
DupLESS:

Server-Aided Encryption for Deduplicated Storage∗

Mihir Bellare

University of California, San Diego

Sriram Keelveedhi

University of California, San Diego

Thomas Ristenpart

University of Wisconsin–Madison

Abstract

Cloud storage service providers such as Dropbox, Mozy,

and others perform deduplication to save space by only

storing one copy of each file uploaded. Should clients

conventionally encrypt their files, however, savings are

lost. Message-locked encryption (the most prominent

manifestation of which is convergent encryption) re-

solves this tension. However it is inherently subject

to brute-force attacks that can recover files falling into

a known set. We propose an architecture that pro-

vides secure deduplicated storage resisting brute-force

attacks, and realize it in a system called DupLESS. In

DupLESS, clients encrypt under message-based keys ob-

tained from a key-server via an oblivious PRF protocol.

It enables clients to store encrypted data with an exist-

ing service, have the service perform deduplication on

their behalf, and yet achieves strong confidentiality guar-

antees. We show that encryption for deduplicated storage

can achieve performance and space savings close to that

of using the storage service with plaintext data.

1 Introduction

Providers of cloud-based storage such as Dropbox [3],

Google Drive [7], and Mozy [63] can save on storage

costs via deduplication: should two clients upload the

same file, the service detects this and stores only a sin-

gle copy. The savings, which can be passed back directly

or indirectly to customers, are significant [50,61,74] and

central to the economics of the business.

But customers may want their data encrypted, for rea-

sons ranging from personal privacy to corporate policy

to legal regulations. A client could encrypt its file, under

a user’s key, before storing it. But common encryption

modes are randomized, making deduplication impossi-

ble since the SS (Storage Service) effectively always sees

different ciphertexts regardless of the data. If a client’s

∗Appeared at the 2013 USENIX Security Symposium.

encryption is deterministic (so that the same file will al-

ways map to the same ciphertext) deduplication is pos-

sible, but only for that user. Cross-user deduplication,

which allows more storage savings, is not possible be-

cause encryptions of different clients, being under dif-

ferent keys, are usually different. Sharing a single key

across a group of users makes the system brittle in the

face of client compromise.

One approach aimed at resolving this tension is

message-locked encryption (MLE) [18]. Its most promi-

nent instantiation is convergent encryption (CE), in-

troduced earlier by Douceur et al. [38] and others

(c.f., [76]). CE is used within a wide variety of com-

mercial and research SS systems [1, 2, 5, 6, 8, 12, 15, 32,

33, 55, 60, 66, 71, 78, 79]. Letting M be a file’s contents,

hereafter called the message, the client first computes a

key K ← H(M) by applying a cryptographic hash func-

tion H to the message, and then computes the ciphertext

C← E(K,M) via a deterministic symmetric encryption

scheme. The short message-derived key K is stored sep-

arately encrypted under a per-client key or password. A

second client B encrypting the same file M will produce

the same C, enabling deduplication.

However, CE is subject to an inherent security limita-

tion, namely susceptibility to offline brute-force dictio-

nary attacks. Knowing that the target message M un-

derlying a target ciphertext C is drawn from a dictio-

nary S = {M1, . . . ,Mn} of size n, the attacker can recover

M in the time for n = |S| off-line encryptions: for each

i = 1, . . . ,n, it simply CE-encrypts Mi to get a ciphertext

denoted Ci and returns the Mi such that C = Ci. (This

works because CE is deterministic and keyless.) Security

is thus only possible when the target message is drawn

from a space too large to exhaust. We say that such a

message is unpredictable.

Bellare, Keelveedhi, and Ristenpart [18] treat MLE

formally, providing a definition (semantic-security for

unpredictable messages) to capture the best possible se-

curity achievable for MLE schemes in the face of the in-

1

herent limitation noted above. The definition is based

on previous ones for deterministic encryption, a primi-

tive subject to analogous inherent limitations [16,17,27].

The authors go on to show that CE and other mechanisms

achieve their definition in the random-oracle model.

The unpredictability assumption. The above-mentioned

work puts security on a firm footing in the case messages

are unpredictable. In practice, however, security only for

unpredictable data may be a limitation for, and threat to,

user privacy. We suggest two main reasons for this. The

first is simply that data is often predictable. Parts of a

file’s contents may be known, for example because they

contain a header of known format, or because the adver-

sary has sufficient contextual information. Some data,

such as very short files, are inherently low entropy. This

has long been recognized by cryptographers [43], who

typically aim to achieve security regardless of the distri-

bution of the data.

The other and perhaps more subtle fear with regard to

the unpredictability assumption is the difficulty of vali-

dating it or testing the extent to which it holds for “real”

data. When we do not know how predictable our data

is to an adversary, we do not know what, if any, secu-

rity we are getting from an encryption mechanism that is

safe only for unpredictable data. These concerns are not

merely theoretical, for offline dictionary attacks are rec-

ognized as a significant threat to CE in real systems [77]

and are currently hindering deduplication of outsourced

storage for security-critical data.

This work. We design and implement a new system

called DupLESS (Duplicateless Encryption for Simple

Storage) that provides a more secure, easily-deployed

solution for encryption that supports deduplication. In

DupLESS, a group of affiliated clients (e.g., company

employees) encrypt their data with the aid of a key server

(KS) that is separate from the SS. Clients authenticate

themselves to the KS, but do not leak any information

about their data to it. As long as the KS remains in-

accessible to attackers, we ensure high security. (Ef-

fectively, semantic security [43], except that ciphertexts

leak equality of the underlying plaintexts. The latter is

necessary for deduplication.) If both the KS and SS are

compromised, we retain the current MLE guarantee of

security for unpredictable messages.

Unlike prior works that primarily incorporate CE into

new systems, our goal is to make DupLESS work trans-

parently with existing SS systems. DupLESS therefore

sits as a layer on top of existing simple storage interfaces,

wrapping store, retrieve, and other requests with algo-

rithms for encrypting filenames and data on the fly. This

also means that DupLESS was built: to be as feature-

compatible as possible with existing API commands, to

not assume any knowledge about the systems implement-

ing these APIs, to give performance very close to that of

using the SS without any encryption, and to achieve the

same availability level as provided by the SS.

We implement DupLESS as a simple-to-use

command-line client that supports both Dropbox [3] and

Google Drive [7] as the SS. We design two versions of

the KS protocol that clients can use while encrypting

files. The first protocol uses a RESTful, HTTPS based,

web interface, while the second is a custom protocol

built over UDP. The first is simpler, being able to

run on top of existing web servers, and the latter is

optimized for latency, and capable of servicing requests

at close to the (optimal) round-trip time of the network.

These protocols and their implementations, which at

core implement an oblivious pseudorandom function

(OPRF) [64] service, may be of independent interest.

To evaluate end-to-end performance, we deploy our

KS on Amazon EC2 [10] and experimentally evaluate

its performance. DupLESS incurs only slight overheads

compared to using the SS with plaintext data. For a

1 MB file and using Dropbox, the bandwidth overhead

is less than 1% and the overhead in the time to store a

file is about 17%. We compute storage overheads of as

little as 4.5% across a 2 TB dataset consisting of over

2,000 highly dedupable virtual machine file system im-

ages that we gathered from Amazon EC2. All this shows

that DupLESS is practical and can be immediately de-

ployed in most SS-using environments. The source code

for DupLESS is available from [4].

2 Setting

At a high level, our setting of interest is an enterprise

network, consisting of a group of affiliated clients (for

example, employees of a company) using a dedupli-

cated cloud storage service (SS). The SS exposes a sim-

ple interface consisting of only a handful of operations

such as storing a file, retrieving a file, listing a direc-

tory, deleting a file, etc.. Such systems are widespread

(c.f., [1, 3, 7, 11, 63]), and are often more suitable to user

file backup and synchronization applications than richer

storage abstractions (e.g., SQL) [37, 69] or block stores

(c.f., [9]). An example SS API, abstracted from Drop-

box, is detailed in Figure 5 (Section 6). The SS performs

deduplication along file boundaries, meaning it checks if

the contents of two files are the same and deduplicates

them if so, by storing only one of them.

Clients have access to a key server (KS), a semi-

trusted third party which will aid in performing dedu-

pable encryption. We will explain further the role of the

KS below. Clients are also provisioned with per-user en-

cryption keys and credentials (e.g., client certificates).

2

Threat model. Our goal is to protect the confidentiality

of client data. Attackers include those that gain access

to the SS provider’s systems (including malicious insid-

ers working at the provider) and external attackers with

access to communication channels between clients and

the KS or SS. Security should hold for all files, not just

unpredictable ones. In other words, we seek semantic

security, leaking only equality of files to attackers.

We will also be concerned with compromise re-

silience: the level of security offered by the scheme to

legitimate clients should degrade gracefully, instead of

vanishing, should other clients or even the KS be com-

promised by an attacker. Specifically, security should

hold at least for unpredictable files (of uncompromised

clients) when one or more clients are compromised and

when the KS is compromised.

We will match the availability offered by the SS, but

explicitly do not seek to ensure availability in the face

of a malicious SS: a malicious provider can always

choose to delete files. We will, however, provide pro-

tection against a malicious SS that may seek to tamper

with clients’ data, or mount chosen-ciphertext attacks,

by modifying stored ciphertexts.

Malicious clients can take advantage of an SS that per-

forms client-side deduplication to mount a side-channel

attack [46]. This arises because one user can tell if an-

other user has already stored a file, which could violate

the latter’s privacy.1 We will not introduce such side-

channels. A related issue is that client-side deduplica-

tion can be abused to perform illicit file transfers be-

tween clients [73]. We will ensure that our systems can

work in conjunction with techniques such as proofs-of-

ownership [45] that seek to prevent such issues.

We will not explicitly target resistance to traffic anal-

ysis attacks that abuse leakage of access patterns [48] or

file lengths [24, 31, 40, 47, 59, 65, 72], though our system

will be compatible with potential countermeasures.

