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Abstract. MISTY1 is a block cipher designed by Matsui in 1997. It is
widely deployed in Japan where it is an e-government standard, and is
recognized internationally as a NESSIE-recommended cipher as well as
an ISO standard and an RFC. Moreover, MISTY1 was selected to be
the blueprint on top of which KASUMI, the GSM/3G block cipher, was
based. Since its introduction, and especially in recent years, MISTY1 was
subjected to extensive cryptanalytic efforts, which resulted in numerous
attacks on its reduced variants. Most of these attacks aimed at maximiz-
ing the number of attacked rounds, and as a result, their complexities
are highly impractical.

In this paper we pursue another direction, by focusing on attacks with a
practical time complexity. The best previously-known attacks with prac-
tical complexity against MISTY1 could break either 4 rounds (out of 8),
or 5 rounds in a modified variant in which some of the FL functions
are removed. We present an attack on 5-round MISTY1 with all the FL

functions present whose time complexity is 238 encryptions. When the
FL functions are removed, we present a devastating (and experimentally
verified) related-key attack on the full 8-round variant, requiring only 218

data and time.

While our attacks clearly do not compromise the security of the full
MISTY1, they expose several weaknesses in MISTY1’s components, and
improve our understanding of its security. Moreover, future designs which
rely on MISTY1 as their base, should take these issues into close consid-
eration.

⋆ This paper is based on the paper “An Improved Impossible Differential Attack on
MISTY1” [8] presented at ASIACRYPT 2008. The results presented in Sections 4
and 5 are entirely new and were not published before.



1 Introduction

MISTY1 is a 64-bit block cipher with 128-bit keys designed in 1997 by Mat-
sui [20]. In 2002, MISTY1 was selected by the Japanese government to be one
of the CRYPTREC e-government ciphers, and since then, it became widely de-
ployed in Japan. MISTY1 also gained recognition outside Japan, when it was
selected to the portfolio of the NESSIE-recommended ciphers [22], and approved
as an RFC in 2000 [21] and as an ISO standard in 2005 [12]. Furthermore, the
block cipher KASUMI [27] designed as a slight modification of MISTY1 is used
in the GSM/3G networks, which makes it one of the most widely used block ci-
phers today. This makes examination of the security of MISTY1 and its variants
one of the central practical questions in block cipher cryptanalysis.

MISTY1 has an 8-round recursive Feistel structure, where the round function
FO is in itself a 3-round Feistel construction, whose F-function FI is in turn a
3-round Feistel construction using 7-bit and 9-bit invertible S-boxes. The specific
choice of S-boxes and the recursive structure suggest security against differential
and linear cryptanalysis. In addition, to further thwart attacks, after every two
rounds an FL function is applied to each of the two halves independently. The
FL functions are key-dependent linear functions which play the role of whitening
layers (even in the middle of the encryption).

Since its introduction, and especially in recent years, MISTY1 was subjected
to extensive cryptanalytic efforts, which resulted in numerous attacks on its re-
duced variants. The best currently known attacks (in terms of number of rounds)
are an impossible differential attack on 6-round MISTY1 [13] requiring 2112.4 en-
cryptions, an impossible differential attack on a 7-round variant with some of the
FL functions removed [13] requiring 2124.8 encryptions, and a meet-in-the-middle
attack which allows to speed up exhaustive key search on the full MISTY1 by a
small factor [14].

Most of the previous attacks on MISTY1 aimed at maximizing the number
of attacked rounds, and as a result, their complexities were highly impractical.
In this paper, we pursue a different research direction, by focusing on attacks
with a practical time complexity. Only several such attacks were presented be-
fore, the best of those on 4-round MISTY1 requiring 245 encryptions [18] and
on 5-round MISTY1 with the last two FL functions removed, requiring 227.32

encryptions [25].
In this paper we present three practical-time attacks on reduced variants of

MISTY1. The first two attacks target 5-round MISTY1 with all FL functions
present, and the faster among them requires only 238 encryptions. The third
attack is a related-key attack on 8-round MISTY1 without the FL functions,
requiring only 218 plaintexts and time. We fully verified the related-key attack
experimentally, finding the full last round subkey in a negligible time on a PC. A
comparison of our attacks with previous practical-time attacks on reduced-round
MISTY1 is presented in Table 1.

While our three attacks use very different techniques (impossible differen-
tials [3], Square attack [7], and related-key attack [2]), their high efficiency results
from exploiting the same weakness, which appears in all MISTY1 components.
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Attack Rounds FL Complexity
functions Data Time

Slicing Attack [18] 4 All 222.25 CP 245

Higher-Order Differential [1] 5 None 210.5 CP 217

Integral [16] 5 Most 234 CP 248

Integral [25] 5 Most 234 CP 227.32

Impossible Differential (Section 3) 5 All 238.6 CP 246

Square (Section 4) 5 All 235.6 CP 238

Related-Key Slide (Section 5) 8 None 218 CP 218

CP – Chosen plaintext

Table 1. Summary of Practical-Time Attacks on Reduced Variants of MISTY1

This weakness is the ability to divide the states into several sub-states whose
influence on each other is limited. Hence, despite the recursive structure, and
the large number of S-boxes (9 S-boxes) in each round, the adversary is still able
to divide the 32-bit state of the FO function to four chunks of 7,9,7, and 9 bits,
and divide the 32-bit state of the FL function to even smaller chunks of 2 bits
each. This division allows significantly speeding up cryptanalytic attacks which
now have to deal with a smaller state (and thus, less keying material). We note
that variants of both divisions were used in previous works: A division of FO
to two 16-bit chunks in order to attack 5-round MISTY1 without the last two
FL-functions [25] and a division of FL to 2-bit chunks in order to attack 4-round
MISTY1 [18].

Our attacks highlight several weaknesses in the design of MISTY1 compo-
nents, which lead to the “division” properties described above. The first is the
fact that both the FO function and the FI function have only 3 rounds, which
allows for dividing the state of FO into four chunks. The second is the bit-
sliced nature of the FL function, which allows to divide its state to sixteen 2-bit
chunks. Interestingly, both weaknesses were partially addressed in the design of
KASUMI: a fourth round was added to the FI function (but not to the FO
function), and a rotation by a single bit was added into the FL function. How-
ever, these changes address the weaknesses only partially, as a variant of our
second attack applies to a 5-round version of KASUMI (though with a higher
complexity of 264). Therefore, while our attacks clearly do not compromise the
security of the full MISTY1, they point out weaknesses in its components that
should be avoided in design of future MISTY1-based ciphers.

This paper is organized as follows: In Section 2 we give a brief description
of the structure of MISTY1. In Section 3 we present an impossible differential
attack on 5-round MISTY1 based on dividing the FL function state. In Section 4
we present a Square attack on 5-round MISTY1 based on dividing both the FO
function and the FL function states simultaneously. In Section 5 we present a
highly efficient related-key attack on 8-round MISTY1 without FL functions,
and we conclude with a summary and discussion in Section 6.
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K′

i
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2
+4

(even i)

Table 2. The Key Schedule Algorithm of MISTY1

2 Brief Description of MISTY1

MISTY1 is an 8-round Feistel construction, where the round function, FO, is in
itself a variant of a 3-round Feistel construction, defined as follows. The input
to FO is divided into two halves. The left one is XORed with a subkey, enters a
keyed permutation FI, and the output is XORed with the right half. After the
XOR, the two halves are swapped, and the same process (including the swap)
is repeated two more times. After that, an additional swap and an XOR of the
left half with a subkey is performed (see Figure 1).

