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Abstract. We advocate schemes based on fixed-key AES as the best route to highly efficient circuit-
garbling. We provide such schemes making only one AES call per garbled-gate evaluation. On the
theoretical side, we justify the security of these methods in the random-permutation model, where
parties have access to a public random permutation. On the practical side, we provide the JustGarble
system, which implements our schemes. JustGarble evaluates moderate-sized garbled-circuits at an
amortized cost of 23.2 cycles per gate (7.25 nsec), far faster than any prior reported results.

Keywords: Garbled circuit, garbling scheme, multiparty computation, protocol efficiency, random-
permutation model, Yao’s protocol.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Garbling in the RPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Vulnerabilities in existing constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The JustGarble system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Instantiation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Security of Ga, GaX and GaXR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 JustGarble and its Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A Invertibility of Φxor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
C Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
D Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
E Accounting for parameters in Fig. 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



1 Introduction

A garbled circuit (GC) is like an ordinary circuit except that each wire carries a string-valued
token instead of the bit it represents. The idea dates to A. Yao, who explained the approach in
talks about 2-party SFE (secure function evaluation) in the 1980’s [19, 41, 42]. Long the centerpiece
of multiparty computation (MPC) protocols, GCs now enjoy diverse applications. Beyond this, some
GC-based protocols have become practical. Beginning with Fairplay [32], a bit of a cottage industry
has emerged to improve the efficiency and practicality of GC-based MPC [2, 7, 9, 10, 12, 17, 22–
24, 28, 29, 31, 36, 37]. Such works target the efficiency of GCs themselves, the way in which GCs are
used in higher-level protocols, the software architecture for MPC systems, and the manner in which
a user specifies a desired functionality.

This paper shows how to construct and evaluate GCs at unprecedented speeds. Our gains come
from two main sources. On the cryptographic side, we describe garbling schemes that evaluate a
gate using a single call to a fixed permutation, which can be instantiated by fixed-key AES. On the
systems side, we exploit more efficient representations of circuits.

Many approaches are known to propagate tokens across a gate. Yao’s original idea was based on
a specific public-key encryption scheme; the original exposition describes the use of eight public keys
per garbled gate [1, 20]. A more modern description by Naor, Pinkas, and Sumner [35] suggests token
propagation using two calls to a pseudorandom function. Lindell and Pinkas [30] proved security
for a 2-party protocol in which tokens are propagated using the composition of semantically secure
symmetric encryption schemes with an “elusive” and “efficiently verifiable” range. Implementation-
oriented work by Lindell, Pinkas, and Smart [31] does token-propagation based on a single call to
a cryptographic hash function—the customary choice in later MPC systems.

The advent of AES-NI support (AES new instructions) has made it natural to turn from hash
functions to blockciphers for token propagation, and AES256 was the primitive used by Kreuter,
Shelat, and Shen [29]. But we contend that the starting point best suited for exploiting AES-NI is
not a blockcipher but a cryptographic permutation, which can be realized by fixed-key AES: AESc(·)
with c a fixed, non-secret key. An encryption key can be setup and, after, one has a pipeline into
which 128-bit blocks can be fed.

To capitalize on this possibility we seek garbling schemes in the random-permutation model
(RPM) [39], meaning that all parties, adversary included, can access a single, fixed, random per-
mutation, as well as its inverse. We aim for high efficiency (a single call to the permutation to
evaluate a garbled gate), proven security, and the ability to incorporate existing optimizations,
including free xor [28] and garbled row reduction [37].

Our starting point is the recent work of Bellare, Hoang, and Rogaway (BHR) [5]. Traditionally,
circuit garbling was seen as an MPC-enabling technique, not an actual primitive. BHR advocates
a different point of view, one that sees garbling schemes as a stand-alone cryptographic object.
One way to build these objects, BHR explain, is to start from what they term a dual-key cipher
(DKC). The present work shows that suitable DKCs can be built using a single call to a fixed-key
blockcipher. More specifically, we introduce a notion of a σ-derived DKC and then prove security
of various (reasonably standard) garbling schemes under specified assumptions on the function σ.
By instantiating σ in different RPM-based ways one obtains schemes that meet both our efficiency
and security aims. Let us explain our main contributions in a bit more detail.
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E
π(A,B, T,X) = k/8

Ga GaX GaXR

TE TG SP TE TG SP TE TG SP

A1 π(K)⊕K ⊕X, with K ← A⊕B⊕ T 16 50.3 218 64.0 — — — — — —

A2 π(K)⊕K ⊕X, with K ← 2A⊕ 4B⊕ T 16 52.1 221 64.0 23.2 55.6 11.5 23.9 56.4 8.64

A3 π(K ‖ T )[1 :k]⊕K ⊕X, with K ← A⊕B 10 93.7 242 40.0 — — — — — —

A4 π(K ‖ T )[1 :k]⊕K ⊕X, with K ← 2A⊕ 4B 10 97.9 246 40.0 34.2 62.7 7.20 35.0 63.3 5.40

Fig. 1. Efficiency of permutation-based garbling. Data is from the JustGarble system, garbling a moderate-size
circuit (a 36.5K gate AES circuit; 82% xor gates). Columns labeled TE and TG give the time to evaluate and garble
using the specified protocol, measured in cycles per gate (cpg). Multiply by 0.3124 to get nanoseconds per gate
on our test platform. Columns labeled SP give the size of the garbled tables, measured in bytes per gate (bpg).
Column k/8 is the token length, in bytes. This is the length of of A, B, and X. The permutation π is always AESc(·).
Insecure possibilities are dashed.

1.1 Garbling in the RPM

We begin by precisely specifying three garbling schemes: Ga, GaX, and GaXR. The first is based
on the Garble1 scheme of BHR [5], which, in turn, closely follows NPS [35]. The scheme include the
point-and-permute technique [38], which hijacks one bit of each token so that the agent evaluating
the GC knows which “row” of the garbled gate to decrypt. GaX augments Ga with the free-xor
technique [28], wherein XOR gates can be computed by xoring their incoming token. The savings
can be large, as many circuits are rich in XOR gates, or can be refactored so. Finally, GaXR
augments GaX with garbled row reduction [37], which reduces the size of a GC by arranging that
one of the four rows of each garbled gate need not be stored: tokens are selected so as to make this
ciphertext a constant.

In each of the three schemes the underlying primitive is a dual-key cipher (DKC). This is a de-
terministic function E : {0, 1}k × {0, 1}k × {0, 1}τ × {0, 1}k → {0, 1}k taking keys A,B, a tweak T ,
and a plaintext X, returning a ciphertext E(A,B, T,X). All schemes (Ga, GaX, and GaXR) use
at most four calls to E to garble a gate and at most one call to evaluate a gate. We must efficiently
and securely construct the needed DKC.

Our DKC constructions are in the RPM; the DKC has oracle access to a random permutation
π : {0, 1}ℓ → {0, 1}ℓ. (An important challenge for security is that the adversary has access not only to
π but also to π−1.) This is the sole source of cryptographic hardness available. Our implementations
set π = AESc(·) for a fixed key c. Fig. 1 shows four constructions, with A1/A3 suitable for Ga and
A2/A4 suitable for all three schemes. All of our DKC constructions employ a single call to π. We
postpone a description of what 2A and 4B actually mean except to indicate that these are simple
operations, a couple of shifts or the like, but not integer multiplication.

To validate the security of our schemes instantiated with our DKC constructions, a natural first
thought is to prove security of the schemes in the random-oracle (RO) model (ROM) [6] and then
show that the constructions of Fig. 1 are indifferentiable from ROs [15, 16, 33]. However, attacks
show that the constructions are not indifferentiable from ROs. We have preferred them to construc-
tions that are indifferentiable from ROs because the latter are less efficient. The performance gains
we have achieved must accordingly be backed up by dedicated proofs.

Rather than provide many ad hoc proofs, we provide a unified framework that defines a class of
DKCs we call σ-derived. All our instantiations fall in this class. We give conditions on σ sufficient
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to guarantee the security of Ga, GaX, and GaXR, all in the RPM. Our results use concrete security,
giving formulas that bound an adversary’s maximal advantage as a function of the effort it expends.

1.2 Vulnerabilities in existing constructions

It is common in this area to start from a basic, proven scheme, and then implement an instan-
tiation, enhancement, or variant that is not itself proven. In particular, while there are proofs
for some schemes that use the free-xor method [14, 28], ours are the first proofs for schemes that
simultaneously use both free xor and garbled row reduction.

Absence of proof can belie presence of error. We consider E
H(A,B,T,X)=H(A[1 : k−1] ‖ T )⊕

H(B[1 :k−1] ‖ T )⊕X for a cryptographic hash function H. This DKC was suggested for Fairplay
[32], but claimed to work [28] with free xor [28]. We will later show that this not to be the case. Note
that other authors have gone so far as to implement MPC using this DKC [37]; the construction
has only been considered undesirable because it is less efficient than alternatives, not because its
security was in doubt. Our view is that it is not possible to look at a DKC and reliably ascertain
if it will work in a complex security protocol; assurance here requires proofs.

1.3 The JustGarble system

Prior implementation work has viewed MPC as the goal, with garbling implemented as a component.
Our JustGarble system takes a different view, divorcing garbling from MPC to deliver a system
whose goal is just optimized garbling. This reflects and follows the view of BHR [5]. JustGarble
aims to be a general-purpose tool for use not only in MPC, but also beyond.

JustGarble implements Ga, GaX, and GaXR with the DKCs of Fig. 1 and the DKCs’ per-
mutation instantiated with fixed-key AES. Among the system-level optimizations and choices in
JustGarble, the most prominent is programmatically realizing the mathematical conventions of
BHR for representing circuits. The combination of faster DKCs and a simple representation of
circuits results in impressive performance gains over previous implementations.

We have carried out a number of timing studies using JustGarble. The main one on which we
report is described in Fig. 1. We built an AES128 circuit, a standard test case for this domain, and
looked at the time to evaluate the circuit, TE; the time to garble the circuit, TG; and the size of the
garbled tables of the circuit, SP . Breaking with tradition for this domain, we prefer to give running
times in cycles per gate (cpg), a measure that’s at least a little more robust than time per gate or
total time. Similarly, we report on circuit size in units of bytes per gate (bpg).

Fig. 1 highlights the best evaluation time, 23.2 cpg, and the best garbling time, 55.6 cpg. (As
our processor runs at 3.201 GHz, this translates to 7.25 nsec/gate for evaluating the GC and
17.4 nsec/gate for garbling it.) The smallest garbled tables are also highlighted, 5.40 bpg. Garbled
circuits themselves, which include more than garbled tables, are always 8 bpg larger.

As a point of reference, Huang, Evans, Katz, and Malka (HEKM) evaluate a similar AES circuit
in around 2 µsec per gate [23, Section 7: 0.06 sec, online, about 30K gates]. They indicate 10 µsec
per gate for very large circuits. Kreuter, Shelat, and Shen (KSS) [29], using a DKC based on AES256
and implemented with AES-NI processor support, report constructing a 31 Kgate AES-128 circuit
in 80 msec, so 2.5 µsec per gate. These times are more than two orders of magnitude off of what
we report. While such a comparison is in some ways unfair—as we have explained, HKEM and
KSS build systems for MPC, not garbling schemes—the time discrepancy is vast, and prior MPC
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work has routinely maintained that circuit garbling and evaluation are key components of the total
work done (and have thus been the locus of prior optimizations). We note that the HEKM and
KSS figures are times spent on garbling and evaluation alone; they don’t include time spent on,
say, oblivious transfer or network overhead.

We obtain performance gains over previous implementations even if we drop into JustGarble
one of the previously designed, comparatively slow DKCs. The main reason for this is our extremely
simple representation of garbled circuit. Gates are not objects that communicate by sending mes-
sages, for example; they are indexes into an array. There is no queue of gates ready to be evaluated;
gates are topologically ordered, so one just evaluates them in numerical order. We call the repre-
sentation format we use SCD, for Simple Circuit Description. Its simplicity helps ensure that most
of the work in garbling a circuit or evaluating a GC is actual cryptographic work, not overhead
related to procedure invocation, message passing, bookkeeping, or the like.

We emphasize that JustGarble knows nothing of MPC, oblivious transfer, compiling programs
into circuits, or any of the other tasks associated to making a useful higher-level protocol. JustGarble
is a building block. If offers but two services: garble a circuit already built by other means, and
evaluate a GC on a garbled input.

2 Preliminaries

We adopt the definitions of BHR [5] lifted to the random-permutation model (RPM).

Notation. We write Σ for {0, 1}. We routinely ignore the distinction between strings and more
structured objects encoded by them, implicitly employing simple and fixed encoding schemes. We
write aևA to sample a from distribution A. If A is a finite set, it has the uniform distribution.

Circuits. A circuit, as defined in BHR [5], is a 6-tuple f = (n,m, q, A,B,G) where n ≥ 2 is the
number of inputs, m ≥ 1 is the number of outputs, q ≥ 1 is the number of gates, and n+ q be the
number of wires. We let Inputs = [1 .. n], Wires = [1 .. n+ q], OutputWires = [n+ q−m+1 .. n+ q],
and Gates = [n + 1 .. n + q]. Then A : Gates → Wires\OutputWires is a function to identify each
gate’s first incoming wire and B : Gates → Wires\OutputWires is a function to identify each
gate’s second incoming wire. Finally G : Gates×{0, 1}2 → {0, 1} is a function that determines the
functionality of each gate. We require A(g) < B(g) < g for all g ∈ Gates.

The conventions above embody all of the following. Gates have two inputs, arbitrary functional-
ity, and arbitrary fan-out. The wires are numbered 1 to n+ q. Every non-input wire is the outgoing
wire of some gate. The ith bit of input is presented along wire i. The ith bit of output is collected
off wire n+ q−m+ i. The outgoing wire of each gate serves as the name of that gate. Output wires
may not be input wires and may not be incoming wires to gates. No output wire may be twice used
in the output. Requiring A(g) < B(g) < g ensures that the directed graph corresponding to f is
acyclic, and that no wire twice feeds a gate; the numbering of gates comprises a topological sort.

