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Abstract. The 3GPP Task Force recently supplemented mobile LTE
network security with an additional set of confidentiality and integrity
algorithms, namely 128-EEA3 and 128-EIA3 built on top of ZUC, a new
keystream generator. We propose two novel techniques to improve the
software performance of these algorithms. We show how delayed modular
reduction increases the efficiency of the LFSR feedback function, yield-
ing performance gains for ZUC and thus both 128-EEA3 and 128-EIA3.
We also show how to leverage carryless multiplication to evaluate the
universal hash function making up the core of 128-EIA3. Our software
implementation results on Qualcomm’s Hexagon DSP architecture indi-
cate significant performance gains when employing these techniques: up
to roughly a 2-fold and 2.5-fold throughput improvement for 128-EEA3
and 128-EIA3, respectively.
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1 Introduction

Existing, widely-deployed, and well-understood confidentiality and integrity al-
gorithms for LTE mobile networks include SNOW 3G-based 128-EEA1 and 128-
EIA1 [1] and AES-based 128-EEA2 and 128-EIA2. In 2009, a new requirement
arose to augment these with a new set of algorithms. Standardized in 2012, new
LTE confidentiality and integrity algorithms 128-EEA3 and 128-EIA3 [2] rely on
the new stream cipher ZUC [3] as a keystream generator. Whereas many stream
cipher designs use an LFSR over a binary field, ZUC uses a 16-stage LFSR over
the field IFp for p = 231 − 1. As a result, ZUC presents a very interesting mix of
binary and modular arithmetic. Section 2 discusses these mobile algorithms in
more detail.

Existing literature on engineering aspects of ZUC, 128-EEA3, and 128-EIA3
focuses on hardware implementations, including FPGAs [4,5,6,7]. In contrast,
this work focuses exclusively on efficient software implementation techniques for
these algorithms. Although our techniques are more widely applicable, for con-
creteness our target architecture is Qualcomm’s Hexagon digital signal processor
(DSP). Qualcomm’s recent MSM8960 and upcoming MSM8974, Snapdragon sys-
tem on chips (SoCs) aimed at mobile markets, both feature multiple instances of



Hexagon DSPs. Hexagon is the global unit market leading architecture for DSP
silicon shipments [8].

The 31-bit finite field in ZUC is an ideal choice to facilitate modular reduction
after each addition on 32-bit architectures. However, in the context of curve-
based public key cryptography, accumulating the results of several additions
before reduction modulo a prime number can be effective: using sufficiently small
prime moduli and accumulating without increasing the precision [9,10]. However,
the lesson of [11,12] is that increasing the precision of the unreduced accumulator
can be acceptable in order to reduce the number of modular reductions, even
if this requires extending the modular reduction routine: the latter can take a
performance hit but the net effect can still be a significant overall speedup.

Our first contribution is the application of this idea to the ZUC LFSR, and
it is the most significant optimization applied to the ZUC keystream generator
described in this paper. To our knowledge, this is the first application of the idea
to a stream cipher.

Carryless multiplication is a budding trend in commodity microprocessors.
In contrast to a typical integer multiplier that multiplies two words in ZZ, car-
ryless multiplication multiplies two words as polynomials in IF2[x]. Common
motivation for integrating this feature in an instruction set architecture (ISA)
includes applications to signal processing, finite fields, error correcting codes,
and cryptography. In the case of cryptography, previous results show how to
leverage carryless multiplication for efficient implementation of many cryptosys-
tems including, but not limited to, GHASH in AES-GCM [13], elliptic curve
cryptography (ECC) on curves over binary fields, [14,15], and ECC on Koblitz
curves [16].

Our second contribution shows how to leverage carryless multiplication to
compute the message authentication code (MAC) or tag for the 128-EIA3 mes-
sage authentication algorithm (MAA), the core of which is essentially a universal
hash function (UHF) similar to the construction by Krawczyk [17, Sec. 3.2]. This
allows software to process message bits a word at a time instead of a bit at a
time.

Our empirical results in Section 4 demonstrate the effectiveness of these two
contributions presented in Section 3. We achieve up to roughly a 2-fold and 2.5-
fold throughput improvement for 128-EEA3 and 128-EIA3, respectively, using
these techniques. We draw conclusions in Section 5.