The FI function in itself also has a Feistel-like structure. Its 16-bit input is
divided into two unequal parts — one of 9 bits, and the second of 7 bits. The left
part (which contains 9 bits) enters an S-box, S9, and the output is XORed with
the right 7-bit part (after padding the 7-bit value with two zeroes as the most
significant bits). The two parts are swapped, the 7-bit part enters a different S-
box, S7, and the output is XORed with 7 bits out of the 9 of the right part. The
two parts are then XORed with a subkey, and swapped again. The 9-bit value
again enters S9, and the output is XORed with the 7-bit part (after padding).
The two parts are then swapped for the last time.

Every two rounds, starting before the first one, each of the two 32-bit halves
enters an FL layer. The FL layer is a simple linear transformation. Its input is
divided into two halves of 16 bits each, the AND of the left half with a subkey
is XORed to the right half, and the OR of the updated right half with another
subkey is XORed to the left half. We outline the structure of MISTY1 and its
parts in Figure 1.

The key schedule of MISTY1 takes the 128-bit key, and treats it as eight
16-bit words K1,K2, . . . ,K8. From this sequence of words, another sequence of
eight 16-bit words is generated, according to the rule K ′

i = FIKi+1
(Ki).

1

In each round, seven words are used as the round subkey, and each of the FL
functions accepts two subkey words. We give the exact key schedule of MISTY1
in Table 2.

In [17], Kühn observed that the FO function has an equivalent description
which uses only 107 equivalent subkey bits (rather than 112). We present this
description and use it in Section 4.

1 In case the index of the key j is greater than 8, the used key word is j − 8.
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Fig. 1. Outline of MISTY1

3 Impossible Differential Attack on 5-Round MISTY1 –

Dividing the FL Function

Due to its general structure, 5-round MISTY1 without the FL functions is sus-
ceptible to the generic impossible differential attack against 5-round Feistel con-
structions with a bijective round function [3, 15]. In [18] it was claimed that the
existence of the FL functions makes such an attack impossible against 5-round
MISTY1 with all the FL functions present. In this section we show that rather
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than destroying the attack, the FL functions allow to make it much more effec-
tive, due to the possibility to attack the FL functions themselves, rather than
the more complex round functions. We end up with attacking a cascade of four
sequential applications of FL, which can be performed very efficiently since FL
can be treated as sixteen 2-bit functions applied in parallel. Using this division,
we obtain an attack which requires 238 chosen plaintexts and 246 memory ac-
cesses and recovers slightly more than 41 bits of information on the 96 key bits
used in the FL functions.2 Although the attack complexity is higher than that of
the Square attack presented in the next section, we chose to present this attack,
since it demonstrates and exploits a weakness of the MISTY1 design which is
not exploited in the Square attack. One may thus hope to find a more powerful
combined attack which will make use of both weaknesses simultaneously.

We note that the idea of attacking the FL functions and dividing them was
first presented by Kühn [18], and used to attack 4-round MISTY1. We extend
the idea and combine it with the generic 5-round impossible differential, which
allows us to attack 5-round MISTY1 with roughly the same time complexity
as [18].

The remainder of this section is organized as follows: In Section 3.1 we present
the 5-round impossible differential used in the attack. We then show the main
approach in using this impossible differential in Section 3.2. The resulting attack
which recovers about 41 bits of the key is described in Section 3.3, and we discuss
how to recover the remainder of the key in Section 3.4.

3.1 The 5-Round Impossible Differential Used in the Attack

The generic attack on 5-round Feistel constructions is based on the following
impossible differential:

Observation 1 ([3], page 136) Let E : {0, 1}2n → {0, 1}2n be a 5-round Feis-
tel construction with a bijective round function f : {0, 1}n → {0, 1}n. Then for
all α ∈ {0, 1}n, the differential (0, α) → (0, α) through E is impossible.

We observe that a similar impossible differential exists even if FL layers are
added to the construction, as in MISTY1. Note that since for a given key, the FL
layers are linear, we can define FL(α) for a difference α as the unique difference
β such that (x⊕ y = α) ⇒ (FL(x)⊕ FL(y) = β).

Proposition 1. Let E denote a 5-round variant of MISTY1, with all the FL
functions present (including an FL layer after round 5). If for the given secret
key we have FL7(FL6(FL4(FL2(α)))) = β, then the differential (0, α) → (0, β)
through E is impossible.

2 Throughout this paper, we discuss attacks which reveal a significant portion of the
secret key. Once this part is revealed we consider the scheme to be broken due to
the large reduction in the security of the cipher. For all attacks we briefly discuss
the issue of retrieving the full key (after the attacks’ description).
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Fig. 2. A 5-Round Impossible Differential of MISTY1

Proof. The impossible transition is demonstrated in Figure 2. If the plaintext dif-
ference is (0, α), then after the first FL layer, the difference becomes (0, FL2(α)).
This difference evolves after two rounds (including the second FL layer) to
(y, FL4(FL2(α))), where y 6= 0 due to the bijectiveness of the round function
of MISTY1.

On the other hand, if the output difference is (0, β) such that β = FL7(FL6(FL4(FL2(α)))),
then before the last FL layer, the difference is (FL6(FL4(FL2(α))), 0), and thus
the input difference to round 5 (before the swap) is (0, FL6(FL4(FL2(α)))).
Thus, the difference before the third FL layer is (0, FL4(FL2(α))).

However, if the input difference to round 3 is (z 6= 0, FL4(FL2(α))) and
the output difference of round 4 (before the FL layer, including the swap) is
(0, FL4(FL2(α))), then the output difference of the FO function in round 3
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must be zero. This is impossible since the input difference to this FO function
is y 6= 0, and the FO function is bijective.

Hence, the differential (0, α) → (0, β) is indeed impossible.

We note that a similar approach is used in [18], using the generic 3-round
impossible differential (0, α) → (0, β) for all non-zero α, β which holds for every
3-round Feistel construction with a bijective round function.

3.2 Dividing the FL Functions

A straightforward way to use the impossible differential described above to attack
5-round MISTY1 is to encrypt many pairs with difference (0, α) for non-zero α’s,
consider the pairs whose ciphertext difference is of the form (0, β), and discard
subkeys of the FL layers for which FL7(FL6(FL4(FL2(α)))) = β. However,
since the subkeys used in FL2, FL4, FL6, and FL7 are determined by 96 subkey
bits, this approach is very time consuming.3 Instead, we show that the division
of the FL function to sixteen 2-bit functions applied in parallel, allows to detect
efficiently all the instances for which FL7(FL6(FL4(FL2(α)))) = β, for any
given pair (α, β).

We use a series of observations, most of which were first presented in [18]. In
the followings, the function FL7 ◦ FL6 ◦ FL4 ◦ FL2 is denoted by G.

1. For each 0 ≤ i ≤ 15, the i-th bits of both halves of the output of an FL
function depend only on the i-th bits of both halves of the input and the
i-th bits of both halves of the corresponding subkey KLi. As a result, each
FL function can be represented as a parallel application of 16 functions
fi : {0, 1}

2 → {0, 1}2 keyed by two different subkey bits each.
2. Each such fi is linear for a fixed key and invertible.
3. The two observations above hold also for a series of FL functions applied

sequentially. In particular, the function G = FL7 ◦ FL6 ◦ FL4 ◦ FL2 can
be represented as a parallel application of 16 functions gi : {0, 1}

2 → {0, 1}2

keyed by eight subkey bits each. Each gi is linear and invertible, and hence,
can realize only one of six possible functions.4 Thus, there are only 616 =
241.36 possible G functions.