Syntax. An (RPM-based) garbling scheme is a tuple of algorithms G = (Gb,En,De,Ev, ev). The
first algorithm, Gb, is probabilistic, while all the rest are deterministic. Algorithm Gb has access
to an oracle, as does Ev, and we write Gbπ and Evπ to denote these algorithms given oracle π.
Algorithm Gbπ transforms a pair of strings (1k, f) to a triple of strings (F, e, d). These strings name
functions En(e, ·) : Σn → Σ∗ and De(d, ·) : Σ∗ → Σm ∪ {⊥} and Evπ(F, ·) : Σ∗ × Σ∗ → Σ∗, where
n = f.n and m = f.m are the first and second components of f = (n,m, q, A,B,G). String f itself
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proc Garble(f0, f1, x0, x1) Game PrvG,Φ,k,π

if Φ(f0) 6= Φ(f1) then return ⊥
if {x0, x1} 6⊆ Σf0.n then return ⊥
if ev(f0, x0) 6= ev(f1, x1) then return ⊥

(F, e, d)← Gb
π(1k, fb); X ← En(e, xb)

return (F,X, d)

Fig. 2. Game for defining the prv security of garbling scheme G = (Gb,En,De,Ev). Initialize() samples
bև {0, 1} and Finalize(b′) returns (b = b′).

names a function ev(f, ·) : Σ∗ ×Σ∗ → Σ∗. We call k, f, F, e, d and π the security parameter, initial
circuit, garbled circuit, token list, decoding data, and random permutation, respectively.

Throughout this work we will only be concerned with what BHR call projective, circuit-garbling
schemes. This assumption was built into some of the names above, as when calling F a “garbled
circuit” (instead of a “garbled function”). Function ev will always be the canonical circuit-evaluation
function: ev(f, x) is the m-bit result one gets by feeding x ∈ Σn to circuit f = (n,m, q, A,B,G).
Dealing exclusively with projective schemes, e will always encode a list of strings (e1, . . . , e2n) and
En(e, x1x2 · · ·xn) (xi ∈ Σ) will be X = (e1+x1 , e3+x2 , . . . , e2n−1+xn).

Side information. We parameterize privacy by a “knob” that measures what we allow to be
revealed. The side-information function Φ maps f to some information about it, Φ(f). Two side-
information functions will be of special interest to us. The first, Φtopo, already appeared in BHR. It
maps a circuit f = (n,m, q, A,B,G) to its underlying topological circuit Φtopo(f) = (n,m, q, A,B).
The second, Φxor, is new. It maps a circuit f = (n,m, q, A,B,G) to something that obscures the
functionality of each non-XOR gate. Formally, function Φxor maps f = (n,m, q, A,B,G) to the
circuit Φxor(f) = (n,m, q, A,B,G′) where G′

g = XOR if Gg = XOR and, arbitrarily, G′
g = AND

otherwise.

Security. Given a garbling scheme G = (Gb,En,De,Ev, ev), security parameter k ∈ N, side-
information function Φ, and length-preserving permutation π : Σ∗ → Σ∗, Fig. 2 specifies the game
PrvG,Φ,k,π used to define privacy. For an adversary A, let

Adv
prv.rpm,Φ
G (A, k) = 2Pr

[
πևPerm: PrvAG,Φ,k,π

]
− 1

be the probability, normalized to [0, 1], that the Finalize procedure of game PrvG,Φ,k,π returns 1
(i.e., the adversary correctly predicts b) when adversary A, running with oracles π, π−1 and provided
an input of 1k, interacts with the specified game, making a single call to Garble. Here Perm is the
set of all length-preserving permutations and a random sample π from Perm, restricted to strings
of length ℓ ∈ N, is a uniformly random permutation on Σℓ.

Informally, we will say that G is prv secure over Φ, in the RPM, if Adv
prv.rpm, Φ
G (A, k) is “small”

for any “reasonable” A and k. Insofar as we are working in the RPM, we will not need cryptographic
assumptions in order to specify just how small Adv

prv.rpm, Φ
G (A, k) is: it will be a function of k and

the total number of queries, q, it makes to its π and π−1 oracles.

We comment that our security definition allows Gb and Ev to depend on π but not its inverse.
This choice was made simply because we have no occasion, in schemes, to use π−1. On the other
hand, it is essential that the adversary has access to both π and π−1.
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Ind versus Sim. The definition above formalizes security using the indistinguishability (ind)
style definition of BHR [5]. BHR also give a simulation-style definition and show the two equivalent
for side-information functions having a property they called efficient invertibility. We revisit this
equivalence in the RPM. The complicating issue is that in an idealized model like the RPM there are
two possibilities for the simulator, namely to program or not program the ideal primitive, here the
random permutation. Somewhat curiously, the proofs of BHR [5] show that, for efficiently-invertible
side-information functions, both are equivalent to ind and thus to each other. The side-information
function Φtopo was shown in BHR to be efficiently invertible. We show in Appendix A that Φxor is
as well. As a consequence, our ind-based definition is equivalent to the sim-based definition in the
strong model where the simulator does not program the random permutation.

Analogs. One can easily give a random-oracle model (ROM) definition to complement RPM one.
Let Func be the set of all functions π : Σ∗ ×N→ Σ∗ with |π(x, ℓ)| = ℓ. Give this a distribution by
asserting that a random πևFunc (x, ℓ) to ℓ uniformly random bits. Then let

Adv
prv.rom,Φ
G (A, k) = 2Pr

[
πևFunc: PrvAG,Φ,k,π

]
− 1

be the probability, normalized to [0, 1], that the Finalize procedure of game PrvG,Φ,k,π returns 1
when adversary A, running with oracle π and given input 1k, interacts with the specified game,
making a single call to Garble. The only difference between the ROM and RPM definitions is
that in the RPM setting, the adversary gets the random permutation and its inverse, while in the
ROM setting, it’s a random function and there’s no inverse to give.

One can analogously give other idealized-model definitions, the most important being the ideal-
cipher model (ICM). And one can of course give a standard-model definition, simply by dropping
all mention of π and its inverse.

Dual-key ciphers. Again following BHR, we will describe our garbling schemes in terms of a
dual-key cipher (DKC). Now, however, these objects will be provided oracles. Letting Ω be a set
of functions π from Σ∗ to Σ∗, an (oracle-) DKC is a function E : Ω ×Σk ×Σk ×Στ ×Σk → Σk

that associates to π ∈ Ω and A,B ∈ Σk and T ∈ Στ some permutation E
π(A,B, T, ·) : Σk → Σk.

In this paper we won’t need to develop any DKC security notions: we shall be using the syntax
of DKCs only to make the descriptions of our protocols more clear.

Garbling schemes Ga, GaX, GaXR. The scheme we call Ga is based on an oracle DKC
E
π : {0, 1}k × {0, 1}k × {0, 1}τ × {0, 1}k → {0, 1}k whose inverse is denoted D. We associate to E

the RPM-model garbling scheme Ga[E] of Fig. 3. Wires carry k-bit tokens (strings) the last bit of
each is the token’s type.

To garble a circuit, we begin selecting two tokens for each wire, one of each type. One of
these will represent 0—the token is said to have semantics of 0—while the other will represent 1.
The variable Xb

i names the token of wire i with semantics of b. Thus the token list e will map
x = x1 · · ·xn ∈ {0, 1}

n to X = (Xx1
1 , . . . , Xxn

n ). For each wire i we select random tokens of opposite
type, making the association between a token’s type and its semantics random. We then compute q
garbled tables, one for each gate g. Table P [g, ·, ·] has four rows, row a, b used when the left incoming
token is of type a and the right incoming token is of type b. The token that gets encrypted for
this row is the one for the outgoing-wire with the correct semantics. Given incoming tokens Xa

and Xb we use their types to determine which row of the garbled table to decrypt. The description
of the decoding data d is a bit vector; the ith component is the last bit of the token of semantics 0
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proc Gb
π(1k, f) Ga

(n,m, q,A′, B′, G)← f

for i← 1 to n+ q do
tև {0, 1}
X0

i և {0, 1}k−1t, X1
i և {0, 1}k−1t

for g ← n+ 1 to n+ q do
a← A′(g), b← B′(g)
for i← 0 to 1, j ← 0 to 1 do

A← Xi
a, a← lsb(A)

B ← Xj

b , b← lsb(B)
P [g, a, b]← E

π(A,B, g,X
Gg(i,j)
g )

F ← (n,m, q,A′, B′, P )
e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

d←
(

lsb(X0
n+q−m+1), . . . , lsb(X

0
n+q)

)

return (F, e, d)

proc Gb
π(1k, f) GaX

(n,m, q,A′, B′, G)← f

Rև {0, 1}k−11
for i← 1 to n do

tև {0, 1}
X0

i և {0, 1}k−1t, X1
i ← X0

i ⊕R

for g ← n+ 1 to n+ q do
a← A′(g), b← B′(g), G′

g ← XOR
if Gg = XOR then

X0
g ← X0

a ⊕X0
b , X1

g ← X0
g ⊕R

else
G′

g ← AND

X0
g և {0, 1}k, X1

g ← X0
g ⊕R

for i← 0 to 1, j ← 0 to 1 do
A← Xi

a, a← lsb(A)

B ← Xj

b , b← lsb(B)
P [g, a, b]← E

π(A,B, g,X
Gg(i,j)
g )

F ← (n,m, q,A′, B′, G′, P )
e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

d←
(

lsb(X0
n+q−m+1), . . . , lsb(X

0
n+q)

)

return (F, e, d)

proc Gb
π(1k, f) GaXR

(n,m, q,A′, B′, G)← f

Rև {0, 1}k−11
for i← 1 to n do

tև {0, 1}
X0

i և {0, 1}k−1t, X1
i ← X0

i ⊕R

for g ← n+ 1 to n+ q do
a← A′(g), b← B′(g), G′

g ← XOR
if Gg = XOR then

X0
g ← X0

a ⊕X0
b , X1

g ← X0
g ⊕R

else
for a← 0 to 1, b← 0 to 1 do

i← a⊕ lsb(X0
a), A← Xi

a

j ← b⊕ lsb(X0
b ), B ← Xj

b

r ← Gg(i, j), G′
g ← AND

if a = 0 and b = 0 then
Xr

g ← E
π(A,B, T, 0k)

Xr
g ← Xr

g ⊕R
else P [g,a,b]←E

π(A,B,g,X
Gg(i,j)
g )

F ← (n,m, q,A′, B′, G′, P )
e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

d←
(

lsb(X0
n+q−m+1), . . . , lsb(X

0
n+q)

)

return (F, e, d)

proc Ev
π(F,X) Ga

(n,m, q,A,B, P )← F
(X1, . . . , Xn)← X

for g ← n+ 1 to n+ q do
a← A(g), b← B(g)
a← lsb(Xa), b← lsb(Xb)
Xg ← D

π(Xa, Xb, g, P [g, a, b])

return (Xn+q−m+1, . . . , Xn+q)

proc Ev
π(F,X) GaX

(n,m, q,A′, B′, P )← F
(X1, . . . , Xn)← X

for g ← n+ 1 to n+ q do
a← A(g), b← B(g)
a← lsb(Xa), b← lsb(Xb)
if G′

g = XOR then Xg ← Xa ⊕Xb

else Xg ← D
π(Xa, Xb, g, P [g, a, b])

return (Xn+q−m+1, . . . , Xn+q)

proc Ev
π(F,X) GaXR

(n,m, q,A,B,G′, P )← F
(X1, . . . , Xn)← X

for g ← n+ 1 to n+ q do
a← A(g), b← B(g)
a← lsb(Xa), b← lsb(Xb)
if G′

g = XOR then Xg ← Xa ⊕Xb

elsif a = 0 and b = 0 then
Xg ← E

π(Xa, Xb, g, 0
k)

else Xg ← D
π(Xa, Xb, g, P [g, a, b])

return (Xn+q−m+1, . . . , Xn+q)

proc En(e, x) Ga, GaX, GaXR
(X0

1 , X
1
1 , . . . , X

0
n, X

1
n)← e

x1 · · ·xn ← x
X ← (Xx1

1 , . . . , Xxn
n )

return X

proc De(d, Y ) Ga, GaX, GaXR
(d1, . . . , dm)← d
(Y1, . . . , Ym)← Y
for i← 1 to m do yi ← lsb(Yi)⊕ di
return y ← y1 · · · ym

proc ev(f, x) Ga, GaX, GaXR
(n,m, q,A,B,G)← f
x1 · · ·xn ← x
for g ← n+ 1 to n+ q do

a← A(g), b← B(g)
xg ← Gg(xa, xb)

return xn+q−m+1 · · ·xn+q

Fig. 3. Garbling schemes of this paper. Schemes Ga, GaX, and GaXR have the same En, De, and ev procedures,
but their own Gb and Ev procedures For a bit t, let {0, 1}k−1t denote the set of k-bit strings whose last bit is t, and
t the complement bit of t.
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π(A  ⊕ �B   )⊕A  ⊕ �B   ⊕X
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ρ(B  ⊕D  ) ⊕ U

ρ(A  ⊕D  ) ⊕ V

ρ(A  ⊕ C  ) ⊕ U
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Fig. 4. Attacks on DKC instantiations. Top-left: Eπ(A,B, T,X) = π(A⊕B)⊕X for scheme Ga. Bottom-left:
E
π(A,B, T,X) = ρ(A⊕B)⊕X for scheme GaX, with ρ(K) = π(K)⊕K. Top-right: Eπ(A,B, T,X) = ρ(A⊕2B)⊕X

for scheme GaX. Bottom-right: Eπ(A,B, T,X) = ρ(A⊕B)⊕X for scheme Ga. The doubling here is multiplying in
GF(2k) by x = 0k−210. In each wire, the top and bottom tokens have semantics 0 and 1 respectively.

on the ith output wire. Garbling scheme GaX augments what we have described with the free-xor
technique. Scheme GaXR additionally incorporates the row-reduction technique.

