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Toeplitz matrix-vector product based GF (2n)

shifted polynomial basis multipliers for

all irreducible pentanomials
Jiangtao Han and Haining Fan

Abstract

Besides Karatsuba algorithm, optimal Toeplitz matrix-vector product (TMVP) formulae is another

approach to design GF (2n) subquadratic multipliers. However, when GF (2n) elements are represented

using a shifted polynomial basis, this approach is currently appliable only to GF (2n)s generated by

all irreducible trinomials and a special type of irreducible pentanomials, not all general irreducible

pentanomials. The reason is that no transformation matrix, which transforms the Mastrovito matrix into

a Toeplitz matrix, has been found. In this article, we propose such a transformation matrix and its inverse

matrix for an arbitrary irreducible pentanomial. Because there is no known value of n for which either

an irreducible trinomial or an irreducible pentanomial does not exist, this transformation matrix makes

the TMVP approach a universal tool, i.e., it is applicable to all practical GF (2n)s.

Index Terms

Finite field, subquadratic space complexity multiplier, shifted polynomial basis, Toeplitz matrix,

irreducible pentanomial.

I. INTRODUCTION

Finite field multiplication plays an important role in modern cryptographic systems. The existing

GF (2n) multipliers can roughly be classified into two categories according to their space complexities,

namely quadratic and subquadratic multipliers. Due to its simplicity, the polynomial version of Karatsuba
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algorithm is widely adopted to design GF (2n) subquadratic multipliers [1], see for example, [2], [3],

[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], etc.

A Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant. In

2007, GF (2n) subquadratic multipliers using optimal Toeplitz matrix-vector product (TMVP) formulae

was introduced in reference [15]. It takes advantage of the shifted polynomial basis [16] and applies the

coordinate transformation technique of [17] and [18]. The TMVP approach consists of two steps:

1) Converting the Mastrovito matrix into a Toeplitz matrix using a transformation matrix;

2) Computing the TMVP using optimal TMVP formulae.

Since both space and time complexities of optimal TMVP formulae in the second step are lower than

those of the original Karatsuba algorithm, both complexities of the resulting multipliers are less than those

of the best Karatsuba-based subquadratic multipliers proposed before 2007. Specially, the theoretical time

complexity is reduced significantly. For example, it is reduced by about 33% and 25% for n = 2t and

n = 3t (t > 1) respectively. Recently, some further research in TMVP approach has been conducted in

[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], etc. These improvements and generalizations

make the TMVP approach even more attractive.

However, when GF (2n) elements are represented using a shifted polynomial basis (SPB), the TMVP

approach is currently applicable only to GF (2n)s generated by all irreducible trinomials and a special

type of irreducible pentanomials, namely f(u) = un+up+1+up+up−1+1 (1 < p < n−1), not all general

irreducible pentanomials. The reason is that no transformation matrix in the first step has been found for

an arbitrary irreducible pentanomial, and therefore the Mastrovito matrix can not be transformed into a

Toeplitz matrix. In this article, we will propose such a transformation matrix and its inverse matrix for

an arbitrary irreducible pentanomial f(u) = un + up + uq + ur + 1, where n > p > q > r > 1. Because

there is no known value of n for which either an irreducible trinomial or an irreducible pentanomial

does not exist [30], this transformation matrix makes it possible for the MVP approach to be used for all

practical GF (2n)s. Therefore, it is of particular importance for both theoretical and practical purposes.

The paper is organized as follows. In section II, we present the transformation matrix and its inverse

matrix. Two examples are given in section III. Finally, concluding remarks are made in section IV.

II. TMVP-BASED SPB SUBQUADRATIC MULTIPLIERS FOR GENERAL IRREDUCIBLE PENTANOMIALS

A. TMVP-based SPB Subquadratic Multipliers

We first introduce TMVP-based GF (2n) subquadratic multipliers briefly. For more details, please refer

to reference [15]. Let f(u) ∈ GF (2)[u] be the irreducible polynomial defining GF (2n), and x be a root
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of f(u). A shifted polynomial basis of GF (2n) over GF (2) is defined as follows [16]:

Definition Let v be an integer and the ordered set W = {xi|0 ≤ i ≤ n − 1} be a polynomial basis of

GF (2n) over GF (2). The ordered set x−vW := {xi−v|0 ≤ i ≤ n − 1} is called a shifted polynomial

basis with respect to W .