4. Since each gi is invertible, the differentials 0 → a and a → 0 through gi
are impossible, for each non-zero a ∈ {0, 1}2. As a result, most of the dif-
ferentials of the form α → β through G are impossible, regardless of the
subkeys used in the FL functions. In each of the gi-s, only 10 out of the 16
possible input/output pairs are possible. Hence, only (10/16)16 = 2−10.85 of
the input/output pairs for G are possible.

3 A reader interested in a variant of MISTY1 with no swap after the fifth round will
need to replace FL7 with FL8 in all places. The effect on the attack is just in the
used key words, but this has no effect on the data, nor the time complexities of the
attack.

4 Since we are interested only in differences, we treat two functions that differ by an
additive constant as the same function. The total number of functions for each gi is
actually 24.
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5. The impossible pairs can be detected efficiently by checking a simple Boolean
expression. Formally, let the input difference to G be (x1, x2) and the output
difference be (y1, y2). Also, let t denote the bitwise not of t, let & denote
bitwise AND, and | denote bitwise OR. Then the transition is impossible for
any key if

x1&x2&(y1|y2) 6= 0 or y1&y2&(x1|x2) 6= 0,

since this corresponds to a differential of the form 0 → a or a → 0 for a 6= 0
in at least one of the sixteen gi functions.

6. Let (α, β) be a pair such that the differential α → β through G is possible
and was not discarded at the previous step. We want to find how many of the
possible 241.36 G functions satisfyG(α) = β. For each gi, there are 10 possible
input/output pairs (the other six pairs are impossible for any subkey). For
the 0 → 0 pair, all the six possible gi functions satisfy this condition. For
each of the other 9 input/output pairs, two of the six functions satisfy the
condition. Since the gi functions are independent, the expected number of
functions satisfying G(α) = β is:

16∑

j=0

(
16

j

)

·

(
9

10

)j

·

(
1

10

)16−j

· 2j · 616−j = 220.3.

7. Finally, since each gi function can be treated independently, one can enu-
merate the 241.36 possible G functions in such a way that for each pair (α, β),
the functions G satisfying G(α) = β can be found efficiently.

Using these observations on the structure of the FL functions, we are ready
to present our attack.

3.3 Attack Algorithm and Analysis

The attack algorithm is the following:

1. Ask for the encryption of 64 structures of 232 plaintexts each, such that in
each structure, the left half of all the plaintexts is equal to some random value
A, while the right half obtains all possible values. (As a result, the difference
between two plaintexts in the same structure is of the form (0, α)).

2. In each structure, find the pairs whose output difference is of the form (0, β).
3. For each pair with input difference (0, α) and output difference (0, β) check

whether α → β is an impossible differential for the function G (as described
in Section 3.2). Discard pairs which fail this test.

4. For each remaining pair, find all the functions G satisfying the condition
G(α) = β and discard them from the list of all possible G functions.

5. After analyzing all the remaining pairs, output the list of remaining G func-
tions.
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Step 2 of the algorithm can be easily implemented by a hash table, resulting
in about 231 pairs from each structure. Step 3 is performed by evaluating a simple
Boolean function on the input and the output. It follows from Observation 4 in
Section 3.2 that in each structure, out of the 231 pairs, about 220.15 pairs remain
at this point. Each of these pairs discards about 220.3 possible values of G on
average (as shown in Observation 6 in Section 3.2), and the identification of the
discarded functions can be performed very efficiently. After analyzing about 64
structures, the expected number of remaining G functions (except for the right
one) is

241.36 · (1− 220.3−41.36)2
20.15+6

= 2−7.78

which means that we are left only with the right G function. The time complex-
ity of the attack is about 64 · 220.15 · 220.3 = 246.45 memory accesses, and the
information retrieved by the adversary is equivalent to 41.36 key bits.

3.4 Retrieving the Rest of the Secret Key

The most naive approach toward retrieval of the rest of the key is to try all
possible 296 subkeys which affect the functions FL2, FL4, FL6, and FL7, and
check (for each subkey) whether it yields the correct function G. A more efficient
way is based on the fact that this G can be treated as an 8-round Feistel, where
the following keys are used as subkeys: K ′

2,K
′
3,K

′
4,K

′
5 and K4,K5,K6,K7 (the

order of the keys is such that K ′
2 and K4 are used last in FL7). This allows

performing a meet in the middle attack on G. Namely, by guessing K3,K4,K5,
and K6, it is possible to compute half of the output of FL6 ◦FL4 ◦FL2, and by
guessing K2,K3, and K4, we can compute the full output of FL7−1. By taking
out the common part (K3 and K4) to the outer loop, one can easily find all
consistent keys in time 264 (using 232 memory). Recovering K7 is then a trivial
operation. Hence, identifying the appropriate 296 ·2−41.36 = 254.64 96-bit subkeys
takes about 264 evaluations of FL6 ◦ FL4 ◦ FL2, which are significantly faster
than 264 evaluations of the 5-round MISTY1.

Retrieving the rest of the key by exhaustive search leads to a total time
complexity of 286.64 encryptions. We note that this part of the attack can prob-
ably be performed much more efficiently using some different attack techniques
and exploiting the key information obtained so far. For example, several such
techniques applicable in special cases (e.g., if the adversary can use both chosen
plaintext and chosen ciphertext queries) are presented in [18].

4 Square Attack on 5-round MISTY1 — Dividing Both

FO and FL Simultaneously

The Feistel structure of MISTY1 and its bijective round function allow to mount
a generic Square attack [7] on 4-round MISTY1. The idea behind the generic
attack is simple. Consider a set of 232 chosen plaintexts in which the left half is
constant and the right half assumes each of the 232 possible values exactly once.
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It is easy to see that the XOR of the right halves of the 232 corresponding values
after 4 Feistel rounds is equal to zero (see proof below). As was observed in [16],
this property holds even if the FL layers are inserted every two rounds, like in
MISTY1.

In order to use this property to attack 5-round MISTY1, one has to consider
several such Square structures, and examine the 5th round in order to check
whether the right halves after the 4th round sum up to zero. As the round
function of MISTY1 is very complex and depends on 176 subkey bits (including
the last FL layer), one would expect such an analysis to be very time consuming.
However, we show that the FO and FL functions can be divided simultaneously
in such a way that the Square structures can be checked and the subkey can
be found very efficiently. We obtain an attack on 5-round MISTY1 with all FL
functions present, requiring only 235.6 data and 238 time.

This section is organized as follows. In Section 4.1 we recall an equivalent
description of the FO function and give the notations used in the attack. In
Section 4.2 we present the basic Square attack, in Section 4.3 we present the
division of FO and FL, and in Section 4.4 we present a meet-in-the-middle
approach which allows to combine the division with the Square attack efficiently.
The attack algorithm is presented in Section 4.5, and analyzed in Section 4.6.
In Section 4.7 we show how the adversary can retrieve the rest of the secret key
efficiently, and we consider application of the attack to other variants of MISTY1
in Section 4.8.