3 Instantiation Overview

We discuss some of the challenges, and choices we make in response, with regard to garbling in the
RPM.

The DKC E
H(A,B, T,X) = H(A‖B‖T ) ⊕X is a natural starting point, where H is a hash

function. Our constructions can be seen as realizations of this approach, but based on a fixed-key
blockcipher. Kreuter, Shelat, and Shen [29] had already considered H(A‖B‖T ) = AES256A‖B(T )
where |A|= |B|= |T |=128. Fixed-key AES provides a primitive π with only a third the number of
input bits as AES256.

One possibility is to build H from π in a manner that will render H indifferentiable from
a RO [16, 33]. However, known constructions with this property will not be as efficient as we
would like. We aim to use a Davies-Meyer type construction [34, 40], which applies the permutation
only once. Such constructions are not indifferentiable from ROs [15, 16], necessitating considerable
caution.

For simplicity we start by ignoring the tweak and considering the garbling of one-gate circuits.
We present several natural constructions and show that they fail. We then present our constructions,
and finally explain how to incorporate tweaks so as to handle circuits with an arbitrary number of
gates.

Instantiating Ga. Consider instantiating the DKC of scheme Ga from a permutation π by
E
π(A,B, T,X) = π(A⊕B)⊕X. The resulting scheme can be trivially broken, as follows. Suppose

that we garble an AND gate, as illustrated on the top-left corner of Fig. 4, and suppose the adversary
is given the garbled table and tokens A and C. First, it opens the third row to obtain token X. Next,
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let V be the ciphertext in the last row. Then the adversary can obtain token D = π−1(V ⊕X)⊕A.
Likewise, it can obtain token B. Now the adversary can open every row of the garbled table, and
all security is lost.

We can translate the idea to an attack of advantage 1 on prv security. The adversary asks
(f0, f1, 00, 00) to Garble where f0 is an AND gate and f1 is a gate that always outputs 0. Following
the idea above, the adversary open every row of the garbled table. If each row encrypts the same
token then it outputs 1; otherwise, it outputs 0.

The attack arises because the adversary can invert π(A⊕D) to get D. To break this invertibility
we employ the Davies-Meyer construction ρ(K) = π(K)⊕K to obtain the instantiation

E
π(A,B, T,X) = ρ(A⊕B)⊕X . (1)

We shall see in Theorem 1 that instantiation (1) indeed makes Ga secure, once the tweaks are
appropriately introduced.

Instantiating GaX. Yet instantiation (1) doesn’t work for scheme GaX, even if the circuit
remains a single gate. Here is an attack. Again we garble an AND gate. The illustration is given
at the bottom-left corner of Fig. 4. Suppose the adversary is given the garbled table and tokens A
and B. It first xors the ciphertexts in the second and third rows and obtains the string R. It then
can open every row of the garbled table. Now all security is lost.

We can translate the idea to an attack of advantage 1 on prv security. The adversary queries
(f0, f1, 00, 01) where f0 is an AND gate and f1 is a gate such that f1(a, b) = a for all a, b ∈ {0, 1}.
Following the idea above, the adversary can open every row of the garbled table, regardless of the
challenge bit. If there are three rows that encrypt the same token then it outputs 0; otherwise, it
outputs 1.

The attack above arises because of a “symmetry” between tokens of the first and second in-
coming wires, leading to the use of ρ(A⊕B) twice to mask tokens of the output wire. One possible
way to break this symmetry is to apply some simple operation to the token of the second incoming
wire before using it. For example, consider the instantiation

E
π(A,B, T,X) = ρ(A⊕ 2B)⊕X, (2)

where doubling (B 7→ 2B) is multiplying in GF(2k) by the group element x = 0k−210. The attack
above is thwarted, because the ciphertext in the third row is ρ(A ⊕ 2B) ⊕ X while that in the
second row is now ρ(A⊕ 2B⊕ 3R)⊕X ⊕R, where 3R means multiplying R by the group element
x+ 1 = 0k−211 in GF(2k).

Still, instantiation (2) can be broken as follows. See the illustration on the top-right corner of
Fig. 4. Garble an OR gate. Suppose the adversary is given the garbled table and tokens A and B.
First it opens the third row to obtain token X. Let V be the ciphertext in the first row. Query
V ⊕A⊕2B⊕X to π−1, and let K be the answer. Then, the adversary can obtain R = K⊕A⊕2B.
It can now open every row of the garbled table, and all security is lost.

We can translate the idea to an attack of advantage 1 on prv security. The adversary queries
(f0, f1, 00, 01) where f0 is an OR gate and f1 is an AND gate. Following the idea above, the adversary
can open every row of the garbled table, regardless of the challenge bit. Using the decoding data,
the adversary can determine the semantics of the tokens on the output wire. If there are three rows
that encrypt the token of semantics 1 then it outputs 1; otherwise, it outputs 0.
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A ����

A⊕R

B ����

B⊕R

C ����

C⊕R

A⊕B

A⊕B⊕R

B⊕C

B⊕ C⊕R

A⊕ C

A⊕ C⊕ R

A⊕ C ����

A⊕C⊕R ��	�

Y

Y⊕R

Y⊕R

H(� || T ) ⊕H(� || T ) ⊕ Y   

Y

H(� || T ) ⊕H(� || T ) ⊕ Y   

9

Fig. 5. An attack on GaX with DKC E(A,B, T,X) = H(A[1 : k − 1] ‖ T )⊕H(B[1 : k − 1] ‖ T )⊕X. In each
wire, the top token has semantics 0, the bottom one has semantics 1. The table on the right is the garbled table of
gate 8. Gate 9 negates the bit on wire 4, then ORs it with the bit on wire 8.

To thwart the attack above one can apply the multiplication in GF(2k) to the first incoming
token as well; for example, we can use the instantiation

E
π(A,B, T,X) = ρ(2A⊕ 4B)⊕X (3)

where 4B means applying the doubling operation to B twice, that is, multiplying B by the group
element x2 = 0k−3100 in GF(2k). The ciphertext in the first row will be π(2A⊕ 4B ⊕ 2R)⊕ 2A⊕
4B ⊕X ⊕ 3R. Since Rև {0, 1}k−11 is secret, the attack fails. We shall see in Theorems 1 and 2
that instantiation (3) indeed makes both Ga and GaX secure, after the gate-number tweak is
appropriately introduced.

The need for the tweak. Suppose now that one uses instantiation (1) for scheme Ga, but
in a circuit of multiple gates. This leads to a new attack. Garble the circuit f illustrated at the
bottom-right of Fig. 4. Suppose the adversary is given the garbled tables and tokens A and D. (In
the illustration, only the garbled tables of the first two gates are shown.) It first opens the last rows
in the first two tables to get tokens X and V . Next, it xors the ciphertexts in the third rows of the
two first tables, and then xors the resulting string with X to get U . Likewise, the adversary can
obtain Y . It now can open every row of the last garbled table, and all security is lost.

We can translate the idea to an attack of advantage 1 on prv security, in which the adversary
queries (f, f, 01, 11) to obtain (F,X, d). Following the idea above, regardless of the challenge bit,
the adversary can open every row of the last garbled table. Using d, the adversary can determine
the semantics of the tokens on the output wire. There is only one row of the last garbled table
that encrypts the token of semantics 0. The token on wire 3 used as a key for this row must have
semantics 0. The adversary then can determine the semantics of tokens on wire 3. Now evaluate
F on X. If the token obtained on wire 3 during the evaluation has semantics 0 then output 0.
Otherwise, output 1.

The attack above arises if the circuit contains two gates that have the same pair of incoming
wires. We therefore introduce the tweak-based variants E

π(A,B, T,X) = ρ(A⊕B ⊕ T )⊕X and
E
π(A,B, T,X) = ρ(2A⊕ 4B ⊕ T )⊕X of instantiations (1) and (3), respectively, with the tweak

being the gate index. We shall see in Theorems 1 and 2 that these tweak-based instantiations indeed
make Ga secure, and the second one makes GaX secure.
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D1: (A≪ 1)⊕ (A[1] · const) Finite field multiply
D2: A≪ 1 Logical left shift
D3: A≫ 1 Logical right shift
D4: A ≪ 1 Circular left shift
D5: A ≫ 1 Circular right shift
D6: (A[1 :⌊k/2⌋]≪1)‖(A[⌊k/2⌋+1:k]≪1) SIMD left
D7: (A[1 :⌊k/2⌋]≫1)‖(A[⌊k/2⌋+1:k]≫1) SIMD right

Fig. 6. Doubling methods. Each formula gives a way that we can set 2A to.

Alternatively, for scheme Ga, one can avoid using tweaks by demanding that no two gates have
the same pair of incoming wires. However, this condition is not sufficient when the free-xor trick
is used, because one can arrange for distinct wires to carry the same pair of tokens. For example,
consider the circuit in Fig. 5. Wires 6 and 7 there have the same pair of tokens. This kind of subtle
degeneracy serves to emphasize the need for proofs.

Other ways to double. Besides the multiplication in GF(2k) (named D1 below) doubling may
have several other interpretations, as shown in Fig. 6.

We will later show that all of these methods “work” for the schemes in this paper, although the
security bounds differ by a constant. In particular, we will identify a sufficient condition for the
doubling map and a real number r associated to it, this number showing up in our bounds. The
reason for attending to these different doubling methods is that “true” doubling has the best security
bound, but its implementation is a bit slower than alternatives with slightly inferior bounds.

An insecurity issue in prior works. Besides proposing the free-xor trick, Kolesnikov and
Schneider (KS) [28] propose two instantiations of a DKC, suggesting to set E

H(A,B, T,X) as
either

H(A[1 :k−1] ‖ B[1 :k−1] ‖ T )⊕X or (4)

H(A[1 :k−1] ‖ T )⊕H(B[1 : k − 1] ‖ T )⊕X (5)

where H : {0, 1}∗ → {0, 1}k is a hash function, to be modeled as a random oracle. KS effectively
show that GaX, built on top of instantiation (4), leads to a secure two-party SFE protocol. They
claim that one can use instantiation (5) as well. Pinkas, Schneider, Smart, andWilliams (PSSW) [37]
implement both instantiations; their garbling schemes are variants of Ga/GaX/GaXR, where each
DKC’s tweak is a nonce instead of the gate index. Subsequent works [22, 23, 27] use only (4) because
of efficiency issues, but the authors apparently continue to believe that (5) works fine; see, for
example, [13, p. 5] and [27, p. 7].

We now show that an adversary can completely break GaX if the DKC is instantiated by (5).
Our attack also applies to the GaX/GaXR variants of PSSW based on (5). The key idea of the
attack is that, as mentioned previously, when one uses free-xor trick, different wires in the circuit
can be forced to share the same pair of tokens. Observe that if A = B then instantiation (5) sends
the plaintext in the clear, as H(A[1 : k−1] ‖ T )⊕H(B[1 : k − 1] ‖ T )⊕X = X. Suppose that we
garble the circuit f in Fig. 5. Wires 6 and 7 have the same pair of tokens. As shown in the garbled
table of gate 8, we send both Y and Y ⊕R in the clear, and there is no security whatsoever.

11



DKC A1 A2 A3 A4

doubling — D1 D2,D3 D4,D5 D6, D7 — D1 D2,D3 D4,D5 D6, D7

regularity 1 1 4 1 16 1 1 4 1 16

strong regularity — 1 4 4 16 — 1 4 4 16

injectivity indicator 1 1 0 0

Fig. 7. Parameters for DKC instantiations. The strong regularity of A1 and A3 is huge (δ = 2k); the corre-
sponding entries are dashed.

To translate the above to an attack of advantage 1 on prv security, the adversary queries
(f, f, 000, 100) to obtain (F,X, d). Following the idea above, the adversary obtains all tokens and
opens every row of every garbled table. Using d, it can determine the semantics of the tokens on
the output wire. There is only one row of the garbled table of gate 9 that encrypts the token of
semantics 0. The token on wire 4 used as a key for this row must have semantics 1. The adversary
therefore can determine the semantics of the tokens on wire 4. Now evaluate F on X. If the token
obtained on wire 4 has semantics 0 then output 1, otherwise output 0.

4 Security of Ga, GaX and GaXR

We will justify the security of our schemes in a common framework. We define a class of DKCs that
we call σ-derived. Under various conditions on the map σ, we prove security for our schemes.

σ-derived DKCs. Let σ : {0, 1}k × {0, 1}k × {0, 1}τ → {0, 1}ℓ be a function. We say that E is
σ-derived DKC if Eπ(A,B, T,X) = (π(K)⊕K)[1 : k]⊕X for K = σ(A,B, T ) and the function σ
satisfies the following two conditions:

(i) σ(A⊕A∗, B ⊕B∗, T ⊕ T ∗) = σ(A,B, T )⊕ σ(A∗, B∗, T ∗) for every A,A∗, B,B∗ ∈ {0, 1}k and
T, T ∗ ∈ {0, 1}τ , and

(ii) σ(0k, 0k, T ) 6= 0ℓ unless T = 0τ .

The injectivity indicator of σ is a number δ ∈ {0, 1}; it is 0 if and only if σ is tweak-wise injective,
that is, σ(A,B, T ) 6= σ(A∗, B∗, T ∗) whenever T 6= T ∗. The regularity of σ is the smallest r ∈ Z

+

such that

(iii) Pr[xև {0, 1}k : σ(x, 0k, 0τ ) = s] ≤ r/2k and also Pr[xև {0, 1}k : σ(0k, x, 0τ ) = s] ≤ r/2k for
every string s ∈ {0, 1}ℓ.