Our approaches may be used in conjunction with exist-

ing mechanisms for availability auditing [13, 41, 51, 70]

or file replication across multiple services [26]. (In the

latter case, our techniques will enable each service to in-

dependently perform deduplication.)

Design goals. In addition to our security goals, the sys-

tem we build will meet the following functionality prop-

erties. The system will be transparent, both from the per-

spective of clients and the SS. This means that the sys-

tem will be backwards-compatible, work within existing

SS APIs, make no assumptions about the implementation

details of the SS, and have performance closely matching

that of direct use of the SS. In normal operation and for

all clients of a particular KS, the space required to store

1The reader might be interested to note that our experience with the

Dropbox client suggests this side channel still exists.

all encrypted data will match closely the space required

when storing plaintext data. The system should never

reduce storage availability, even when the KS is unavail-

able or under heavy load. The system will not require any

client-side state beyond a user’s credentials. A user will

be able to sit down at any system, provide their creden-

tials, and synchronize their files. We will however allow

client-side caching of data to improve performance.

Related approaches. Several works have looked at the

general problem of enterprise network security, but none

provide solutions that meet all requirements from the

above threat model. Prior works [42,53,54,58,75] which

build a secure file system on top of a flat outsourced stor-

age server break deduplication mechanisms and are unfit

for use in our setting. Convergent encryption (CE) based

solutions [8,71], as we explored in the Introduction, pro-

vide security only for unpredictable messages even in the

best case, and are vulnerable to brute-force attacks. The

simple approach of sharing a secret key across clients

with a deterministic encryption scheme [16, 68] fails to

achieve compromise resilience. Using CE with an addi-

tional secret shared across all clients [76] does not work

for the same reason.

3 Overview of DupLESS

DupLESS starts with the observation that brute-force ci-

phertext recovery in a CE-type scheme can be dealt with

by using a key server (KS) to derive keys, instead of set-

ting keys to be hashes of messages. Access to the KS is

preceded by authentication, which stops external attack-

ers. The increased cost slows down brute-force attacks

from compromised clients, and now the KS can func-

tion as a (logically) single point of control for imple-

menting rate-limiting measures. We can expect that by

scrupulous choice of rate-limiting policies and parame-

ters, brute-force attacks originating from compromised

clients will be rendered less effective, while normal us-

age will remain unaffected.

We start by looking at secret-parameter MLE, an ex-

tension to MLE which endows all clients with a system-

wide secret parameter sk (see Section 4). The rationale

here is that if sk is unknown to the attacker, a high level

of security can be achieved (semantic security, except for

equality), but even if sk is leaked, security falls to that

of regular MLE. A server-aided MLE scheme then is a

transformation where the secret key is restricted to the

KS instead of being available to all clients. One sim-

ple approach to get server-aided MLE is to use a PRF

F, with a secret key K that never leaves the KS. A client

would send a hash H of a file to the KS and receive back

a message-derived key K′ ← F(K,H). The other steps

are as in CE. However, this approach proves unsatisfying

3

from a security perspective. The KS here becomes a sin-

gle point of failure, violating our goal of compromise re-

silience: an attacker can obtain hashes of files after gain-

ing access to the KS, and can recover files with brute-

force attacks. Instead, DupLESS employs an oblivious

PRF (OPRF) protocol [64] between the KS and clients,

which ensures that the KS learns nothing about the client

inputs or the resulting PRF outputs, and that clients learn

nothing about the key. In Section 4, we propose a new

server-aided MLE scheme DupLESSMLE which com-

bines a CE-type base with the OPRF protocol based on

RSA blind-signatures [20, 29, 30].

Thus, a client, to store a file M, will engage in the

RSA OPRF protocol with the KS to compute a message-

derived key K, then encrypt M with K to produce a ci-

phertext Cdata. The client’s secret key will be used to en-

crypt K to produce a key encapsulation ciphertext Ckey.

Both Ckey and Cdata are stored on the SS. Should two

clients encrypt the same file, then the message-derived

keys and, in turn, Cdata will be the same (the key encap-

sulation Ckey will differ, but this ciphertext is small). The

DupLESS client algorithms are described in Section 6

along with how DupLESS handles filenames and paths.

Building a system around DupLESSMLE requires

careful design in order to achieve high performance. Du-

pLESS uses at most one or two SS API calls per op-

eration. (As we shall see, SS API calls can be slow.)

Because interacting with the KS is on the critical path

for storing files, DupLESS incorporates a fast client-to-

KS protocol that supports various rate-limiting strategies.

When the KS is overloaded or subjected to denial-of-

service attacks, DupLESS clients fall back to symmet-

ric encryption, ensuring availability. On the client side,

DupLESS introduces dedup heuristics (see Section 6)

to determine whether the file about to be stored on the

SS should be selected for deduplication, or processed

with randomized encryption. For example, very small

files or files considered particularly sensitive can be pre-

vented from deduplication. We use deterministic authen-

ticated encryption (DAE) [68] to protect, in a structure-

preserving way, the path and filename associated to

stored files. Here we have several choices along an ef-

ficiency/security continuum. Our approach of preserving

folder structure leaks some information to the SS, but on

the other hand, enables direct use of the SS-provided API

for file search and moving folders.

DupLESS is designed for a simple SS API, but can be

adapted to settings in which block-oriented deduplica-

tion is used, and to complex network storage and backup

solutions that use NFS [62], CIFS [56] and the like, but

we do not consider these further.

In the following sections we go into greater detail on

the various parts of the DupLESS system, starting with

the cryptographic primitives in Section 4, then moving

on to describing KS design in Section 5, and then on to

the client algorithms in Section 6, followed by perfor-

mance and security in Sections 7 and 8 respectively.

4 Cryptographic Primitives

A one-time encryption scheme SE with key space {0,1}k

is a pair of deterministic algorithms (E,D). Encryption

E on input a key K ∈ {0,1}k and message M ∈ {0,1}∗

outputs a ciphertext C. Decryption D takes a key and

a ciphertext and outputs a message. CTR mode using

AES with a fixed IV is such a scheme. An authen-

ticated encryption (AE) scheme is pair of algorithms

AE = (EA,DA) [19, 67]. Encryption EA takes as in-

put a key K ∈ {0,1}k, associated data D ∈ {0,1}∗, and

message M ∈ {0,1}∗ and outputs a ciphertext of size

|M|+τd , where τd is the ciphertext stretch (typically, 128

bits). Decryption DA is deterministic; it takes input a

key, associated data, and a ciphertext and outputs a mes-

sage or error symbol ⊥. When encryption is determinis-

tic, we call the scheme a deterministic authenticated en-

cryption (DAE) scheme [68]. We use the Encrypt-then-

MAC [19] scheme for AE and SIV mode [68] for DAE,

both with HMAC[SHA256] and CTR[AES].

Oblivious PRFs. A (verifiable) oblivious PRF (OPRF)

scheme [64] consists of five algorithms OPRF =
(Kg,EvC,EvS,Vf,Ev), the last two deterministic. Key

generation (pk,sk)
$
←Kg outputs a public key pk which

can be distributed freely among several clients, and a

secret key sk, which remains with a single entity, the

server. The evaluation protocol runs as follows: on the

client-side, EvC starts with an input x and ends with out-

put y such that y = Ev(sk,x), while on the server-side,

EvS starts with secret key sk and ends without output.

Figure 1 gives an example. Verification Vf(pk,x,y) re-

turns a boolean. Security requires that (1) when keys

are picked at random, Ev(sk, ·) outputs are indistinguish-

able from random strings to efficient attackers without

pk, and (2) no efficient attacker, given (pk,sk), can pro-

vide x,x′,y such that Vf(pk,x,y) = Vf(pk,x′,y) = true,

or Vf(pk,x,y) = true but Ev(sk,x) 6= y, or Vf(pk,x,y) =
false but Ev(sk,x) = y, except with negligible probabil-

ity. Moreover, in the OPRF protocol, the server learns

nothing about client inputs or resulting PRF outputs, and

the client learns nothing about sk.

Verifiable OPRF schemes can be built from deter-

ministic blind signatures [29]. The RSA-OPRF[G,H]
scheme based on RSA blind signatures [20, 30] is de-

scribed as follows. The public RSA exponent e is fixed

as part of the scheme. Key generation Kg runs RSAKg

with input e to get N,d such that ed≡ 1 mod φ(N), mod-

ulus N is the product of two distinct primes of roughly

equal length and N < e. Then, (N,(N,d)) is output as

4

EvC(N,M) EvS(N,d)

If e≤ N then ret ⊥

r
$
←ZN

h←H(M)

x← h·re mod N x
✲

y← xd mod N

y
✛

z← y·r−1 mod N

If ze mod N 6= h then ret⊥

Else ret G(z)

Figure 1: The RSA-OPRF protocol. The key generation Kg

outputs PRF key N,d and verification key N. The client uses

two hash functions H : {0,1}∗→ ZN and G : ZN →{0,1}
k.

the public key, secret key pair. The evaluation proto-

col (EvC,EvS) with verification Vf is shown in Figure 1.

The client uses a hash function H : {0,1}∗→ ZN to first

hash the message to an element of ZN , and then blinds

the result with a random group element r raised to the e-

th power. The resulting blinded hash, denoted x, is sent

to the KS. The KS signs it by computing y← xd mod N,

and sends back y. Verification then removes the blind-

ing by computing z← yr−1 mod N, and then ensures that

ze mod N is indeed equal to H(M). Finally, the output of

the PRF is computed as G(z), where G : ZN →{0,1}
k is

another hash function.

This protocol can be shown to be secure as long as

the map fe : Z∗N → Z
∗
N , defined by fe(x) = xe mod N for

all x ∈ Z
∗
N , is a permutation on Z

∗
N , which is assured by

gcd(ϕ(N),e) = 1. In particular, this is true if the server

creates its keys honestly. However, in our setting, the

server can cheat while generating the keys, in an attempt

to glean something about H(M). This is avoided by re-

quiring that N < e, which will be verified by the client.