2 LTE algorithms

Cipher suites for LTE networks include the following. 128-EEA1 and 128-EIA1
[1] are confidentiality and integrity algorithms, respectively, built upon the stream
cipher SNOW 3G [18]. These algorithms are the same as those specified in UEA2
and UIA2 for UMTS networks. 128-EIA1 is a polynomial evaluation (or Galois)
scheme. 128-EEA2 and 128-EIA2 are built upon AES, specifically counter mode
for confidentiality and CBC-MAC for integrity. The requirement for a third set of
algorithms arose in 2009. New algorithms 128-EEA3 and 128-EIA3 [2] are built



upon a new keystream generator ZUC [3]. Evaluation began in 2010 and, after a
few minor modifications, this new set of algorithms reached standardization in
2012. This section describes ZUC, 128-EEA3, and 128-EIA3.

2.1 Keystream generator: ZUC

A tried and true design paradigm for secure stream ciphers combines two pivotal
ingredients. The first is an LFSR, typically word-based to allow efficient imple-
mentation not only in hardware but also in software. Said LFSR stages or cells
are typically elements of a binary extension field: IF2w with w ∈ {8, 32, 64} are
common examples. The second is a finite state machine (FSM), the operation of
which vaguely resembles a block cipher round function. Said FSM state registers
evolve nonlinearly. Clocking the cipher produces a keystream word that is the
XOR-sum of the FSM output and LFSR output. In this way, the LFSR output
acts as a linear mask on the FSM output, shielding a nonlinear process with a
linear process. Stream ciphers that follow this design paradigm include SNOW
[19], SNOW 2.0 [20], SOSEMANUK [21], and SNOW 3G [18], all of which utilize
an LFSR defined over IF232 .

Building upon these previous designs, the ZUC stream cipher instead utilizes
a 16-stage LFSR defined over IFp for p = 231 − 1. A description of ZUC follows
and Fig. 1 illustrates. Let ⊕, �, �, and ‖ denote addition in IF32

2 (i.e., XOR),
addition in ZZ232 , logical left shift, and concatenation, respectively.
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Fig. 1. The ZUC keystream generator. Solid boxes are registers. Dashed boxes are func-
tions. The specification describes the process of extracting and concatenating partial
LFSR cells for input to the FSM as the bit reorganization (BR) layer.

Let IFp = {1, 2, . . . , p − 1, p}, i.e., represent elements using their smallest
positive integer representation. This is otherwise the canonical representation



with the exception of representing 0 by p. Define the LFSR feedback function
F1 : IF5

p → IFp as follows.

F1 : (s0, s4, s10, s13, s15) 7→ (1 + 28)s0 + 220s4 + 221s10 + 217s13 + 215s15 (1)

Let FL, FH : IF32
2 → IF16

2 be functions extracting the least and most sig-
nificant 16-bit word of the input, respectively: FL : x 7→ (x0, . . . , x15) and
FH : x 7→ (x16, . . . , x31). Let L1, L2 : IF32

2 → IF32
2 be linear transformations and

S : IF4
28 → IF4

28 be a nonlinear function implemented by four parallel 8 to 8-bit
S-boxes. The LFSR and FSM states are (s0, . . . , s15) and (R1, R2), respectively.
Clocking ZUC comprises of the following steps.

1. Set X0 := FH(s15 � 1)‖FL(s14), X1 := FL(s11)‖FH(s9 � 1), X2 :=
FL(s7)‖FH(s5 � 1), X3 := FL(s2)‖FH(s0 � 1).

2. Set Z := (X0 ⊕R1) �R2)⊕X3, W1 := R1 �X1, W2 := R2 ⊕X2.
3. Set R1 := S(L1(FL(W1)‖FH(W2))), R2 := S(L2(FL(W2)‖FH(W1))).
4. Set s16 := F1(s0, s4, s10, s13, s15).
5. Set (s0, . . . , s15) := (s1, . . . , s16).
6. Return keystream word Z.

In the initialization phase, ZUC packs a 128-bit key, a 128-bit initialization
vector (IV), and a number of non-zero constants into the 16 LFSR cells. While
the particular assignment is immaterial to this work, it suffices to note that the
assignment guarantees all LFSR cell values fall in the range 1 ≤ si ≤ p. With the
LFSR stages set and the FSM initialized to zero, ZUC clocks 32 times, including
part of the FSM output as an additional input to the LFSR feedback function
in each clock, and discards the resulting keystream words.