The strong regularity of σ is the smallest r ∈ Z
+ such that (iii) is satisfied and

(iv) Pr[xև {0, 1}k : σ(a · x, b · x, 0τ )⊕ x0ℓ−k = s] ≤ r/2k and Pr[xև {0, 1}k : σ(x, x, 0τ ) = s] ≤
r/2k for every string s ∈ {0, 1}ℓ and every (a, b) ∈ {0, 1}2, where 0 · x = 0|x| and 1 · x = x.

Each of our DKC instantiations is a σ-derived DKC; the regularity, strong regularity, and injectivity
indicator of its σ are shown in Fig. 7. This claim can be verified by a simple but tedious analysis.
For example, consider scheme A2 with the doubling method D2. Its function σ is σ(A,B, T ) =
2A⊕4B⊕T , satisfying both (i) and (ii), and the injectivity indicator of this σ is 1. The regularity
is 4, because Pr[xև {0, 1}k : x≪ 1 = s] ≤ 2/2k and Pr[xև {0, 1}k : x≪ 2 = s] ≤ 4/2k for every
string s ∈ {0, 1}k. To verify that the strong regularity is also 4, suppose that one wants to show
that, say Pr[xև {0, 1}k : (x ≪ 1)⊕ x = s] ≤ 4/2k for every string s ∈ {0, 1}k. Let x = x1 · · ·xk.
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Note that function f(x) = (x≪ 1)⊕ x returns

(x1⊕ x2) ‖ (x2⊕ x3) ‖ · · · ‖ (xk−1⊕ xk) ‖ xk,

and thus it is a permutation on {0, 1}k. Since xև {0, 1}k, it follows that f(x) is also uniformly
distributed over {0, 1}k. Hence the chance that f(x) = s is at most 1/2k. See Appendix E for the
complete analysis.

Security of Ga. The following says that if E is σ-derived and its σ has a small regularity, then
Ga[E] is prv-secure over Φtopo.

Theorem 1. Let A be an adversary that outputs circuits of at most q gates and makes at most Q
queries to π and π−1. Let E be a σ-derived DKC, where σ : {0, 1}k × {0, 1}k × {0, 1}τ → {0, 1}ℓ,
and let r and δ be the regularity and injectivity indicators of σ, respectively. Then

Adv
prv.rpm, Φtopo

Ga[E] (A, k) ≤
6qQ+ 15q2

2ℓ
+

30rQ+ 84rq

2k
+

δ(42rQq + 69rq2)

2k

In the advantage formula above, we use the injectivity indicator δ to “safeguard” the term
(Qq + q2)/2k. For the DKC instantiation A3, our implementation uses k = 80, and in practice, q
may go up to 232, say, as in recent works [23, 29]. The presence of the term (Qq + q2)/2k for A3
would result in a poor bound. Fortunately, this term vanishes, because δ = 0 for A3. The advantage
for A3 is about (Qq+q2)/2ℓ+(Q+q)/2k, which is satisfactory for ℓ = 128 and k = 80. In the DKC
instantiation A1, for example, δ = 1, but there we’ll use k = ℓ = 128, and the advantage becomes
about (Qq + q2)/2ℓ, which is very good.

To obtain the desirable bound above, the proof for Theorem 1, given in Appendix B, is complex.
Without care the advantage formula for E = A3, for example, might easily include the term Qq/2k

(without the guard of δ), which results in a poor bound for the choice k = 80.

Security of GaX. The following says that if E is σ-derived and its σ has a small strong regularity,
then GaX[E] is prv-secure over Φxor. The proof is in Appendix C.

Theorem 2. Let A be an adversary that outputs circuits of at most q gates and makes at most Q
queries to π and π−1. Let E be a σ-derived DKC, where σ : {0, 1}k × {0, 1}k × {0, 1}τ → {0, 1}ℓ,
and let r and δ be the strong regularity and injectivity indicators of σ, respectively. Then

Adv
prv.rpm, Φxor

GaX[E] (A, k) ≤
6qQ+ 15q2

2ℓ
+

36rQ+ 108rq

2k
+

δ(48rQq + 84rq2)

2k

Security of GaXR. The following says that if E is σ-derived and its σ has a small strong
regularity, then GaXR[E] is prv-secure over Φxor. The proof is in Appendix D.

Theorem 3. Let A be an adversary that outputs circuits of at most q gates and makes at most Q
queries to π and π−1. Let E be a σ-derived DKC, where σ : {0, 1}k × {0, 1}k × {0, 1}τ → {0, 1}ℓ,
and let r and δ be the strong regularity and injectivity indicators of σ, respectively. Then

Adv
prv.rpm, Φxor

GaXR[E] (A, k) ≤
10qQ+ 20q2

2ℓ
+

36rQ+ 123rq

2k
+

δ(48rQq + 94rq2)

2k

Discussion. The first use of the free-xor technique was justified in the ROM [28] but some
subsequent works have been able to justify the use of garbling schemes within the standard model [3,
14]. We have not investigated whether GaX or GaXR can proven secure in the standard model.
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Fig. 8. The JustGarble framework. The Build module or an external compiler can be used to generate a circuit f ,
described in SCD format, which is provided to the Garble module to get garbled tables P , token list e, and decoding
data d. The Evaluate module takes as input a circuit topology f−, also described in SCD format, along with garbled
tables P , and garbled input X. It outputs the garbled output Y .

5 JustGarble and its Performance

We have built a system, JustGarble, to realize the ideas described so far. The high speeds it achieves
come from use of a fixed-key blockcipher and various implementation optimizations. We explore
these factors here.

Architecture. JustGarble starts with the idea (already advocated in BHR [5]) that garbling
should be decoupled from MPC, oblivious transfer, and the compilation of programs into circuits.
The separation of concerns facilitates construction of an efficient tool, but it also necessitates caution
when comparing reported speeds.

To facilitate speed and interoperability, JustGarble uses a circuit representation that is simple
and easy to work with: SCD, for Simple Circuit Description. SCD closely follows the formulation
of circuits from BHR [5] recalled in Section 2. An SCD file starts with values n,m, q, followed by
arrays A,B, and G. If G is absent the file represents a topological circuit. For cross-language and
cross-platform compatibility, values are encoded with MessagePack [18].

JustGarble consists of modules for building circuits, garbling them, and evaluating garbled
circuits; see Fig. 8. The Build module can be used to construct circuits, working at the level of
individual gates or collections of them. Constructed circuits are written to SCD files. The Garble

module realizes the Gb algorithm of Ga, GaX, or GaXR. It can use any of the DKCs specified in this
paper. Garble takes in an SCD-described circuit f = (n,m, q, A,B,G) and produces the garbled
tables P that comprise the final component of the associated garbled circuit F = (n,m, q, A,B, P ).
The Evaluate module takes in a topological circuit f− = (n,m, q, A,B), the garbled tables P
needed to complete this, and a garbled input X. It produces the garbled output Y . JustGarble also
includes simple routines (not shown in Fig. 8) to realize De, which maps the garbled output Y to
the corresponding output y with the help of d.

The garbling module does not use the operating system to generate the pseudorandom bits
needed for tokens; such a choice would not be cryptographically secure. Instead, pseudorandom
bits are also generated by fixed-key AES, now operating in counter mode. At present, we use a
different AES key than that employed for the random permutation underlying the selected DKC.
We have verified that it would also work, cryptographically, to employ the same key for these
conceptually distinct tasks. But there would be a small quantitative security loss, and the proofs
would need to deal with this complication. With GaX-A2, the measured time savings from using
the same permutation is at most 0.3 cpg.
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Primitive E(A,B, T,X) =
Ga GaX GaXR

TE TG TE TG TE TG

Permutation π(K)⊕K ⊕X, with K ← 2A⊕ 4B⊕ T 52.1 221 23.2 55.6 23.9 56.4

Blockcipher E(K,T )⊕X, with K ← A||B 256 991 60.1 172 58.7 171

Hash function H(K ‖ T )[1 :k]⊕X, with K ← A||B 875 3460 161 566 160 568

Fig. 9. Permutation-based, blockcipher-based, and hash-based garbling. The TE (time to evaluate) and TG

(time to garble) values are in mean cycles per gate (cpg) using the subject AES circuit. The first method, A2,
is based on a permutation π : {0, 1}k → {0, 1}k. The permutation chosen is fixed-key AES128. The second method,
from KSS [29], uses a blockcipher E : {0, 1}2k × {0, 1}k → {0, 1}k. The selected blockcipher is AES256. The last
method, employed in [23], builds a DKC from a hash H : {0, 1}∗ → {0, 1}k. The hash function chosen is SHA-1.

By default, JustGarble utilizes hardware AES support through AES-NI [21]. The system is
written in C and employs compiler intrinsics to access SSE4 [25] instructions and 128-bit registers,
which hold and manipulate the tokens. We did test garbling speeds without NI support, observing
a five-fold slowdown in garbling and evaluation speed. This was on the circuit for computing AES
described below.

JustGarble is entirely open-source and freely available for download [26].

Experimental methodology. We ran our experiments on an x86-64 Intel Core i7-970 processor
clocked at 3.201 GHz with a 12MB L3 cache. Tests were compiled with gcc version 4.6, optimization
level -O3, with support for SSE4 and AES-NI instructions through the -sse4 and -maes flags.
The tests were run in isolation, with processor frequency scaling turned off. We used the rdtsc

instruction to count cycles.

We ran tests in batches of 1000 runs each, noting the median of the times recorded in the runs.
This process was repeated for 1000 batches, and the final time reported is the mean of the batch
medians. The cache was warm during the tests from initial runs. The standard deviation of the
batch medians does not exceed 0.25 cpg in any of the experiments.

AES-circuit benchmarks. We measure garbling and evaluation speeds on a circuit computing
AES128K(X) (hereafter simply AES) for a particular key K. This corresponds to a GC-based SFE
of AES where the first party holds K and prepares a circuit for the second party, who holds X and
wants to compute AESK(X). We choose this setting because it has been used as a benchmark in
prior work [22, 23, 29, 32], and hence helps compare our system with existing ones.

We build the AES circuit as described in HEKM [23]. The key is first expanded into 1280 bits.
Conceptually, this is done locally by the party holding the key. We use a different S-box circuit [11]
than HEKM, which results in a smaller AES circuit. This is not significant; as we measure speed
in cycles per gate, small differences in circuit size are unlikely to have a noticeable effect on speed
as long as the fraction of xor gates is little changed. Overall, our AES circuit has 36,480 gates, of
which 29,820 (82%) are xor.

The evaluation and garbling speeds of A1,A2,A3, and A4 are listed in Fig. 1. For A2 we use
doubling method D7; for A4, we use D3. These choices will be explained shortly. The fastest among
our constructions, GaX with A2, evaluates the AES circuit at 23.2 cpb (7.25 ns/gate) and garbles
it at 55.6 cpg (17.4 ns/gate). Overall, this comes to 637 µs for garbling the AES circuit and 264 µs
for evaluating it.
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Circuit Gates Xor gates TE TG

MEXP-16 0.21M 0.14M 44.1 91.6

MEXP-32 1.75M 1.15M 45.3 96.3

MEXP-64 14.3 M 9.31M 44.6 95.8

EDT-255 15.5 M 9.11M 48.4 101.3

Fig. 10. Performance on larger circuits. Evaluation times (TE) and garbling times (TG) are in median cycles
per gate using GaX-A2. The modular exponentiation (MEXP) and edit distance (EDT) circuits are described in
text. Gate counts are in millions of gates (1M = 1 million gates).

Schemes A3 and A4 are a little slower than A1 and A2. Part of the speed difference may be due
to JustGarble being better optimized for 128-bit tokens. Beyond this, there are memory-alignment
overheads in dealing with 10-byte tokens: SSE4 instructions can have higher read and write latencies
when data is not 16-byte aligned [25].

The sizes SP we report in Fig. 1 measure only the contribution from the garbled tables: SP =
|P |/8q. Focusing on this value is justifiable because, in MPC applications, the other components
of the GC, its topology, will be known and need not be communicated. Regardless, the size of the
GC that JustGarble makes will always be SF = SP +8 bytes, as gates are represented as four-byte
numbers and we need to record two of these per gate—one for each of arrays A and B. Here we
ignore the space to store n,m, q.

For the DKC A2, we implement doubling in many ways; see the definition for methods D1–D7
in Fig. 6 . We find D6 and D7 the fastest, followed by D2 and D3, then D4 and D5, and finally D1.
The speed of D6 and D7 (SIMD shift) is due to the availability of a matching SSE4 instruction. The
speed difference between the fastest and slowest doubling methods is ∆TE ≈ 7 cpg and ∆TG ≈ 11
cpg. We find this significant enough to trade a small quantity in the security bound, which is why
we select A2 with D7 doubling. For the DKC A4, which uses 10-byte tokens, similar experiments
lead us to select the doubling scheme D3.

Larger circuits. The size of the garbled table for each non-xor gate ranges from 30 bytes
(GaXR with A3,A4) to 64 bytes (GaX with A1,A2). This means that even circuits with hundreds
of thousands of gates can fit in the processor’s L3 cache during evaluation. However, if the circuit
is too big to fit entirely in the cache, per-gate garbling and evaluation times will increase.

To understand the performance of JustGarble on circuits larger than the cache size, we measured
garbling and evaluation times of the modular exponentiation (MEXP) (“RSA circuits”) and edit dis-
tance (EDT) circuits of KSS with various input sizes. We used GaX with A2 (henceforth GaX-A2);
see Fig. 10. The MEXP-ℓ circuit takes inputs a and b and returns ab mod c for c = 180ℓ−91. The
EDT-m circuit takes as inputs two m-bit strings and returns their edit distance as a (lgm)-bit in-
teger. We obtained these circuits by patching the KSS compiler to produce outputs in SCD format.
The garbling and evaluation times (in cycles per gate) are higher than the measured values for the
AES circuit due to higher latencies involved in reading data directly from main memory. However,
JustGarble is still several times faster than what KSS report. Taking RSA-32 as an example, KSS
report a garbling time of 4.53 seconds, which translates to 6546 cpg, while JustGarble uses 91.6
cpg, a 70x speedup.