Given that e is prime, this standard technique ensures that

gcd(ϕ(N),e) = 1 even if N is maliciously generated, and

thus ensures that fe is a permutation. Since fe is a per-

mutation and the client checks the signature, even a ma-

licious server cannot force the output K = G(z) to be a

fixed value or force two keys output for distinct messages

to collide, as long as G is collision-resistant.

MLE. A deterministic Message-Locked Encryption

(MLE) scheme is a tuple MLE = (P,K,E,D) of algo-

rithms, the last three deterministic2. Parameter gen-

eration outputs a public parameter P
$
←P, common to

all users of a system. To encrypt M, one generates

the message-derived key K ← K(P,M) and ciphertext

2We drop the tag generation algorithm which was part of the origi-

nal MLE formulation [18]. Since we restrict attention to deterministic

MLE schemes, we let ciphertexts work as tags.

C← E(P,K,M). Decryption works as M← D(P,K,C).
Security requires that no efficient attacker can distin-

guish ciphertexts of unpredictable messages from ran-

dom strings except with negligible probability. Conver-

gent encryption (CE) [38] is the most prominent MLE

scheme. We use CE with parameters P set to random

128-bit strings, key generation returning the first 128 bits

of SHA256(P‖M) on input M, and encryption and de-

cryption being implemented with CTR[AES].

In a secret-parameter MLE scheme SPMLE, parame-

ter generation outputs a (system-wide) secret parameter

sk along with a public parameter P. This secret param-

eter, which is provided to all legitimate users, is used

to generate message-derived keys as K ← K(P,sk,M).
In a server-aided MLE scheme, the secret parameter is

provided only to a KS. Clients interact with the KS to

obtain message-derived keys. A simple of way of do-

ing this of course is that clients can send the messages

to the KS which would then reply with message-derived

keys. But, as we saw in the previous section, this is un-

desirable in the DupLESS setting, as the KS now be-

comes a single point of failure. Instead, we propose

a new server-aided MLE scheme DupLESSMLE com-

bining RSA-OPRF[G,H] = (Kg,EvC,EvS,Vf,Ev) and

CTR[AES]. Here parameter generation runs Kg to get

(N,(N,d)), then outputs N as the public parameter and

(N,d) as the secret parameter (recall that e is fixed as part

of the scheme). From a message M, a key K is gener-

ated as K ← Ev((N,d),M) = G(H(M)d mod N) by in-

teracting with the KS using EvC and EvS. Encryption

and decryption work as in CE, with CTR[AES]. We use

RSA1024 with full-domain-hash using SHA256 in the

standard way [22] to get H and G.

The advantage of server-aided MLE is the prospect

of multi-tiered security. In DupLESSMLE in particular,

when the adversary does not have access to the KS (but

has access to ciphertexts and OPRF inputs and outputs),

it has no knowledge of sk, and semantic-security sim-

ilar to deterministic SE schemes follows, from the se-

curity of RSA-OPRF[G,H] and CTR[AES]. When the

attacker has access to the KS additionally, attacks are

still constrained to be online and consequently slow, and

subject to rate-limiting measures that the KS imposes.

Security here relies on implementing the OPRF proto-

col correctly, and ensuring that the rate-limiting mea-

sures cannot be circumvented. We will analyze this care-

fully in Section 5. Even when sk is compromised to the

attacker, DupLESSMLE provides the usual MLE-style

security, conditioned on messages being unpredictable.

Moreover, we are guaranteed that the clients’ inputs are

hidden from the KS, even if the KS is under attack and

deviates from its default behavior, from the security of

the RSA-OPRF[G,H] protocol.

5

5 The DupLESS KS

In this section we describe the KS side of DupLESS. This

includes protocols for client-KS interaction which real-

ize RSA-OPRF[G,H], and rate limiting strategies which

limit client queries to slow down online brute-force at-

tacks. We seek low-latency protocols to avoid degrading

performance, which is important because the critical path

during encryption includes interaction with a KS. Addi-

tionally, the protocol should be light-weight, letting the

KS handle a reasonably high request volume.

We describe two protocols: OPRFv1, and OPRFv2,

which rely on a CA providing the KS and clients with

verifiable TLS certificates. In the following, we assume

that each client has a unique certificate, and that clients

can be identified by their certificates. Of course, the pro-

tocols can be readily converted to work with other au-

thentication frameworks. We believe our OPRF proto-

cols to be faster than previous implementations [36], and

given the support for rate-limiting, we expect that they

will be useful in other applications using OPRFs.

HTTPS based. In the first protocol, OPRFv1, all com-

munication with the KS happens over HTTPS. The KS

exposes an interface with two procedures: KSInit and

KSReq. The first time a client uses the KS, it makes a

KSInit request to obtain, and then locally cache, the KS’s

OPRF public key. Here the client must perform any nec-

essary checks of the public key, which for our scheme

is simply that e > N. When the client wants a key, say

for a file it is about to upload, the client will make use

of the KSReq interface, by sending an HTTPS POST

of the blinded hash value. Now, the KS checks request

validity, and performs rate-limiting measures which we

describe below. Then, the KS computes the signature

over the blinded hash value, and sends this back over the

established HTTPS channel.

OPRFv1 has the benefit of extreme simplicity. With 20

lines of code (excluding rate limiting logic) in the form

of a Web-Server Gateway Interface (WSGI) Python mod-

ule, one can run the KS on top of most webservers. We

used Apache 2.0 in our implementation.

Unfortunately, while simple, this is a high latency so-

lution, as it requires four full round trips across the net-

work (1 for TCP handshake, 2 for the TLS handshake, 1

for the HTTP request) to perform KSReq. While sub-

second latency is not always critical (e.g., because of

poor SS performance or because the KS and clients share

a LAN), it will be critical in many settings, and so we

would like to do better.

UDP based. We therefore turn to OPRFv2, which re-

moves the slow per-request handshakes from the criti-

cal path of encryption. Here, the KSInit procedure starts

with a TLS handshake with mutual authentication, initi-

ated by a client. The KS responds immediately following

a valid handshake with the OPRF public key pk, a TLS

identifier of a hash function H (by default SHA-256), a

random session identifier S ∈ {0,1}128, and a random

session key KS ∈ {0,1}
k (we set k = 128 in our imple-

mentations). We shave off one round trip from KSInit by

responding immediately, instead of waiting for an HTTP

message as in OPRFv1. The KS also associates a se-

quence number with this session, initialized to zero. In-

ternally the KS maintains two tables, one mapping ses-

sion identifiers with keys, and a second which keeps

track of sequence numbers. Each session lasts for a fixed

time period (currently 20 minutes in our implementation)

and table entries are removed after the session expires.

The client caches pk,S and KS locally and initializes a

sequence number N = 0.

To make an OPRF request KSReq on a blinded value

X , the client first increments the sequence number N ←
N+1, then computes a MAC tag using its session key, as

T ← HMAC[H](KS,S‖N ‖X) and sends the concatena-

tion S‖N ‖X ‖T to the KS in a single UDP packet. The

KS recovers S,N,X and T and looks up KS and NS. It

ensures that N > NS and checks correctness of the MAC

T . If the packet is malformed or if some check fails, then

the KS drops the packet without further action. If all the

checks pass, the KS sends the OPRF protocol response

in a single UDP packet.

The client waits for time tR after sending a KSReq

packet before triggering timeout behavior. In our imple-

mentation, this involves retrying the same request twice

more with time tR between the tries, incrementing the se-

quence number each time. After three attempts, the client

will try to initiate a new session, again timing out after

tR units. If this step fails, the client believes the KS to

be offline. This timeout behavior is based on DNS, and

following common parameters, we set tR = 1 second.

We implemented OPRFv2 in Python. It comes to 165

lines of code as indicated by the cloc utility, the bulk of

which is in fact the rate limiting logic discussed below.

Our current KS implementation is not yet optimized. For

example it spawns and kills a new thread for each con-

nection request (as opposed to keeping a pool of children

around, as in Apache). Nevertheless the implementation

is fully functional and performs well.

Rate limiting KS requests. We explore approaches for

per-client rate limiting. In the first approach, called

Bounded, the KS sets a bound q on the total number

of requests a client can make during a fixed time inter-

val tE , called an epoch. Further queries by the client

will be ignored by the KS, until the end of the epoch.

Towards keeping the KS simple, a single timer controls

when epochs start and end, as opposed to separate timers

for each client that start when their client performs a ses-

6

sion handshake. It follows that no client can make more

than 2q queries within a tE -unit time period.

Setting q gives rise to a balancing act between online

brute-force attack speed and sufficiently low-latency KS

requests, since a legitimate client that exceeds its budget

will have to wait until the epoch ends to submit further

requests. However, when using these OPRF protocols

within DupLESS, we also have the choice of exploiting

the trade-off between dedupability and online brute-force

speed. This is because we can build clients to simply

continue with randomized encryption when they exceed

their budgets, thereby alleviating KS availability issues

for a conservative choice of q.

In any case, the bound q and epoch duration should

be set so as to not affect normal KS usage. Enterprise

network storage workloads often exhibit temporal self-

similarity [44], meaning that they are periodic. In this

case, a natural choice for the epoch duration is one pe-

riod. The bound q can be set to the expected number of

client requests plus some buffer (e.g., one or more stan-

dard deviations). Administrators will need to tune this

for their deployment; DupLESS helps ease this burden

by its tolerance of changes to q as discussed above.

We also considered two other mechanisms for rate

limiting. The fixed delay mechanism works by intro-

ducing an artificial delay tD before the KS responds to

a client’s query. This delay can either be a system-wide

constant, or be set per client. Although this method is

the simplest to implement, to get good brute-force secu-

rity, the delay introduced would have to be substantially

high and directly impacts latency. The exponential delay

mechanism starts with a small delay, and doubles this

quantity after every query. The doubling stops at an up-

per limit tU . The server maintains synchronized epochs,

as in the bounded approach, and checks the status of ac-

tive clients after each epoch. If a client makes no queries

during an entire epoch, its delay is reset to the initial

value. In both these approaches, the server maintains an

active client list, which consists of all clients with queries

awaiting responses. New queries from clients in the ac-

tive client list are dropped. Client timeout in fixed delay

is max(tD, tR) and in exponential delay it is max(tU , tR).