2.2 Confidentiality algorithm: 128-EEA3

Built on top of the ZUC keystream generator, 128-EEA3 is a binary additive
stream cipher utilizing ZUC keystream words in the obvious way. A 128-bit
confidentiality key serves as the ZUC key, while a number of other context-
specific parameters (frame counter, etc.) form a 128-bit IV for ZUC. Ciphertext
bits are message bits XOR-summed with ZUC keystream word bits.

A noteworthy restriction is that 128-EEA3 limits message lengths from 1 to
65504 bits (i.e., 4 bytes shy of 8kB). The reason is that LTE fixes the MTU
(maximum transmission unit) of a PDCP (Packet Data Convergence Protocol)
SDU (service data unit) to 8188 bytes [22] to support IPv6 applications (up to
1500 bytes for IPv4).

2.3 Integrity algorithm: 128-EIA3

Built on top of the ZUC keystream generator, 128-EIA3 is an MAA utilizing ZUC
keystream words to produce a 32-bit MAC for a message. At a high level, the
keystream and message are inputs to an IF2-linear UHF. A dedicated keystream
word serves as a one-time pad (OTP), encrypting this 32-bit UHF output. The
specification gives the following steps to compute the 128-EIA3 tag. Let ` be the
bit length of the message m and mi its individual bits.



1. Generate L = d`/32e + 2 ZUC keystream words. Keystream word Z0 maps
to keystream bits z0‖ . . . ‖z31 where z0 and z31 are the MSB and LSB of Z0,
respectively. Word Wi = zi‖ . . . ‖zi+31, i.e., 32-bit words formed by sliding a
32-bit window along the keystream bits.

2. Initialize 32-bit word T := 0.
3. For i from 0 to L− 1: if mi = 1 holds, set T := T ⊕Wi.
4. Set T := T ⊕W` ⊕W32(L−1).
5. Return T as the MAC.

We note that the following pre-processing steps, performing message termina-
tion, padding, and finalization, can replace Step 4.

1. Append a one followed by 31 zeroes.
2. Append zeroes until the length is a multiple of 32, i.e., from 0 to 31 zeroes.
3. Append a one.

To elaborate, the first 1-bit appended performs message termination. The
second 1-bit acts to select a keystream word for inclusion in the sum serving
as an OTP, encrypting the output of the UHF. The 0-bit padding between
acts to ensure that no part of the OTP is ever used in any other context than
encrypting the UHF output (i.e., the OTP is a keystream word never selected
fully or partially by post-terminated message bits). For the remainder of this
paper, m refers to the post-processed message and mi its individual bits.

With such pre-processing, the algorithmic steps to compute the MAC can
instead be viewed as a function H : IFn

2 × IFn+31
2 → IF32

2 computed as

H : (m, z) 7→
n−1∑
i=0

mi · (zi+31, . . . , zi) (2)

where here n is the length of the post-processed message. In this light, the
function is similar to the formalization by Krawczyk [17, Sec. 3.2].

3 Software optimizations

This section outlines a number of novel techniques used to increase the perfor-
mance of ZUC, 128-EEA3, and 128-EIA3 software. These techniques can poten-
tially apply to a wide range of architectures: from embedded microprocessors,
DSPs, desktops, workstations, on up to server platforms and from 8-bit to 64-bit
architectures. The results in Section 4 concentrate on one particular architecture
where all of these optimizations apply.

3.1 Delayed modular reduction

We propose delayed modular reduction to optimize the LFSR computation (1).
The specification of the cipher exploits the fact that reduction modulo p = 231−1
is fast by mandating first reduced computation of each summand in (1). Each



multiplication by a power of two is a 31-bit rotation in this field: free in hardware
but rather awkward in software. The computation then successively reduces each
sum.

The following formula reduces a 32-bit positive value k ≤ 232 − 2 (such as
the sum of two reduced quantities) to the range 1 ≤ k′ ≤ p. Recall this range is
consistent with the definition of IFp and LFSR initialization described in Sec. 2.

k′ = (k & 0x7FFFFFFF) + (k � 31) (3)

The same formula applies, suitably repeated, to reduce any integer: it is seen at
once that any input that is at least 62 bits long shortens by 30 bits (or more).
The only 32-bit value that requires (3) to be applied twice is 232 − 1.