At present, JustGarble cannot handle circuits that are too big to fit in main memory. An
obvious direction for future work is extending JustGarble with a streaming mode of operation that
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can garble and evaluate large circuits by keeping only a small portion in memory at any given
point.

Comparisons. JustGarble garbles and evaluates moderately-sized circuits about two orders of
magnitude faster than what recent MPC implementations of HKEM and KSS report [23, 29]. For
evaluating an AES circuit, the best previously-reported figure comes from KSS [29], garbling the
circuit in 80 ms. The fastest among our own constructions, GaX using A2, does the job in 638 µs. We
note that both systems use AES-NI and SSE4 instructions and the free-xor optimization, and that,
in both cases, the reported times are for garbling alone, excluding other operations and network
overhead. One reason JustGarble performs better is that it spends less time on non-cryptographic
operations, by which we mean all operations other than the DKC computations. Moreover, using
a fixed-key DKC like A2 results in a sizable gain in performance, in spite of the large percentage
of xor gates (82%) in the AES circuit. We measured the contributions of both of these factors as
below.

JustGarble spends about 23% and 43% of its time on non-cryptographic operations when GaXR-
A2 does garbling and garbled-circuit evaluation, respectively. In contrast, KSS measure AES256
(with AES-NI) overhead at 225 cycles per invocation but report an overall GaXR garbling time
of over 6000 cpg, suggesting that close to 95% of the garbling time is non-cryptographic overhead.
The reduced overhead is likely connected to our simple representation of circuits, one consequence
of which is the absence of a need to maintain a queue of ready gates. A downside of this simple
circuit representation is that, unlike HEKM and KSS, JustGarble cannot handle circuits that do
not fit in memory.

To measure the contribution of the DKC itself, we implement within JustGarble the blockcipher-
based DKC from KSS and the hash-function based DKC from HEKM; see Fig. 9. Let us focus on
GaXR, as free-xor and garbled-row reduction are both employed in the MPC systems of KSS and
HEKM. Comparing the first and second rows, the DKC-attributable speedup we get by using a
permutation instead of a blockcipher is 2.5-fold improvement in evaluation time and 3-fold improve-
ment in garbling time. Comparing the first and the third rows, the DKC-attributable speedup we
get by using a permutation instead of a cryptographic hash function is 6.7-fold improvement in
evaluation time and 10-fold improvement in garbling time. One may conclude that the improved
DKCs play a large role in our performance gains—a factor of about 2.5 to 10—yet more mileage is
obtained through other aspects of JustGarble.
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A Invertibility of Φxor

We recall the notion of efficient invertibility of BHR [5]. Let Φ be a side-information function. An
algorithm M is called a (Φ, ev)-inverter if on input (φ, y), where φ = Φ(f ′) and y = ev(f ′, x′) for
some f ′ and x ∈ {0, 1}f

′.n, it returns an (f, x) satisfying Φ(f) = φ and ev(f, x) = y. We say that
(Φ, ev) is efficiently invertible if there is a polynomial-time (Φ, ev)-inverter.

Proposition 4 There exists a cubic-time (Φxor, evcirc)-inverter.

Proof (Proof of Proposition 4). We specify a cubic-time (Φxor, evcirc)-inverter Mxor as follows. Let
Gauss(S) be the algorithm that takes as input a system S of linear equations in GF(2), uses
Gaussian elimination to solve it, and then lets each free variable be 0. The inverter Mxor gets as
input φ = (n,m, q, A,B,G′) and a string y ∈ {0, 1}m, and proceeds as follows.

proc Mxor(φ, y)
(n,m, q,A,B,G′)← φ, y1 · · · ym ← y, S ← ∅
for g ∈ {n+ 1, . . . , n+ q} do

a← A(g), b← B(g)
if G′

g = XOR then
if g ≤ n+ q −m then S ← S ∪ {xa ⊕ xb ⊕ xg = 0}
else S ← S ∪ {xa ⊕ xb = yg−(n+q−m)}

(x1, . . . , xn+q−m)← Gauss(S)
for (g, i, j) ∈ {n+ 1, . . . , n+ q} × {0, 1} × {0, 1} do

if G′
g = XOR then Gg ← XOR else Gg(i, j)← xg

f ← (n,m, q,A,B,G), x← x1 · · ·xn

return (f, x)

We then have (f, x) as desired. The system S has q + n −m variables, and at most q equations.
Hence the running time of Gauss(S) is at most O

(
(q + n)3

)
, and so is Mxor’s running time.

B Proof of Theorem 1

In our code, a procedure with the keyword “private” is local to the caller, and thus cannot be invoked
by the adversary. It can be viewed as a function-like macro in the C/C++ programming language.
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proc Garble(f0, f1, x0, x1)

(n,m, q,A′, B′, G)← fc
for i← 1 to n+ q do

vi ← ev(fc, xc, i), ti և {0, 1}, Xvi
i և {0, 1}k−1ti, Xvi

i և {0, 1}k−1ti
for g ← n+ 1 to n+ q, i← 0 to 1, j ← 0 to 1 do

a← A′(g), b← B′(g)

A← Xi
a, B ← Xj

b , a← lsb(A), b← lsb(B), K ← σ(A,B, g)

if i = va and j = vb then P [g, a, b]← (Π(K)⊕K)[1 : k]⊕X
vg
g else P [g, a, b]← GarbleRow()

F ← (n,m, q,A′, B′, P ), X ← (Xv1
1 , . . . , Xvn

n )

d←
(

lsb(X0
n+q−m+1), . . . , lsb(X

0
n+q)

)

return (F,X, d)

private proc GarbleRow()

Sև {0, 1}ℓ

if K ∈ Dom(π) or S ⊕K ∈ Ran(π) then

bad ← true, S ← Π(K)⊕K

Y ← S[1 : k]⊕X
Gg(i,j)
g , π[K]← S ⊕K

return Y

proc Π(u) Game G0 / Game G1

if u 6∈ Dom(π) then π[u]և {0, 1}ℓ\Ran(π)

return π[u]

proc Π−1(v)

if v 6∈ Ran(π) then

uև {0, 1}ℓ\Dom(π), π[u]← v

return π−1[v]

private proc GarbleRow()

Sև {0, 1}ℓ, Y ← S[1 : k]⊕X
Gg(i,j)
g

BadDom← BadDom ∪ {K}

BadRan← BadRan ∪ {K ⊕S}

return Y

proc Π(u) Game G2

if u ∈ BadDom then bad ← true

if u 6∈ Dom(π) then π[u]և {0, 1}ℓ\Ran(π)

return π[u]

proc Π−1(v)

if v ∈ BadRan then bad ← true

if v 6∈ Ran(π) then

uև {0, 1}ℓ\Dom(π), π[u]← v

return π−1[v]

Fig. 11. Games for the proof of Theorem 1. Each set is initialized to be ∅. Initially, procedure Initialize()

samples the challenge bit cև {0, 1}.

That is, it still has read/write access to the variables of the caller, even if these variables are not its
parameters. Consider games G0–G2 in Fig. 11. They share the same code for procedure Garble,
but each has a different implementation of a local procedure GarbleRow. The adversary A makes
queries to procedures Π and Π−1 to access an ideal permutation π, which is implemented lazily.
Without loss of generality, assume that q +Q ≤ 2k−2/r; otherwise the theorem is trivially true.

We reformulate game PrvGa,Φtopo,k,π as game G0. Recall that in the scheme Ga, each wire i
carries tokens X0

i and X1
i with semantics 0 and 1 respectively. If wire i ends up having value

(semantics) vi in the computation v ← ev(fc, xc), where c is the challenge bit, then token Xvi
i

becomes visible to A while Xvi
i stays invisible. Game G0 makes this explicit. It picks for each wire i

a “visible” token and an “invisible” one. Each garbled row that can be opened by visible tokens
will be built directly in Garble. To construct each other garbled row, we invoke the “private”
procedure GarbleRow, which inherits all variables of Garble.

We explain the game chain up until the terminal game. ✄G0 → G1 : the two games are identical
until either game sets bad. In these games, we sample a uniformly random string S and want to
set π(K) to K ⊕ S. This may cause inconsistency if π(K) or π−1(K ⊕ S) is already defined,
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triggering bad. In this case, G0 resets S to the consistent value, but game G1 does nothing. Hence
in game G1, a point v ∈ Ran(π) may have several preimages, and in that case π−1[v] means an
arbitrary preimage.

We now bound the chance that G1 sets bad. Consider the ith invocation of GarbleRow. It
triggers bad to true if its string K falls into Dom(π) or S ⊕K falls into Ran(π), with Sև {0, 1}ℓ.
Since |Ran(π)| ≤ (Q+ q+ i−1), the latter happens with probability at most (Q+ i+ q−1)/2ℓ. Let
K = σ(A,B, g). We claim that the chance that K ∈ Dom(π) is at most 6r/2k + Nir(2δ + 1)/2k,
whereNi is the size of Dom(π)∩

{
σ(x, y, g) | x, y ∈ {0, 1}k

}
, which is at most |Dom(π)| ≤ Q+q+i−1.

By the union bound, the chance that G1 sets bad is at most

3q∑

i=1

Q+ q + i− 1

2ℓ
+

6r

2k
+

rNi(2δ + 1)

2k
≤

3qQ+ 7.5q2

2ℓ
+

3rQ+ 30rq

2k
+

δ(9rqQ+ 22.5rq2)

2k
.

If δ = 1 the last inequality is obvious, as Ni ≤ Q + q + i − 1. For the case δ = 0, note that
for each string s there is at most one value g such that s ∈ {σ(x, y, g) | x, y ∈ {0, 1}k}. Hence
when we sum up the numbers Ni, because the invocations of GarbleRow use each tweak value
at most three times, we count each point in Dom(π) at most three times, so the sum is at most
3|Dom(π)| ≤ 3(Q+ 4q).

We now justify the claim above. Consider the moment that procedure Garble makes the ith
call to GarbleRow. Let D1 be the set of points in Dom(π) created by adversarial queries before
its querying Garble, and let D2 be the set of points in Dom(π) created by procedure Garble so
far. Then D1∪D2 = Dom(π). Recall that K = σ(A,B, g) = σ(A, 0k, 0τ )⊕σ(0k, B, 0τ )⊕σ(0k, 0k, g).
Because Aև {0, 1}k and r is the regularity of σ, it follows that Pr[σ(A, 0k, 0τ ) = s] ≤ r/2k for any
string s ∈ {0, 1}ℓ. Since A is independent of B and all points in D1, the chance that K ∈ D1 is at
most rNi/2

k.

What remains is to show that Pr[K ∈ D2] ≤ 6r/2k + 2Nirδ/2
k. Consider an arbitrary point

K∗ ∈ D2. Let K
∗ = σ(A∗, B∗, g∗). If A ≡ A∗ and B ≡ B∗ then K and K∗ belong to different gates,

and thus g 6= g∗. Hence K⊕K∗ = σ(A,B, g)⊕σ(A,B, g∗) = σ(0k, 0k, g⊕g∗) 6= 0ℓ. Otherwise, wlog,
suppose that A[1 : k − 1] is independent of B, A∗, and B∗. For any string s ∈ {0, 1}ℓ, as r is the
regularity of σ, there are at most r strings x such that σ(x, 0k, 0τ ) = s. Given B,A∗, and B∗, because
each but the last bit of A is still uniformly random, the conditional probability that A falls into one
of the r strings above is at most 2r/2k, and thus the conditional probability that σ(A, 0k, 0τ ) = s is
at most 2r/2k. Hence Pr[K = K∗] ≤ 2r/2k. Moreover, if the injectivity indicator δ = 0 and g 6= g∗

then K 6= K∗. In other words, Pr[K = K∗] ≤ 2r/2k if g = g∗, and Pr[K = K∗] ≤ 2rδ/2k otherwise.
Summing up, Pr[K ∈ D2] ≤ 6r/2k + 2Nirδ/2

k, because there are most three elements of D2 using
the tweak g.

✄G1 → G2 : in game G1 we write π[K] ← S ⊕K, but game G2 omits this step. In addition,
we maintain two sets, BadDom and BadRan, each of which are initialized to the empty set. Each
call to GarbleRow will add K to BadDom and S ⊕K to BadRan. The two games are identical
until G2 sets bad, that is, when A happens to query Π(u) with u ∈ BadDom, or Π−1(v) with
v ∈ BadRan. Since G2 samples S uniformly at random, and doesn’t store it in π, the output of
GarbleRow() is uniformly random, independent of the token that S masks.