4.1 Notations

In our attack, we use an equivalent description of the FO function, presented
by Kühn in [17]. Kühn observed that since the FI function has only 3 rounds,
the 7-bit subkey KIi,j,1 affects its output in a linear way, and thus it can be
absorbed in the subsequent KO subkeys. This leads to an equivalent description
of the FO function which uses only 107 equivalent subkey bits, instead of 112
subkey bits in the original description. This equivalent description is presented
in the middle part of Figure 3. The equivalent subkeys are the following:

AKOi,1 = KOi,1

AKOi,2 = KOi,2

AKOi,3 = KOi,2 ⊕KOi,3 ⊕KI ′i,1
AKOi,4 = KOi,2 ⊕KOi,4 ⊕KI ′i,1 ⊕KI ′i,2
AKOi,5 = KOi,2 ⊕KI ′i,1 ⊕KI ′i,2 ⊕KI ′i,3
AKIi,j = [KIi,j ]{8,...,0}

where we use X{a,a−1,a−2,...,b} to denote bits a downto b of the word X , where
KI ′i,j = [KIi,j ]{15,...,9}||00||[KIi,j]{15,...,9}, [KIi,j ]{15,...,9} are the 7 most signifi-
cant bits of KIi,j which are XORed with the 7-bit half in the FI function, and
where [KIi,j ]{8,...,0} are the 9 least significant bits of KIi,j .

We use the following notations, demonstrated in Figure 3, for intermediate
states of the function FO5 and of the FI functions included in it: The input
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A denotes an active word, B denotes a balanced word, C denotes a constant word, and
? denotes a word whose status is unknown.

Fig. 3. Notations used in our 5-Round Square Attack on MISTY1

to the function FO5 is denoted by X , and its left and right 16-bit halves are
denoted by XL and XR, respectively. The two halves of the intermediate state
after the j’th FI function are denoted by XjL and XjR. The 9-bit left part and
the 7-bit right part of the input to the j’th FI function are denoted by JjL

and JjR. The 7-bit left part and the 9-bit right part of the output of the j’th
FI function are denoted by IjL and IjR, respectively. The output of the entire
function FO5 is denoted by O.

For each state Z (either a 32-bit state, 16-bit state, etc.), the value of the
state in the intermediate encryption of the i’th plaintext is denoted by Zi, the
XOR difference between its values in two encryptions is denoted by ∆Z, and the
XOR of its values over the entire Square structure is denoted by

∑
Z.
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4.2 The Square Property

We now present in detail the Square property used in the attack: Consider a
structure of 232 plaintexts of the form (C,A), where C denotes a constant word,
and A denotes an active word.5 In other words, the structure is composed of 232

plaintexts of the form (α, βi), where α is a constant 32-bit word, and βi assumes
all 232 possible values. In the sequel, we denote such structures by “Square
structures”. The propagation of the values of a Square structure through rounds
1–4 of MISTY1 is shown in the left part of Figure 3.

As we can see in the figure, after the initial FL layer, the left half remains
constant (though, possibly it may become a different constant), and the right
half remains active (though, the order of the values may change). Since the input
of the function FO1 is constant, at the beginning of round 2, the right half is
constant and the left half is active. Given that for a fixed key the FO2 function
is bijective, at the end of round 2, both halves are active. This situation remains
also in the input of round 3, since the FL layer is also bijective.

Again, as the input FO3 is active, then so is its output. However, this prop-
erty is not preserved by the XOR with the right half of the input to round 3
(which is active as well), but the word is still balanced. Hence, the left half of the
input to round 4 is balanced, which following the Feistel structure becomes the
right half after round 4. Finally, since the FL function is linear, it follows that
the XOR of the 232 outputs of FL6 is also equal to zero. We have thus proved:

Proposition 2. [16] Consider a structure of 232 plaintexts where the left 32 bits
are held constant, and the right 32 bits take on all possible values. Then the XOR
of the 232 outputs of the function FL6 is zero.

The standard way to exploit the 4-round Square property to attack 5-round
MISTY1 is to consider several Square structures, guess some key material in
round 5, partially decrypt the ciphertexts and check whether the 232 corre-
sponding outputs of FL6 sum up to zero. Formally, the equation we check is:

232∑

i=1

Oi ⊕ FL7−1(CR
i )

?
= 0, (1)

since Oi ⊕ FL7−1(CR
i ) equals the output of FL6 in the encryption of the i’th

plaintext.

Due to the complex structure of the FO function and the final functions
FL7, FL8, a direct check of Equation 1 is very time consuming. In the followings
we show how a division of the FO and FL functions, along with a meet-in-
the-middle approach, allows to check whether Equation (1) holds much more
efficiently.

5 We use the notation B to denote a word which is balanced (i.e., the XOR of the
word in all the values of the structure is 0).
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4.3 Dividing the FO and FL Functions

In [23], Sakurai and Zheng observed that given two inputs of the function FO5, 7
bits of the difference between the two corresponding outputs can be represented
as the XOR of two values, where one of them depends only on the subkey AKO5,1

and the other depends only on the subkey AKO5,2, and all other subkeys are
not involved. Indeed, we have

∆OL
{15,14,...,9} = ∆I2L ⊕∆X1R

{15,14,...,9}

= ∆I2L ⊕∆I1L ⊕∆XR
{15,14,...,9}.

(2)

By the structure of the function FI, the values I1L and I2L depend only on the
subkeys AKO5,1 and AKO5,2, respectively.

If the final FL layer is removed from 5-round MISTY1, this observation al-
lows to check the validity of the Square property efficiently. Indeed, it is sufficient
to guess 32 key bits and check whether the XOR of the 232 outputs of FL6 equals
to zero in its 7 leftmost bits. Checking this condition for four Square structures
is sufficient for discarding most of the possible values of the subkeys KO5,1 and
KO5,2. Such an attack, along with some enhancements, was used in [16] to break
5-round MISTY1 without the last FL layer, with time complexity of 248. Later
on, Sun and Lai [25] refined the Sakurai-Zheng relation and used it to improve
the complexity of [16]’s attack to 227.32 encryptions (without taking into account
the time needed to encrypt 234 plaintexts).

In order to handle the final FL layer, we further refine the Sakurai-Zheng
property, and show that the FO function state can be divided not only into two
16-bit chunks, but actually into four chunks of sizes 7,9,7, and 9 bits, respectively.

We observe that due to the structure of FI, the value I1L composed of bits
{15, 14, . . . , 9} of I1 can be further divided into the XOR of two values, such
that one of them depends only on the 9 leftmost bits of AKO5,1, and the second
one depends only on the 7 rightmost bits of AKO5,1. Indeed, we have

I1L = S7(J1R)⊕
(
J1R ⊕ S9(J1L)

)
,

where S7(J1R)⊕J1r depends only on the 7 least significant bits of AKO5,1 and
S9(J1L) depends only on 9 most significant bits of AKO5,1. The same holds also
for I2{15,14,...,9}. Substituting into Equation (2), we obtain:

∆OL
{15,14,...,9} =

(
J2R ⊕ S7(J2R)

)
⊕ S9(J2L)⊕

(
J1R ⊕ S7(J1R)

)
⊕ S9(J1L)⊕∆XR

{15,14,...,9}

=
(
S9(J2L)⊕ S9(J1L)

)

︸ ︷︷ ︸

(⋆)

⊕
(
(J2R ⊕ S7(J2R))⊕ (J1R ⊕ S7(J1R))

)

︸ ︷︷ ︸

(⋆⋆)

⊕∆XR
{15,14,...,9}.