Let X = (x−v, x−v+1, . . . , xn−v−1)T be the column vector of SPB basis elements, A = (a0, a1, . . . , an−1)
T

be the coordinate column vector of the GF (2n) element a = XTA = x−v
∑n−1

i=0 aix
i, and B and C

are defined similarly. The product c = XTC = x−v
∑n−1

i=0 cix
i of a and b in SPB can be expressed as

follows [15]:

c = ab = XTC =

n−1∑
i=0

aix
i−vb

=
(
x−vb, . . . , x−1b, b, xb, . . . , xn−v−1b

)
A (1)

= XT (M∗,0,M∗,1, . . . ,M∗,n−1)A (2)

= XTMA, (3)

where n×n matrix M in (3) is often called the Mastrovito matrix, and column vector M∗,j in (2) denotes

the j-th column of M . In the following, we will also use Mi,∗ to denote the i-th row of matrix M .

The matrix-vector product MA in (3) is just the the coordinate column vector of the product c,

i.e., C = MA. In order to adopt the TMVP approach to compute C, Mastrovito matrix M must be

transformed into a Toeplitz matrix first, i.e., we must find an n×n invertible matrix H over GF (2) such

that T = HM is a Toeplitz matrix. Then the coordinate column vector C of c equals to

C = MA = (H−1H)MA = H−1((HM)A) = H−1(TA) = H−1V, (4)

where the TMVP V = TA is computed using some optimal TMVP formulae.

In Reference [15], invertible transformation matrices Hs and their inverses were presented for all

irreducible trinomials f(u) = un + uk + 1 (0 < k < n) and a special type of irreducible pentanomials,

namely f(u) = un + up+1 + up + up−1 + 1 (1 < p < n − 1). In the following, we will propose a

transformation matrix H and its inverse matrix for an arbitrary irreducible pentanomial f(u) = un +

up + uq + ur + 1, where n > p > q > r > 1.

B. Transformation Matrices for General Irreducible Pentanomials

Upper shift matrix Uk and lower shift matrix Lk are two Toeplitz matrices defined by

Uk
m×m = (δi+k,j)m×m and Lk

m×m = (δi,j+k)m×m, (5)
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where 0 ≤ k < m is an integer and δi,j is the Kronecker delta symbol. For example,

U1
m×m = (δi+1,j) =



0 1 0 · · · · · · 0

0 0 1
. . .

...

0 0
. . . . . . . . .

...
...

. . . . . . . . . 1 0
...

. . . 0 0 1

0 · · · · · · 0 0 0


, L1

m×m = (δi,j+1) =



0 0 0 · · · · · · 0

1 0 0
. . .

...

0 1
. . . . . . . . .

...
...

. . . . . . . . . 0 0
...

. . . 1 0 0

0 · · · · · · 0 1 0


.

The transformation matrix H for an arbitrary irreducible pentanomial is given in the following proposition:

Proposition 2.1: Let f(u) = un + up + uq + ur + 1 (n > p > q > r > 1) be an irreducible

pentanomial over GF (2), and M be the Mastrovito matrix defined in (3). Define two integers kU and

kL by kU =
⌈
n−q
n−p

⌉
− 1 and kL =

⌈ q
r

⌉
− 1. Define three matrices Ū , L̄ and H by

Ū =

kU∑
k=0

U
k(n−p)
(n−q)×(n−q),

L̄ =

kL∑
k=0

Lkr
q×q, (6)

H =

0(n−q)×q Ū

L̄ 0q×(n−q)


n×n

.

Then T = HM is a Toeplitz matrix.

