probability of success: (253
256)

256−p ≈ 5.07% (p = 3)

In the previous attacks (A u13 1), we tried to output a value that was
directly dependent to the key byte searched. Now we enlarge this vision
by saying that it is enough to output a value not directly dependent from
the key if the process to output it depends on the key. Let us assume the
following conditions:

1. S[1] = p
We continue to target the pth element for the PRGA.

2. o1 6= (1− p) mod 256
We eliminate cases of the A u13 1 attack.

3. o1 6= p
We also eliminate elements of the A s13 attack.

4. Si[o1] < p
The goal of this condition is to increase the chances that Si[o1] will
not change after the pth step of KSA.

5. Si[(Si[o1]− p) mod 256] 6= 1
This condition is protecting the integrity of S[1] = p, because if jp =
Si[(Si[o1] − p) mod 256] = 1 a swap will be made between S[1] and
S[p] in the pth step of the KSA. A similar case, where we suppose a
precise value of jp is illustrated with the attack A u5 2.

We will look at two different example to illustrate the goal of these condi-
tions. If we concentrate ourselves at looking for the first byte of the secret
key (K[3], which is equal to Si[(Si[o1]−p) mod 256]−S[p]−jp−1 = 64
in the first example), because of the fourth conditions we can predict that
o1 will be either in position 0 or 2 in S. It cannot be in 1 because of the
first condition.

If we start considering the case where o1 will be in position 0 (in S), we
can for instance take the case of an IV equal to: 16 243 183 Then the
KSA will be as follow:

Initialization:

0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 16
We see here that the output byte
will be immediately set to its right
position from the beginning.

4.4. 4TH ATTACK: KOREK A U5 1 21

1st step:

0 1 2 3 4 5 6 ...
16 1 2 3 4 5 6 ...

i1 = 1, j1 = 3 (recall that 16 + 1 + 243 = 3)
Note here that 3 (= p) will be
directly put into his desired index.

2nd step:
0 1 2 3 4 5 6 ...
16 3 2 1 4 5 6 ...

i2 = 2, j2 = 188

3rd step:

0 1 2 3 4 5 6 ...
16 3 188 1 4 5 6 ...

i3 = 3, j3 = 189 + K[3]
(recall that we are looking for K[3] value)

The KSA done, we are interested to find what value has j3 in order to
find K[3]. We have set o1 as being in position 0 thus o1 is equal to 16. We
also know from the PRGA that the outputted byte will be obtained from
S[S[i]+S[j]] after the swap between S[i] and S[j]. Furthermore we have set
as a condition that S[1] = 3 (i = 1) resulting in the swap between S[1] and
S[3]. Since the outputted byte is in position 0, the PRGA implies that the
sum of S[1] and S[3] has also to be null, to enable the return of the desired
value (o1 = S[S[1] + S[3]]). Therefore before the swap is done in PRGA,
S[3] must be equal to -3 mod 256 which is 253. Because S[3] has to be equal
to 253, and knowing that in the fourth step of KSA j3 = 189 + K[3] will be
put in S[3], we can conclude that K[3] = 253− 189 = 64.

We are now tempted to refine this attack with the condition that o1 =
S[0] = K[0] (the first IV byte). However by fixing o1 = S[0], we do not
improve the attack as we are just taking a portion of it, and by fixing the
value of o1 to K[0] we are decreasing the performance of the attack as we
limit the potential modification of S[0] in the KSA if we are looking for a
higher byte in the secret key. Of course in some cases these conditions will
be highly efficient against selected keys.

In the second example we illustrate the case where the output byte is
coming from S[2], in order to show that fixing o1 = S[0] = K[0] does not
provide more advantages. Note that here again we are looking for K[3]
(whose value is Si[(Si[o1]−p) mod 256]−S[p]− jp−1 = 155). For this
case, if we take the IV 48 210 94 we can derive the KSA as such:

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 48

22 CHAPTER 4. KOREK ATTACKS

1st step:

0 1 2 3 4 5 6 ...
48 1 2 3 4 5 6 ...

i1 = 1, j1 = 3 (recall that 48 + 1 + 210 = 3)
Here again we notice that 3 (= p) will be
directly put into his desired index.

2nd step:
0 1 2 3 4 5 6 ...
48 3 2 1 4 5 6 ...

i2 = 2, j2 = 99

3rd step:

0 1 2 3 4 5 6 ...
48 3 99 1 4 5 6 ...

i3 = 3, j3 = 100 + K[3]
(recall that we are looking for K[3] value)

At this stage we recognize a similar pattern to the first example. The
output byte being set in position 2 implies that S[1] + S[S[1]] = 2. Having
set S[1] to 3 implies that S[3] has to be equal to 255 in order to produce a
sum of 2. Knowing that j3 will be put in S[3] in the 4th step of KSA, this
gives us that j3 = 255 and thus K[3] = 255− 100 = 155.

We noticed in both cases that j1 = p. This is done to meet the require-
ments of the first condition. However this should not be inserted as another
condition since when looking for key bytes that are further away, the first
condition can be coped in a later step depending of the key’s nature.

Finally we can sum up the recovery of K[3] with the following reasoning:
Si[o1] = S[1] + S[S[1]] = p + S[jp]
which is equivalent to jp = Si[(Si[o1]− p) mod 256]
and K[p] = jp − S[p]− jp−1 = Si[(Si[o1]− p) mod 256]− S[p]− jp−1.

4.5 5th attack: Korek A u5 2

Probability of success: (253
256)

256−p ≈ 5.07% (p = 3)

This fifth attack highlights how much information we can extract by
making assumptions of the value jp. For instance we are going to suppose
here that it takes the value 1, while the following conditions are met:

1. Si[o1] = 2
We want the output byte being at index 2, because we are willing that
S[1] in the PRGA is equal to 1.

2. S[p] = 1
By setting this condition and with the hypothesis of jp = 1, we will get
a swap between S[1] and S[p], which will set S[1] = 1 for the PRGA.

4.6. 6TH ATTACK: KOREK A U13 2 23

while looking for K[3] (equal to 1 − S[p] − jp−1 = 64 in this example).
Let us see what this implies in practice by taking the IV 0 2 187 This
IV will influence the KSA as follow:

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 0

1st step:

0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i1 = 1, j1 = 3
Note here that 1 will be directly put into S[3] (= S[p])

2nd step:
0 1 2 3 4 5 6 ...
0 3 2 1 4 5 6 ...

i2 = 2, j2 = 192

3rd step:
0 1 2 3 4 5 6 ...
0 3 192 1 4 5 6 ...

i3 = 3, j3 = 193 + K[3]

Recall that we are looking for K[3] value and that we suppose that j3 = 1,
hence this attack with the corresponding IV will reveal K[3] when it is equal
to 1−193 = 64. The following idea can be extended to K[p] = 1−S[p]−jp−1.

Thus the 4th step of KSA will be:

0 1 2 3 4 5 6 ...
0 1 192 3 4 5 6 ...

We can now attest that Si[o1] = 2 because o1 = S[S[1] + S[S[1]]] = S[1 +
S[1]] = S[2] (no swap will be made because S[1] = 1). To summarize this
attack, we set the value of S[p] to 1, then we suppose that j3 = 1 which will
set the value 1 in S[1], thus outputting o1 = S[2].

4.6 6th attack: Korek A u13 2

Probability of success: (254
256)

256−p ≈ 13.75% (p = 3)

In this attack, we will again suppose that jp = 1 and we will expect the
swap of the PRGA to fit our output. The conditions used for this attack
are:

1. S[p] = p
We set this condition in order to send the p value into S[1] with the
assumption that jp = 1. This will enable the PRGA to select S[1] and
S[p] for the first swap.

24 CHAPTER 4. KOREK ATTACKS

2. S[1] = 0
Since we want the PRGA to output a controlled value, we set S[1] = 0
so that S[1] + S[p] = p in the PRGA.

3. o1 = p
We expect the output to be equal to p because this value swaps twice
(from S[p] to S[1] in the pth step of the KSA, then back to S[p] with
the first PRGA swap.