Our approach is to use 64-bit registers (which, on some architectures, are
emulated by using pairs of 32-bit registers). We first compute the unreduced
sum of integer values

k = s0 + 28s0 + 220s4 + 221s10 + 217s13 + 215s15 .

This positive integer is clearly smaller than 231 · 222 = 253. Now we proceed to
reduce it, first by computing

k′ = (k & 0x7FFFFFFF) + (k � 31) ≤ (231 − 1) + (222 − 1) < 232 − 2

and then to further reduce k′ to the range 1 ≤ k′ ≤ p requires only one additional
application of (3) to a 32-bit value. (Stricter bounds can be proved, but these
do not improve the analysis.)

Even on a 32-bit architecture, this is faster than the straightforward approach
in the specification, as the savings from the fewer reductions vastly offset the
more expensive double precision additions.

3.2 Carryless multiplication

Modern commodity microprocessors increasingly feature a carryless multiplica-
tion instruction for multiplying two words taken as polynomials in IF2[x]. Similar
to integer multiplication, the instruction first computes shifted partial products,
yet the final summation in carryless multiplication is an XOR sum, discarding
carries. We aim to leverage such an instruction to compute (2) a word at a time
rather than a bit at a time.

Define polynomials a, b, c, d, e ∈ IF2[x] as follows.

a =

31∑
i=0

z31−ix
i, b =

31∑
i=0

z63−ix
i, c = ax32 + b

d =

31∑
i=0

mix
i (4)

e = cd = e2x
64 + e1x

32 + e0 (5)



That is, a is the first 32-bit keystream word as a 31-degree polynomial in IF2[x],
b the next 32-bit keystream word, c the 63-degree polynomial in two 32-bit
words. Note the bit ordering of keystream bits to words to polynomials (a, b) is
consistent with the standard, yet the ordering in d differs, reversing the message
word bits mi. The three ei are the 32-bit words of the product of c and d.

Given the above equations, e1 in (5) is the output of 32 consecutive iterations
of the summation in (2). To see why this is so, consider the following matrix.

U0 =


z31 z32 · · · z62
z30 z31 · · · z61
...

...
. . .

...
z0 z1 · · · z31


Denote v = (m0,m1, . . . ,m31)T , i.e., d as a column vector, and observe U0v
computes the first 32 iterations of (2). The low word of the product ad in (5) is
U1v where U1 is the following matrix.

U1 =


a0 0 · · · 0
a1 a0 · · · 0
...

...
. . .

...
a31 a30 · · · a0

 =


z31 0 · · · 0
z30 z31 · · · 0
...

...
. . .

...
z0 z1 · · · z31


The high word of the product bd in (5) is U2v where U2 is the following matrix.

U2 =


0 b31 · · · b1

0 0 · · ·
...

...
...

. . . b31
0 0 · · · 0

 =


0 z32 · · · z62

0 0 · · ·
...

...
...

. . . z32
0 0 · · · 0


The important equality is U0 = U1 +U2 hence U1v+U2v = U0v = e1. Repeating
these steps for subsequent message words allows us to calculate (2) a message
word at a time instead of a message bit at a time, and furthermore using no
branch instructions.

Considering software implementation aspects, forming variables a, b, and c
have no software implications; they are simply keystream words. In contrast,
(4) and (5) must be implemented. Reversing the bits of a message word in
(4) requires either a dedicated bit reverse instruction or a sequence of logic
implementing a manual bit reverse (bit twiddling, table lookups, etc.). Two
instances of a 32 by 32 to 64-bit carryless multiplication instruction (ad, bd)
followed by a single 32-bit XOR implement (5) producing e1 (e0 and e2 are
discarded). Finally, an additional 32-bit XOR accumulates to the tag.

3.3 Optimizing the S-box

S-boxes S0 and S1 (8 to 8 bits) implement the nonlinear function S of ZUC. These
must be applied to each byte of a 32 bit word as follows. Let w = w0||w1||w2||w3



be a 32-bit input where each wi is 8-bit. Its nonlinear transform is S(w) =
S0(w0)||S1(w1)||S0(w2)||S1(w3), requiring bit shifts and masking for both ex-
tracting each wi and assembling the final result.

Since on the target architecture the ratio of the memory subsystem clock to
the CPU clock is relatively small, we reduce the amount of shifts by keeping two
32-bit tables for each S-box where S′0 = S0 � 24, S′′0 = S0 � 8, S′1 = S1 � 16,
and S′′1 = S1 and computing S(w) as S(w) = S′0(w0)⊕S′1(w1)⊕S′′0 (w2)⊕S′′1 (w3).