(3)

In Equation (3), the first part ((⋆)) depends only on the 9 leftmost bits of both
halves of the input to FO5 and on the 9 leftmost bits of the subkeys AKO5,1 and
AKO5,2. Likewise, the second part ((⋆⋆)) depends only on the 7 rightmost bits
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of both halves of the input to FO5 and on the 7 rightmost bits of the subkeys
AKO5,1 and AKO5,2.

Now we observe that in 5-round MISTY1, the 9 leftmost bits and the 9
rightmost bits of the input to FO5, can be found given the ciphertext and 18
corresponding bits of the subkey KL8. Likewise, the 14 bits of input to FO
required in the second parentheses can be found given the 14 remaining bits of
KL8. Therefore, Equation (3), along with a meet-in-the-middle technique, allow
us to break into parts both the subkeys AKO5,1 and AKO5,2 and the subkeys
used in FL8.

4.4 Efficient Method to Check the Square Property Using Division
and a Meet-in-the-Middle Approach

Recall that we consider Square structures, and want to check whether Equa-
tion (1) holds (in some of the bits). This will allow us to discard wrong sug-
gestions of the subkey of round 5, and thus to retrieve subkey material. The
condition we would like to check for a given key guess is whether

(∑

FL7−1(CR)
)

{31,30,...,25}
=

(∑

OL
)

{15,14,...,9}
.

Indeed, this is exactly Equation (1), restricted to the 7 leftmost bits. Using
Equation (3), we can reformulate the condition we have to check as follows:

(∑

FL7−1(CR)
)

{31,30,...,25}
=
∑[(

S9(J2L)⊕ S9(J1L)
)
⊕
(
(J2R ⊕ S7(J2R)

)]
⊕

∑[(
J1R ⊕ S7(J1R))

)
⊕
∑

XR
{15,14,...,9}

]

,

or equivalently (by rearranging the terms),

(∑

FL7−1(CR)
)

{31,30,...,25}
⊕
∑(

(J2R ⊕ S7(J2R))⊕ (J1R ⊕ S7(J1R))
)
=

︸ ︷︷ ︸

LHS
∑[(

S9(J2L)⊕ S9(J1L)
)
⊕
∑

XR
{15,14,...,9}

]

︸ ︷︷ ︸

RHS

.

(4)

Note that by the structure of the FL function, the value
(∑

FL7−1(CR)
)

{31,30,...,25}

can be computed from the ciphertext given only the 7 leftmost bits of the sub-
key KL7,2. Therefore, given the ciphertext, the left hand side of Equation (4)
depends on 35 subkey bits (7 bits of KL7, 14 bits of KL8, 7 bits of AKO5,1 and
7 bits of AKO5,2) while the right hand side depends on 36 subkey bits (18 bits
of KL8, 9 bits of AKO5,1 and 9 bits of AKO5,2). We can thus check the validity
of Equation (4) by a meet-in-the middle procedure between two evaluations that
depend on 35 and 36 disjoint subkey bits, respectively.
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4.5 Attack Algorithm

After discussing all the required components, the description of the attack is
simple and straightforward. For the sake of clarity, we introduce a notation for
the subkey bits used in the attack.

Let KLHS denote the 36 subkey bits required for the computation of the left
hand side (LHS) of Equation (4). These are bits {15, 14, . . . , 7} of the subkey
words KL8,1,KL8,2, AKO5,1 and AKO5,2. Similarly, KRHS (required for the
RHS) is composed of bits {6, 5, . . . , 0} of KL8,1,KL8,2, AKO5,1 and AKO5,2

and of bits {15, 14, . . . , 9} of KL7,2.
The attack algorithm is the following:

1. Ask for the encryption of 12 structures of 232 chosen plaintexts, such that in
each structure, the left 32 bits are held constant, and the right 32 bits take
on all possible values.

2. For each guess of the 35 subkey bits denoted by KRHS , compute the RHS
of Equation (4) for each of the 12 structures, and store the 84-bit vector
composed of the 12 values of the 7-bit RHS in a hash table.

3. For each guess of the 36 subkey bits denoted by KLHS , compute the LHS of
Equation (4) for each of the 12 structures, check whether the 84-bit vector
composed of the 12 values of the LHS is in the hash table.

Since the table provides an 84-bit filtering and we examine only 271 subkey
suggestions, it is expected that only the right key guess suggests a collision in
the table. Thus, the attack retrieves the value of 71 subkey bits (the full subkeys
KL8,1,KL8,2, AKO5,1, and AKO5,2, and 7 bits of KL7,2).

4.6 Efficient Implementation of the Attack and Its Analysis

In a naive implementation, the time complexity of the attack is about 12 · 236 ·
232 = 271.6 operations, since in Step 2, for each of the 12 structures, we have to
compute the XOR of 232 values, under each of 236 subkey guesses. The time com-
plexity can be dramatically reduced, using the partial sum technique, proposed
by Ferguson et al. in their Square attack on reduced-round AES [10].

The partial sum technique suggests to use the fact that the Square structure
can be replaced by a smaller structure which yields the same value of

∑
, after

only a part of the subkey bits are guessed. For example, due to the linearity of
the FL function, we have

∑

FL7−1(CR) = FL7−1
(∑

CR
)

.

Hence, instead of computing
∑

FL7−1(CR) for each guess of the 7 bits of KL7

separately (which would require 27 · 232 = 239 operations), we can compute
∑

CR (which requires 232 XORs), and only then compute FL7−1(
∑

CR) for
each guess of KL7 (which requires only 27 operations).

As the application of the partial sum technique in computing the terms of
Equation (4) is quite cumbersome, and all terms are computed roughly in the
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same way, we exemplify this application for one of the terms, and leave the rest
of the terms to the reader.

Consider the term
∑

S9(J2L) which depends on 27 subkey bits. We perform
its computation in several stages.

1. First, we proceed from CL to FL8−1(CL) which is the input to FO5. We
observe that since the value of the 18 bits in FL8−1(CL) we are interested in,
depends on only 18 bits of CL, then if two ciphertexts are equal in these 18
bits then their contributions to

∑
S9(J2L) cancel each other. Thus, before

guessing KL8, we can go over the ciphertexts and replace the sequence of
232 ciphertexts with a sequence of length 218 that indicates the parity of the
number of appearances of each 18-bit value amongst these ciphertexts. This
computation requires 232 operations, but can be performed before any key
material was guessed. The result of this step, is that the following operations
are performed for “structures” of size 218 rather than 232.

2. As a second step, we compute
∑

S9(J2L) for the reduced “structure”. Since
S9(J2L) depends on only 9 of the 18 bits we computed in FL8−1(CR), we
can replace the sequence of 218 parity bits with a shorter sequence of size
29 which corresponds to the 9 bits that influence S9(J2L). This shrinking
cannot be performed before the guess of the 18 bits of KL8, but it can be
performed before the guess of AKO5,2. Therefore, under the “heavier” guess
of AKO5,2 we have to perform only 29 simple operations.

3. As a third step, we compute
∑

S9(J2L) independently of the guess of AKO5,1

and store it in an auxiliary table corresponding to the guessed value of
AKO5,2. Then, the combination of the guesses of AKO5,1 with the guesses
of AKO5,2 requires only a few operations for each pair of guesses.

Using this procedure, the computation of
∑

S9(J2L) can be performed in 232 +
218 · 218 +227 · 29 +236 · 2 = 238 operations, instead of 232 · 227 = 259 operations.