To illustrate how does it happen, while looking for K[3] (equal to 1−S[p]−
jp−1 = 64 in this example), let us take the case of the IV 4 255 184
When following the KSA we get:

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 4

1st step:
0 1 2 3 4 5 6 ...
4 1 2 3 0 5 6 ...

i1 = 1, j1 = 4 (remember that 4 + 255 + 1 = 4)

2nd step:
0 1 2 3 4 5 6 ...
4 0 2 3 1 5 6 ...

i2 = 2, j2 = 190

3rd step:
0 1 2 3 4 5 6 ...
4 0 190 3 1 5 6 ...

i3 = 3, j3 = 193 + K[3]

We are now interested in the value of K[3], while assuming that j3 will
take the value 1. Thus we can use the formula K[p] = 1 − S[p] − jp−1 for
our case: K[3] = 1− 193 = 64. But let us continue the KSA and the PRGA
to better understand why we make this assumption.

4th step:
0 1 2 3 4 5 6 ...
4 3 190 0 1 5 6 ...

Hence we see that when we will enter the PRGA, i = 1 and j = S[1] = 3
(= p). After the PRGA swap, we will get the following internal state:

0 1 2 3 4 5 6 ...
4 0 190 3 1 5 6 ...

Thus o1 = S[S[i] + S[j]] = S[S[1] + S[3]] = S[0 + 3] = S[3] = 3.

To summarize, once S[p] will be set as p and S[1] to 0 at the beginning
of the KSA, assuming that jp = 1 means that we will swap S[1] and S[p].

4.7. 7TH ATTACK: KOREK A U13 3 25

However this swap will be done again in the PRGA, because S[1] will be
equal to p. Therefore o1 will be equal to S[S[1] + S[p]] = S[0 + p] = p.

Note that in several cases K[1] will be equal to 255, but this is not always
the case. This value is to enable the retrieval of the 0 in the swap at the 2nd

step of KSA. However this is not the only way to set S[1] = 0: if we take
the IV 2 5 249 we will set S[1] = 0 in the 3rd step of KSA instead of
the 2nd step (here K[3] is equal to 1 − S[p] − jp−1 = 253).

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 2

1st step:
0 1 2 3 4 5 6 ...
2 1 0 3 4 5 6 ...

i1 = 1, j1 = 8

2nd step:
0 1 2 3 4 5 6 ...
2 8 0 3 4 5 6 ...

i2 = 2, j2 = 1 (remind that 8 + 249 + 0 = 1)

3rd step:
0 1 2 3 4 5 6 ...
2 0 8 3 4 5 6 ...

i3 = 3, j3 = 4 + K[3] ≡ 1 ⇒ K[3] = 253

4.7 7th attack: Korek A u13 3

Probability of success: (254
256)

256−p ≈ 13.75% (p = 3)

This attack is very comparable to the A u13 2, since we suppose that
jp = 1 and we will expect that the swap of the PRGA will set up our output
as being in S[1]. The conditions used for this attack are:

1. S[p] = p
Exactly as in A u13 2, we want the value p to be in S[p] at the begin-
ning of the KSA.

2. o1 = S[1]
In A u13 2 we wanted o1 to be equal to p. Now we try to target the
controlled value in S[1].

3. S[1] = (1− p) mod 256
To be able to target S[1] for o1, we need the sum of S[1] + S[p] = 1.
Because we said we wanted S[p] to be equal to p, it will require from
us the above condition.

26 CHAPTER 4. KOREK ATTACKS

We will take the IV 246 7 185 to feed the KSA while looking for K[3]
(equal to 1 − S[p] − jp−1 = 69 in this example):

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 246

1st step:
0 1 2 3 4 5 6 ...

246 1 2 3 4 5 6 ...
i1 = 1, j1 = 254 (this will place the value (1− p) in S[1])

2nd step:
0 1 2 3 4 5 6 ...

246 254 2 3 4 5 6 ...
i2 = 2, j2 = 185 (recall that 254 + 2 + 185 = 185)

3rd step:
0 1 2 3 4 5 6 ...

246 254 185 3 4 5 6 ...
i3 = 3, j3 = 188 + K[3]

We then suppose that j3 = 1 = jp in order to swap S[3] (= S[p]) and
S[1]. This will give us in the 4th step: S[1] = 3 = p and S[3] = 254 ≡
S[p] = (1 − p) mod 256. If S[1] and S[3] (= S[p]) do not change in the
rest of the KSA process, they will be presented to the PRGA which will
initialize j = S[1] = 3 = p and then swap S[1] and S[3] (= S[p]) to obtain
the following internal state:

0 1 2 3 4 5 6 ...
246 254 185 3 4 5 6 ...

With this state we see easily that o1 = S[S[1] + S[3]] = S[254 + 3] = S[1] =
254 ≡ S[S[1] + S[p]] = S[(1 − p) mod 256 + p] = S[1] = (1 − p) mod 256.
Note that by supposing that jp = 1 we are looking for K[p] = 1−S[p]−jp−1

(in our case: K[3] = 1− 188 = 69).

4.8 8th attack: Korek A u5 3

Probability of success: (253
256)

256−p ≈ 5.07% (p = 3)

This attack is an extension of A u13 2 and A u13 3, hence uses exactly
the same concepts. In A u13 3 we have fixed o1 in S[1] with the value (1−p)
mod 256, thus we wanted S[1] and S[p] to remain unchanged. Here o1 is
not set in S[1], however we still want that Si[o1], S[1] and S[p] are kept
unchanged (reducing the probability of success). Let us have a look at the
conditions:

4.8. 8TH ATTACK: KOREK A U5 3 27

1. S[p] = p
We keep the condition of S[p] containing the value p, in order to set
it in S[1] later with jp = 1 as assumption.

2. S[1] > (−1 · p) mod 256
In A u13 2 we wanted to have a controlled value in S[p] for o1. In
A u13 3, the controlled value was S[1]. Now we are looking for any
controlled value which index is bellow p. Knowing that 0 6 (S[1] +
S[p]) mod 256 = Si[o1] < p (we do not take into account Si[o1] = p
otherwise we will fall back to A u13 2), we can thus derive−p 6 S[1] <
0 which gives us the above condition.

3. S[1] = (Si[o1]− p) mod 256
Because (S[1] + S[p]) mod 256 = (S[1] + p) mod 256 = Si[o1], the
above condition is explained.

4. Si[o1] 6= 1
Finally we need to eliminate the A u13 3 cases, and this is done with
this condition (not present in WepLab, but included in AirCrack)

If we focus on Si[o1] while looking for K[3] (equal to 1−S[p]−jp−1 = 205
in this example), we see that Si[o1] can be either equal to 0 or 2 (1 being
forbidden). For the purpose of our example we will chose Si[o1] = 0 with
the following IV 12 240 50 while keeping in mind that the reasoning
behind it is identical when Si[o1] = 2. Thus the KSA will be started as
such:

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 12

1st step:

0 1 2 3 4 5 6 ...
12 1 2 3 4 5 6 ...

i1 = 1, j1 = 253
(S[1] will then receive the value (Si[o1]− p) mod 256)

2nd step:
0 1 2 3 4 5 6 ...
12 253 2 3 4 5 6 ...

i2 = 2, j2 = 49 (remember that 253 + 2 + 50 = 49)

3rd step:
0 1 2 3 4 5 6 ...
12 253 49 3 4 5 6 ...

i3 = 3, j3 = 52 + K[3]

We then suppose that j3 = 1 = jp in order to swap S[3] (= S[p]) and
S[1]. This will give us in the 4th step: S[1] = 3 = p and S[3] = 253 ≡ S[p] =
(Si[o1]− p) mod 256. If S[1], S[3] (= S[p]) and Si[o1] do not change in the

28 CHAPTER 4. KOREK ATTACKS

rest of the KSA, they will be presented to the PRGA which will initialize
j = S[1] = 3 = p and then swap S[1] and S[3] (= S[p]) to obtain the
following internal state:

0 1 2 3 4 5 6 ...
12 253 49 3 4 5 6 ...

With this state we see easily that o1 = S[S[1] + S[3]] = S[253 + 3] = S[0] =
12 ≡ S[S[1] + S[p]] = S[(Si[o1] − p) mod 256 + p] = S[Si[o1]]. Note that
by supposing that jp = 1, we are looking for K[p] = 1− S[p]− jp−1 (in our
case: K[3] = 1− 188 = 69).