To get a sense of how such rate-limiting mechanisms

might work in real settings, we estimate the effects on

brute-force attacks by deriving parameters from the char-

acteristics of a workload consisting of about 2,700 com-

puters running on an enterprise network at NetApp, as

reported in [57]. The workload is periodic, with simi-

lar patterns every week. The clients together make 1.65

million write queries/week, but the distribution is highly

skewed, and a single client could potentially be responsi-

ble for up to half of these writes. Let us be conservative

and say that our goal is to ensure that clients making at

most 825,000 queries/week should be unaffected by rate-

Mechanism Rate formula NetApp Scenario

Bounded 2q/tE 2.73

Fixed delay 1/tD 1.36

Exp. delay 2tE/tU 2.73

None 3,200 3,200

Offline 120–12000 120–12000

Figure 2: Comparing brute-force rates in queries per second

for different rate limiting approaches, no rate limiting (None),

and hashes as computed using SHA-256 (Offline). The first

column is the formula used to derive the rate as a function of

the request limit q, epoch duration tE , delay tD, and upper limit

tU . The second column is the rates as for the NetApp workload.

The None row does not include offline computation cost.

limiting. We set the epoch duration tE as one week and

query bound as q = 825k. The fixed delay would need

to be set to 730 milliseconds (in order to facilitate 825k

requests in one week), which is also the upper limit tU
for the exponential technique.

The maximum query rates in queries per second that

an attacker who compromised a client can achieve are

given in Figure 2, along with the formulas used to calcu-

late them. The “None” row, corresponding to no rate lim-

iting, gives as the rate the highest number of replies per

second seen for OPRFv2 in the throughput experiment

above. The offline brute force rate was measured by run-

ning Intel’s optimized version of SHA256 [49] to get pro-

cessing speed as 120 MBps on our client system, whose

7200-RPM hard disk has peak read speed of 121MBps

(as measured by hdparm). The range then varies from

the number of hashes per second for 1 MB files up to the

number of hashes per second for 1 KB files, assuming

just a single system is used.

Despite being generous to offline brute-force attacks

(by just requiring computation of a hash, not considering

parallelization, and not including in the online attacks

any offline computational costs), the exercise shows the

huge benefit of forcing brute-force attackers to query the

KS. For example, the bounded rate limiting mechanism

slows down brute-force attacks by anywhere from 43x

for large files up to 4,395x for small files. If the attacker

wants to identify a 1KB file which was picked at random

from a set S of 225 files, then the offline brute-force attack

requires less than an hour, while the bounded rate limited

attack requires more than twenty weeks.

We note that bounded rate-limiting is effective only

if the file has enough unpredictability to begin with. If

|S| < q = 825k, then the online brute-force attack will

be slowed down only by the network latency, meaning

that it will proceed at one-fourth the offline attack rate.

Moreover, parallelization will speed up both online and

offline attacks, assuming that this is permitted by the KS.

7

Operation Latency (ms)

OPRFv1 KSReq (Low KS load) 374±34

OPRFv2 KSInit 278±56

OPRFv2 KSReq (Low KS load) 83±16

OPRFv2 KSReq (Heavy KS load) 118±37

Ping (1 RTT) 78±01

Figure 3: The median time plus/minus one standard deviation

to perform KSInit and KSReq operations over 1000 trials. Low

KS load means the KS was otherwise idle, whereas Heavy KS

load means it was handling 3000 queries per second.

Performance. For the OPRF, as mentioned in Section 4,

we implement RSA1024 with full-domain-hash using

SHA256 in the standard way [22]. The PKI setup

uses RSA2048 certificates and we fix the ECDHE-RSA-

AES128-SHA ciphersuite for the handshake. We set up

the two KS implementations (OPRFv1 and OPRFv2) on

Amazon EC2 m1.large instances. The client machine,

housed on a university LAN, had an x86-64 Intel Core

i7-970 processor with a clockspeed fixed at 3201 MHz.

Figure 3 depicts the median times, in milliseconds, of

various operations for the two protocols. OPRFv2 signif-

icantly outperforms OPRFv1, due to the reduced number

of round trip times. On a lightly loaded server, a KS re-

quest requires almost the smallest possible time (the RTT

to the KS). The time under a heavy KS load was mea-

sured while a separate m1.large EC2 instance sent 3000

requests per second. The KS request time for OPRFv2

increases, but is still three times faster than OPRFv1

for a low KS load. Note that the time reported here is

only over successful operations; ones that timed out three

times were excluded from the median.

To understand the drop rates for the OPRFv2 protocol

on a heavily loaded server and, ultimately, the through-

put achievable with our (unoptimized) implementation,

we performed the following experiment. A client sent

100i UDP request packets per second (qps) until a total

of 10,000 packets are sent, once for each of 1 ≤ i ≤ 64.

The number of requests responded to was then recorded.

The min/max/mean/standard deviation over 100 trials are

shown in Figure 4. At rates up to around 3,000 queries

per second, almost no packets are dropped. We expect

that with further (standard) performance optimizations

this can be improved even further, allowing a single KS

to support a large volume of requests with very occa-

sional single packet drops.

Security of the KS protocols. Adversarial clients can

attempt to snoop on, as well as tamper with, commu-

nications between (uncompromised) clients and the KS.

With rate-limiting in play, adversaries can also attempt

to launch denial-of-service (DOS) attacks on uncompro-

29 210 211 212 213 214 215
20

40

60

80

100

Queries per second

P
er

ce
n
ta

g
e

o
f

q
u
er

ie
s

re
p
li

ed

Max

Min

Mean

Figure 4: Packet loss in OPRFv2 as a function of query rate.

Packet loss is negligible at rates < 3k queries per second.

mised clients, by spoofing packets from such clients. Fi-

nally, adversaries might try to circumvent rate-limiting.

A secure protocol must defend against all these threats.

Privacy of OPRF inputs and outputs follows from

blinding in the OPRF protocol. Clients can check

OPRF output correctness and hence detect tampering. In

OPRFv1, every KSReq interaction starts with a mutual-

authentication TLS handshake, which prevents adver-

saries from spoofing requests from other clients. In

OPRFv2, creating a new session once again involves a

mutual-authentication TLS handshake, meaning that an

adversary cannot initiate a session pretending to be a un-

compromised client. Moreover, an adversary cannot cre-

ate a fresh KSReq packet belonging to a session which

it did not initiate, without a successful MAC forgery

(HMAC with SHA256 specifically). Packets cannot be

replayed across sessions, due to session identifiers being

picked at random and being included in the MAC, and

packets cannot be replayed within a session, due to in-

creasing sequence numbers. Overall, both protocols of-

fer protecting against request spoofing, and neither of the

two protocols introduce new denial-of-service vulnera-

bilities.

In the Bounded rate-limiting approach, the server

keeps track of the total number of the queries made by

each client, across all sessions in an epoch, and stops

responding after the bound q is reached, meaning that

even adversarial clients are restricted to q queries per

epoch. In the fixed-delay and exponential-delay ap-

proaches, only one query from a client is handled at a

time by the KS in a session through the active clients list.

If a client makes a second query — even from a different

session, while a query is in process, the second query is

not processed by the KS, but simply dropped.

8

Command Description

SSput(P,F,M) Stores file contents M as P/F

SSget(P,F) Gets file P/F

SSlist(P) Gets metadata of P

SSdelete(P,F) Delete file F in P

SSsearch(P,F) Search for file F in P

SScreate(P) Create directory P

SSmove(P1,F1,P2,F2) Move P1/F1 to P2/F2

Figure 5: API commands exposed by the storage service (SS)

used by DupLESS. Here F represents a filename and P is the

absolute path in a directory hierarchy.

6 The DupLESS client

The Dupless client works with an SS which implements

the interface described in Figure 5 (based on the Drop-

box API [39]), and provides an analogous set of com-

mands DLput, DLget, DLlist, etc. Figure 6 gives pseu-

docode for the DupLESS commands for storing and re-

trieving a file. We now explain the elements of these

commands, and will then discuss how other API com-

mands are handled.

Path and filename encryption. The SS provides a rudi-

mentary file system abstraction. Clients can generate

directories, use relative and absolute paths, move files

from one directory to another, etc. Following our design

goal of supporting as much of the base SS functional-

ity as possible, DupLESS should also support paths, file-

names, and related functionalities such as copying files.

One option is to treat paths and filenames as non-private,

and simply mirror in clear the directory hierarchy and

filenames asked for by a user. This has the benefit of

simplicity and no path-related overheads, but it relies on

users guaranteeing that paths and filenames are, in fact,

not confidential. A second option would be to hide the

directory structure from the SS by using just a single di-

rectory, and storing the client’s directory hierarchy and

filenames in completely encrypted form using some kind

of digest file. But this would increase complexity and

decrease performance as one would (essentially) have

to build a file system on top of the SS. For example,

this would bar use of the SS API to perform filename

searches on behalf of DupLESS.

We design DupLESS to provide some security for di-

rectory and filenames while still enabling effective use

of the SS APIs. To encrypt file and directory names,

we use the SIV DAE scheme [68] SIV = (ED,DD) with

HMAC[SHA256] and CTR[AES]. The EncPath subrou-

tine takes as input a DAE key Kdae, a path P (a sequence

of directory names separated by ‘/’), and a filename F ,

and returns an encrypted path Cpath and an encrypted

filename F . It does so by encrypting each directory D

in P by way of ED(Kdae,0,D) and likewise encrypting

F by ED(Kdae,0,F). (The associated data being set to

0 here will be used to distinguish this use from that of

the key encapsulation, see below.) Being deterministic,

twice encrypting the same file or directory name results

in the same ciphertext. We will then use the cipher-

texts, properly encoded into a character set allowed by

the SS, as the directory names requested in calls to, e.g.,

SScreate. We note that the choice of encoding as well

as the ciphertext stretch τd mean that the maximum file-

name length supported by DupLESS will be shorter than

that of the SS. Should this approach prove limiting, an

alternative approach would be to use format-preserving

encryption [21] instead to reduce ciphertext expansion.