We now bound the chance that G2 sets bad. Consider an arbitrary point K ∈ BadDom. It has a
corresponding point K⊕S ∈ BadRan. Let K = σ(A,B, g). Either A or B must be invisible. Wlog,
suppose that A is invisible. Condition on the output of Garble. Initially, as each but the last bit
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proc Garble(f0, f1, x0, x1)
(n,m, q,A′, B′)← Φtopo(f0), vq+n−m+1 · · · vq+n ← ev(f0, x0)
for i← 1 to n+ q do

ti և {0, 1}, Vi և {0, 1}
k−1ti, Ii և {0, 1}

k−1ti
for i← n+ q −m+ 1 to n+ q do

Xvi
i ← Vi, Xvi

i ← Ii
for g ← n+ 1 to n+ q do

a← A′(g), b← B′(g)
for (A,B) ∈ {Va, Ia} × {Vb, Ib} do
a← lsb(A), b← lsb(B), K ← σ(A,B, g)

if A = Va and B = Vb then Y ← (Π(K)⊕K)[1 : k]⊕ Vg else Y և {0, 1}k

P [g, a, b]← Y
F ← (n,m, q,A′, B′, P ), X ← (V1, . . . , Vn)
d←

(

lsb(X0
n+q−m+1), . . . , lsb(X

0
n+q)

)

return (F,X, d)

Fig. 12. Rewritten game G2 of the proof of Theorem 1. This game depends solely on the
topological circuit f− = Φtopo(f0) = Φtopo(f1) and the output v = ev(f0, x0) = ev(f1, x1). Proce-
dures Π and Π−1 lazily implement a random permutation and its inverse, respectively.

of A is still uniformly random and the regularity of σ is r, the conditional probability that K = s
is at most 2r/2k for any string s ∈ {0, 1}ℓ. Consider a query u to Π. Each prior query to Π or Π−1

removes at most one value of K. Since there are at most q +Q queries to Π and Π−1 (procedure
Garble only queries Π for q rows that can be opened by visible tokens), the chance that u hits K
is at most

2r/2k

1− 2(Q+ q)r/2k
=

2r

2k − 2r(Q+ q)
≤ 4r/2k,

where the last inequality is due to the assumption Q + q ≤ 2k−2/r. By the union bound, the
chance that u ∈ BadDom is at most 12rq/2k. But if the injectivity indicator δ = 0 then there
is at most one possible value of g such that u ∈ {σ(x, y, g) | x, y ∈ {0, 1}k}, and, consequently,
Pr[u ∈ BadDom] ≤ 12r/2k because each tweak value is used at most three times in BadDom. Hence
in general, Pr[u ∈ BadDom] ≤ 12r(qδ + 1)/2k. Likewise, for each query v to Π−1, the chance that
v ∈ BadRan is at most 12r(qδ + 1)/2k. By the union bound, the chance that game G2 sets bad is
at most

12r(Q+ q)(qδ + 1)/2k = (12rQ+ 12rq)/2k + δ(12rQq + 12rq2)/2k .

Analysis of game G2. The output of game G2 is independent of the challenge bit c. Hence
Pr[GA

2 (k)] = 1/2. To justify this, from a topological circuit f− and the final output v = ev(fc, xc),
which is independent of c, we can rewrite the code of procedure Garble of game G2 as shown
in Fig. 12. There, we refer to the visible token of wire i as Vi, and its invisible counterpart as Ii,
omitting the semantics of these tokens. Each garbled row is an independent, uniformly random
string, except for rows that can be opened by visible tokens. Summing up,

Adv
prv.rpm, Φtopo

Ga[E] (A, k) = 2(Pr[GA
0 (k)]− Pr[GA

2 (k)])

≤
6qQ+ 15q2

2ℓ
+

30rQ+ 84rq

2k
+

δ(42rQq + 69rq2)

2k
.
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proc Garble(f0, f1, x0, x1)

(n,m, q,A′, B′, G)← fc, Rև {0, 1}k−11

for i← 1 to n+ q do vi ← ev(fc, xc, i)

for i← 1 to n do Xvi
i և {0, 1}k, Xvi

i ևXvi
i ⊕R

for g ← n+ 1 to n+ q do

a← A′(g), b← B′(g)

if Gg = XOR then G′
g ← XOR, X

vg
g ← Xva

a ⊕X
vb
b , X

vg
g ← X

vg
g ⊕R

else G′
g ← AND, X

vg
g և {0, 1}k, X

vg
g ← X

vg
g ⊕R

for i← 0 to 1, j ← 0 to 1 do

A← Xi
a, B ← Xj

b , a← lsb(A), b← lsb(B), K ← σ(A,B, g)

if i = va and j = vb then P [g, a, b]← (Π(K)⊕K)[1 : k]⊕X
vg
g else P [g, a, b]← GarbleRow()

F ← (n,m, q,A′, B′, G′, P ), X ← (Xv1
1 , . . . , Xvn

n )

d←
(

lsb(X0
n+q−m+1), . . . , lsb(X

0
n+q)

)

return (F,X, d)

private proc GarbleRow()

Sև {0, 1}ℓ

if K ∈ Dom(π) or S ⊕K ∈ Ran(π) then

bad ← true, S ← Π(K)⊕K

Y ← S[1 : k]⊕X
Gg(i,j)
g , π[K]← S ⊕K

return Y

proc Π(u) Game G0 / Game G1

if u 6∈ Dom(π) then π[u]և {0, 1}ℓ\Ran(π)

return π[u]

proc Π−1(v)

if v 6∈ Ran(π) then

uև {0, 1}ℓ\Dom(π), π[u]← v

return π−1[v]

private proc GarbleRow()

Sև {0, 1}ℓ, Y ← S[1 : k]⊕X
Gg(i,j)
g

BadDom← BadDom ∪ {K}

BadRan← BadRan ∪ {K ⊕S}

return Y

proc Π(u) Game G2

if u ∈ BadDom then bad ← true

if u 6∈ Dom(π) then π[u]և {0, 1}ℓ\Ran(π)

return π[u]

proc Π−1(v)

if v ∈ BadRan then bad ← true

if v 6∈ Ran(π) then

uև {0, 1}ℓ\Dom(π), π[u]← v

return π−1[v]

Fig. 13. Games for the proof of Theorem 2. Each set is initialized to be ∅. Initially, procedure Initialize()

samples the challenge bit cև {0, 1}. Game G0 includes the corresponding boxed statement, but game G1 does not.

concluding the proof.

C Proof of Theorem 2

Wlog, assume that Q+ q ≤ 2k−2/r; otherwise the theorem is trivially true. The proof is similar to
that of Theorem 1. Consider games G0–G2 in Fig. 13. Each game has exactly the same procedures
GarbleRow,Π, and Π−1 as the corresponding game in Fig. 11 of the proof of Theorem 1. The
only change is to add free-xor trick to the common procedure Garble. Let L be the union of
{1, . . . , n} and {g | n + 1 ≤ g ≤ n + q and Gg 6= XOR}. Visible tokens on wires i ∈ L are chosen
at random, and thus are independent. For each visible token V , there is a unique subset V of L
such that V is the checksum of visible tokens of wires i ∈ V . Then, the string R is independent of
all visible tokens. Below, for any random variable Z ∈ {0, 1}k, if there is Z̃ ∈ {Z,Z⊕R} such that
Z̃ is the checksum of some visible tokens then we call Z̃ the visible match of Z. Define the flip bit
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proc Garble(f0, f1, x0, x1)
(n,m, q,A′, B′, G′)← Φxor(f0)

vq+n−m+1 · · · vq+n ← ev(f0, x0), Rև {0, 1}k−11

for i← 1 to n+ q do Vi և {0, 1}
k, Ii ևVi ⊕R

for g ← n+ 1 to n+ q do
a← A′(g), b← B′(g)
if G′

g = XOR then Vg ← Va ⊕ Vb, Ig ← Vg ⊕R
else

for (A,B) ∈ {Va, Ia} × {Vb, Ib} do
a← lsb(A), b← lsb(B), K ← σ(A,B, g)

if A = Va and B = Vb then Y ← (Π(K)⊕K)[1 : k]⊕ Vg else Y և {0, 1}k

P [g, a, b]← Y

for i← n+ q −m+ 1 to n+ q do Xvi
i ← Vi, Xvi

i ← Ii
F ← (n,m, q,A′, B′, P ), X ← (V1, . . . , Vn)
d←

(

lsb(X0
n+q−m+1), . . . , lsb(X

0
n+q)

)

return (F,X, d)

Fig. 14. Rewritten game G2 of the proof of Theorem 2. This game depends solely on f ′ =
Φxor(f0) = Φxor(f1) and the output v = ev(f0, x0) = ev(f1, x1). Procedures Π and Π−1 lazily
implement a random permutation and its inverse, respectively.

of Z to be the bit z such that Z̃ = Z⊕z ·R. We call each string K that procedure Garble creates
a seed.

The output of G2 is independent of the challenge bit, and thus Pr[GA
2 (k)] = 1/2. To justify this,

from f ′ = Φxor(fc) and the final output v = ev(fc, xc), which is independent of c, we can rewrite
the code of procedure Garble of game G2, as shown in Fig. 14. There, we refer to the visible token
of wire i as Vi, and its invisible counterpart as Ii, omitting the semantics of these tokens. Each
garbled row is an independent, uniformly random string, except for rows that can be opened by
visible tokens.

Hence by union bound and Lemmas 1 and 3 below,

Adv
prv.rpm, Φxor

GaX[E] (A, k) = 2(Pr[GA
0 (k)]− Pr[GA

2 (k)])

≤
6qQ+ 15q2

2ℓ
+

36rQ+ 108rq

2k
+

δ(48rQq + 84rq2)

2k
.

Lemma 1. The chance G1 sets bad is at most (3qQ + 7.5q2)/2ℓ + (6rQ + 42rq)/2k + δ(12rQq +
30rq2)/2k.

Proof (Proof of Lemma 1). Consider the ith invocation of GarbleRow. It triggers bad to true
if its seed K falls into Dom(π) or S ⊕ K falls into Ran(π), with Sև {0, 1}ℓ. The chance that
K⊕S ∈ Ran(π) is at most |Ran(π)|/2ℓ ≤ (Q+ q+ i− 1)/2ℓ. Let D1 be the set of points in Dom(π)
created by adversarial queries before its querying to Garble, and let D2 be the set of points in
Dom(π) created by procedure Garble so far. Then D1 ∪D2 = Dom(π). Let K = σ(A,B, g), and
let Ni be the size of Dom(π) ∩ {σ(x, y, g) | x, y ∈ {0, 1}k}, which is at most Q + q + i − 1. Below,
we’ll show that Pr[K ∈ D1] ≤ 2rNi/2

k and Pr[K ∈ D2] ≤ 6r/2k + 2rNiδ/2
k. By union bound, the

chance that G1 sets bad is at most
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3q∑

i=1

Q+ q + i− 1

2ℓ
+

6r

2k
+

2rNi(δ + 1)

2k
≤

3qQ+ 7.5q2

2ℓ
+

6rQ+ 42rq

2k
+

δ(12rQq + 30rq2)

2k
.

The last inequality is obvious if δ = 1, since Ni ≤ Q+ q+ i− 1. To justify it for the case δ = 0,
note that for each string s, there is at most one value g such that s ∈ {σ(x, y, g) | x, y ∈ {0, 1}k}.
Hence when we sum up the numbers Ni, because the GarbleRow calls use each tweak value
at most 3 times, we count each point in Dom(π) at most 3 times, and thus the sum is at most
3|Dom(π)| ≤ 3(Q+ 4q).

First, we’ll show that Pr[K ∈ D1] ≤ 2rNi/2
k. Let Ã, B̃ be the visible matches and a, b be the

flip bits of A and B respectively. Since either A or B must be invisible, (a, b) 6= (0, 0). We claim
that Pr[σ(a ·R, b ·R, 0τ ) = s] ≤ 2r/2k for any string s ∈ {0, 1}ℓ. To justify this claim, note that as
the strong regularity of σ is r, there are at most r strings x in {0, 1}k such that σ(a ·x, b ·x, 0τ ) = s.
Because every bit of R, except the last, is uniformly random, the chance that R is one of the r
strings above is at most 2r/2k. Since K = σ(Ã⊕a ·R, B̃⊕ b ·R, g) = σ(Ã, B̃, g)⊕σ(a ·R, b ·R, 0τ ),
and R is independent of Ã, B̃ and all points in D1, the chance that K ∈ D1 is at most 2rNi/2

k. To
bound the chance that K ∈ D2, we’ll show that any two seeds are unlikely to be equal.

Lemma 2. For any two seeds that procedure Garble creates, the chance that they are equal is
at most 2r/2k.

Proof (Proof of Lemma 2). Consider two seeds K = σ(A,B, g) and K∗ = σ(A∗, B∗, g∗). Then
K ⊕K∗ = σ(A⊕A∗, B ⊕B∗, g ⊕ g∗). Let C0 and C1 be the visible matches and c0 and c1 be the
flip bits of A⊕A∗ and B⊕B∗ respectively. Suppose that (c0, c1) 6= (0, 0). Then

K ⊕K∗ = σ(C0⊕ c0 ·R,C1⊕ c1 ·R, g⊕ g∗) = σ(C0, C1, g⊕ g∗)⊕ σ(c0 ·R, c1 ·R, 0τ ) .

As the strong regularity of σ is r and every bit of R, except the last, is uniformly random, the
chance that Pr[σ(c0 · R, c1 · R, 0τ ) = s] ≤ 2r/2k for any string s ∈ {0, 1}ℓ. Since R is independent
of all visible tokens, the chance that K ⊕K∗ = 0ℓ is at most 2r/2k. On the other hand, consider
the case that c0 = c1 = 0. Let A be the subset of L such that C0 is the checksum of visible tokens
of wires i ∈ A, and define B for C1 likewise. If A = B = ∅ then A ≡ A∗ and B ≡ B∗, and thus K
and K∗ must belong to different gates. Then g 6= g∗ and K⊕K∗ = σ(0k, 0k, g⊕g∗) 6= 0ℓ. Otherwise,
if A∪B 6= ∅ then let j be an arbitrary element of A∪B. Let a = 1 if j ∈ A, and let a = 0 otherwise.
Likewise, let b = 1 if j ∈ B, and let b = 0 otherwise. Then

K ⊕K∗ = σ(a · Vj , b · Vj , 0
τ )⊕ σ

( ⊕

i∈A\{j}

Vi,
⊕

i∈B\{j}

Vi, g⊕ g∗
)
,

where Vi is the visible token on wire i. As (a, b) 6= (0, 0), every bit of Vj is uniformly random,
and the strong regularity of σ is r, it follows that Pr[σ(a · Vj , b · Vj , 0

τ ) = s] ≤ r/2k for any string
s ∈ {0, 1}ℓ. Hence Pr[K = K∗] ≤ 2r/2k as claimed.