4.9 9th attack: Korek A s3

Probability of success: (253
256)

256−p ≈ 5.13% (p = 4)

With this attack we start the second group of attacks. These last ones
include the knowledge of o2 in their concept. Thus while this attack is highly
based on the FMS attack, it extends it in the sense that we do not extract
information only from o1 but also from the second output byte stream o2. It
has first been presented by h1kary and then implemented by Topo[LB]. The
IV selected gives us internal states in the KSA that respect these constraints:

1. S[1] 6= 2
If S[1] equals 2 then we will loose, in the first swap of the PRGA, the
value that S[2] contains. Moreover the first PRGA j would be equal to
2. Thus the second one would be equal to 2 plus the value contained
in S[2] which has been set to 2. Hence we will no more have o2 equal
to S[4] (S[p]).

2. S[2] 6= 0
We avoid the situation where the first two j are identical in the PRGA
(remind that the second j is equal to the previous one plus S[2]),
because o2 will be forced to 0:
In the first step of the PRGA, S[1] = α thus j = α. This will set α
into S[α]. In the second step, if we have S[2] = 0, j will not change
its value. After the swap will be done we will have o2 = S[0 + α] = 0.

3. S[2] + S[1] < p
With the previous conditions, this one limits the value of the j in the
second step of the PRGA. We target a box bellow the index p to be
able to predict with a higher probability the value of S[j].

4. (S[2] + S[S[2] + S[1]]) mod 256 = p
Here we are clearly stating that we want the value that has been
put in S[p] at the beginning of the PRGA to be sent as o2, since
o2 = S[(S[2] + S[S[2] + S[1]]) mod 256].

4.9. 9TH ATTACK: KOREK A S3 29

5. Si[o2] 6= 1 and Si[o2] 6= 2 and Si[o2] 6= S[1] + S[2]
Knowing that we are using the elements with indexes 1, 2 and S[1] +
S[2], we drop the cases where o2 happens to uses them as indexes,
because this would mean that there value were modified.

If we try to identify the internal states that are selected for an attack on
K[4], this gives us the following two possibilities:

0 1 2 3 ...
X 0 3 1 ...

0 1 2
X 0 2

If we choose to identify the value of K[4] according to the first scheme
of internal state, we find a comparable behavior as for the 1st case (here
K[4] = Si[o2] − S[p] − jp−1 = Si[o2] − 10). Assuming the following IV
3 255 253 with K[3] = 3 we get:

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 3

1st step:
0 1 2 3 4 5 6 ...
3 1 2 0 4 5 6 ...

i1 = 1, j1 = 3 (recall that 255 + 1 = 0)

2nd step:
0 1 2 3 4 5 6 ...
3 0 2 1 4 5 6 ...

i2 = 2, j2 = 2 (remember that 3 + 253 + 2 = 2)

3rd step:
0 1 2 3 4 5 6 ...
3 0 2 1 4 5 6 ...

i3 = 3, j3 = 6

4th step:

0 1 2 3 4 5 6 ...
3 0 2 6 4 5 1 ...

i4 = 4, j4 = 10 + K[4]
(remind that we are looking for K[4] value)

5th step:
0 1 2 3 4 5 6 ...
3 0 2 6 S4[10 + K[4]] 5 1 ...

Where S4 represents the internal state in the 4th step.

Now let us have a look at how the PRGA will react:

30 CHAPTER 4. KOREK ATTACKS

1st step of PRGA:

i = 1 and j = S[1] = 0
0 1 2 3 4 5 6 ...
0 3 2 ? S4[10 + K[4]] ? ? ...

(The first output byte has a high chance
to be o1 = S[3], if the value in S[0]
has not changed)

2nd step of PRGA:
i = 2 and j = S[2] = 2
0 1 2 3 4 5 6 ...
0 3 2 ? S4[10 + K[4]] ? ? ...

The second output byte will be o2 = S[S[2] + S[S[2] + 0]] = S[4] =
S4[10 + K[4]]. Thus we can recover K[4] = Si[o2] − S[4] − j3, and more
generally any K[p] = Si[o2]−S[p]−jp−1. Note that Si[o2] is the index of o2
in the internal state computed at step p (step 4 in our example), and that
S[p] is taken in the same internal state (step p).

4.10 10th attack: Korek A u15

Probability of success: (254
256)

256−p ≈ 13.75% (p = 3)

While looking for the information provided by the knowledge of o2, a
greater consideration has to be taken for the behavior of the PRGA. First
there is a swap before computing each output, then j = j + S[i] and thus
while the first j was simply equal to S[1], the second one will be equal to
the previous one plus S[2].

Now if we manage to have in the second step of the PRGA S[2] = 0, we
will preserve the value of j. Let us see in more detail what this implies:

1st step of PRGA:

Before the swap:
0 1 2 3 ... α ...
? α ? ? ... β ...

i = 1 and j = S[1] = α

After the swap:
0 1 2 3 ... α ...
? β ? ? ... α ...

This condition will put α in S[α]

4.10. 10TH ATTACK: KOREK A U15 31

2nd step of PRGA:

Before the swap:
0 1 2 3 ... α ...
? β 0 ? ... α ...

i = 2 and j = α + S[2] = α
As said previously to keep
j equals to α we need
S[2] equal to 0

After the swap:
0 1 2 3 ... α ...
? β α ? ... 0 ...

With this case we can see that
o2 = S[S[2] + S[α]]

= S[α + 0]
= S[α] = 0.

Therefore if we feed the PRGA with S[2] = 0, o2 will be equal to 0.
To exploit this situation we only need for one value to remain unchanged
during the unknown steps of the KSA. To meet these requirements the 10th

attack suppose that j3 = 2 and uses these conditions:

1. o2 = 0
We identify cases where o2 is equal to 0.

2. S[p] = 0
We want this condition in order to be able to set the 0 in S[2] while
assuming jp = 2 in the KSA.

3. S[2] 6= 0
This condition is useless because the 0 has to be set in S[p], p being
greater or equal to 3. It is used in AirCrack as an execution optimiza-
tion, while WepLab uses it blindly.

Let us take the IV 3 10 64 to look after K[3] (equal to 2 − S[p] −
jp−1 = 178 in our case) in order to understand how S[2] will receive the
value 0.

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 3

Even though here the 0 is directly put into the right place, formally S[p],
it cannot be taken as a condition. The placement of 0 in S[p] could be done
in a later phase.

1st step:
0 1 2 3 4 5 6 ...
3 1 2 0 4 5 6 ...

i1 = 1, j1 = 14

2nd step:
0 1 2 3 4 5 6 ...
3 14 2 0 4 5 6 ...

i2 = 2, j2 = 80

32 CHAPTER 4. KOREK ATTACKS

3rd step:
0 1 2 3 4 5 6 ...
3 14 80 0 4 5 6 ...

i3 = 3, j3 = 80 + K[3]

We are now interested in the value of K[3], while assuming that j3 (jp)
will take the value 2. Thus we can use the formula K[p] = 2 − S[p] − jp−1

to compute K[3]: K[3] = 2 − 80 = 178. But let us continue the KSA to
understand why we make this assumption.

4th step:
0 1 2 3 4 5 6 ...
3 14 0 80 4 5 6 ...

Thus the 4th step goal is to set the 0 in S[2]. For the rest of the KSA we
just need that the Si[0] (= 2) is kept unchanged to feed the PRGA with the
following internal state (this will bring us back to our above explanation of
the PRGA behavior):

0 1 2 3 ... α ...
? α 0 ? ... β ...

4.11 11th attack: Korek A s5 2

Probability of success: (253
256)

256−p ≈ 5.07% (p = 3)

With this attack, another way to exploit the knowledge of o2 is shown
to us. To be able to extract a good amount of information, we need to
determine the value that j will take in the second step of the PRGA. Before
going through a concrete example, let us check the conditions for the A s5 2
attack:

1. S[1] > p
First we select the IVs that set into S[1] a value strictly greater than
p, in order to ensure the PRGA to not modify boxes with index lower
or equal to p during its first step.

2. (S[2] + S[1]) mod 256 = p
Then we are willing that the j in the second step of the PRGA takes
the value p, in order to include what has been put in S[p] in the
computation process of the KSA.