3.4 Optimizing the keystream generator

One important step in the keystream generator is the concatenation of two 16-bit
halfwords extracted from 32-bit values into a third 32-bit value, for instance to
compute FL and FH followed by ‖ in Fig. 1. There are six such calculations in the
keystream generator. The Hexagon architecture includes a combine instruction
that performs such an operation.

3.5 Classical techniques

We implement the state of the LFSR as a circular buffer, which means that the
contents are not shifted completely each time to make room for the new value. A
further optimization consists of a sliding window on the circular buffer to avoid
index wrapping while reading from it [23, Sec. 2.2]: “A buffer up to twice as long
as required is used. When a new value is written into the buffer, it is written into
two places in the buffer, and all of the intermediate values can be accessed at
fixed offsets from the current index or pointer. The pointer starts in the middle
of the double length buffer, and when it reaches the end it is reset to the middle
again.”

Other than this, all optimizations are standard software tuning optimizations,
such as, for instance, explicit loop unrolling with overlapping and interleaving
of loop body boundaries.

4 Results

Since the architecture of the Hexagon is not widely known, we briefly summarize
its salient aspects before presenting and discussing performance results.

4.1 Hexagon architecture

The Hexagon is an unusual type of DSP, because it inherits several features
from general purpose CPUs and VLIW machines, enabling it to be programmed
with standard development tools and to run generic operating systems with
virtualization support.



– Hexagon natively supports a complete RISC instructions set working on
integer and floating point types, and vector operations. It features 32 32-bit
general purpose registers, which can be paired to form 64-bit registers.
Furthermore it is modeless: most DSPs use sticky register bits to define
saturation, scaling or rounding operation modes – as a result, the same
routine may work differently depending on the current mode of the DSP. On
the Hexagon there are no such sticky bits and saturation, scaling or rounding
are encoded in each applicable instruction.
These design choices make it possible to use standard development tools and
languages with the Hexagon. Toolchains based on gcc [24] and clang/llvm [25]
are available.

– It is a VLIW architecture. Up to four instructions group together (at compile
time) in variable length packets. The packets execute in order. The absence
of a complex instruction scheduler reduces area and power consumption.
Furthermore, since some simpler arithmetic operations produce their output
early in the pipeline, their output can be provided as an input to other (also
simple) operations in the same packet – in other words, in some cases both
the “old” and the “new” values of a register are available as inputs to other
instructions in the same packet.
Most arithmetic and logic operations can be accumulated: Hexagon does
not only offer DSP-typical multiply-and-accumulate operations, but combi-
nations such as and-then-add or add-then-xor as well. Also, various types of
operations can be executed conditionally on four different sets of predicates.
Special operations support FFT (complex numbers), circular addressing, and
zero overhead hardware loops.
All these features greatly improve code density and throughput.

– Three hardware threads execute in a round robin fashion with single cycle
granularity. A 700MHz Hexagon (typical boosted frequency of the DSP inside
a recent Qualcomm modem) presents itself as a three-core CPU clocked at
233MHz.
This feature reduces the visible latency per thread to, usually, a single cycle.

– Whereas traditional DSPs feature a small local memory managed directly
by software and rely on DMA to access the data to process, the Hexagon
has a unified memory model similar to that of a general purpose CPU: it
addresses a linear memory space with memory mapped I/O, integrating an
ARM compliant MMU with two stages of translation, has separate L1 data
and instruction caches and a large L2 unified cache. Each hardware thread
can independently run in user, guest, and monitor execution modes in order
to fully support OS virtualization.

Table 1 highlights instructions that are vital to implementing the optimiza-
tions described in Section 3 for the Hexagon architecture: The intrinsics can be
used as if they were C functions and are directly translated by the compiler into
machine instructions.

The ZUC specification mandates big endian byte ordering on keystream
words: Hexagon features a dedicated endianness swap instruction. The 128-EIA3



optimizations involve a bit reverse and carryless multiplication: Hexagon features
dedicated instructions for both.

Table 1. Noteworthy Hexagon instructions

Mnemonic Intrinsic Description

swiz Q6_R_swiz_R 4-byte word endianness swap
brev Q6_R_brev_R 32-bit word bit reverse
pmpyw Q6_P_pmpyw_RR carryless multiplication of 32-bit operands
combine Q6_R_combine_R[hl]R[hl] combine two halfwords into a word

4.2 Performance

We compare here the performance of two versions of our code.