All the other terms of Equation (4) can be also computed in time of at
most 238 simple operations for each Square structure. In total, the number of
operations performed by the attack is approximately 236 1-round encryptions for
each Square structure, which amount to less than 238 encryptions. Hence, the
data complexity of the attack is 235.6 chosen plaintexts, and its time complexity
is 238 encryptions. The memory complexity is dominated by the storage of the
plaintext/ciphertext pairs, which requires 236.6 64-bit blocks.

4.7 Retrieving the Rest of the Secret Key

The adversary can use similar techniques to retrieve the rest of the subkey used
in AKO5. First, she can perform a meet-in-the-middle procedure based on ex-
amining bits {24, 23, . . . , 16} of the output of FL6, and retrieve the subkeys
AKI5,1, AKI5,2, and the 9 remaining bits of KL7,2. Then, by checking the rest
of the bits of FL6’s output, she can retrieve the subkeys AKO5,3, AKI5,3, and
KL7,1. By the key schedule, these subkeys supply the adversary with the key
words K2,K3,K4,K5,K6, and K7. The two remaining key words can be found
by exhaustive key search over 232 possible values. Therefore, the entire secret
key can be found in total time of 238 encryptions.
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4.8 Application to Other Variants of MISTY1

It is clear that the attack applies without change to a stronger variant of MISTY1
in which the FL layers are applied after every single round.

It is more interesting to note that a variant of the attack applies to 5-round
KASUMI. Since in the design of KASUMI, the FI function was extended to 4
rounds, it becomes impossible to divide the state of FO to 4 chunks. However,
since the FO function itself was not extended, division into two 16-bit chunks us-
ing the Sakurai-Zheng relation is still possible. This allows to check the Square
condition by a meet-in-the-middle procedure, which uses an external guess of
the 16-bit subkey KL5,1, the subkeys (KL5,2,KO5,1,KI5,1,2) from the one side
and (KO5,2,KI5,2,2) from the other side. It appears that the partial sums tech-
nique also becomes less effective, and the total complexity of the attack becomes
around 268 operations. We do not present the details in full, since this attack is
less efficient than the higher-order differential attack of Sugio et al. [24].

5 A Related-Key Slide Attack on 8-round MISTY1

without FL Layers

In a MISTY1 variant without the FL layers, each subsequent round subkey is
a shift by one key word of the previous round subkey (see Table 2 and Fig-
ure 4). This allows mounting a related-key slide attack [2],6 using the pair of
related-keys K = (K1,K2, . . . ,K8), K

∗ = (K2,K3, . . . ,K8,K1). As we show
below, 218 appropriately chosen plaintexts are expected to contain about four
slid pairs, and these pairs can be efficiently identified. Once detected, they can
be used to attack a single round of MISTY1 with several plaintext/ciphertext
pairs. We follow and show that given these pairs, using the division of the FO
function, we can efficiently recover the key. This yields a related-key attack on
8-round MISTY1 without the FL layers requiring only 218 data and time. In
the followings, we present the detailed description of the attack and report its
experimental verification.

5.1 First Phase – Detecting the Related-Key Slid Pairs

Consider a pair of related-keys of the form K = (K1,K2, . . . ,K8) and K∗ =
(K2,K3, . . . ,K8,K1) for 8-round MISTY1 without the FL layers. Note that due
to the key schedule, for each 2 ≤ i ≤ 8, the i-th round key corresponding to K∗

is equal to the i+1-th round key corresponding to K. That is, KO∗
i,j = KOi+1,j

and KI∗i,j = KIi+1,j for all i, j. This implies that if for a pair of plaintexts
(P, P ∗), P ∗ is equal to the 1-round MISTY encryption of P under the subkey

6 We note that in [2] the name of the attack is a related-key attack. However, due to
the development of related-key attacks (and especially the introduction of related-
key statistical attacks), we use the term related-key slide to refer to this sort of
attack, which predates the slide attack.
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(KO1,1,KO1,2,KO1,3,KO1,4,KI1,1,KI1,2,KI1,3), then C∗ is equal to the 1-
round MISTY encryption of C under the 8th round subkey of K∗ which happens
to be:

(KO∗
8,1,KO∗

8,2,KO∗
8,3,KO∗

8,4,KI∗8,1,KI∗8,2,KI∗8,3) =

(KO1,1,KO1,2,KO1,3,KO1,4,KI1,1,KI1,2,KI1,3)

(see Figure 4). We denote such pairs as slid pairs.7

Given the Feistel structure of MISTY1 (with no FL functions), it is easy to
construct and detect slid pairs. This relies on the fact that if (P,C) and (P ∗, C∗)
compose a slid pair, then the following two relations must hold: PL = P ∗R and
CL = C∗R. Since in the second phase of the attack we need at least three slid
pairs, we construct them as follows:

1. Detecting Candidate Slid Pairs:

(a) Ask for the encryption, under the key K, of a structure of 217 plaintexts
of the form Pi = (A,Xi), where A is a random 32-bit fixed value and
Xi assumes 217 different values. Denote the corresponding ciphertexts
by Ci (1 ≤ i ≤ 217), and store the pairs (Pi, Ci) in a hash table sorted
according to the value of CL

i .

(b) Ask for the encryption, under the key K∗, of a structure of 217 plaintexts
of the form P ∗

i = (Yi, A), where A is the same 32-bit fixed value as
in the previous step, and Yi assumes 217 different values. Denote the
corresponding ciphertexts by C∗

j (1 ≤ j ≤ 217). For each pair (P ∗
j , C

∗
j ),

access the hash table in the cell corresponding to C∗R to find all pairs
(Pi, Ci) such that CL

i = C∗R
i .

This algorithm is an efficient way to check the equality in 32 bits among
all the 217 · 217 = 234 pairs. Hence, we expect that about 234 · 2−32 = 4 pairs
pass this step randomly. Given the equality in the 32 bits which were set in the
plaintext, the probability of a pair to indeed be a slid pair is 2−32, which means
we expect 4 slid pairs (in addition to the few random ones).

Fortunately, we can easily discard the false hits by examining the first round.
For a slid pair (Pi, Ci), (P

∗
j , C

∗
j ), we know that P ∗

j is equal to the 1-round encryp-

tion of Pi. In particular, this implies FO1(A) ⊕XR
i = Y L

j . Since A is constant

for all plaintexts in the structures, we get that for all slid pairs, XR
i ⊕ Y L

j = B,
for some constant B(= FO1(A)). One can safely assume (as supported by our
experiments), that the values of XR

i ⊕ Y L
j for wrong pairs which passed the

filtering, are distributed randomly, thus we can identify the slid pairs as follows:

2. Discarding the False Hits: For each pair that passed the first step, com-
pute the value of XR

i ⊕ Y L
j . Discard all pairs whose result is unique.

7 We again alert the reader to the abuse in notation, as slid pairs were defined for the
slide attack, which is the original related-key attack in the cases that a single key is
its own “related” one.
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Fig. 4. Two Related-Key MISTY1 Encryptions

With an overwhelming probability, only the slid pairs remain after this
stage. Since the number of slid pairs follows the Poisson(4) distribution, the
probability that the data contains at least three slid pairs is 1 − e−4(1 + 4 +
16/2) = 0.76. We assume that this is the case, and denote these pairs (w.l.o.g.)
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by ((Pi, Ci), (P
∗
i , C

∗
i )), for i = 1, 2, 3. Each of these slid pairs yields two in-

put/output pairs for the FO function under the subkey (KO1,1,KO1,2,KO1,3,KO1,4,KI1,1,KI1,2,KI1,3):
the pair (A,XR

i ⊕ Y L
i ) obtained from the first round, and the pairs (CL

i , C
R
i ⊕

C∗L
i ) (for i = 1, 2, 3) obtained from the last round. Hence, we obtain at least four

pairs of input/output to this round function, denoted by (Ij ,Oj) for j = 1, . . . , 4,
(we note that sometimes we obtain more such input/output pairs), which can
then be used in the analysis.