All this means that we will be able to search for file

and directory names and have efficient file copy and

move operations. That said, this approach does leak the

structure of the plaintext directory hierarchy, the lengths

of individual directory and file names, and whether two

files have the same name. While length leakage can be

addressed with padding mechanisms at a modest cost on

storage overhead, hierarchy leakage cannot be addressed

without adversely affecting some operations.

Store requests. To store a file with filename F and con-

tents M at path P, the DupLESS client first executes the

client portion of the KS protocol (see Section 5). The re-

sult is either a message-derived key K or an error mes-

sage ⊥. The client then runs a check canDedup to

determine whether to use dedupable encryption or non-

dedupable encryption. If K = ⊥ or canDedup returns

false, then a random key is selected and will be used in

place of a message-derived key. In this case the resulting

ciphertext will not be dedupable. We discuss canDedup

more below. The client next encrypts M under K with

CTR[AES] and a fixed IV to produce ciphertext Cdata,

and then wraps K using SIV to produce ciphertext Ckey.

We include the filename ciphertext Cname and Cdata in or-

der to cryptographically bind together the three cipher-

texts. The client uploads to the SS via the SSput com-

mand the file “Cname.key” with contents Ckey and Cdata

in file “Cname.data”. DupLESS encodes the ciphertexts

into character sets allowed by the SS API. Both files are

uploaded in parallel to the SS. Usually, the SS might re-

quire the client to be authorized, and if this is the case,

the authorization can be handled when the client starts.

The “.data” file contains only ciphertext Cdata, and can

be deduplicated by the SS assuming K was not replaced

by a random value. The “.key” file cannot be dedu-

plicated, its contents being essentially uniformly dis-

tributed, but requires only a fixed, small number of bits

equal to k + τd . With our instantiation choices, this is

384 bits, and does not lead to significant overheads as

we show in Section 7.

9

DLputKdae,Kae ,pkks
(P,F,M)

K
$
←EvC

EvS(pkks,M)

Cpath,Cname← EncPath(Kdae,P,F)

If canDedup(P,F,M) = false then

Cdata← EA(Kae,Cname,M)

SSput(Cpath ,Cname ‖“.data” ,Cdata)

Else

If K =⊥ then K
$
←{0,1}k

Cdata← E(K,M)

Ckey← ED(Kdae,1‖Cname ‖Cdata,K)

SSput(Cpath ,Cname ‖“.key” ,Ckey)

SSput(Cpath ,Cname ‖“.data” ,Cdata)

DLgetKdae ,Kae
(P,F)

Cpath,Cname← EncPath(Kdae,P,F)

Cdata← SSget(Cpath ,Cname ‖“.data”)

Ckey← SSget(Cpath ,Cname ‖“.key”)

If Ckey =⊥ then

Return DA(Kae,Cname,Cdata)

Else

K←DD(Kdae,1‖Cname ‖Cdata,Ckey)

If K =⊥ then

Ret ⊥

Else

Ret D(K,Cdata)

Figure 6: DupLESS client procedures for storage and retrieval. They use our server-aided MLE scheme DupLESSMLE =
(P,K,E,D), built with RSA-OPRF[G,H] = (Kg,EvC,EvS,Vf,Ev) along with the DAE scheme SIV = (ED,DD), and the AE

scheme EtM= (EA,DA). Instantiations are as described in text. The subroutine canDedup runs dedup heuristics while EncPath

encrypts the path and file name using SIV.

Dedupability control. The canDedup subroutine en-

ables fine-grained control over which files end up get-

ting deduplicated, letting clients enforce polices such as

not deduplicating anything in a personal folder, and set-

ting a lower threshold on size. Our current implementa-

tion uses a simple length heuristic: files less than 1 KB

in size are not deduplicated. As our experiments show

in Section 7, employing this heuristic does not appear to

significantly degrade storage savings.

By default, DLput ensures that ciphertexts are of the

same format regardless of the output of canDedup.

However, should canDedup mark files non-dedupable

based only on public information (such as file length),

then we can further optimize performance by produc-

ing only a single ciphertext file (i.e. no Ckey) using an

authenticated-encryption scheme with a key Kae derived

from the client’s secret key. We use AES in CTR mode

with random IVs with HMAC in an Encrypt-then-MAC

scheme. This provides a slight improvement in storage

savings over non-deduped ciphertexts and requires just

a single SSput call. We can also query the KS only if

needed, which is more efficient.

When canDedup’s output depends on private infor-

mation (e.g., file contents), clients should always interact

with the KS. Otherwise there exists a side channel attack

in which a network adversary infers from the lack of a

KS query the outcome of canDedup.

Retrieval and other commands. The pseudocode for re-

trieval is given in Figure 6. It uses EncPath to recom-

pute the encryptions of the paths and filenames, and then

issues SSget calls to retrieve both Ckey and Cdata. It then

proceeds by decrypting Ckey, recovering K, and then us-

ing it to decrypt the file contents. If non-dedupable en-

cryption was used and Ckey was not uploaded, the second

SSget call fails and the client decrypts accordingly.

Other commands are implemented in natural ways,

and we omit pseudocode for the sake of brevity. Dup-

LESS includes listing the contents of a directory (per-

form an SSlist on the directory and decrypt the paths

and filenames); moving the contents of one directory to

another (perform an SSmove command with encrypted

path names); search by relative path and filename (per-

form an SSsearch using the encryptions of the relative

path and filename); create a directory (encrypt the direc-

tory name and then use SScreate); and delete (encrypt

the path and filename and perform a delete on that).

The operations are, by design, simple and whenever

possible, one-to-one with underlying SS API commands.

The security guarantees of SIV mean that an attacker

with access to the SS cannot tamper with stored data. An

SS-based attacker could, however, delete files or modify

the hierarchy structure. While we view these attacks as

out of scope, we note that it is easy to add directory hi-

erarchy integrity to DupLESS by having EncPath bind

ciphertexts for a directory or file to its parent: just in-

clude the parent ciphertext in the associated data during

encryption. The cost, however, is that filename search

can only be performed on full paths.

In DupLESS, only DLput requires interaction with the

KS, meaning that even if the KS goes down files are

never lost. Even DLput will simply proceed with a ran-

dom key instead of the message-derived key from the

KS. The only penalty in this case is loss of the storage

savings due to deduplication.

Other APIs. The interface in Figure 5 is based on the

Dropbox API [39]. Google Drive [7] differs by index-

ing files based on unique IDs instead of names. When a

file is uploaded, SSput returns a file ID, which should be

10

provided to SSget to retrieve the file. The SSlist func-

tion returns a mapping between the file names and their

IDs. In this case, DupLESS maintains a local map by

prefetching and caching file IDs by calling SSlist when-

ever appropriate; this caching reduces DLget latency.

When a file is uploaded, the encrypted filename and re-

turned ID are added to this map. Whenever a local map

lookup fails, the client runs SSlist again to check for an

update. Hence, the client can start without any local state

and dynamically generate the local map.

Supporting keyword search in DupLESS requires ad-

ditional techniques, such as an encrypted keyword index

as in searchable symmetric encryption [34], increasing

storage overheads. We leave exploring the addition of

keyword search to future work.

7 Implementation and Performance

We implemented a fully functional DupLESS client. The

client was written in Python and supports both Drop-

box [3] and Google Drive [7]. It will be straightforward

to extend the client to work with other services which

export an API similar to Figure 5. The client uses two

threads during store operations in order to parallelize the

two SS API requests. The client takes user credentials

as inputs during startup and provides a command line

interface for the user to type in commands and argu-

ments. When using Google Drive, a user changing di-

rectory prompts the client to fetch the file list ID map

asynchronously. We used Python’s SSL and Crypto li-

braries for the client-side crypto operations and used the

OPRFv2 KS protocol.

We now describe the experiments we ran to mea-

sure the performance and overheads of DupLESS. We

will compare both to direct use of the underlying SS

API (no encryption) as well as when using a version

of DupLESS modified to implement just MLE, in par-

ticular the convergent encryption (CE) scheme, instead

of DupLESSMLE. This variant computes the message-

derived key K by hashing the file contents, thereby avoid-

ing use of the KS. Otherwise the operations are the same.

Test setting and methodology. We used the same ma-

chine as for the KS tests (Section 5). Measurements in-

volving the network were repeated 100 times and other

measurements were repeated 1,000 times. We measured

running times using the timeit Python module. Opera-

tions involving files were repeated using files with ran-

dom contents of size 22i KB for i ∈ {0,1, . . . ,8}, giving

us a file size range of 1 KB to 64 MB.

Dropbox exhibited significant performance variability

in the course of our experiments. For example, the me-

dian time to upload a 1 KB file was 0.92 seconds, while

the maximum observed was 2.64 seconds, with standard

deviation at 0.22 seconds. That is close to 25% of the

median. Standard deviation decreases as the file size

increases, for example it is only 2% of the median up-

load time for 32 MB files. We never observed more than

1 Mbps throughput to Dropbox. Google Drive exhibited

even slower speeds and more variance.

Storage and retrieval latency. We now compare the time

to store and retrieve files using DupLESS, CE, and the

plain SS. Figure 7 (top left chart) reports the median time

for storage using Dropbox. The latency overhead when

storing files with DupLESS starts at about 22% for 1 KB

files and reduces to about 11% for 64 MB files.

As we mentioned earlier, Dropbox and Google Drive

exhibited significant variation in overall upload and

download times. To reduce the effect of these variations

on the observed relative performance between DupLESS

over the SS, CE over the SS and plain SS, we ran the

tests by cycling between the three settings to store the

same file, in quick succession, as opposed to, say, run-

ning all plain Dropbox tests first. We adopted a similar

approach with Google Drive.