The first version is a straightforward, clean room implementation of the ZUC
specifications, presenting none of the optimizations we described in Section 3.
This implementation was the starting point for our work and was also indepen-
dently checked with the reference code for correctness, showing essentially the
same performance. The only significant difference with respect to the reference
code is that we used a sliding window over a linear buffer from the start, whereas
the reference implementation shifts the whole buffer at each tick.

The second version implements all the optimizations described in Section 3.
We achieve these improvements without resorting to manual assembly optimiza-
tion: all the changes are at the algorithmic level and implemented by inserting
compiler intrinsics in the C source code.

For the 128-EIA3 algorithm we also compare the performance of the opti-
mized code but without the special optimization presented in Subsection 3.2, in
order to highlight its impact.

Tables 2, 3, and 4 present the performance results as throughput, the unit
being processed bits per hardware thread cycle.

All the timings include the initialization phase for all three algorithms, whose
impact becomes less significant as the buffer size increases. The largest buffer size
is 8188 bytes, not 8192, as this is the largest 128-EEA3 packet size, as explained
in Subsection 2.2, and for the same reason we also include the length of 1500
bytes.

We include the timings on small buffers to underline the impact of initial-
ization code. However, we note that large buffers are most common, since LTE
chiefly carries large amounts of data at high speed.

To build the code we used version 6.2 of Qualcomm’s Hexagon development
tools. It includes two C compilers based on gcc 4.6.2 [24] and clang 3.2 [25]. We



used the clang compiler since it performs consistently better than gcc on our
code base.3

Some comments on the results are due:

1. The gain in the keystream generator – that approaches a 50% throughput
increase – comes mostly from the improvements in the LFSR – i.e., the
delayed modular reduction (Subsection 3.1) and the use of a sliding window
circular buffer (Subsection 3.5) – but also, to a lesser extent, the use of the
combine instruction.

2. Loop unrolling and standard optimizations are the main reason the opti-
mized implementation of EEA3 reduces the gap between the unoptimized
implementations of the keystream generator and EEA3: for large packets
throughput roughly doubles.

3. The impact of routine optimizations is less evident in the case of EIA3 be-
cause a straight implementation of the integrity algorithm requires dozens of
shifting and masking operations to process just 4 bytes of the message. The
mathematical improvements from Subsection 3.2 and the carryless multipli-
cation instruction, however, alone more than double the throughput, bring-
ing it much closer to the performance of the keystream generator alone. The
optimized integrity algorithm performs about two and a half times faster than
the standard implementation.

A single hardware thread on a 700MHz Hexagon is in theory capable to
process 168 Mb/sec for integrity and 172 Mb/sec for confidentiality: two threads
can meet the LTE CAT 4 150 Mb/sec requirements.

The actual performance is lower since a lightweight operating system is also
running on the chip to manage the baseband. However, LTE data streams are
split into relatively short segments (of up to 8188 bytes) which can be processed
in parallel, so the effective throughput triples with respect of that of a single
operation on a single thread. This means that in practice, the Hexagon is com-
fortably capable of handling LTE CAT 4 150/50 data streams. This performance
would not be attainable without the improvements presented here.

4.3 Comparison with Intel CPUs

We also applied the same ideas to an implementation for recent Intel CPUs.
The target CPU is an Intel Core i7-2760QM running at 2.40 GHz running OS
X 10.8.3 with 16GB 1600MHz DDR3 on board. The chosen compiler is clang,
based on LLVM 3.3svn.

The target architecture offers a 64 by 64-bit carryless multiplication that can
be used in an obvious way to implement the approach described in Section 3.2
(in fact, a single 64-bit multiplication (b‖a) times d, where d is suitably padded
with zeros performs the two 32-bit multiplications needed there).

3 This also confirms the recent trend of clang quickly catching up with that of gcc, the
performance being almost always similar, often slightly better, except on OpenMP
multiprocessor code, since clang does not yet support it.