3. o2 = S[1]
Now, we are checking the cases where it is S[1] that is outputted as
o2. This condition enables us to identify the assumption made on the
value of jp in the KSA: jp = Si[(S[1]− S[2]) mod 256].

4.11. 11TH ATTACK: KOREK A S5 2 33

4. Si[(S[1]− S[2]) mod 256] 6= 1 and Si[(S[1]− S[2]) mod 256] 6= 2
We do not want jp to neither take the values 1 or 2, in order to preserve
their content, and output S[1].

The idea behind this attack is to output a controlled value at a particular
index (o2 = S[1], where S[1] is set in place at the beginning of the KSA).
In order to do that, S[1], S[2] and S[p] must remain unchanged after the
pth step of the KSA, to let the PRGA deal with the subtilities. In the first
step of it (PRGA), j will take the value that S[1] has (i being equal to 1).
According to the protocol a swap will be made between S[1] and S[S[1]],
thus putting the value contained in S[1] in the index S[1].

1st step of PRGA:

Before the swap:
0 1 2 ... p ... α ...
? α β ... (α− β) ... γ ...

i = 1 and j = S[1] = α

After the swap:
0 1 2 ... p ... α ...
? γ β ... (α− β) ... α ...

α is set in S[α]

Once this done, the second step of the PRGA will set i to 2, and will add
S[2] to the previous j. Here, with the preceding conditions we see that j
will be equal to p (j = S[1] + S[2] where S[1] is taken from the previous
step). Therefore o2 will be computed as follow: o2 = S[S[p] + S[2]]. We
know that we look for o2 = S[1] and that this check is made for the value
that is now in the index S[1]. Thus if we keep the notation according
to the internal state that we can compute (step p of the KSA), we have
o2 = S[S[jp] + S[2]] = S[S[1]], which is equivalent to jp = Si[(S[1] − S[2])
mod 256]

34 CHAPTER 4. KOREK ATTACKS

2nd step of PRGA:

Before the swap:
0 1 2 ... p ... α ...
? γ β ... (α− β) ... α ...

i = 2 and j = α + S[2] = α + β = p
(As according to our condition:
(S[2] + S[1]) mod 256 = p)

After the swap:
0 1 2 ... p ... α ...
? γ (α− β) ... β ... α ...
o2 = S[S[2] + S[p]] = S[α− β + β]

= S[α] = α
(As expected: o2 = S[1])

As we know, K[p] can be derived from jp: K[p] = jp − S[p] − jp−1 (values
taken from the pth step of the KSA). We have then the general formula as
K[p] = Si[(S[1] − S[2]) mod 256] − S[p] − jp−1. In our example we
will look for the value K[3] which has the value 178. We select the IV
248 240 47 and analyze how the KSA behave.

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 248

1st step:
0 1 2 3 4 5 6 ...

248 1 2 3 4 5 6 ...
i1 = 1, j1 = 233 (recall that 248 + 240 + 1 = 233)

2nd step:
0 1 2 3 4 5 6 ...

248 233 2 3 4 5 6 ...
i2 = 2, j2 = 26 (remember that 233 + 47 + 2 = 26)

3rd step:

0 1 2 3 4 5 6 ...
248 233 26 3 4 5 6 ...

i3 = 3, j3 = 29 + K[3]
(recall that we are looking for K[3] value)

4th step:
0 1 2 3 4 5 6 ...

248 233 26 S3[29 + K[3]] 4 5 6 ...
Where S3 represents the internal state in the 3rd step.

Once we have arrived to this step, we assume that S[1], S[2] and S[3]
(S[p]) will remain unchanged during the following steps of the KSA, until
we reach the PRGA:

4.12. 12TH ATTACK: KOREK A S5 3 35

1st step of PRGA:
i = 1 and j = S[1] = 233
0 1 2 3 4 ... 233 ...
? ? 26 S3[29 + K[3]] ? ... 233 ...

We do not pay attention to the first output byte.

2nd step of PRGA:
i = 2 and j = 233 + S[2] = 233 + 26 = 3 (= p)
0 1 2 3 4 ... 233 ...
? ? S3[29 + K[3]] 26 ? ... 233 ...

Because we know that o2 = 233 we can conclude that 26 + S3[29 + K[3]] =
233, which gives us K[3] = Si3[233−26]−29 = Si3[207]−29 = 207−29 = 178
(recall that in the third step of the KSA, the index Si[207] has not been
modified yet).

4.12 12th attack: Korek A s5 3

Probability of success: (253
256)

256−p ≈ 5.07% (p = 3)

In this attack we set our conditions such as the value S[jp] will be out-
putted in o2. To be able to do this, we use the following conditions:

1. S[1] > p
As previously (A s5 2), we do not want the PRGA to change values
of index bellow p, thus we need to filter cases where the KSA will put
a value greater than p in S[1].

2. (S[2] + S[1]) mod 256 = p
Again, we want j in the second step of the PRGA to be equal to p.

3. o2 = (2− S[2]) mod 256
The idea behind this condition, starts with the supposition of the value
jp. Moreover, we are analyzing the cases where jp is equal to (2−S[2])
mod 256, which is a value that will be set in S[p]. According to our
previous condition, once in the second step of the PRGA, the value
contained in S[p] will be called and swapped with S[2] (j = p). Then
the sum of S[2] and S[p] will give the index of the box outputted by
o2. As we have set S[p] = (2−S[2]) mod 256, o2 will then output S[2].
Note that S[2] has changed value due to the swap, and now contains
what S[p] contained, in other words (2− S[2]) mod 256.

4. Si[o2] 6= 1 and Si[o2] 6= 2
In order to achieve this particular sequence of events, o2 should not
output S[1] neither S[2], which means that S[1] should not contain

36 CHAPTER 4. KOREK ATTACKS

(2 − S[2]) mod 256, and S[2] should not be equal to 1 nor 129 (cases
where S[2] = (2− S[2]) mod 256).

Before presenting a concrete example, we will remind how the PRGA behave
to understand the sequence that is required. The beginning of the PRGA is
identical to the attack A s5 2: we set the value in S[1] at the index S[1].

1st step of PRGA:

Before the swap:
0 1 2 ... p ... α ...
? α β ... (2− β) ... γ ...

i = 1 and j = S[1] = α

After the swap:
0 1 2 ... p ... α ...
? γ β ... (2− β) ... α ...

α is set in S[α]

It is during the second step that we are able to understand fully the condition
made on o2. j is increased by the value contained in S[2], setting him to the
value p according to our conditions. Then S[2] and S[p] are swapped, and the
sum of their value gives us the index of the outputted byte. We see clearly
that the condition made on o2 implies that S[p] contains the value (2−S[2])
mod 256. This requirement made on S[p] explains us the supposition made
on the value of jp, giving us a way to compute K[p]: K[p] = Si[(2−S[2])
mod 256] − S[p] − jp−1.

2nd step of PRGA:

Before the swap:
0 1 2 ... p ... α ...
? γ β ... (2− β) ... α ...

i = 2 and j = α + S[2] = α + β = p
(As according to our condition:
(S[2] + S[1]) mod 256 = p)

After the swap:
0 1 2 ... p ... α ...
? γ (2 − β) ... β ... α ...
o2 = S[S[2] + S[p]] = S[2− β + β]

= S[2] = 2− β
(As expected: o2 = (2− S[2]) mod 256)

For our example we search the value of K[3] (equal to 157 in our example),
while taking into consideration the IV 96 113 93 The KSA will be as
such:

4.13. 13TH ATTACK: KOREK A 4 S13 37

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 96

1st step:
0 1 2 3 4 5 6 ...
96 1 2 3 4 5 6 ...

i1 = 1, j1 = 210

2nd step:
0 1 2 3 4 5 6 ...
96 210 2 3 4 5 6 ...

i2 = 2, j2 = 49 (recall that 210 + 93 + 2 = 49)

3rd step:

0 1 2 3 4 5 6 ...
96 210 49 3 4 5 6 ...

i3 = 3, j3 = 52 + K[3]
(recall that we are looking for K[3] value)

4th step:
0 1 2 3 4 5 6 ...
96 210 49 S3[52 + K[3]] 4 5 6 ...