5.2 Second Phase – Dividing FO Yet Another Time

In order to retrieve the subkey of the FO function efficiently, we divide its
state once again. Similarly to Section 4, we consider the 7 leftmost bits of FO’s
output and use a meet-in-the-middle technique to find the subkeys AKO1,1 and
AKO1,2. In the following, we use the notations introduced in Section 4 (with
FO1 replacing FO5), including the equivalent description of the FO function.

The first step of this phase of the attack is as follows:

1. Retrieving the subkeys AKO1,1 and AKO1,2:
(a) For each value of the subkey AKO1,1, partially encrypt the four inputs

(I1, . . . , I4) through the function FI1,1 to obtain the four intermediate
values at the state I1L1 . Denote the four obtained values by Z1, Z2, Z3, Z4.
Store in a hash table the 21-bit vector

(Z1 ⊕ Z2, Z1 ⊕ Z3, Z1 ⊕ Z4)⊕ (IR
1 ⊕ IR

2 , IR
1 ⊕ IR

3 , IR
1 ⊕ IR

4 ){15,14,...,9}

⊕(OL
1 ⊕OL

2 ,O
L
1 ⊕OL

3 ,O
L
1 ⊕OL

4 ){15,14,...,9}.

(b) For each value of the subkey AKO1,2, partially encrypt the four in-
puts (I1, . . . , I4) through the function FI1,2 to obtain the four inter-
mediate values at the state I2L1 . Denote the four obtained values by
W1,W2,W3,W4. Access the hash table with the 21-bit vector (W1 ⊕
W2,W1 ⊕W3,W1 ⊕W4) and search for collisions.

By the analysis of the Sakurai-Zheng property presented in Section 4.3, a
collision in the table is equivalent to satisfying

(OL
1 ⊕OL

j ){15,...,9} ⊕ (C∗L
1 ⊕ C∗L

j ){15,...,9} = (CR
1 ⊕ CR

j ){15,...,9},

for j = 2, 3, 4. Obviously, this happens when the right keys are used, which
means that of the 216 · 216 = 232 candidates for AKO1,1 and AKO1,2, about
232 · 2−21 = 211 satisfy the relation for j = 2, 3, 4, including the right subkey
guess.

In the next step of the attack, we try all these 211 possible values and recover
the values of the subkeys AKI1,1 and AKI1,2, while discarding some wrong key
guesses. This step of the attack completes the evaluation of the Sakurai-Zheng
relation in the 9 bits which were not earlier checked, as follows:

2. Retrieving the subkeys AKI1,1 and AKI1,2: For each remaining sugges-
tion for AKO1,1 and AKO1,2 from Step 1, perform the following:
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(a) For each value of the subkey AKI1,1, partially encrypt the four plaintexts
(I1, . . . , I4) through the function FI1,1 to obtain the four intermediate
values at the state I1R1 . Denote the four obtained values by Z ′

1, Z
′
2, Z

′
3, Z

′
4.

Store in a hash table the 27-bit vector

(Z ′
1 ⊕ Z ′

2, Z
′
1 ⊕ Z ′

3, Z
′
1 ⊕ Z ′

4)⊕ (I1 ⊕ I2, I1 ⊕ I3, I1 ⊕ I4){8,7,...,0}

⊕(OL
1 ⊕OL

2 ,O
L
1 ⊕OL

3 ,O
L
1 ⊕OL

4 ){8,7,...,0}.

(b) For each value of the subkey AKI1,2, partially encrypt the four plain-
texts (I1, . . . , I4) through the function FI1,2 to obtain the four inter-
mediate values at the state I2R1 . Denote the four obtained values by
W ′

1,W
′
2,W

′
3,W

′
4. Access the hash table with the 27-bit vector (W ′

1 ⊕
W ′

2,W
′
1 ⊕W ′

3,W
′
1 ⊕W ′

4) and search for collisions.

By the analysis of the Sakurai-Zheng property presented in Section 4.3, a
collision in the table is equivalent to having

(OL
1 ⊕OL

j ){8,...,0} ⊕ (C∗L
1 ⊕ C∗L

j ){8,...,0} = (CR
1 ⊕ CR

j ){8,...,0},

for j = 2, 3, 4. As for the right key guess, these three equations are necessarily
satisfied, the correct value of the subkeys AKI1,1 and AKI1,2 is suggested by
one of the collisions. At the same time, the number of suggested subkeys is
211 · 29 · 29 · 2−27 = 4. Hence, we remain with only about 4 suggestions for the
50 subkey bits AKO1,1, AKO1,2, AKI1,1, AKI1,2.

The rest of the round subkey can be now found easily, as follows:

3. Retrieving the rest of the round subkey: For each remaining suggestion
for AKO1,1, AKO1,2, AKI1,1, AKI1,2, perform the following:

(a) For each value of the subkey AKO1,3, partially encrypt the four plain-
texts (I1, . . . , I4) through the function FI1,3 to obtain the four inter-
mediate values at the state I3L1 . Denote the four obtained values by
Z ′′
1 , Z

′′
2 , Z

′′
3 , Z

′′
4 . Use the values Z ′′

1 ⊕ Z ′′
2 , Z

′′
1 ⊕ Z ′′

3 , Z
′′
1 ⊕ Z ′′

4 to compute
the 21-bit vector (OR

1 ⊕OR
2 ,O

R
1 ⊕OR

3 ,O
R
1 ⊕OR

4 ){15,14,...,9} and compare
it with the known values.

(b) For each value of the subkey AKI1,3, partially encrypt the four plain-
texts (I1, . . . , I4) through the function FI1,3 to obtain the four inter-
mediate values at the state I3R1 . Denote the four obtained values by
W ′′

1 ,W
′′
2 ,W

′′
3 ,W

′′
4 . Use the values W ′′

1 ⊕ W ′′
2 ,W

′′
1 ⊕ W ′′

3 ,W
′′
1 ⊕ W ′′

4 to
compute the 27-bit vector (OR

1 ⊕ OR
2 ,O

R
1 ⊕ OR

3 ,O
R
1 ⊕ OR

4 ){8,...,0} and
compare it with the known values.

(c) For each remaining value of the subkeys AKO1,3, AKI1,3, encrypt I1
through the entire FO except for the last subkey addition to obtain the
value of the state X3

1 , and compute the subkeys AKO1,4, AKO1,5 using
the formula

(X3L
1 , X3R

1 )⊕ (AKO1,4, AKO1,5) = (OL,OR).
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The condition in Step 3(a) offers a 21-bit filtering on the key value. Thus, only
the correct suggestion of the subkey AKO1,1, AKO1,2, AKI1,1, AKI1,2, AKO1,3

is expected to remain after that step. Steps 3(b) and 3(c) each yield single values
of the subkeys AKIi,3, AKO1,4, and AKO1,5, thus yielding a single suggestion
for the 107-bit equivalent round subkey.