What remains is to show that Pr[K ∈ D2] ≤ 6r/2k + 2rNiδ/2
k. Consider an arbitrary seed

K∗ ∈ D2. Let K
∗ = σ(A∗, B∗, g∗). From Lemma 2, Pr[K = K∗] ≤ 2r/2k. On the other hand, if the

injectivity indicator δ = 0 and g 6= g∗ then Pr[K = K∗] = 0. Thus Pr[K = K∗] ≤ 2r/2k if g = g∗,
and Pr[K = K∗] ≤ 2rδ/2k otherwise. By union bound, Pr[K ∈ D2] ≤ 6r/2k + 2rNiδ/2

k, because
there are most three elements of D2 using the tweak g.
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Lemma 3. The chance G2 sets bad is at most (12rQ+ 12rq)/2k + δ(12rQq + 12rq2)/2k

Proof (Proof of Lemma 3). Consider an arbitrary seed K ∈ BadDom. It has a corresponding point
K ⊕ S ∈ BadRan. Let K = σ(A,B, g) and S[1 : k] = Y ⊕Z, where Y is the value of the garbled
row corresponding to K, and Z is the token that S[1 : k] masks. Let Ã, B̃, Z̃ be the visible matches
and a, b, z be flip bits of A,B,Z respectively. Since either A or B is invisible, (a, b) 6= (0, 0). Then
K = σ(Ã, B̃, g)⊕ σ(a ·R, b ·R, 0τ ) and

K ⊕S = σ(Ã, B̃, g)⊕ σ(a ·R, b ·R, 0τ )⊕ z ·R0ℓ−k ⊕
(
(Y ⊕ Z̃) ‖ S[k + 1: ℓ]

)
.

Since the strong regularity of σ is r, a value of K or K ⊕ S corresponds to at most r possible
values of R. Initially, there are 2k−1 equally likely values of R. Each query to Π or Π−1 removes at
most r values of R. Hence, as there are at most Q+ q queries to Π and Π−1, for each query to Π,
the chance that it hits K is at most r/(2k−1− r(Q+ q)) ≤ r/2k−2, where the last inequality is due
to the assumption that Q+ q ≤ 2k−2/r. Thus, the chance that this query hits a point in BadDom
is at most 3r(qδ + 1)/2k−2. This claim is obvious if δ = 1, as |BadDom| ≤ 3q. To justify this for
δ = 0, note that there is at most one tweak whose corresponding seeds K can be hit by the query,
and in BadDom, each tweak is used for at most three points. Likewise, for each query to Π−1, the
chance that it hits a point in BadRan is at most 3r(qδ + 1)/2k−2. Hence, the chance that G2 sets
bad is at most 12(Q+ q)r(qδ + 1)/2k.

D Proof of Theorem 3

The proof is similar to that of Theorem 2. Consider games G0 − G3 in Fig. 15. We reformulate
game PrvGaXR,Φxor,k,π as game G0, with visible tokens and invisible ones. Here garbled rows that
can be opened by visible tokens require using procedure EncodeRow.

We explain the game chain up until the terminal game. ✄G0 → G1 : We maintain two sets
Coll and Seeds, which are initialized to be ∅. In procedure Π(u), if π[u] is not previously defined
then we attempt to choose π[u] uniformly, pretending that π is a random function, instead of a
random permutation. Of course it may create inconsistency with prior points in Dom(π). If this
happens, the “failure” point u is added to Coll, and we’ll sample π[u] again, according to the correct
distribution. The set Seeds keeps track of the seeds K that we write to π[K]. The two games are
identical until either game sets bad.

We claim that in game G1, the visible token of the outgoing wire of each non-XOR gate is
chosen uniformly, independent of R and other visible token created before. Such a visible token
is either (i) S[1 : k] ⊕ R, with S ← GarbleRow(), (ii) S[1 : k], with S ← GarbleRow(), or
(iii) S[1 : k], with S ← EncodeRow(). Since GarbleRow always outputs a fresh Sև {0, 1}ℓ,
it suffices to show that the same holds for EncodeRow. Let K be a seed created in procedure
EncodeRow. If K is equal to some prior seeds then game G1 explicitly samples S uniformly.
Otherwise, we let S ← v⊕K, where v is the value sampled in Π(K) at the first attempt. Since v
is uniformly distributed over {0, 1}ℓ, so is S.

We now bound the chance that G1 sets bad. By using exactly the same arguments in the proof
of Lemma 1, the chance that GarbleRow sets bad is at most (3qQ+7.5q2)/2ℓ+(6rQ+42rq)/2k+
δ(12rQq+30rq2)/2k. What’s left is to bound the chance that procedure EncodeRow triggers bad
to true. Consider the ith call of EncodeRow. Let K = σ(A,B, g) be the seed of this call, and
let K∗ = σ(A∗, B∗, g∗) be an arbitrary point in Seeds then. By using exactly the same arguments
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proc Garble(f0, f1, x0, x1)

(n,m, q,A′, B′, G)← fc, Rև {0, 1}k−11

for i← 1 to n+ q do vi ← ev(fc, xc, i)

for i← 1 to n do Xvi
i և {0, 1}k, Xvi

i ևXvi
i ⊕R

for g ← n+ 1 to n+ q do

a← A′(g), b← B′(g), G′
g ← AND

if Gg = XOR then G′
g ← XOR, X

vg
g ← Xva

a ⊕X
vb
b , X

vg
g ← X

vg
g ⊕R

else

for a← 0 to 1, b← 0 to 1 do

i← a⊕ lsb(X0
a), j ← b⊕ lsb(X0

b ), A← Xi
a, B ← Xj

b , K ← σ(A,B, g)

if i = va and j = vb then S ← EncodeRow() else S ← GarbleRow()

if a 6= 0 or b 6= 0 then P [g, a, b]← S[1 : k]⊕X
Gg(i,j)
g else X

Gg(i,j)
g ← S[1 : k], X

1−Gg(i,j)
g ← S[1 : k]⊕R

F ← (n,m, q,A′, B′, G′, P ), X ← (Xv1
1 , . . . , Xvn

n )

d←
(

lsb(X0
n+q−m+1), . . . , lsb(X

0
n+q)

)

return (F,X, d)

private proc EncodeRow()

S ← Π(K)⊕K

if K ∈ Seeds then bad ← true, Sև {0, 1}ℓ

else

if K ∈ Coll then bad ← true, S ← Map[K]⊕K

π[K]← S ⊕K, Seeds← Seeds ∪ {K}

return S

private proc GarbleRow()

Sև {0, 1}ℓ

if K ∈ Dom(π) or S ⊕K ∈ Ran(π) then

bad ← true

S ← Π(K)⊕K ←− Use in game G0

π[K]← S ⊕K, Seeds← Seeds ∪ {K}

return S

proc Π(u) Game G0 / Game G1

if u 6∈ Dom(π) then

vև {0, 1}ℓ

if v ∈ Ran(π) then

Coll← Coll ∪ {u}, Map[u]← v

vև {0, 1}ℓ\Ran(π)

π[u]← v

return π[u]

proc Π−1(v)

if v 6∈ Ran(π) then

uև {0, 1}ℓ\Dom(π), π[u]← v

return π−1[v]

private proc EncodeRow()

S ← Π(K)⊕K

if K ∈ Seeds then rnd ← true, Sև {0, 1}ℓ

else

if K ∈ Coll then rnd ← true, S ← Map[K]⊕K

π[K]← S ⊕K, Seeds← Seeds ∪ {K}

return S

private proc GarbleRow()

Sև {0, 1}ℓ

BadDom← BadDom ∪ {K}

BadRan← BadRan ∪ {K ⊕S}

return S

proc Π(u) Game G2 / Game G3

if u ∈ BadDom then bad ← true

if u 6∈ Dom(π) then

vև {0, 1}ℓ

if v ∈ Ran(π) then

Coll← Coll ∪ {u}, Map[u]← v

vև {0, 1}ℓ\Ran(π)

π[u]← v

return π[u]

proc Π−1(v)

if v ∈ BadRan then bad ← true

if v 6∈ Ran(π) then

uև {0, 1}ℓ\Dom(π), π[u]← v

return π−1[v]

Fig. 15. Games for the proof of Theorem 3. Each set is initialized to be ∅. Initially, Initialize() samples the

challenge bit cև {0, 1}. Games G1 and G2 include the corresponding boxed statements, but the other games do not.
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of Lemma 2, the chance that K = K∗ is at most 2r/2k. Moreover, if δ = 0 and g 6= g∗ then
Pr[K = K∗] = 0. In other words, if g 6= g∗ then Pr[K = K∗] ≤ 2rδ/2k. By union bound,

Pr[K ∈ Seeds] ≤ 6r/2k + 2|Seeds| · δr/2k ≤ 6r/2k + δr(8i− 2),

because there are most three elements of Seeds using the tweak g. On the other hand, the chance that
K ∈ Coll is at most |Ran(π)|/2k ≤ (Q+4i− 1)/2ℓ. Hence the chance that procedure EncodeRow

triggers bad to true is at most

q∑

i=1

Q+ 4i− 1

2ℓ
+

6r

2k
+

δr(8i− 2)

2k
≤

Qq + 2q2 + q

2ℓ
+

6rq

2k
+

δ(4rq2 + 2rq)

2k
.

✄G1 → G2 : In procedure GarbleRow of game G1, we write S ⊕K to π[K], but game G2

drops this assignment. Since Seeds is used to keep track of seeds K that we write to π[K], game
G2 doesn’t modify Seeds in procedure Garble. In addition, we maintain two sets BadDom and
BadRan that are initialized to the empty sets. Each call to GarbleRow will add K to BadDom
and S⊕K to BadRan. The two games are identical until G2 sets bad, that is, when A happens to
query Π(u) with u ∈ BadDom, or Π−1(v) with v ∈ BadRan.

We now bound the chance that G2 sets bad. In this game, the visible token of the outgoing
wire of each non-XOR gate is also chosen uniformly, independent of R and other visible token
created before. By using exactly the same arguments of the proof of Lemma 3, the chance that G2

sets bad is at most (12rQ + 12rq)/2k + δ(12rQq + 12rq2)/2k. (In the proof of Lemma 3, we let
S[1 : k] = Y ⊕Z, where Y is the value of the garbled row corresponding to K, and Z is the token
that S[1 : k] masks. Here, if a = b = 0 then the row is blank, so let Y = 0k and Z = S[1 : k], which
is also a token.)

✄G2 → G3 : game G3 drops the re-sampling of S in procedure EncodeRow, so S is always
Π(K)⊕K, and the assignment π[K]← S ⊕K is redundant, because it writes Π(K) to π[K]. The
two games are identical until G2 sets rnd.

We now bound the chance that G2 sets rnd. Consider the ith call of EncodeRow. Let K =
σ(A,B, g) be the seed of this call, and letK∗ = σ(A∗, B∗, g∗) be an arbitrary point in Seeds then. By
using exactly the same arguments of Lemma 2, the chance that K = K∗ is at most 2r/2k. Moreover,
if δ = 0 and g 6= g∗ then Pr[K = K∗] = 0. In other words, if g 6= g∗ then Pr[K = K∗] ≤ 2rδ/2k.
By union bound,

Pr[K ∈ Seeds] ≤ 2|Seeds|δr/2k ≤ δr(2i− 2),

because there is no element of Seeds using the tweak g. On the other hand, the chance thatK ∈ Coll
is at most |Ran(π)|/2k ≤ (Q+ i− 1)/2ℓ. Hence the chance that G2 sets rnd is at most

q∑

i=1

Q+ i− 1

2ℓ
+

δr(2i− 2)

2k
≤

Qq + 0.5q2 − 0.5q

2ℓ
+

δ(rq2 − rq)

2k
.

Analysis of game G3. We claim that the output of game G3 is independent of the challenge
bit c. Hence Pr[GA

3 (k)] = 1/2. To justify the claim above, from f ′ = Φxor(fc) and the final output
v = ev(fc, xc), which is independent of c, we can rewrite the code of procedure Garble of G3 as
shown in Fig. 16. There, we refer to the visible token of wire i as Vi, and its invisible counterpart
as Ii, omitting the semantics of these tokens. Consider an arbitrary non-XOR gate g. Each ciphertext
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proc Garble(f0, f1, x0, x1)
(n,m, q,A′, B′, G′)← Φxor(f0)

vq+n−m+1 · · · vq+n ← ev(f0, x0), Rև {0, 1}k−11

for i← 1 to n+ q do Vi և {0, 1}
k, Ii ևVi ⊕R

for g ← n+ 1 to n+ q do
a← A′(g), b← B′(g)
if G′

g = XOR then Vg ← Va ⊕ Vb, Ig ← Vg ⊕R
else

P [g, 0, 1]և {0, 1}k, P [g, 1, 0]և {0, 1}k, P [g, 1, 1]և {0, 1}k

a← lsb(Va), b← lsb(Vb)
K ← σ(Va, Vb, g), Y ← (Π(K)⊕K)[1 : k]
if lsb(Va) = 0 and lsb(Vb) = 0 then Vg ← Y , Ig ևVg ⊕R

else Vg և {0, 1}
k, Ig ← Vg ⊕R, P [g, a, b]← Y ⊕ Vg

for i← n+ q −m+ 1 to n+ q do Xvi
i ← Vi, Xvi

i ← Ii
F ← (n,m, q,A′, B′, P ), X ← (V1, . . . , Vn)
d←

(

lsb(X0
n+q−m+1), . . . , lsb(X

0
n+q)

)

return (F,X, d)

Fig. 16. Rewritten game G3 of the proof of Theorem 3. This game depends solely on f ′ =
Φxor(f0) = Φxor(f1) and the output v = ev(f0, x0) = ev(f1, x1). Procedures Π and Π−1 lazily
implement a random permutation and its inverse, respectively.

in the rows P [g, 0, 1], P [g, 1, 0], and P [g, 1, 1] is chosen at random, unless the row can be opened
by visible tokens. The visible token on wire g is chosen uniformly at random, unless both visible
tokens of g’s incoming wires end with 0. The invisible token on wire g is obtained by xoring R to
the visible counterpart.
Summing up,

Adv
prv.rpm, Φxor

GaXR[E] (A, k) = 2(Pr[GA
0 (k)]− Pr[GA

3 (k)])

≤
10qQ+ 20q2 + q

2ℓ
+

36rQ+ 120rq

2k
+

δ(48rQq + 94rq2 + 2q)

2k

≤
10qQ+ 20q2

2ℓ
+

36rQ+ 123rq

2k
+

δ(48rQq + 94rq2)

2k
.