Where S3 represents the internal state in the 3rd step.

Again, here we want that S[1], S[2] and S[3] (S[p]) remain unchanged
during the following steps of the KSA, until we reach the PRGA:

1st step of PRGA:
i = 1 and j = S[1] = 210
0 1 2 3 4 ... 210 ...
? ? 49 S3[52 + K[3]] ? ... 210 ...

We do not take into account the first output byte.

2nd step of PRGA:
i = 2 and j = 210 + S[2] = 210 + 49 = 3 (= p)
0 1 2 3 4 ... 210 ...
? ? S3[52 + K[3]] 49 ? ... 210 ...

Because we expect o2 = S[S[2] + S[3]] = S[S3[52 + K[3]] + 49] = S[2], we
conclude that K[3] = Si3[2− 49]− 52 = 209− 52 = 157 (recall that in the
third step of the KSA, the index Si[209] has not been modified yet).

4.13 13th attack: Korek A 4 s13

Probability of success: (254
256)

256−p ≈ 13.85% (p = 4)

In the following three attacks (A 4 s13, A 4 u5 1 and A 4 u5 2), we are
going to limit ourselves to the search of K[4] value, hence p = 4 will be one

38 CHAPTER 4. KOREK ATTACKS

of our condition. We will also present a new attack (A 4 s5 1) that obeys to
this limitation. In these attacks, not only we will force ourselves to search
K[4] value, but we will also assume that S[1] = 2 in order to catch the value
of S[4] in the computation process of o2. The difference present between
these four attacks are the assumption made on j4 value in the KSA, and
thus the value that o2 will have. (Notice that we will not use the term p as
it is equal to 4).

In this attack, we are assuming that j4 will take the value of the index
of 0 in order to place 0 into S[4]. With this assumption, o2 will inherit the
value 0. Let us see the conditions for this attack:

1. p = 4
As said previously, we are looking for the value of K[4].

2. S[1] = 2
By setting the value 2 in S[1] we will set during the first step of the
PRGA this value into S[2]. Hence when starting the second step of
the PRGA the internal state will be such as S[2] = 2, with a previous
j equal to 2. This means that the next j will be equal to 4, swapping
the values of S[2] and S[4].

3. o2 = 0
Once the swap of the second step of the PRGA has been done, the
index of the outputted byte will be equal to the sum S[2]+S[4] (recall
that after the swap S[4] = 2). Therefore the assumption made on the
value j4 will tell us what o2 will be. Here we selected o2 = 0 which
can be obtained if S[2] = 0. The index of o2 will be equal to 0+2 = 2
and S[2] will contain the desired 0 value.

4. S[4] 6= 0 (equivalent to S[p] 6= 0)
In order to avoid redundancy with the attack A u15, we need to put
aside cases where S[p] = 0 (in our case p = 4). This condition has not
been taken into account by both AirCrack and WepLab.

In order to achieve this attack, we suppose that j4 = Si[0], hence we are
looking for values of K[4] equal to Si[0] − S[4] − j3. This assumption
will put 0 in S[4] during the 5th step of the KSA. Therefore when entering
in the PRGA, S[4] will be equal to 0 (note the similarity with the attack
A u15). In the second step of the PRGA, o2 will be equal to S[S[2]+S[4]] =
S[0 + 2] = S[2] = 0 which corresponds to our condition. To understand the
previous equation, we will look at the sequence of events in the PRGA:

4.13. 13TH ATTACK: KOREK A 4 S13 39

1st step of PRGA:

Before the swap:
0 1 2 3 4 ...
? 2 α ? 0 ...

i = 1 and j = S[1] = 2

After the swap:
0 1 2 3 4 ...
? α 2 ? 0 ...

The value 2 is set in S[2]

2nd step of PRGA:

Before the swap:
0 1 2 3 4 ...
? α 2 ? 0 ...

i = 2 and j = 2 + S[2] = 4

After the swap:
0 1 2 3 4 ...
? α 0 ? 2 ...

o2 = S[0 + 2] = 0

Now if we consider the IV 164 93 113 with K[3] = 207, and we
look for the value of K[4] (equal to Si[0]−S[4]−j3 = 90 in our example),
we get the following for the KSA:

Initialization:
0 1 2 3 4 ... 164 ...
0 1 2 3 4 ... 164 ...

i0 = 0, j0 = 164

1st step:
0 1 2 3 4 ... 164 ...

164 1 2 3 4 ... 0 ...
i1 = 1, j1 = 2 (recall that 164 + 93 + 1 = 2)

2nd step:
0 1 2 3 4 ... 164 ...

164 2 1 3 4 ... 0 ...
i2 = 2, j2 = 116

3rd step:
0 1 2 3 4 ... 164 ...

164 2 116 3 4 ... 0 ...
i3 = 3, j3 = 70

4th step:

0 1 2 3 4 ... 164 ...
164 2 116 70 4 ... 0 ...

i4 = 4, j4 = 74 + K[4] = 164
(recall that we are looking for K[4] value
and that we are assuming that j4 = Si[0])

5th step:
0 1 2 3 4 ... 164 ...

164 2 116 70 0 ... 4 ...

From the above calculation we can easily derive that K[4] = 164− 74 =
90 and this comes from our assumption of j4 = Si[0] = 164. Now if we
continue with the PRGA we get:

40 CHAPTER 4. KOREK ATTACKS

1st step of PRGA:

Before the swap:
0 1 2 3 4 ...
? 2 α ? 0 ...

i = 1 and j = S[1] = 2

After the swap:
0 1 2 3 4 ...
? α 2 ? 0 ...

The value 2 is set in S[2].

2nd step of PRGA:

Before the swap:
0 1 2 3 4 ...
? α 2 ? 0 ...

i = 2 and j = 2 + S[2] = 4

After the swap:
0 1 2 3 4 ...
? α 0 ? 2 ...

Hence o2 = S[0 + 2] = 0

4.14 14th attack: Korek A 4 u5 1

Probability of success: (253
256)

256−p ≈ 5.13% (p = 4)

We are going to limit ourselves to the search of K[4] value (p = 4 is
one of our condition, thus we will not use the term p as it is equal to 4).
We will also assume that S[1] = 2 in order to catch the value of S[4] in
the computation process of o2. In this attack, we are assuming that j4 will
take the value of the index of 254 in order to place 254 into S[4]. With this
assumption, o2 will inherit the value in the index 0. Let us see how this is
possible and what are the necessary conditions for this attack:

1. p = 4
As said previously, we are looking for the value of K[4].

2. S[1] = 2
By setting the value 2 in S[1] we will set during the first step of the
PRGA this value into S[2]. Hence when starting the second step of
the PRGA the internal state will be such as S[2] = 2, with a previous
j equal to 2. This means that the next j will be equal to 4, swapping
the values of S[2] and S[4].

3. o2 6= 0
We are no longer targeting a null o2, to avoid redundancy with A 4 s13.

4. Si[o2] = 0
Now we want to output S[0] as o2. This can be achieved with the
assumption j4 = 254, due to the fact that S[4] will receive the value
254 and that it will be swapped during the second step of the PRGA
with S[2] (containing the value 2). This will set o2 as S[S[2] + S[4]] =
S[254 + 2] = S[0].

4.14. 14TH ATTACK: KOREK A 4 U5 1 41

5. j1 = 2
j1 is the value of j in the 1st step of the KSA. This constraint condition
the way we set the value 2 in S[1]. This is done in order to restrain
false positive and to reduce the search space.

To achieve this attack, we suppose that j4 = Si[254], hence we are looking
for values of K[4] equal to Si[254] − S[4] − j3. . This assumption will
set the value 254 in S[4] during the 5th step of the KSA. Therefore when
entering in the PRGA, S[4] will be equal to 254. In the second step of the
PRGA, o2 will be then equal to S[S[2] + S[4]] = S[254 + 2] = S[0] which
corresponds to our condition. To understand the previous equation, we will
look at the sequence of events in the PRGA:

1st step of PRGA:

Before the swap:
0 1 2 3 4 ...
α 2 β ? 254 ...

i = 1 and j = S[1] = 2

After the swap:
0 1 2 3 4 ...
α β 2 ? 254 ...

the value 2 is set in S[2]

2nd step of PRGA:

Before the swap:
0 1 2 3 4 ...
α β 2 ? 254 ...

i = 2 and j = 2 + S[2] = 4

After the swap:
0 1 2 3 4 ...
α β 254 ? 2 ...

o2 = S[254 + 2] = S[0]

Now if we consider the IV 239 18 167 with K[3] = 161, and we
look for the value of K[4] (equal to Si[254] − S[4] − j3 = 172 in our
example), we get the following for the KSA:

Initialization:
0 1 2 3 4 ...
0 1 2 3 4 ...

i0 = 0, j0 = 239

1st step:
0 1 2 3 4 ...