We observe that the CE (Convergent Encryption) store

times are close to DupLESS store times, since the

KSReq step, which is the main overhead of DupLESS

w.r.t CE, has been optimized for low latency. For ex-

ample, median CE latency overhead for 1 KB files over

Dropbox was 15%. Put differently, the overhead of mov-

ing to DupLESS from using CE is quite small, compared

to that of using CE over the base system.

Relative retrieval latencies (bottom left, Figure 7) for

DupLESS over Dropbox were lower than the store laten-

cies, starting at about 7% for 1 KB files and reducing to

about 6% for 64 MB files.

Performance with Google Drive (Figure 7, top middle

chart) follows a similar trend, with overhead for Dup-

LESS ranging from 33% to 8% for storage, and 40% to

10% for retrieval, when file sizes go from 1 KB to 64 MB.

These experiments report data only for files larger

than 1 KB, as smaller files are not selected for dedu-

plication by canDedup. Such files are encrypted with

non-dedupable, randomized encryption and latency over-

heads for storage and retrieval in these cases are negligi-

ble in most cases.

Microbenchmarks. We ran microbenchmarks on DLput

storing 1MB files, to get a breakdown of the overhead.

We report median values over 100 trials here. Up-

loading a 1 MB file with Dropbox takes 2700 millisec-

onds (ms), while time for the whole DLput operation

is 3160 ms, with a 17% overhead. The KSReq latency,

from Section 5, is 82 ms or 3%. We measured the total

time for all DLput steps except the two SSput operations

(refer to Figure 6) to be 135 ms, and uploading the con-

tent file on top of this took 2837 ms. Then, net overhead

11

20 24 28 212 216
28

210

212

214

216

T
im

e
in

m
il

li
se

co
n
d
s

DupLESS

Convergent Encryption

Dropbox

20 24 28 212 216
28

210

212

214

216

DupLESS

Convergent Encryption

Google Drive

20 24 28 212 216

27

29

211

213
DupLESS

Dropbox

20 24 28 212 216
28

210

212

214

File size (KB)

T
im

e
in

m
il

li
se

co
n
d
s

DupLESS

Dropbox

20 24 28 212 216
28

210

212

214

File size (KB)

DupLESS

Google Drive

20 24 28 212 216

27

29

211

213

File size (KB)

DupLESS

Dropbox

Figure 7: (Left) Median time to store (top two graphs) and retrieve (bottom two graphs) as a function of file size. (Top Right)

Median time to delete a file as a function of file size. (Bottom Right) Median time to copy a file as a function of file size. All axes

are log-scale and error bars indicate one standard deviation. Standard deviations are displayed only for base Dropbox/Google Drive

times to reduce cluttering.

of KS and cryptographic operations is about 5%, while

storing the key file accounts for 12%. Our implementa-

tion of DLput stores the content and key files simultane-

ously, by spawning a new thread for storing the key, and

waiting for both the stores to complete before finishing.

If DLput exits before the key store thread completes, i.e.,

if the key is uploaded asynchronously, then the overhead

drops to 14%. On the other hand, uploading the files se-

quentially by storing the content file first, and then stor-

ing the key, incurs a 54% overhead (for 1 MB files).

Bandwidth overhead. We measured the increase in

transmission bandwidth due to DupLESS during storage.

To do so, we used tcpdump and filtered out all traffic un-

related to Dropbox and DupLESS. We took from this the

total number of bytes (in either direction). For even very

small files, the Dropbox API incurs a cost of about 7 KB

per upload. Figure 8 (middle) shows the ratio of band-

width used by DupLESS to that used by plain Dropbox

as file size increases. Given the small constant size of the

extra file sent by DupLESS, overhead quickly diminishes

as files get larger.

Storage overhead. DupLESS incurs storage overhead,

due to the encrypted file name, the MLE key, and the

MAC. The sizes of these components are independent of

the length of the file. Let n denote the length of the file-

name in bytes. Then, encrypting the filename with SIV

and encoding the result with base64 encoding consumes

2n + 32 bytes. Repeating the process for the content

and key files, and adding extensions brings the file name

overhead to 4n+72−n = 3n+72 bytes. The contents of

the key file include the MLE key, which is 16 bytes long

in our case, and the 32 byte HMAC output, and hence

48 bytes together. Thus, the total overhead for a file with

an n-byte filename is 3n+ 120 bytes. Recall that if the

file size is smaller than 1 KB, then canDedup rejects the

file for deduplication. In this case, the overhead from en-

crypting and encoding the file name is n+32 bytes, since

only one file is stored. Randomized encryption adds 16

bytes, bringing the total to n+48 bytes.

To assess the overall effect of this in practice, we

collected a corpus of around 2,000 public Amazon vir-

tual machine images (AMIs) hosting Linux guests. The

AMIs were gathered using techniques similar to those

used previously [14, 28], the difference being that we

as well downloaded a snapshot of the full file system

for each public AMI. There are 101,965,188 unique files

across all the AMIs, with total content size of all files be-

ing 2,063 GB. We computed cryptographic hashes over

the content of all files in the dataset, in order to simulate

the storage footprint when using plain deduplication as

well as when using DupLESS. This dataset has signifi-

cant redundancy, as one would expect, given that many

AMIs are derivative of other AMIs and so share com-

mon files. The plain dedup storage required for the file

contents is just 335 GB. DupLESS with the dedupability

12

20 24 28 212

27

29

211

213

Number of files

T
im

e
in

m
il

li
se

co
n
d
s

DupLESS

Dropbox

21 24 27 210 213 216

1

1.2

1.4

1.6

1.8

File size (KB)

B
an

d
w

id
th

o
v
er

h
ea

d

1,000 2,000 4,000 6,000 8,000

1.1

1.2

1.3

1.4

Threshold size in bytes

R
el

at
iv

e
si

ze
o
f

en
c.

d
at

as
et

Figure 8: (Left) Median time to list a directory as a function of number of files in the directory. Both axes are logscale and error

bars are one standard deviation. (Middle) Network bandwidth overhead of DupLESS as a function of file size (log-scale axis) for

store operations. (Right) The ratio of space required when DupLESS is used for the AMI dataset and when plain dedup is used, as

a function of the dedupable threshold length.

length threshold used by canDedup (see Section 6) set

to zero (all files were dedupable) requires 350 GB, or an

overhead of about 4.5%. In this we counted the size of

the filename and path ciphertexts for the DupLESS esti-

mate, though we did not count these in the base storage

costs. (This can only inflate the reported overhead.)

We also measure the effect of higher threshold val-

ues, when using non-dedupable encryption. Setting the

threshold to 100 bytes saves a few hundred megabytes in

storage. This suggests little benefit from deduping small

files, which is in line with previous observations about

deduplication on small files [61].

Figure 8 plots the storage used for a wide range of

threshold values. Setting a larger threshold leads to im-

proved security (for those files) and faster uploads (due

to one less SSput request) and appears to have, at least

for this dataset, only modest impact on storage overheads

for even moderately sized thresholds.

The above results may not extend to settings with sig-

nificantly different workloads. For example, we caution

when there is significantly less deduplication across the

corpus, DupLESS may introduce greater overhead. In

the worst case, when there is no deduplication what-

soever and all 1 KB files with long names of about

100 characters, the overhead will be almost 30%. Of

course here one could have canDedup force use of non-

dedupable encryption to reduce overhead for all files.

Overhead of other operations. The time to perform

DLmove, DLdelete, and DLlist operations are reported

in Figure 7 and Figure 8 for Dropbox. In these opera-

tions, the DupLESS overheads and the data sent over the

network involve just the filenames, and do not depend on

the length of the file. (The operations themselves may

depend on file length of course.) The overhead of Dup-

LESS therefore remains constant. For DLlist, DupLESS

times are close to those of plain Dropbox for folders with

twice as many files, since DupLESS stores an extra key

encapsulation file for each user file. We also measured

the times for DLsearch and DLcreate, but in these cases

the DupLESS overhead was negligible.

8 Security of DupLESS

We argued about the security of the KS protocols and

client encryption algorithms in sections 5 and 6. Now,

we look at the big picture, the security of DupLESS as a

whole. DupLESS provides security that is usually signif-

icantly better than current, convergent encryption based

deduplicated encryption architectures, and never worse.

To expand, security is “hedged,” or multi-tiered, and we

distinguish three tiers, always assuming that the adver-

sary has compromised the SS and has the ciphertexts.

The optimistic or best case is that the adversary

does not have authorized access to the KS. Recall that

both OPRFv1 and OPRFv2 need clients to authenticate

first, before requesting queries, meaning that in this set-

ting, the attacker cannot obtain any information about

message-derived keys. These keys are effectively ran-

dom to the attacker. In other words, all data stored on

the SS is encrypted with random keys, including file con-

tents, names and paths. The attacker can only learn about

equality of file contents and the topology of the file sys-

tem (including file sizes). Thus, DupLESS provides, ef-

fectively, semantic security. In particular, security holds

even for predictable messages. By using the SIV DAE

scheme, and generating tags over the file names, file con-

tents and keys, DupLESS ensures that attempts by the SS

to tamper with client data will be detected.

The semi-optimistic, or next best case is that the ad-

versary, having compromised one or more clients, has

remote access to the KS but does not have the KS’s se-

cret key. Here, security for completely predictable files

is impossible. Thus, it is crucial to slow down brute-

force attacks and push the feasibility threshold for the

attacker. We saw in Section 5 that with the right rate-

13

limiting setup (Bounded, with appropriate parameters),

brute-force attacks can be slowed down significantly. Im-

portantly, attackers cannot circumvent the rate-limiting

measures, by say, repeating queries.

Finally, the pessimistic case is that the adversary has

compromised the KS and has obtained its key. Even then,

we retain the guarantees of MLE, and specifically CE,

meaning security for unpredictable messages [18]. Ap-

propriate deployment scenarios, such as locating the KS

within the boundary of a large corporate customer of a

SS, make the optimistic case the most prevalent, result-

ing in appreciable security gains without significant in-

crease in cost. The security of non-deduplicated files, file

names, and path names is unaffected by these escalations

in attack severity.