E Accounting for parameters in Fig. 7

For completeness, we give a tedious analysis to justify the parameters used in Fig. 7.

Scheme A1. The σ function is σ(A,B, T ) = A⊕B⊕T . Since σ(0k, 0k, 0k) = σ(1k, 0k, 1k), it follows
that δ = 1. Next, σ(x, 0k, 0k) = σ(0k, x, 0k) = x. As Pr[xև {0, 1}k : x = s] = 1/2k for any string
s ∈ {0, 1}k, the regularity is 1. On the other hand, since Pr[xև {0, 1}k : σ(0k, x, 0k)⊕x = 0k] = 1,
the strong regularity is the trivial 2k.

Scheme A3. The σ function is σ(A,B, T ) = (A⊕B) ‖ T , and thus δ = 0. Next, σ(x, 0k, 0ℓ−k) =
σ(0k, x, 0ℓ−k) = x0ℓ−k. As Pr[xև {0, 1}k : x0ℓ−k = s] ≤ 1/2k for any string s ∈ {0, 1}ℓ, the
regularity is 1. On the other hand, since Pr[xև {0, 1}k : σ(0k, x, 0ℓ−k)⊕x0ℓ−k = 0ℓ] = 1, the strong
regularity is the trivial 2k.

Scheme A2, with D1. The σ function is σ(A,B, T ) = 2A ⊕ 4B ⊕ T . Since σ(0k, 0k, 0k) =
σ(A, 0k, 2A) for any A ∈ {0, 1}k, and there exists A ∈ {0, 1}k such that 2A 6= 0k, it follows that
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δ = 1. Let ∗ denote the multiplication operator in GF(2k). Note that f(x) = c ∗ x is bijective,
for any c ∈ GF(2k)\{0}. Note that σ(x, 0k, 0k) = 2 ∗ x, σ(0k, x, 0k) = 4 ∗ x, σ(0k, 0k, 0k)⊕ x = x,
σ(x, 0k, 0k)⊕x = 3 ∗x, σ(0k, x, 0k)⊕x = 5 ∗x, σ(x, x, 0k)⊕x = 7 ∗x, and σ(x, x, 0k) = 6 ∗x. Hence
both the regularity and strong regularity are 1.

Scheme A2, with D2/D3. Again, δ = 1. We give an analysis for D2; the case of D3 is similar.

• Note that σ(x, 0k, 0k) = x ≪ 1, and σ(0k, x, 0k) = x ≪ 2, and σ(0k, 0k, 0k)⊕ x = x. Hence
Pr[xև {0, 1}k : σ(x, 0k, 0k) = s] ≤ 2/2k, and Pr[xև {0, 1}k : σ(0k, x, 0k) = s] ≤ 4/2k, and
Pr[xև {0, 1}k : σ(0k, 0k, 0k)⊕ x = s] = 1/2k, for any s ∈ {0, 1}k.

• We claim that Pr[xև {0, 1}k : σ(x, 0k, 0k)⊕ x = s] = 1/2k for any s ∈ {0, 1}k. Let f0(x) =
(x≪ 1)⊕ x. To justify this claim, let x = x1 · · ·xk. Then

f0(x) = (x1⊕ x2)‖ · · · ‖(xk−1⊕ xk)‖xk

is bijective. Indeed, given y = y1 · · · yk, we can compute x = x1 · · ·xk = f−1
0 (y) by way of

xk = yk, and recursively, xi = xi+1 ⊕ yi, for i = k − 1, k − 2, . . . , 1. As xև {0, 1}k, it follows
that σ(x, 0k, 0k)⊕ x = f0(x) is also uniformly distributed over {0, 1}k, and the claim follows.

• Note that σ(x, x, 0k) = (x ≪ 1) ⊕ (x ≪ 2) = f0(x) ≪ 1. Since f0(x) is a permutation on
{0, 1}k, it follows that Pr[xև {0, 1}k : σ(x, x, 0k) = s] ≤ 2/2k for any s ∈ {0, 1}k.

• We claim that Pr[xև {0, 1}k : σ(0k, x, 0k)⊕ x = s] = 1/2k for any s ∈ {0, 1}k. Let f1(x) =
(x≪ 2)⊕ x. To justify this, let x = x1 · · ·xk. Then

f1(x) = (x1⊕ x3)‖ · · · ‖(xk−2⊕ xk)‖xk−1‖xk

is bijective. Given y = y1 · · · yk, we can compute x = x1 · · ·xk = f−1
1 (y) by way of xk = yk,

xk−1 = yk−1, and recursively, xi = xi+2⊕yi, for i = k−2, k−3, . . . , 1. As xև {0, 1}k, it follows
that σ(0k, x, 0k)⊕ x = f1(x) is uniformly distributed over {0, 1}k, and the claim follows.

• We claim that Pr[xև {0, 1}k : σ(x, x, 0k) ⊕ x = s] = 1/2k for any s ∈ {0, 1}k. Consider
f2(x) = (x≪ 2)⊕ (x≪ 1)⊕ x. To justify this claim, let x = x1 · · ·xk. Then

f2(x) = (x1⊕ x2⊕ x3)‖ · · · ‖(xk−2⊕ xk−1⊕ xk)‖(xk−1⊕ xk)‖xk

is bijective. Indeed, given y = y1 · · · yk, we can compute x = x1 · · ·xk = f−1
2 (y) by way of

xk = yk, xk−1 = yk−1⊕xk, and recursively, xi = xi+1⊕xi+2⊕yi, for i = k− 2, k− 3, . . . , 1. As
xև {0, 1}k, it follows that σ(x, x, 0k)⊕ x = f2(x) is also uniformly distributed over {0, 1}k,
and the claim follows.

Hence both the regularity and strong regularity are at most 4. On the other hand, Pr[xև {0, 1}k :
σ(0k, x, 0k) = 0k] = 4/2k, and thus both the regularity and strong regularity are exactly 4.

Scheme A2, with D4/D5. Again, δ = 1. We give an analysis for D4; the case of D5 is similar.

• Note that σ(x, 0k, 0k) = x ≪ 1, and σ(0k, x, 0k) = x ≪ 2, and σ(0k, 0k, 0k)⊕ x = x. Hence
Pr[xև {0, 1}k : σ(x, 0k, 0k) = s] = 1/2k, and Pr[xև {0, 1}k : σ(0k, x, 0k) = s] = 1/2k, and
Pr[xև {0, 1}k : σ(0k, 0k, 0k)⊕ x = s] = 1/2k, for any s ∈ {0, 1}k.

• We claim that Pr[xև {0, 1}k : σ(x, 0k, 0k)⊕ x = s] ≤ 2/2k for any s ∈ {0, 1}k. Let g0(x) =
(x ≪ 1)⊕ x. To justify this claim, let x = x1 · · ·xk. Then

g0(x) = (x1⊕ x2)‖ · · · ‖(xk−1⊕ xk)‖(xk ⊕ x1) .
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Given y = y1 · · · yk, there are at most two pre-images x = x1 · · ·xk, since xi = xi−1 ⊕ yi−1,
for i ∈ {2, . . . , k}. Hence for any s ∈ {0, 1}k, there are at most two values x such that
σ(x, 0k, 0k) = g0(x) = s, and the claim follows.

• Note that σ(x, x, 0k) = (x ≪ 1)⊕ (x ≪ 2) = g0(x) ≪ 1. Then Pr[xև {0, 1}k : σ(x, x, 0k) =
s] ≤ 2/2k for any s ∈ {0, 1}k.

• We claim that Pr[xև {0, 1}k : σ(0k, x, 0k)⊕ x = s] ≤ 4/2k for any s ∈ {0, 1}k. Let g1(x) =
(x ≪ 2)⊕ x. To justify this claim, let x = x1 · · ·xk. Then

g1(x) = (x1⊕ x3)‖ · · · ‖(xk−2⊕ xk)‖(xk−1⊕ x1)‖(xk ⊕ x2) .

Given y = y1 · · · yk, there are at most 4 pre-images x = x1 · · ·xk, since xi = xi−2 ⊕ yi−2

for any i ∈ {3, . . . , k}. Hence for any s ∈ {0, 1}k, there are at most four values x such that
σ(x, 0k, 0k) = g1(x) = s, and the claim follows.

• We claim that Pr[xև {0, 1}k : σ(x, x, 0k) ⊕ x = s] ≤ 4/2k for any s ∈ {0, 1}k. Consider
g2(x) = (x ≪ 2)⊕ (x ≪ 1)⊕ x. To justify this claim, let x = x1 · · ·xk. Then

g2(x) = (x1⊕ x2⊕ x3)‖ · · · ‖(xk−2⊕ xk−1⊕ xk)‖(xk−1⊕ xk ⊕ x1)‖(xk ⊕ x1⊕ x2) .

Given y = y1 · · · yk, there are at most four pre-images x = x1 · · ·xk, since xi = yi−2 ⊕ xi−1 ⊕
xi−2, for any i ∈ {3, . . . , k}. Hence for any s ∈ {0, 1}k, there are at most four values x such
that σ(x, 0k, 0k) = g2(x) = s, and the claim follows.

Hence the regularity is exactly 1 and strong regularity is at most 4.

Scheme A2, with D6/D7. Again, δ = 1. We give an analysis for D6; the case of D7 is similar.
Let x = x1 · · ·xk and n = ⌊k/2⌋.

• Note that σ(x, 0k, 0k) = x2 · · ·xn0 ‖ xn+2 · · ·xk0, and σ(0k, 0k, 0k)⊕x = x, and σ(0k, x, 0k) =
x3 · · ·xn00 ‖ xn+3 · · ·xk00. Thus Pr[xև {0, 1}

k : σ(x, 0k, 0k) = s] ≤ 4/2k, and Pr[xև {0, 1}k :
σ(0k, x, 0k) = s] ≤ 16/2k, and Pr[xև {0, 1}k : σ(0k, 0k, 0k)⊕x = s] = 1/2k, for any s ∈ {0, 1}k.

• We claim that Pr[xև {0, 1}k : σ(x, 0k, 0k)⊕ x = s] ≤ 1/2k for any s ∈ {0, 1}k. Let

h0(x) = (x1⊕ x2)‖ · · · ‖(xn−1⊕ xn)‖xn ‖ (xn+1⊕ xn+2)‖ · · · ‖(xk−1⊕ xk)‖xk .

Given y = y1 · · · yk ∈ S, there is at most one pre-image x = x1 · · ·xk, since xi = yi if i ∈ {n, k},
and xi = xi+1⊕yi otherwise. Hence for any s ∈ {0, 1}k, there is at most one value x such that
σ(x, 0k, 0k) = h0(x) = s, and the claim follows.

• We claim that Pr[xև {0, 1}k : σ(0k, x, 0k)⊕ x = s] ≤ 1/2k for any s ∈ {0, 1}k. Let

h1(x) = (x1⊕ x3)‖ · · · ‖(xn−2⊕ xn)‖xn−1‖xn ‖ (xn+1⊕ xn+3)‖ · · · ‖(xk−2⊕ xk)‖xk−1‖xk .

Given y = y1 · · · yk, there is at most one pre-image x = x1 · · ·xk, because xi = yi if i ∈
{n − 1, n, k − 1, k} and xi = xi+2 + yi otherwise. Hence for any s ∈ {0, 1}k, there is at most
one value x such that σ(x, 0k, 0k) = h1(x) = s, and the claim follows.

• We claim that Pr[xև {0, 1}k : σ(x, x, 0k)⊕ x = s] ≤ 1/2k for any s ∈ {0, 1}k. Let

h2(x) = (x1⊕ x2⊕ x3)‖ · · · ‖(xn−2⊕ xn−1⊕ xn)‖(xn−1⊕ xn)‖xn

‖ (xn+1⊕ xn+2⊕ xn+3)‖ · · · ‖(xk−2⊕ xk−1⊕ xk)‖(xk−1⊕ xk)‖xk .
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Given y = y1 · · · yk, there is at most one pre-image x = x1 · · ·xk, since xi = yi if i ∈ {n, k},
xi = yi⊕xi+1 if i ∈ {n−1, k−1}, and xi = yi⊕xi+1⊕xi+2 otherwise. Hence for any s ∈ {0, 1}k,
there is at most one value x such that σ(x, 0k, 0k) = h2(x) = s, and the claim follows.

• We claim that Pr[xև {0, 1}k : σ(x, x, 0k) = s] ≤ 4/2k for any s ∈ {0, 1}k. Let

h3(x) = (x2⊕ x3)‖ · · · ‖(xn−1⊕ xn)‖xn0 ‖ (xn+2⊕ xn+3)‖ · · · ‖(xk−1⊕ xk)‖xk0 .

Given y = y1 · · · yk, there are at most four pre-images x = x1 · · ·xk, since xi = yi−1 if
i ∈ {n, k}, xi = yi−1 ⊕ xi+1 if i ∈ {2, . . . , n − 1, n + 1, . . . , k − 1}. Hence for any s ∈ {0, 1}k,
there are at most four values x such that σ(x, 0k, 0k) = h2(x) = s, and the claim follows.

Hence both the regularity and strong regularity are at most 16.

Scheme A4. The σ function is σ(A,B, T ) = (2A⊕ 4B) ‖ T , and thus δ = 0. The analysis for the
regularity and strong regularity is similar to that of scheme A2.
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