Proof:

Let g = xj−vb = x−v
∑n−1

i=0 gix
i be the j-th element in the row vector

(
x−vb, . . . , x−1b, b, xb, . . . , xn−v−1b

)
in (1), where 0 ≤ j ≤ n − 2. Thus the (j + 1)-th element in this row vector is xg = xj−v+1b. Since

this row vector is equal to the row vector XT (M∗,0,M∗,1, . . . ,M∗,n−1) in (2), we know that equation

g = x−v
∑n−1

i=0 gix
i = XTM∗,j holds. Because XT is the row vector of SPB basis elements, it is clear

that the j-th column of matrix M , i.e., M∗,j , is just the SPB coordinate column vector of element g, i.e.,

M∗,j = (g0, g1, . . . , gn−1)
T . (7)

Now we derive the SPB coordinate column vectors of element xg, which is the (j + 1)-th column of

matrix M , i.e., M∗,j+1. Since x is a root of the irreducible pentanomial f(u) = un + up + uq + ur + 1,
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i.e., xn + xp + xq + xr + 1 = 0, we have xn−v = xp−v + xq−v + xr−v + x−v. Thus we obtain

xg = xj−v+1b = x−v+1
n−1∑
i=0

gix
i

=

(
n−2∑
i=0

gix
i−v+1

)
+ gn−1x

n−v

= XT · (0, g0, . . . , gn−2)
T + gn−1

(
xp−v + xq−v + xr−v + x−v

)
, (8)

where 0 ≤ j ≤ n− 2.

In order to represent the SPB coordinate column vectors of elements xp−v, xq−v, xr−v and x−v in the

above equation, we introduce notation

~ev = (e0, . . . , ev, . . . , en−1) (9)

to represent a unit row vector, where ev = 1 and ei = 0 for all i 6= v. For example, ~e1 = (0, 1, 0, . . . , 0).

Thus the SPB coordinate column vector of element x−v is (~e0)
T because x−v = (x−v, x−v+1, . . . , xn−v−1)·

(1, 0, . . . , 0)T . Similarly, the SPB coordinate column vectors of elements xp−v, xq−v and xr−v are (~ep)
T ,

(~eq)
T and (~er)

T respectively.

Therefore, we can obtain the following SPB coordinate column vector of element xg from (8):

M∗,j+1 = (0, g0, . . . , gn−2)
T + gn−1 · (~e0 + ~er + ~eq + ~ep)

T . (10)

Comparing column vectors (0, g0, . . . , gn−2)
T in (10) to M∗,j = (g0, g1, . . . , gn−1)

T in (7), we see that

the former is obtained by shifting the later down once and then filling a 0 in the 0-th position. In the

following, we will use a down arrow to denote this transformation, i.e., (0, g0, . . . , gn−2)
T = (M∗,j ↓ 1).

Similarly, we will use left and right arrows to denote left and right shifts of a row vector respectively.

For example, (Mi,∗ → 1) denotes right shift of row vector Mi,∗ once and then filling a 0 in the 0-th

position. Using these notations, equation (10) can be rewritten as

M∗,j+1 = (M∗,j ↓ 1) + gn−1 · (~e0 + ~er + ~eq + ~ep)
T . (11)

In order to prove that T = HM in (6) is a Toeplitz matrix, i.e., Ti,j = Ti+1,j+1 for 0 ≤ i, j ≤ n− 2,

we first analyse the structure of the proposed transformation matrix H in (6).

Matrix H can be split into two parts: the upper (n − q) × n submatrix
(
0(n−q)×q, Ū

)
and the lower

q × n submatrix
(
L̄,0q×(n−q)

)
. Therefore, the matrix product T = HM is equal to

T = HM =

(0(n−q)×q, Ū
)
·M(

L̄,0q×(n−q)

)
·M


n×n

,
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and matrix T is a Toeplitz matrix if we can prove the following 3 claims:

1) the upper (n− q)× n submatrix
(
0(n−q)×q, Ū

)
·M of T is an (n− q)× n Toeplitz matrix;

2) the lower q × n submatrix
(
L̄,0q×(n−q)

)
·M of T is a q × n Toeplitz matrix;

3) The last row of
(
0(n−q)×q, Ū

)
·M and the first row of

(
L̄,0q×(n−q)

)
·M , which are two succesive

rows of matrix T , satify the definition of a Toeplitz matrix.

Now we prove equation Ti,j = Ti+1,j+1 for 0 ≤ i, j ≤ n− 2 by showing that the above 3 claims are

true.