9 Conclusions

We studied the problem of providing secure outsourced

storage that both supports deduplication and resists

brute-force attacks. We design a system, DupLESS, that

combines a CE-type base MLE scheme with the ability to

obtain message-derived keys with the help of a key server

(KS) shared amongst a group of clients. The clients in-

teract with the KS by a protocol for oblivious PRFs, en-

suring that the KS can cryptographically mix in secret

material to the per-message keys while learning nothing

about files stored by clients.

These mechanisms ensure that DupLESS provides

strong security against external attacks which compro-

mise the SS and communication channels (nothing is

leaked beyond file lengths, equality, and access patterns),

and that the security of DupLESS gracefully degrades

in the face of comprised systems. Should a client be

compromised, learning the plaintext underlying another

client’s ciphertext requires mounting an online brute-

force attacks (which can be slowed by a rate-limited KS).

Should the KS be compromised, the attacker must still

attempt an offline brute-force attack, matching the guar-

antees of traditional MLE schemes.

The substantial increase in security comes at a mod-

est price in terms of performance, and a small increase in

storage requirements relative to the base system. The low

performance overhead results in part from optimizing the

client-to-KS OPRF protocol, and also from ensuring Du-

pLESS uses a low number of interactions with the SS.

We show that DupLESS is easy to deploy: it can work

transparently on top of any SS implementing a simple

storage interface, as shown by our prototype for Drop-

box and Google Drive.

Acknowledgements

We thank the anonymous USENIX Security 2013 re-

viewers for their valuable comments and feedback. We

thank Matt Green for his feedback on early drafts of

the paper. Ristenpart was supported in part by generous

gifts from Microsoft, RSA Labs, and NetApp. Bellare

and Keelveedhi were supported in part by NSF grants

CNS-1228890, CNS-1116800, CNS 0904380 and CCF-

0915675.

References

[1] Bitcasa, inifinite storage. http://www.bitcasa.com/.

[2] Ciphertite data backup. http://www.ciphertite.
com/.

[3] Dropbox, a file-storage and sharing service. http://www.
dropbox.com/.

[4] Dupless source code. http://cseweb.ucsd.edu/
users/skeelvee/dupless.

[5] The Flud backup system. http://flud.org/wiki/
Architecture.

[6] GNUnet, a framework for secure peer-to-peer networking.

https://gnunet.org/.

[7] Google Drive. http://drive.google.com.

[8] ADYA, A., BOLOSKY, W., CASTRO, M., CERMAK, G.,

CHAIKEN, R., DOUCEUR, J., HOWELL, J., LORCH, J.,

THEIMER, M., AND WATTENHOFER, R. Farsite: Federated,

available, and reliable storage for an incompletely trusted envi-

ronment. ACM SIGOPS Operating Systems Review 36, SI (2002),

1–14.

[9] AMAZON. Amazon Elastic Block Store (EBS). http://
aws.amazon.com/ebs.

[10] AMAZON. Amazon Elastic Compute Cloud (EC2). http://
aws.amazon.com/ec2.

[11] AMAZON. Amazon Simple Storage Service (Amazon S3).

http://aws.amazon.com/s3.

[12] ANDERSON, P., AND ZHANG, L. Fast and secure laptop backups

with encrypted de-duplication. In Proc. of USENIX LISA (2010).

[13] ATENIESE, G., BURNS, R. C., CURTMOLA, R., HERRING, J.,

KISSNER, L., PETERSON, Z. N. J., AND SONG, D. Provable

data possession at untrusted stores. In ACM CCS 07 (Alexandria,

Virginia, USA, Oct. 28–31, 2007), P. Ning, S. D. C. di Vimercati,

and P. F. Syverson, Eds., ACM Press, pp. 598–609.

[14] BALDUZZI, M., ZADDACH, J., BALZAROTTI, D., KIRDA, E.,

AND LOUREIRO, S. A security analysis of amazon’s elastic com-

pute cloud service. In Proceedings of the 27th Annual ACM Sym-

posium on Applied Computing (2012), ACM, pp. 1427–1434.

[15] BATTEN, C., BARR, K., SARAF, A., AND TREPETIN, S. pStore:

A secure peer-to-peer backup system. Unpublished report, MIT

Laboratory for Computer Science (2001).

[16] BELLARE, M., BOLDYREVA, A., AND O’NEILL, A. Deter-

ministic and efficiently searchable encryption. In CRYPTO 2007

(Santa Barbara, CA, USA, Aug. 19–23, 2007), A. Menezes, Ed.,

vol. 4622 of LNCS, Springer, Berlin, Germany, pp. 535–552.

[17] BELLARE, M., FISCHLIN, M., O’NEILL, A., AND RISTEN-

PART, T. Deterministic encryption: Definitional equivalences

and constructions without random oracles. In CRYPTO 2008

(Santa Barbara, CA, USA, Aug. 17–21, 2008), D. Wagner, Ed.,

vol. 5157 of LNCS, Springer, Berlin, Germany, pp. 360–378.

14

[18] BELLARE, M., KEELVEEDHI, S., AND RISTENPART, T.

Message-locked encryption and secure deduplication. In EU-

ROCRYPT 2013, to appear. Cryptology ePrint Archive, Report

2012/631, November 2012.

[19] BELLARE, M., AND NAMPREMPRE, C. Authenticated encryp-

tion: Relations among notions and analysis of the generic compo-

sition paradigm. In ASIACRYPT 2000 (Kyoto, Japan, Dec. 3–7,

2000), T. Okamoto, Ed., vol. 1976 of LNCS, Springer, Berlin,

Germany, pp. 531–545.

[20] BELLARE, M., NAMPREMPRE, C., POINTCHEVAL, D., AND

SEMANKO, M. The one-more-RSA-inversion problems and the

security of Chaum’s blind signature scheme. Journal of Cryptol-

ogy 16, 3 (June 2003), 185–215.

[21] BELLARE, M., RISTENPART, T., ROGAWAY, P., AND STEGERS,

T. Format-preserving encryption. In SAC 2009 (Calgary, Alberta,

Canada, Aug. 13–14, 2009), M. J. Jacobson Jr., V. Rijmen, and

R. Safavi-Naini, Eds., vol. 5867 of LNCS, Springer, Berlin, Ger-

many, pp. 295–312.

[22] BELLARE, M., AND ROGAWAY, P. Random oracles are practical:

A paradigm for designing efficient protocols. In ACM CCS 93

(Fairfax, Virginia, USA, Nov. 3–5, 1993), V. Ashby, Ed., ACM

Press, pp. 62–73.

[23] BELLARE, M., AND YUNG, M. Certifying permutations: Non-

interactive zero-knowledge based on any trapdoor permutation.

Journal of Cryptology 9, 3 (1996), 149–166.

[24] BISSIAS, G., LIBERATORE, M., JENSEN, D., AND LEVINE,

B. N. Privacy Vulnerabilities in Encrypted HTTP Streams. In

Proceedings of the Privacy Enhancing Technologies Workshop

(May 2005), pp. 1–11.

[25] BONEH, D., GENTRY, C., HALEVI, S., WANG, F., AND WU,

D. Private database queries using somewhat homomorphic en-

cryption.

[26] BOWERS, K. D., JUELS, A., AND OPREA, A. HAIL: a high-

availability and integrity layer for cloud storage. In ACM CCS 09

(Chicago, Illinois, USA, Nov. 9–13, 2009), E. Al-Shaer, S. Jha,

and A. D. Keromytis, Eds., ACM Press, pp. 187–198.

[27] BRAKERSKI, Z., AND SEGEV, G. Better security for deter-

ministic public-key encryption: The auxiliary-input setting. In

CRYPTO 2011 (Santa Barbara, CA, USA, Aug. 14–18, 2011),

P. Rogaway, Ed., vol. 6841 of LNCS, Springer, Berlin, Germany,

pp. 543–560.

[28] BUGIEL, S., NÜRNBERGER, S., PÖPPELMANN, T., SADEGHI,

A., AND SCHNEIDER, T. Amazonia: when elasticity snaps back.

In ACM Conference on Computer and Communications Secu-

rity – CCS ‘11 (2011), ACM, pp. 389–400.

[29] CAMENISCH, J., NEVEN, G., AND SHELAT, A. Simulatable

adaptive oblivious transfer. In EUROCRYPT 2007 (Barcelona,

Spain, May 20–24, 2007), M. Naor, Ed., vol. 4515 of LNCS,

Springer, Berlin, Germany, pp. 573–590.

[30] CHAUM, D. Blind signatures for untraceable payments. In

CRYPTO’82 (Santa Barbara, CA, USA, 1983), D. Chaum, R. L.

Rivest, and A. T. Sherman, Eds., Plenum Press, New York, USA,

pp. 199–203.

[31] CHEN, S., WANG, R., WANG, X., AND ZHANG, K. Side-

Channel Leaks in Web Applications: a Reality Today, a Chal-

lenge Tomorrow. In Proceedings of the IEEE Symposium on Se-

curity and Privacy (May 2010), pp. 191–206.

[32] COOLEY, J., TAYLOR, C., AND PEACOCK, A. ABS: the ap-

portioned backup system. MIT Laboratory for Computer Science

(2004).

[33] COX, L. P., MURRAY, C. D., AND NOBLE, B. D. Pastiche:

making backup cheap and easy. SIGOPS Oper. Syst. Rev. 36 (Dec.

2002), 285–298.

[34] CURTMOLA, R., GARAY, J. A., KAMARA, S., AND OSTRO-

VSKY, R. Searchable symmetric encryption: improved defini-

tions and efficient constructions. In ACM CCS 06 (Alexandria,

Virginia, USA, Oct. 30 – Nov. 3, 2006), A. Juels, R. N. Wright,

and S. Vimercati, Eds., ACM Press, pp. 79–88.

[35] DE CRISTOFARO, E., LU, Y., AND TSUDIK, G. Efficient tech-

niques for privacy-preserving sharing of sensitive information.

In Proceedings of the 4th international conference on Trust and

trustworthy computing (Berlin, Heidelberg, 2011), TRUST’11,

Springer-Verlag, pp. 239–253.