239 1 2 3 4 ...
i1 = 1, j1 = 2 (notice that as required 239 + 18 + 1 = 2)

2nd step:
0 1 2 3 4 ...

239 2 1 3 4 ...
i2 = 2, j2 = 170

42 CHAPTER 4. KOREK ATTACKS

3rd step:

0 1 2 3 4 ...
239 2 170 3 4 ...

i3 = 3, j3 = 78
(recall that 170 + 161 + 3 = 78)

4th step:

0 1 2 3 4 ...
239 2 170 78 4 ...

i4 = 4, j4 = 82 + K[4] = 254
(recall that we are looking for K[4] value
and that we are assuming that j4 = Si[254])

5th step:
0 1 2 3 4 ...

239 2 170 78 254 ...

We can thus derive K[4] as being equal to 254 − 82 = 172 due to the
assumption made on the value of j4. The behavior of the PRGA shows us
the importance of such hypothesis.

1st step of PRGA:

Before the swap:
0 1 2 3 4 ...
α 2 β ? 254 ...

i = 1 and j = S[1] = 2

After the swap:
0 1 2 3 4 ...
α β 2 ? 254 ...

The value 2 is set in S[2].

2nd step of PRGA:

Before the swap:
0 1 2 3 4 ...
α β 2 ? 254 ...

i = 2 and j = 2 + S[2] = 4

After the swap:
0 1 2 3 4 ...
α β 254 ? 2 ...

Hence o2 = S[254 + 2] = S[0] = α

4.15 15th attack: Korek A 4 u5 2

Probability of success: (253
256)

256−p ≈ 5.13% (p = 4)

We are going to limit ourselves to the search of K[4] value (p = 4 is
one of our condition, thus we will not use the term p as it is equal to 4).
We will also assume that S[1] = 2 in order to catch the value of S[4] in
the computation process of o2. In this attack, we are assuming that j4 will
take the value of the index of 255 in order to place 255 into S[4]. With this
assumption, o2 will inherit the value in the index 1 (which in fact has been
modified to receive the value of S[2]). Let us see how this is possible and
what are the necessary conditions for this attack:

4.15. 15TH ATTACK: KOREK A 4 U5 2 43

1. p = 4
As said previously, we are looking for the value of K[4].

2. S[1] = 2
By setting the value 2 in S[1] we will set during the first step of the
PRGA this value into S[2]. Hence when starting the second step of
the PRGA the internal state will be such as S[2] = 2, with a previous
j equal to 2. This means that the next j will be equal to 4, swapping
the values of S[2] and S[4].

3. o2 6= 0
We are no longer targeting a null o2, to avoid redundancy with A 4 s13.

4. Si[o2] = 2
Now we want to output S[2] as o2. This can be achieved with the
assumption j4 = 255, due to the fact that S[4] will receive the value
255. A first swap will set S[2] in the index 1 while setting the value
2 in S[2], and a second one will swap S[4] and S[2]. These swaps are
done respectively in the first and second step of the PRGA. This will
set o2 as S[S[2] + S[4]] = S[255 + 2] = S[1] (which will have the old
value of S[2]).

5. j1 = 2
j1 is the value of j in the 1st step of the KSA. This constraint condition
the way we set the value 2 in S[1]. This is done in order to restrain
false positive and to reduce the search space.

To achieve this attack, we suppose that j4 = Si[255], hence we are looking
for values of K[4] equal to Si[255]− S[4]− j3. . This assumption will set
the value 255 in S[4] during the 5th step of the KSA. Therefore when entering
in the PRGA, S[4] will be equal to 255. In the first step of the PRGA, the
value contained in S[2] will be preserved in S[1] while the value 2 will be
given to S[2]. In the second step of the PRGA, o2 will receive the value
S[S[2] + S[4]] = S[255 + 2] = S[1] which corresponds to the value preserved
at the beginning of the PRGA. To understand the previous sequence of
events in detail, we will look into the PRGA:

1st step of PRGA:

Before the swap:
0 1 2 3 4 ...
? 2 α ? 255 ...

i = 1 and j = S[1] = 2

After the swap:
0 1 2 3 4 ...
? α 2 ? 255 ...

the value 2 is set in S[2]

44 CHAPTER 4. KOREK ATTACKS

2nd step of PRGA:

Before the swap:
0 1 2 3 4 ...
? α 2 ? 255 ...

i = 2 and j = 2 + S[2] = 4

After the swap:
0 1 2 3 4 ...
? α 255 ? 2 ...

o2 = S[255 + 2] = S[1] = α

Now if we consider the IV 160 97 195 with K[3] = 250, and we
look for the value of K[4] (equal to Si[255] − S[4] − j3 = 56 in our
example), we get the following for the KSA:

Initialization:
0 1 2 3 4 ...
0 1 2 3 4 ...

i0 = 0, j0 = 160

1st step:
0 1 2 3 4 ...

160 1 2 3 4 ...
i1 = 1, j1 = 2 (notice that as required 160 + 97 + 1 = 2)

2nd step:
0 1 2 3 4 ...

160 2 1 3 4 ...
i2 = 2, j2 = 198

3rd step:

0 1 2 3 4 ...
160 2 198 3 4 ...

i3 = 3, j3 = 195
(recall that 198 + 3 + 250 = 195)

4th step:

0 1 2 3 4 ...
160 2 198 195 4 ...

i4 = 4, j4 = 199 + K[4] = 255
(recall that we are looking for K[4] value
and that we are assuming that j4 = Si[255])

5th step:
0 1 2 3 4 ...

160 2 198 195 255 ...

We can thus derive K[4] as being equal to 255 − 199 = 56 due to the
assumption made on the value of j4. The behavior of the PRGA shows us
the importance of such hypothesis.

4.16. 16TH ATTACK: KOREK A U5 4 45

1st step of PRGA:

Before the swap:
0 1 2 3 4 ...
? 2 α ? 255 ...

i = 1 and j = S[1] = 2

After the swap:
0 1 2 3 4 ...
? α 2 ? 255 ...

The value 2 is set in S[2].

2nd step of PRGA:

Before the swap:
0 1 2 3 4 ...
? α 2 ? 255 ...

i = 2 and j = 2 + S[2] = 4

After the swap:
0 1 2 3 4 ...
? α 255 ? 2 ...

Hence o2 = S[255 + 2] = S[1] = α

4.16 16th attack: Korek A u5 4

Probability of success: (253
256)

256−p ≈ 5.25% (p = 6)

In this attack we are going to enlarge the scope of the value of p to
elements strictly greater than 4. We will also assume that S[1] = 2 in order
to catch the value of S[4] in the computation process of o2. We will assume
that j4 will target directly the value that o2 will have, hence K[p] will be
computed such as: K[p] = Si[o2] − S[p] − jp−1. With this assumption,
o2 will inherit its value from S[p]. Let us see how this is possible and what
are the necessary conditions for this attack:

1. p > 4
As said previously, we are looking for values of p greater than 4. The
reason behind it is that we need both S[1] and S[4] to remain un-
changed and to be fixed in the KSA. Thus to fix S[4], p has to be
strictly greater than 4.

2. S[1] = 2
By setting the value 2 in S[1], we will set during the first step of the
PRGA this value into S[2]. Hence when starting the second step of the
PRGA the internal state will be such as S[2] = 2, with a previous j
equal to 2. This means that the next j will be equal to 4, swapping the
values of S[2] and S[4]. (This condition is not forgotten in WepLab,
while AirCrack made use of it).