1) CASE 0 ≤ i ≤ n− q − 2:

This case corresponds to claim 1. We consider the first row H0,∗ of H , which is also the first row

of
(
0(n−q)×q, Ū

)
. By the definition of matrix Ū =

∑kU

k=0 U
k(n−p)
(n−q)×(n−q) in (6), where upper shift

matrix Uk
(n−q)×(n−q) = (δi+k,j)(n−q)×(n−q) and kU =

⌈
n−q
n−p

⌉
−1, we know that element 1s in H0,∗

appear only at positions q + k(n− p), where 0 ≤ k ≤ kU . Therefore, using notation ~ev defined in

(9), we may rewrite the first row H0,∗ of H as follows:

H0,∗ =
∑kU

k=0
~eq+k(n−p).

It is clear that matrix Ū is a Toeplitz matrix, for the summation of two Toeplitz matrices is still a

Toeplitz matrix. Thus we have

Hi+1,∗ = (Hi,∗ → 1) (12)

and

Hi,∗ = (H0,∗ → i) =
∑k̂

k=0
~ei+q+k(n−p), (13)

where k̂ =
⌈
n−q−i
n−p

⌉
− 1. The reason that k̂ is defined in this way is that subscript i+ q+ k(n− p)

in (13) must be less than n, i.e., i+ q+ k(n− p) < n. Thus we have k < n−q−i
n−p , and the maximal

value k̂ of integer k is k̂ =
⌈
n−q−i
n−p

⌉
− 1.

Equation (13) shows that elements 1s in Hi,∗ appear only at positions i + q + k(n − p), where

0 ≤ k ≤ k̂. By (13) and the definition M∗,j = (g0, g1, . . . , gn−1)
T in (7), element Ti,j of matrix

T = HM can be expressed as

Ti,j = Hi,∗ ·M∗,j =
∑k̂

k=0
~ei+q+k(n−p) · (g0, g1, . . . , gn−1)

T =

k̂∑
k=0

gi+q+k(n−p). (14)

By (12) and the expression of M∗,j+1 in (11), we know that element Ti+1,j+1 is

Ti+1,j+1 =Hi+1,∗ ·M∗,j+1 = Hi+1,∗ ·
[
(M∗,j ↓ 1) + gn−1 (~e0 + ~er + ~eq + ~ep)

T
]

= (Hi,∗ → 1) · (M∗,j ↓ 1) + gn−1

[
Hi+1,∗ · (~e0 + ~er + ~eq + ~ep)

T
]

(15)
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We now prove equation Ti,j = Ti+1,j+1 according to the following two subcases.

a) SUBCASE The last element of Hi,∗ is 1, i.e., Hi,n−1 = 1:

We need to compute the two inner products in (15). Because the last element of Hi,∗ is 1 in

this subcase and this 1 will be discarded in vector (Hi,∗ → 1), only the last term gi+q+k̂(n−p)

in (14) will not appear in the expression of the first inner product (Hi,∗ → 1) · (M∗,j ↓ 1).

Thus, by (14), we have

(Hi,∗ → 1) · (M∗,j ↓ 1) =

k̂−1∑
k=0

gi+q+k(n−p). (16)

Before computing the second inner product, we first derive the expression of Hi+1,∗. By (12),

we know that Hi+1,∗ is obtained by right shifting of row vector Hi,∗ once. In this subcase,

the last element of Hi,∗ is 1. Therefore, the number of 1s in Hi+1,∗ is 1 less than that in Hi,∗.

By (12) and the expression of Hi,∗ in (13), we can get the following expression of Hi+1,∗

Hi+1,∗ = (Hi,∗ → 1) =
∑k̂−1

k=0
~e(i+1)+q+k(n−p). (17)

The minimal value of subscript (i+ 1) + q + k(n− p) in (17) is (i+ 1) + q when k = 0,

which is greater than q. By the definition of ~ei, we know that ~ei · (~ej)T = δi,j , where δi,j is

the Kronecker delta symbol. Thus we have

Hi+1,∗ · (~e0 + ~er + ~eq)
T =

∑k̂−1

k=0
~e(i+1)+q+k(n−p) · (~e0 + ~er + ~eq)

T = 0. (18)

In this subcase, the last element Hi,n−1 of Hi,∗ is 1. This means that the position of the last

1 in Hi,∗ is n− 1. Thus by the expression of Hi,∗ in (13), we have

i+ q + k̂ (n− p) = n− 1. (19)

This equation can be transformed to:

(i+ 1) + q + (k̂ − 1)(n− p) = p.