[36] DE CRISTOFARO, E., SORIENTE, C., TSUDIK, G., AND

WILLIAMS, A. Hummingbird: Privacy at the time of twitter.

In Security and Privacy (SP), 2012 IEEE Symposium on (2012),

IEEE, pp. 285–299.

[37] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,

G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,

VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly

available key-value store. In ACM SIGOPS Operating Systems

Review (2007), vol. 41, ACM, pp. 205–220.

[38] DOUCEUR, J., ADYA, A., BOLOSKY, W., SIMON, D., AND

THEIMER, M. Reclaiming space from duplicate files in a server-

less distributed file system. In Distributed Computing Systems,

2002. Proceedings. 22nd International Conference on (2002),

IEEE, pp. 617–624.

[39] DROPBOX. Dropbox API Reference. https://www.
dropbox.com/developers/reference/api.

[40] DYER, K., COULL, S., RISTENPART, T., AND SHRIMPTON, T.

Peek-a-boo, i still see you: Why efficient traffic analysis counter-

measures fail. In Security and Privacy (SP), 2012 IEEE Sympo-

sium on (2012), IEEE, pp. 332–346.

[41] ERWAY, C. C., KÜPÇÜ, A., PAPAMANTHOU, C., AND TAMAS-

SIA, R. Dynamic provable data possession. In ACM CCS 09

(Chicago, Illinois, USA, Nov. 9–13, 2009), E. Al-Shaer, S. Jha,

and A. D. Keromytis, Eds., ACM Press, pp. 213–222.

[42] GOH, E., SHACHAM, H., MODADUGU, N., AND BONEH, D.

Sirius: Securing remote untrusted storage. NDSS.

[43] GOLDWASSER, S., AND MICALI, S. Probabilistic encryption.

Journal of Computer and System Sciences 28, 2 (1984), 270–299.

[44] GRIBBLE, S. D., MANKU, G. S., ROSELLI, D., BREWER,

E. A., GIBSON, T. J., AND MILLER, E. L. Self-similarity in

file systems. In ACM SIGMETRICS Performance Evaluation Re-

view (1998), vol. 26, ACM, pp. 141–150.

[45] HALEVI, S., HARNIK, D., PINKAS, B., AND SHULMAN-

PELEG, A. Proofs of ownership in remote storage systems. In

Proceedings of the 18th ACM conference on Computer and com-

munications security (2011), ACM, pp. 491–500.

[46] HARNIK, D., PINKAS, B., AND SHULMAN-PELEG, A. Side

channels in cloud services: Deduplication in cloud storage. Se-

curity & Privacy, IEEE 8, 6 (2010), 40–47.

[47] HINTZ, A. Fingerprinting Websites Using Traffic Analysis. In

Proceedings of the Privacy Enhancing Technologies Workshop

(April 2002), pp. 171–178.

[48] ISLAM, M., KUZU, M., AND KANTARCIOGLU, M. Access pat-

tern disclosure on searchable encryption: Ramification, attack

and mitigation. In Network and Distributed System Security Sym-

posium (NDSS12) (2012).

[49] JIM GUILFORD, KIRK YAP, V. G. Fast SHA-

256 Implementations on Intel Architecture Processors.

http://download.intel.com/embedded/
processor/whitepaper/327457.pdf.

[50] JIN, K., AND MILLER, E. L. The effectiveness of deduplication

on virtual machine disk images. In Proceedings of SYSTOR 2009:

The Israeli Experimental Systems Conference (2009), ACM, p. 7.

15

[51] JUELS, A., AND KALISKI JR., B. S. Pors: proofs of retrievabil-

ity for large files. In ACM CCS 07 (Alexandria, Virginia, USA,

Oct. 28–31, 2007), P. Ning, S. D. C. di Vimercati, and P. F. Syver-

son, Eds., ACM Press, pp. 584–597.

[52] KAKVI, S., KILTZ, E., AND MAY, A. Certifying rsa. Advances

in Cryptology–ASIACRYPT 2012 (2012), 404–414.

[53] KALLAHALLA, M., RIEDEL, E., SWAMINATHAN, R., WANG,

Q., AND FU, K. Plutus: Scalable secure file sharing on untrusted

storage. In Proceedings of the 2nd USENIX Conference on File

and Storage Technologies (2003), pp. 29–42.

[54] KAMARA, S., PAPAMANTHOU, C., AND ROEDER, T. Cs2: A

searchable cryptographic cloud storage system. Tech. rep., Tech-

nical Report MSR-TR-2011-58, Microsoft, 2011.

[55] KILLIJIAN, M., COURTÈS, L., POWELL, D., ET AL. A survey

of cooperative backup mechanisms, 2006.

[56] LEACH, P. J., AND NAIK, D. C. A Common Internet File Sys-

tem (CIFS/1.0) Protocol. http://tools.ietf.org/
html/draft-leach-cifs-v1-spec-01.

[57] LEUNG, A. W., PASUPATHY, S., GOODSON, G., AND MILLER,

E. L. Measurement and analysis of large-scale network file sys-

tem workloads. In USENIX 2008 Annual Technical Conference

on Annual Technical Conference (2008), pp. 213–226.

[58] LI, J., KROHN, M., MAZIÈRES, D., AND SHASHA, D. Secure

untrusted data repository (SUNDR). Defense Technical Informa-

tion Center, 2003.

[59] LIBERATORE, M., AND LEVINE, B. N. Inferring the Source of

Encrypted HTTP Connections. In Proceedings of the ACM Con-

ference on Computer and Communications Security (November

2006), pp. 255–263.

[60] MARQUES, L., AND COSTA, C. Secure deduplication on mobile

devices. In Proceedings of the 2011 Workshop on Open Source

and Design of Communication (2011), ACM, pp. 19–26.

[61] MEYER, D. T., AND BOLOSKY, W. J. A study of practical dedu-

plication. ACM Transactions on Storage (TOS) 7, 4 (2012), 14.

[62] MICROSYSTEMS, S. NFS: Network File System Proto-

col Specification. http://tools.ietf.org/html/
rfc1094.

[63] MOZY. Mozy, a file-storage and sharing service. http://
mozy.com/.

[64] NAOR, M., AND REINGOLD, O. Number-theoretic construc-

tions of efficient pseudo-random functions. In 38th FOCS (Mi-

ami Beach, Florida, Oct. 19–22, 1997), IEEE Computer Society

Press, pp. 458–467.

[65] PANCHENKO, A., NIESSEN, L., ZINNEN, A., AND ENGEL, T.

Website Fingerprinting in Onion Routing-based Anonymization

Networks. In Proceedings of the Workshop on Privacy in the

Electronic Society (October 2011), pp. 103–114.

[66] RAHUMED, A., CHEN, H., TANG, Y., LEE, P., AND LUI, J.

A secure cloud backup system with assured deletion and version

control. In Parallel Processing Workshops (ICPPW), 2011 40th

International Conference on (2011), IEEE, pp. 160–167.

[67] ROGAWAY, P. Authenticated-encryption with associated-data.

In ACM CCS 02 (Washington D.C., USA, Nov. 18–22, 2002),

V. Atluri, Ed., ACM Press, pp. 98–107.

[68] ROGAWAY, P., AND SHRIMPTON, T. A provable-security treat-

ment of the key-wrap problem. In EUROCRYPT 2006 (St. Peters-

burg, Russia, May 28 – June 1, 2006), S. Vaudenay, Ed., vol. 4004

of LNCS, Springer, Berlin, Germany, pp. 373–390.

[69] SEARS, R., VAN INGEN, C., AND GRAY, J. To blob or not to

blob: Large object storage in a database or a filesystem? arXiv

preprint cs/0701168 (2007).

[70] SHACHAM, H., AND WATERS, B. Compact proofs of retriev-

ability. In ASIACRYPT 2008 (Melbourne, Australia, Dec. 7–11,

2008), J. Pieprzyk, Ed., vol. 5350 of LNCS, Springer, Berlin, Ger-

many, pp. 90–107.

[71] STORER, M., GREENAN, K., LONG, D., AND MILLER, E. Se-

cure data deduplication. In Proceedings of the 4th ACM inter-

national workshop on Storage security and survivability (2008),

ACM, pp. 1–10.

[72] SUN, Q., SIMON, D. R., WANG, Y.-M., RUSSELL, W., PAD-

MANABHAN, V. N., AND QIU, L. Statistical Identification of

Encrypted Web Browsing Traffic. In Proceedings of the IEEE

Symposium on Security and Privacy (May 2002), pp. 19–30.

[73] VAN DER LAAN, W. Dropship. https://github.com/
driverdan/dropship.

[74] WALLACE, G., DOUGLIS, F., QIAN, H., SHILANE, P., SMAL-

DONE, S., CHAMNESS, M., AND HSU, W. Characteristics of

backup workloads in production systems. In Proceedings of

the Tenth USENIX Conference on File and Storage Technologies

(FAST12) (2012).

[75] WANG, W., LI, Z., OWENS, R., AND BHARGAVA, B. Secure

and efficient access to outsourced data. In Proceedings of the

2009 ACM workshop on Cloud computing security (2009), ACM,

pp. 55–66.

[76] WILCOX-O’HEARN, Z. Convergent encryption reconsid-

ered, 2011. http://www.mail-archive.com/
cryptography@metzdowd.com/msg08949.
html.

[77] WILCOX-O’HEARN, Z., PERTTULA, D., AND WARNER, B.

Confirmation Of A File Attack. https://tahoe-lafs.
org/hacktahoelafs/drew_perttula.html.

[78] WILCOX-O’HEARN, Z., AND WARNER, B. Tahoe: The least-

authority filesystem. In Proceedings of the 4th ACM international

workshop on Storage security and survivability (2008), ACM,

pp. 21–26.

[79] XU, J., CHANG, E.-C., AND ZHOU, J. Leakage-resilient client-

side deduplication of encrypted data in cloud storage. Cryptology

ePrint Archive, Report 2011/538, 2011. http://eprint.
iacr.org/.

16