3. S[4] + 2 = p
Because we use the same scheme as in the attack A 4 s13, we call and
use the value S[4] in order to set the output, and due to the fact that
we want S[p] to be outputted as o2, S[4] needs to be equal to p− 2 so
when it will get summed by 2 the index of o2 will target p.

46 CHAPTER 4. KOREK ATTACKS

4. Si[o2] 6= 1 and Si[o2] 6= 4
As said just above we do not want to modify values in S[1] nor in S[4].
Thus we need to discard the cases where they are outputted. These
cases may happen only if they were altered.

Let us try to explain this attack with the PRGA steps.

1st step of PRGA:

Before the swap:
0 1 2 3 4 ... p ...
? 2 α β p− 2 ... γ ...

i = 1 and j = S[1] = 2

After the swap:
0 1 2 3 4 ... p ...
? α 2 β p− 2 ... γ ...

2 is set in S[2]

Once the first step of the PRGA is done, the second one will call the value
of S[4] in order to output S[p].

2nd step of PRGA:

Before the swap:
0 1 2 3 4 ... p ...
? α 2 β p− 2 ... γ ...

i = 2 and j = 2 + S[2] = 4

After the swap:
0 1 2 3 4 ... p ...
? α p − 2 β 2 ... γ ...

We can see here that o2 will take the value
S[S[2] + S[4]] = S[(p− 2) + 2] = S[p] = γ

This attack is feasible because we suppose that S[p] contains the byte that
will be outputted as o2. For this jp has to be equal to the index of o2 in
the pth step of the KSA: jp = Si[o2]. Therefore we can compute K[p] such
as: K[p] = Si[o2] − S[p] − jp−1. To fully understand this attack, let us
see a concrete example. If we take the IV 49 208 76 with K[3] = 233,
K[4] = 197, K[5] = 66 and o2 = 216, while looking for the value of K[6]
(which is equal to Si[o2] − S[p] − jp−1 = 135 in our example), we will
obtain the following in the KSA:

Initialization:
0 1 2 3 4 5 6 ...
0 1 2 3 4 5 6 ...

i0 = 0, j0 = 49

4.16. 16TH ATTACK: KOREK A U5 4 47

1st step:
0 1 2 3 4 5 6 ...
49 1 2 3 4 5 6 ...

i1 = 1, j1 = 2 (recall that 49 + 208 + 1 = 2)

2nd step:
0 1 2 3 4 5 6 ...
49 2 1 3 4 5 6 ...

i2 = 2, j2 = 79

3rd step:
0 1 2 3 4 5 6 ...
49 2 79 3 4 5 6 ...

i3 = 3, j3 = 59 (recall that 79 + 233 + 3 = 59)

4rd step:

0 1 2 3 4 5 6 ...
49 2 79 59 4 5 6 ...

i4 = 4, j4 = 4
(recall that 59 + 197 + 4 = 4,
which respects our condition: p− 2 = 6− 2 = 4)

5rd step:
0 1 2 3 4 5 6 ...
49 2 79 59 4 5 6 ...

i5 = 5, j5 = 75

6th step:

0 1 2 3 4 5 6 ...
49 2 79 59 4 75 6 ...

i6 = 6, j6 = 81 + K[6]
(recall that we are looking for K[6] value)

7th step:
0 1 2 3 4 5 6 ...
49 2 79 59 4 75 S6[81 + K[6]] ...

Where S6 represents the internal state in the 6th step.

Now let us have a look at how the PRGA will react:

1st step of PRGA:

i = 1 and j = S[1] = 2
0 1 2 3 4 5 6 ...
? α 2 ? 4 ? S6[81 + K[6]] ...

(we do not take into consideration
the first output byte here)

2nd step of PRGA:
i = 2 and j = 2 + S[2] = 4
0 1 2 3 4 5 6 ...
? α 4 ? 2 ? S6[81 + K[6]] ...

We see that S6[81 + K[6]] will be outputted as o2, due to the fact that
o2 = S[S[2]+S[4]] = S[4+2] = S[6]. Since we know the value of S6[81+K[6]]
(= 216) we can then derive the value of K[6]: K[6] = Si6[216] − 81 =
216− 81 = 135. (recall that in the sixth step of the KSA, the index Si[216]

48 CHAPTER 4. KOREK ATTACKS

has not been modified yet).

4.17 17th attack: Korek A neg

This last attack corresponds to the last group of attacks covered by Korek:
the reduction of search space size. In this section, Korek identified four
subsections of cases in which certain values of key byte are rejected.

4.17.1

The first subsection filters the cases where the KSA at the pth step is as
follows:

0 1 2 3 4
? 2 0 ? ...

According to this internal state, and if S[1], S[2] do not change values later
in the KSA, we will obtain a first output equal to 2.

1st step of PRGA:

Before the swap:
0 1 2 3 ...
? 2 0 ? ...

i = 1 and j = S[1] = 2

After the swap:
0 1 2 3 ...
? 0 2 ? ...

o1 = S[0 + 2] = 2

Therefore, if we notice an output o1 equal to 2, with the above estimation of
the KSA, we can deduce that the value of jp has not altered S[1] neither S[2].
Hence in this case we can reject some key bytes according to the following
formulas: K[p] 6= 1 − S[p] − jp−1 and K[p] 6= 2 − S[p] − jp−1.

4.17.2

The second group of cases still takes as a condition S[2] = 0. Moreover, we
look for the second output byte, and we select those who have a null value
(o2 = 0), while excluding the elements of the previous cases. In other words
we can summarize the conditions as follow:

1. S[2] = 0

2. o2 = 0

3. S[1] 6= 2 or o1 6= 2

Let us first analyze this subsection by taking in consideration only the fact
that S[1] has to be different than 2. We will then be in the situation where
the pth step of the KSA will be as follow:

4.17. 17TH ATTACK: KOREK A NEG 49

0 1 2 3 4
? α 0 ? ...

With α 6= 2

Notice that here α will neither be equal to 0, due to the fact that 0 is already
attributed to S[2]. If we follow the behavior of the PRGA we will get:

1st step of PRGA:

Before the swap:
0 1 2 3 ... α ...
? α 0 ? ... ? ...

i = 1 and j = S[1] = α

After the swap:
0 1 2 3 ... α ...
? ? 0 ? ... α ...

(We do not take into consideration
the value of o1 for the moment)

2st step of PRGA:

Before the swap:
0 1 2 3 ... α ...
? ? 0 ? ... α ...

i = 2 and j = α + S[2] = α

After the swap:
0 1 2 3 ... α ...
? ? α ? ... 0 ...

o2 = S[α + 0] = 0
(corresponding to our requirement)

Here it is easy to see that the value in S[2] should be kept unchanged, thus
key bytes that make such a modification should be discarded, which gives
us the following criteria K[p] 6= 2 − S[p] − jp−1 should be discarded.

Now if we consider the case where o1 6= 2, we can check its relevance
by analyzing what happens when we have at the same time S[1] = 2 (this
situation is possible according the “or” in our conditions). By looking at the
first group of cases, we understand that this situation will not bring us much
knowledge. WepLab and AirCrack have used it as a mean of optimization
in their code, and not in the scope of a theoretical conclusion.

4.17.3

The third group changes the condition of selection as we are now interested
in the cases where S[1] = 1. If S[1] is not modified, it will force the value in
S[2] to be outputted first, hence the second condition which is o1 = S[2].

0 1 2 3 4
? 1 o1 ? ...

We see easily that if S[1] is kept unchanged and remained equal to 1, the
first step of the PRGA will output o1 = S[S[1] + S[S[1]]] = S[2]. Therefore
to obtain this behavior neither S[1] nor S[2] have to be changed. This
means that key bytes that modified them have to be discarded, which is

50 CHAPTER 4. KOREK ATTACKS

translated into these two equations: K[p] 6= 1 − S[p] − jp−1 and K[p] 6=
2 − S[p] − jp−1. WepLab and AirCrack implements both of them.

4.17.4

The last group of dropped key bytes given by Korek, is related to the case
where values 0 and 1 are kept at the beginning of the internal state: S[1] = 0
and S[0] = 1. If these two values are unmodified after the pre-computation
of the KSA, they will result in the PRGA to create an output o1 equal to 1
(o1 = 1 which will be our criteria to determine this case).