The maximal value of subscript (i+ 1) + q + k(n− p) in (17) is (i+ 1) + q + (k̂ − 1)(n− p)

when k = k̂ − 1, and it is equal to p by the above equation. Thus we have

~e(i+1)+q+(k̂−1)(n−p) = ~ep
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and, by (17), inner product Hi+1,∗ · (~ep)T equals to

Hi+1,∗ · (~ep)T =

k̂−1∑
k=0

~e(i+1)+q+k(n−p)

 · (~ep)T
=

k̂−2∑
k=0

~e(i+1)+q+k(n−p)

 · (~ep)T + (~e(i+1)+q+(k̂−1)(n−p)) · (~ep)
T

= 0 + (~ep) · (~ep)T = 1. (20)

Based on (18) and (20), we see that the value of the second inner product in (15) is

Hi+1,∗ · (~e0 + ~er + ~eq + ~ep)
T =

[
Hi+1,∗ · (~e0 + ~er + ~eq)

T
]

+
[
Hi+1,∗ · (~ep)T

]
= 0 + 1 = 1.

We know that gn−1 = gi+q+k̂(n−p) by (19). Thus, by (16), the value of Ti+1,j+1 in (15) is

equal to

Ti+1,j+1 = (Hi,∗ → 1) · (M∗,j ↓ 1) + gn−1

[
Hi+1,∗ · (~e0 + ~er + ~eq + ~ep)

T
]

=

k̂−1∑
k=0

gi+q+k(n−p)

+ gn−1 · 1

=

k̂−1∑
k=0

gi+q+k(n−p)

+ gi+q+k̂(n−p)

=

k̂∑
k=0

gi+q+k(n−p),

which is equal to the value of Ti,j in (14).

b) SUBCASE The last element of Hi,∗ is 0, i.e., Hi,n−1 = 0:

We also compute the two inner products in (15) one by one. Since the last element of Hi,∗ is

0, it is clear that the first inner product, i.e., (Hi,∗ → 1) · (M∗,j ↓ 1), equals to inner product

(Hi,∗) · (M∗,j) = Ti,j . Thus we need only to show that the second inner product in (15) is 0.

Because the last element of row vector Hi,∗ is 0 in this subcase and Hi+1,∗ = (Hi,∗ → 1),

by the expression of Hi,∗ in (13), we get the following expression of Hi+1,∗

Hi+1,∗ = (Hi,∗ → 1) =
∑k̂

k=0
~e(i+1)+q+k(n−p). (21)

The minimal value of subscript (i+ 1) + q + k(n− p) in (21) is (i+ 1) + q when k = 0,

which is also greater than q. By the definition of ~ei, we have

Hi+1,∗ · (~e0 + ~er + ~eq)
T = 0.
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Therefore the second inner product Hi+1,∗ · (~e0 +~er +~eq +~ep)
T in (15) is 0 if we can prove

that inner product Hi+1,∗ · (~ep)T = 0.

In this subcase, the last element Hi,n−1 of Hi,∗ is 0. This condition means that the position

of the last 1 in Hi,∗ is less than (n− 1). Thus by the expression of Hi,∗ in (13), we have

i+ q + k̂ (n− p) < n− 1,

and it is equivalent to

(i+ 1) + q + (k̂ − 1)(n− p) < p. (22)

Moreover, this condition also means that if we set k = k̂ + 1 in (13), then the value of

subscript i+ q + k(n− p) will exceed (n− 1), i.e.,

i+ q + (k̂ + 1) (n− p) > n− 1,

which is equivalent to

(i+ 1) + q + k̂(n− p) > p.

Combining this inequality with (22) together, we have the following chain of inequalities:

(i+ 1) + q + k̂(n− p) > p > (i+ 1) + q + (k̂ − 1)(n− p).

By (21), there are k̂+ 1 element 1s in vector Hi+1,∗, and any two adjacent 1s have the same

fixed interval n− p. The last two adjacent 1s appear at positions (i+ 1) + q+ (k̂− 1)(n− p)

and (i+ 1) + q + k̂(n− p) respectively. Thus, the above chain of inequalities shows that the

p-th element in Hi+1,∗, i.e., Hi+1,p must be 0. Thus we have

Hi+1,∗ · (~ep)T = Hi+1,p · 1 = 0.