Table 2. ZUC keystream generator performance

Length Unoptimized Optimized Throughput
(bytes) (bits/cycle) (bits/cycle) increase

128 0.2792 0.3989 43 %
256 0.3774 0.5460 45 %
512 0.4581 0.6694 46 %

1024 0.5128 0.7547 47 %
1500 0.5332 0.7865 48 %
2048 0.5454 0.8060 48 %
4096 0.5634 0.8344 48 %
8188 0.5728 0.8494 48 %

Table 3. 128-EEA3 confidentiality algorithm performance

Length Unoptimized Optimized Throughput
(bytes) (bits/cycle) (bits/cycle) increase

128 0.2225 0.3802 71 %
256 0.2835 0.5136 81 %
512 0.3285 0.6229 90 %

1024 0.3568 0.6971 95 %
1500 0.3670 0.7230 97 %
2048 0.3729 0.7412 99 %
4096 0.3815 0.7654 101 %
8188 0.3860 0.7782 102 %

Table 4. 128-EIA3 integrity algorithm performance

a b c
Length Unoptimized No clmul Optimized Throughput increase
(bytes) (bits/cycle) (bits/cycle) (bits/cycle) b over a c over b c over a

128 0.1665 0.2124 0.3344 28 % 57 % 101 %
256 0.2175 0.2709 0.4502 25 % 66 % 107 %
512 0.2568 0.3143 0.5800 22 % 85 % 126 %

1024 0.2745 0.3336 0.6528 22 % 96 % 138 %
1500 0.2826 0.3423 0.6838 21 % 100 % 142 %
2048 0.2884 0.3484 0.7104 21 % 104 % 146 %
4096 0.2959 0.3563 0.7356 20 % 107 % 149 %
8188 0.2998 0.3603 0.7552 20 % 110 % 152 %



The Intel chip does not offer a bit reversal instruction, but this can be ac-
complished using a well-know trick with simple shifting and masking: first swap
adjacent bits, then adjacent bit pairs, then adjacent nibbles, and so on. This
technique easily vectorizes to bit reverse four 32-bit words in parallel.

The optimized performance for EIA3 is 0.6407 bits per cycle for 1500-byte
messages, whereas the unoptimized performance is 0.2471 bits per cycle. These
values are slightly lower than those of the Hexagon. The relative improvement
is around 159%.

A further data point is ZUC keystream generation at 1500 bytes: the (opti-
mized) throughput is 0.8733 bits per cycle, which is about 10% higher than on
the Hexagon. This means that the improvements based on the use of carryless
multiplication have a higher impact on the Hexagon.

For 8188-byte messages, the ZUC throughput is essentially unchanged at
0.8789 bits per cycle, whereas unoptimized/optimized EIA3 throughputs are
0.2572 and 0.6774 bits per cycle, respectively. These values are significantly lower
than the values for the Hexagon.

5 Conclusion

Being not only new algorithms but also standardized and widely-deployed, ZUC,
128-EEA3, and 128-EIA3 are ideal candidates to consider performance optimiza-
tions. To this end, the two novel software techniques presented in this work prove
highly effective on a particularly relevant platform for these algorithms. Delayed
modular reduction for ZUC and carryless multiplication for 128-EIA3 yield up
to roughly a 2-fold and 2.5-fold throughput improvement for 128-EEA3 and 128-
EIA3, respectively, demonstrated on Qualcomm’s Hexagon DSP architecture.

Delayed modular reduction stems from public key cryptography optimization
techniques and applies them to a stream cipher. This shows that the linear part
of linear masking stream ciphers, traditionally accomplished with an IF2-linear
process, can indeed be efficiently realized in other algebraic structures providing
similar provable theoretic properties.

Our proposed use of carryless multiplication to evaluate the UHF in 128-
EIA3 shows yet another application of this increasingly important micropro-
cessor instruction to standardized symmetric cryptography. In 1999, Nevelsteen
and Preneel wrote that Krawczyk’s UHF construction “is more suited for hard-
ware, and is not very fast in software” [26, Sec. 3.4]. Unquestionably true at the
time, this work exemplifies ways cryptography engineering has evolved to make
mutually exclusive design concepts more compatible. On one hand, the through-
put improvement shows our proposed technique is dramatically effective. On the
other hand, the bit ordering mandated by the specification implies an obtuse bit
reversal on message words: fortunately, Hexagon is equipped to handle this na-
tively, but this is not the case for all architectures. Cryptographically speaking,
this bit ordering is irrelevant and highlights the importance of careful consider-
ation and close collaboration between cryptologists, standardization bodies, and
cryptography engineers.
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