1st step of PRGA:

Before the swap:
0 1 2 ...
1 0 ? ...

i = 1 and j = S[1] = 0

After the swap:
0 1 2 ...
0 1 ? ...

o1 will be then
equal to S[0 + 1] = 1

Therefore we are tempted to say that both S[0] and S[1] need to stay con-
stant until the PRGA, as AirCrack and WepLab did. However, here both
are wrong, due to the fact that if we set jp = 0 we will still get an output
o1 equal to 1. Recall our pth step of the KSA where we have:

0 1 ... p ...
1 0 ... p ...

If we assume that jp = 0 we will have at the next step:

0 1 ... p ...
p 0 ... 1 ...

Which gives the same result for o1 once given to the PRGA:

1st step of PRGA:

Before the swap:
0 1 ... p ...
p 0 ... 1 ...

i = 1 and j = S[1] = 0

After the swap:
0 1 ... p ...
0 p ... 1 ...

o1 will be then
equal to S[0 + p] = 1

To conclude with this group the only key bytes that need to be dropped are
those which modify S[1], thus K[p] 6= 1 − S[p] − jp−1.

Chapter 5

New attacks?

Just by looking at the types of these three groups presented by Korek, we
can see that the knowledge of the following outputted key byte (the seven
first ones and even the eight one sometimes) is not yet exploited. Therefore
new attacks can still be founded. To prove this fact, we present here a new
one based on the logic of the A 4 s13 attack. This attack should be taken
with some precaution, as we have noticed some bias, and is left for further
analysis.

5.1 18th attack: Mansor A 4 s5 1

Probability of success: (253
256)

256−p ≈ 5.13% (p = 4)

In this new attack we are going to limit ourselves to the search of K[4]
value (p = 4 is one of our condition, thus we will not use the term p as it is
equal to 4). We will also assume that S[1] = 2 in order to catch the value of
S[4] in the computation process of o2. In this attack, we are assuming that
j4 will take the value of the index of 1 in order to place 1 into S[4]. With
this assumption, o2 will inherit the value in the index 3. The probability of
success of this attack is given as a theoretical result. We noticed in practice
that some bias exist and leave this part for further research. Let us see how
this is possible and what are the necessary conditions for this attack:

1. p = 4
As said previously, we are looking for the value of K[4].

2. S[1] = 2
By setting the value 2 in S[1] we will set during the first step of the
PRGA this value into S[2]. Hence when starting the second step of
the PRGA the internal state will be such as S[2] = 2, with a previous
j equal to 2. This means that the next j will be equal to 4, swapping
the values of S[2] and S[4].

51

52 CHAPTER 5. NEW ATTACKS?

3. o2 6= 0
We are no longer targeting a null o2, to avoid redundancy with A 4 s13.

4. Si[o2] = 3
Now we want to output S[3] as o2. This can be achieved with the
assumption j4 = 1, due to the fact that S[4] will receive the value 1.
A first swap will set the value 2 in S[2], and a second one will swap S[4]
and S[2]. These swaps are done respectively in the first and second
step of the PRGA. This will set o2 as S[S[2] + S[4]] = S[1 + 2] = S[3].

5. S[3] > p
Because we do not want the value of j3 to interfere with our required
fields, during the KSA, we limit the values that we allow to be strictly
greater than p.

To achieve this attack, we suppose that j4 = Si[1], hence we are looking for
values of K[4] equal to Si[1] − S[4] − j3. This assumption will set the
value 1 in S[4] during the 5th step of the KSA. Therefore when entering in
the PRGA, S[4] will be equal to 1. In the first step of the PRGA, the value
2 will be given to S[2]. In the second step of the PRGA, o2 will receive
the value S[S[2] + S[4]] = S[1 + 2] = S[3] which corresponds to the value
expected. To understand the previous sequence of events in detail, we will
look into the PRGA:

1st step of PRGA:

Before the swap:
0 1 2 3 4 ...
? 2 α β 1 ...

i = 1 and j = S[1] = 2

After the swap:
0 1 2 3 4 ...
? α 2 β 1 ...

the value 2 is set in S[2]

2nd step of PRGA:

Before the swap:
0 1 2 3 4 ...
? α 2 β 1 ...

i = 2 and j = 2 + S[2] = 4

After the swap:
0 1 2 3 4 ...
? α 1 β 2 ...

o2 = S[1 + 2] = S[3] = β

Now if we consider the IV 71 89 94 with K[3] = 186, and we look
for the value of K[4] (equal to Si[1] − S[4] − j3 = 223 in our example),
we get the following for the KSA:

Initialization:
0 1 2 3 4 ... 161 ...
0 1 2 3 4 ... 161 ...

i0 = 0, j0 = 71

5.1. 18TH ATTACK: MANSOR A 4 S5 1 53

1st step:
0 1 2 3 4 ... 161 ...
71 1 2 3 4 ... 161 ...

i1 = 1, j1 = 161

2nd step:
0 1 2 3 4 ... 161 ...
71 161 2 3 4 ... 1 ...

i2 = 2, j2 = 1 (recall that 161 + 94 + 2 = 1)

3rd step:
0 1 2 3 4 ... 161 ...
71 2 161 3 4 ... 1 ...

i3 = 3, j3 = 190

4th step:

0 1 2 3 4 ... 161 ...
71 2 161 190 4 ... 1 ...

i4 = 4, j4 = 194 + K[4] = 161
(recall that we are looking for K[4] value
and that we are assuming
that j4 = Si[1] = 161 in our case)

5th step:
0 1 2 3 4 ... 161 ...
71 2 161 190 1 ... 4 ...

With what is above we can easily derive that K[4] = 161 − 194 = 223
and this is possible because we assume j4 = Si[1] = 161. Now if we continue
with the PRGA we get:

1st step of PRGA:

Before the swap:
0 1 2 3 4 ...
? 2 α β 1 ...

i = 1 and j = S[1] = 2

After the swap:
0 1 2 3 4 ...
? α 2 β 1 ...

The value 2 is set in S[2].

2nd step of PRGA:

Before the swap:
0 1 2 3 4 ...
? α 2 β 1 ...

i = 2 and j = 2 + S[2] = 4

After the swap:
0 1 2 3 4 ...
? α 1 β 2 ...

Hence o2 = S[1 + 2] = β

54 CHAPTER 5. NEW ATTACKS?

Chapter 6

Conclusion

When we tackled this research, we first studied how RC4 and WEP were
functioning. Then we started to gather information on what has already
been done. Once the information gathered, we noticed two major advances
during the past have been made in order to break WEP. The first one was
the work done by Fluhrer, Mantin and Shamir, which gave us a good feeling
on what the attacks should look like. Then we noticed the work done by
Korek, but we did not want to go directly into his code study. We started
first to see if we were able to find new attacks on our own. Unfortunately we
ended up rediscovering what Korek did. After several deceptions we looked
at how Korek did his attacks, and we explained all his techniques. This work
was very instructive as it gave us a good feeling of what research is about
and how glorifying it is when we discover a new attack, as small as the one
presented here. What we found most gratifying in this work is not the result
that we have found, but the knowledge gained during the research.
A future perspective for this domain is still existent. We found a small
attack but others might be discovered soon. A good path to follow is in the
amelioration of the A neg attack based on some existent bias (we noticed
that o2 = 0 is a parameter that comes recursively). We can also improve
the computation of the probability of success if we use a good likelihood
ratio approach. Finally the knowledge of the first seven output byte can be
exploited, since only the two first ones have been so far. We expect that
the number of needed packet in order to break WEP will decrease around
40’000 in the near future.

55

56 CHAPTER 6. CONCLUSION

Bibliography

[1] Scott R. Fluhrer, Itsik Mantin, Adi Shamir:
Weaknesses in the Key Scheduling Algorithm of RC4.
Selected Areas in Cryptography 2001: 1-24

[2] Adam Stubblefield, John Ioannidis, Aviel D. Rubin:
Using the Fluhrer, Mantin, and Shamir Attack to Break WEP.
NDSS 2002

[3] AirCrack, http://freshmeat.net/projects/aircrack/

[4] WepLab, analyzing WEP encryption security on wireless networks,
http://weplab.sourceforge.net/

57