2) CASE n− q ≤ i < n− 1:

This case corresponds to claim 2. First we consider the last row Hn−1,∗ of H , which is also the last

row of
(
L̄,0q×(n−q)

)
. By the definition of matrix L̄ =

∑kL

k=0 L
kr
q×q in (6), where Lk

q×q = (δi,j+k)q×q

and kL =
⌈ q
r

⌉
− 1, we know that element 1s of Hn−1,∗ appear only at positions q− 1− kr, where

0 ≤ k ≤ kL. Therefore, we obtain the following expression of the last row Hn−1,∗:

Hn−1,∗ =
∑kL

k=0
~eq−1−kr. (23)

Since matrix
(
L̄,0q×(n−q)

)
is a Toeplitz matrix, we have

Hi,∗ = (Hi+1,∗ ← 1) = (Hn−1,∗ ← (n− 1− i)) . (24)
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We now prove that inner product Hi+1,∗ · (~e0 + ~er)
T is 0 by considering the distribution pattern

of element 1s in row Hi+1,∗. The expression of the last row in (23) reveals that element 1s are

distributed evenly at a fixed interval of r. The last 1 of Hn−1,∗ is at position q − 1 when k = 0.

We claim that the position of the first 1 of Hn−1,∗ is less than r. The position of the first 1 is

q − 1 − kLr when k = kL, where kL =
⌈ q
r

⌉
− 1 is define in (6). Equation kL =

⌈ q
r

⌉
− 1 implies

that kL ≥ q
r − 1, thus we have q − 1 − kLr ≤ q − 1 − ( qr − 1)r = r − 1. Therefore, the claim is

true. Based on this distribution pattern and the fact that row Hi+1,∗ is obtained by shifting the last

row Hn−1,∗ left (n− 2− i) times (see (24)), we conclude that the two elements Hi+1,0 and Hi+1,r

are equal. Therefore, we have

Hi+1,∗ · (~e0 + ~er)
T = Hi+1,0 +Hi+1,r = 0. (25)

We note that 1 + 1 = 0 + 0 = 0 in fields of characteristic 2.

Row Hi+1,∗ is a row of the q × n submatrix
(
L̄,0q×(n−q)

)
, and its last (n − q) elements are all

0s. Thus we have

Hi+1,∗ · (~eq + ~ep)
T = 0.

This equation and (25) imply that

Hi+1,∗ · (~e0 + ~er + ~eq + ~ep)
T = Hi+1,∗ · (~e0 + ~er)

T +Hi+1,∗ · (~eq + ~ep)
T = 0 + 0 = 0. (26)

We now prove equation Ti,j = Ti+1,j+1 according to the following two subcases.

a) SUBCASE The first element of Hi+1,∗ is 1, i.e., Hi+1,0 = 1:

The first element of Hi+1,∗ is 1 in this subcase. Because Hi,∗ = (Hi+1,∗ ← 1), we know that

this first 1 of row vector Hi+1,∗ will be discarded in Hi,∗. Thus, we have

Hi+1,∗ = (Hi,∗ → 1) + ~e0. (27)

Thus by (26), (27) and the expression M∗,j+1 in (11), we obtain

Ti+1,j+1 =Hi+1,∗ ·M∗,j+1

=Hi+1,∗ ·
[
(M∗,j ↓ 1) + gn−1 (~e0 + ~er + ~eq + ~ep)

T
]

= [(Hi,∗ → 1) + ~e0] · (M∗,j ↓ 1) + gn−1

[
Hi+1,∗ · (~e0 + ~er + ~eq + ~ep)

T
]

= (Hi,∗ → 1) · (M∗,j ↓ 1) + ~e0 · (M∗,j ↓ 1) + 0 (28)

Because the first element in (M∗,j ↓ 1) is 0, we know that ~e0 · (M∗,j ↓ 1) equals to 0.

Furthermore, because row Hi,∗ is a row of matrix
(
L̄,0q×(n−q)

)
, we know the last (n − q)
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elements in Hi,∗ are all 0. Thus, inner product (Hi,∗ → 1)·(M∗,j ↓ 1) is equal to inner product

Ti,j = (Hi,∗) · (M∗,j). Thus equation (28) can be written as Ti+1,j+1 = Ti,j + 0 + 0 = Ti,j .

b) SUBCASE The first element of Hi+1,∗ is 0, i.e., Hi+1,0 = 0:

As we have just discussed in the above paragraph, inner product Ti,j = Hi,∗ ·M∗,j equals to

Ti,j = Hi,∗ ·M∗,j = (Hi,∗ → 1) · (M∗,j ↓ 1) . (29)

Thus by (26) and (29), we have

Ti+1,j+1 =Hi+1,∗ ·M∗,j+1 = Hi+1,∗ ·
[
(M∗,j ↓ 1) + gn−1 (~e0 + ~er + ~eq + ~ep)

T
]

= (Hi,∗ → 1) · (M∗,j ↓ 1) + gn−1

[
Hi+1,∗ · (~e0 + ~er + ~eq + ~ep)

T
]

=Hi,∗ ·M∗,j + 0

=Ti,j .

3) CASE i = n− q − 1:

This case corresponds to claim 3. The expression of Ti,j is Ti,j = Hi,∗ ·M∗,j = Hn−q−1,∗ ·M∗,j ,

where Hn−q−1,∗ is the last row of submatrix
(
0(n−q)×q, Ū

)
. We first show that Hn−q−1,∗ = ~en−1.

The expression of Ū in (6) can be rewritten as Ū =
∑kU

k=0 U
k(n−p)
(n−q)×(n−q) = U0

(n−q)×(n−q) +∑kU

k=1 U
k(n−p)
(n−q)×(n−q), where kU =

⌈
n−q
n−p

⌉
− 1 ≥ 1. It is clear that U0

(n−q)×(n−q) is the (n− q) ×

(n− q) identity matrix and the last row of
∑kU

k=1 U
k(n−p)
(n−q)×(n−q) is the zero vector (0, 0, . . . , 0).

Thus the last element Hn−q−1,n−1 is the only 1 in row Hn−q−1,∗, i.e.,

Hn−q−1,∗ = ~en−1. (30)

Therefore, element Ti,j = Hn−q−1,∗ ·M∗,j = ~en−1 ·M∗,j is equal to the (n− 1)-th element in the

column vector M∗,j , which is gn−1 by (7).

Now we show that Ti+1,j+1 is also gn−1. Similar to the proof of (30), by the definition of L̄ in

(6) we can obtain that Hn−q,∗ = ~e0. Therefore, Element Ti+1,j+1 = Hn−q,∗ ·M∗,j+1 = ~e0 ·M∗,j+1

is equal to the 0-th element in the column vector M∗,j+1, which is also gn−1 by (11).

Thus, we conclude that Ti,j = gn−1 = Ti+1,j+1 for this case.

In summary, the three claims are all true. Therefore, T is a Toeplitz matrix.

We have proved that matrix

H =

0(n−q)×q Ū

L̄ 0q×(n−q)


n×n
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can transform the Mastrovito matrix M into a Toeplitz matrix T . Because H is a block matrix, its inverse

matrix can be derived using the following lemma.

Lemma 2.2: Let integers m = n− q and d = n− p. Then the inverse matrix of Ū =
∑dmd e−1

i=0 U i·d
m×m

is Ū−1 = Im×m + Ud
m×m, and the inverse matrix of L̄ =

∑⌈ q
r

⌉
−1

i=0 Li·r
q×q is L̄−1 = Iq×q + Lr

q×q.

Proof:

Because
⌈
m
d

⌉
d ≥ m, by the definition of upper shift matrix Uk

m×m in (5), we have

U
dmd ed
m×m = 0m×m. (31)

Here Uk
m×m is not merely a symbol, in fact, it is equal to the k-th power of matrix U1

m×m, i.e.,

Uk
m×m = (U1

m×m)k. Therefore, it is easy to prove that

U i·d
m×m · Ud

m×m = U
(i+1)·d
m×m ,

where 0 ≤ i ≤
⌈
m
d

⌉
− 1.

By this equation and (31), we have

Ū · Ū−1 =

d
m
d e−1∑
i=0

U i·d
m×m

(Im×m + Ud
m×m

)

=

dmd e−1∑
i=0

U i·d
m×m +

dmd e∑
i=1

U i·d
m×m

=

U0
m×m +

dmd e−1∑
i=1

U i·d
m×m

+

d
m
d e−1∑
i=1

U i·d
m×m + U

dmd ed
m×m


=U0

m×m +

d
m
d e−1∑
i=1

U i·d
m×m +

dmd e−1∑
i=1

U i·d
m×m

+ U
dmd ed
m×m

= Im×m + 0m×m + U
dmd ed
m×m

= Im×m.

Therefore the first part of the lemma is true.

Toeplitz matrix Lk
q×q is a lower shift matrix, and its transpose (Lk

q×q)
T is an upper shift matrix. By

the equation L̄−1 =
((
L̄T
)−1
)T

and the above result, the second part of the lemma is true.

The above lemma implies the following result:
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Proposition 2.3: The inverse matrix of H defined in (6) is

H−1 =

 0 L̄−1

Ū−1 0


n×n

=

 0 Iq×q + Lr
q×q

I(n−q)×(n−q) + Un−p
(n−q)×(n−q) 0


n×n

. (32)

C. Two Examples

The first example is the transformation matrix for a special irreducible pentanomial f(u) = un +

up+1 +up +up−1 + 1 (1 < p < n− 1). We have verified that H is the same as the transformation matrix

presented in reference [15].

The second example demonstrates the transformation matrix H and its inverse H−1. Let X = {x−6, x−5, . . . , x0}

be a shifted polynomial basis of GF (27) generated by irreducible pentanomial f(u) = u7+u6+u4+u2+1.

Matrices H , H−1, M and T are as follows:

H =



0 0 0 0 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0


, H−1 =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0


,

M =



b4 + b6 b3 + b5 b2 + b4 b1 + b3 b0 + b2 b1 b0

b0 + b5 b4 + b6 b3 + b5 b2 + b4 b1 + b3 b0 + b2 b1

b0 + b1 + b4 b0 + b3 b2 + b6 b1 + b5 b0 + b4 b3 b2

b0 + b1 + b2 + b5 b0 + b1 + b4 b0 + b3 b2 + b6 b1 + b5 b0 + b4 b3

b1 + b2 + b3 + b4 b0 + b1 + b2 + b3 b0 + b1 + b2 b0 + b1 b0 + b6 b5 b4

b2 + b3 + b4 + b5 b1 + b2 + b3 + b4 b0 + b1 + b2 + b3 b0 + b1 + b2 b0 + b1 b0 + b6 b5

b3 + b5 b2 + b4 b1 + b3 b0 + b2 b1 b0 b6


,
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and

T =



b1 + b3 b0 + b2 b1 b0 b6 b5 + b6 b4 + b5 + b6

b2 + b4 b1 + b3 b0 + b2 b1 b0 b6 b5 + b6

b3 + b5 b2 + b4 b1 + b3 b0 + b2 b1 b0 b6

b4 + b6 b3 + b5 b2 + b4 b1 + b3 b0 + b2 b1 b0

b0 + b5 b4 + b6 b3 + b5 b2 + b4 b1 + b3 b0 + b2 b1

b0 + b1 + b6 b0 + b5 b4 + b6 b3 + b5 b2 + b4 b1 + b3 b0 + b2

b1 + b2 b0 + b1 + b6 b0 + b5 b4 + b6 b3 + b5 b2 + b4 b1 + b3


.

III. CONCLUSION

In this paper, we have first presented a matrix H to transform the Mastrovito matrix M into a Toeplitz

matrix T for an arbitrary irreducible pentanomial f(u) = un + up + uq + ur + 1 (n > p > q > r > 1)

when GF (2n) elements are represented using a shifted polynomial basis. This makes it possible for the

MVP approach to be used for all practical GF (2n)s.

In order to derive the exact explicit formulae for the complexities of the matrix transformation step,

we had examined expressions for elements of Toeplitz matrix T , but no straightforward regularity was

found among these expressions. Moreover, there are common subexpressions in the Toeplitz matrix T ,

e.g., b5 + b6 appears in both T0,5 and T0,6 in the above example. These factors make it hard to obtain our

desired explicit complexity formulae. Fortunately, it is clear that the number of XOR gates used in this

step is linear to n, which is much smaller than that in the TMVP step. Furthermore, for a given finite

field GF (2n) in some practical application, we can test different irreducible pentanomials and select a

proper f(u) to construct subquadratic multipliers.
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