The most time-consuming step in the second phase of the attack is Step 2,
which is composed of 210 simple operations performed for each of 211 suggestions
of AKO1,1, AKO1,2. As this step is much faster than 218 encryptions, the overall
complexity of the attack is dominated by the encryption of 218 chosen plaintexts
performed at the beginning of the attack. Therefore, the data, memory and time
complexities of the attack are as low as 218.

5.3 Retrieving the Rest of the Secret Key

By guessing the 7 leftmost bits of the subkeys K ′
2 and K ′

6 and using the re-
trieved subkey of KO1, the adversary obtains 214 suggestions for the key words
K1,K3,K5,K8 and the subkey words K ′

2,K
′
4,K

′
6. By the construction of the

subkeys, this yields also the key words K2,K4, and with an additional 16-bit
guess of K6 this yields 230 suggestions for the full secret key (K7 can be derived
from K6 and K ′

6). Hence, the secret key can be found by an exhaustive search
over 230 possible values. In order to further improve this complexity, the ad-
versary must analyze also other rounds, which can be obtained, e.g., by peeling
off the first round and applying a related-key slide attack on a 7-round vari-
ant. However, this would require an increase in the data complexity and in the
number of related-keys.

5.4 Experimental Verification

To verify this attack, we have executed two experiments. The first experiment
took 1,000,000 random keys, and generated 218 pairs as suggested in Section 5.1.
We verified that the amount of slid pairs indeed follows the expected distribu-
tion, and that on very rare occasions (about 130), one can expect an additional
wrong value to be suggest by two pairs which are not slid pairs (as expected
from a random process). Table 3 reports the number of slid pairs found in each
experiment compared with the expected outcome.

The second experiment we conducted was running the full attack algorithm
for 10,000 different keys. Out of these 10,000 experiments, 7,643 ended with suc-
cess (i.e., the full 107-bit key was recovered), whereas the remaining experiments
failed (all but one due to lack of sufficient slid pairs). This part of the exper-
iment was timed using the basic clock gettime call. The running times of the
failed cases and the successful cases varied — as the key recovery phase was not
invoked unless 3 slid pairs were found. For failed attempts, the average running
time was 0.05216 seconds, whereas the average running time for successful at-
tacks was 0.14949 seconds for both data generation and the key recovery phase.
The experiment was carried on an Intel i7-3520 machine running at 2.9 GHz,
running Linux 3.2.0-23, compiled with gcc 4.6.3 (with a single optimization flag
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“Slid” Pairs 0 1 2 3 4 5

Theory (Poi(4)) 18,316 73,263 146,525 195,367 195,367 156,293

Experiment 18,324 73,461 146,699 195,390 194,541 156,609

“Slid” Pairs 6 7 8 9 10 11

Theory (Poi(4)) 104,196 59,540 29,770 13,231 5,292 1,925

Experiment 104,266 59,338 29,860 13,330 5,348 1,916

“Slid” Pairs 12 13 14 15 16 17

Theory (Poi(4)) 641 197 56 15 4 1
Experiment 657 190 54 15 2 0

Table 3. The Results of 1,000,000 Experiments to Generate (and Locate) the Slid
Pairs

Total Successful Trials Failed Trials

Number 10,000 7,643 2,367
(Expected) 10,000 7,619 2,381

Average Running Time (sec) 0.12655 0.14949 0.05216
Maximal Running Time (sec) 0.21640 0.21640 0.15159
Minimal Running Time (sec) 0.05096 0.13706 0.05096
Standard Deviation (sec) 0.04162 0.00546 0.00337

Table 4. The Results of 10,000 Full Runs of Our Related-Key Attack

“-O2”). All relevant parts of the code were taken from the Misty1’s submission
to the NESSIE project. We report in Table 4 the statistical data concerning this
experiment.

Hence, we conclude that our attack on MISTY1 with no FL layers is valid
and of practical complexities.

5.5 Applicability to Other Variants of MISTY1

The same attack can be applied to cases with any number of rounds of MISTY1
without the FL functions. In these cases, slightly more data is needed to ensure
that there are indeed four input/output pairs to the analyzed round function
(as the first and last rounds may not share the exact subkeys). In exchange, one
can easily retrieve the full key by applying the analysis to the first round (in
addition to the last round).

An interesting observation is that a small modification of the attack applies
to the stronger MISTY1 variant in which FL functions are applied after every
round, discussed in Section 4.8. Indeed, in such a variant, the FL keys also
satisfy the cyclic property satisfied by the FO keys (see Table 2), and hence, the
basic related-key slide attack can be applied. However, as a single round in this
modified construction contains not only a Feistel round but also an FL function,
the detection of the slid pairs becomes more complicated, which requires guessing
the subkeys of the last rounds right hand side FL function (the one in K∗), and
repeating the attack of Section 4.5 for each such guess. This results in an attack
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with data complexity of roughly 218 chosen plaintexts, and time complexity of
about 268 encryptions.

When the adversary has access to encryption under 8 related-keys which com-
pose all the word-wise cyclic shifts of a single key, one can run a significantly
more efficient attack by attacking the FL functions (like in Section 3). This is
done by using the fact that when a related-key slid pair is encrypted (under
the respective keys), it maintains the slid pair property [5, 11]. The adversary
considers the above pair of structures of size 217 each, and generates from each
plaintext, a sequence of a few adaptively chosen plaintexts, by sequential en-
cryption. Then, in order to check whether a given pair of values is a slid pair,
the adversary looks at the subsequent plaintext pairs, and checks a sequence
of conditions of the form FL1(P iL) = P ∗iR, which must hold simultaneously
(where FL1 is the FL function applied to the left half of the state in the first
round). Using the procedure of Section 3, one can identify the correct FL2 key
in time of a few operations for each candidate slid pair, and use a few additional
pairs from the encrypted sequence as a filtering check. This allows to retrieve
the right slid pairs, along with the two subkey words KL1,1,KL1,2 in time of
about 234 (since 234 candidate pairs are checked). Depending on the exact num-
ber of rounds in the MISTY1 variant, one can either perform the same attack on
other FL functions (taking into consideration slid pairs with other offsets), or
apply the attack of Section 4.5. Hence, with data complexity of about 224 adap-
tively chosen plaintexts encrypted under 8 related-keys (where 221 plaintexts
are encrypted under each key), one can recover the full key in time of about 236

encryptions (or even less).
It should be mentioned that unlike the Square attack presented in Section 4,

this attack was completely thwarted by the designers of KASUMI [27]. In KA-
SUMI, though the key schedule is simpler than that of MISTY1, it contains
distinct round constants which are added to every round subkey. These con-
stants seem to prevent any related-key slide attack.

6 Summary and Conclusions

In this paper, we considered attacks with a practical time complexity against
reduced variants of MISTY1. We presented an attack on 5-round MISTY1 with
all the FL layers present which requires 238 encryptions, and an extremely ef-
ficient related-key attack on 8-round MISTY1 without the FL layers requiring
218 encryptions. The related-key attack was fully verified experimentally.

Our attacks point at three weaknesses in the components of MISTY1:

1. The 3-round Feistel structure of the FO and FI functions allows to divide
the state of FO into four smaller parts of 7, 9, 7, 9 bits each, whose interaction
is limited.

2. The FL function can be divided into sixteen 2-bit functions applied in paral-
lel, and the same holds for a sequential application of several FL functions.

3. The key schedule of MISTY 1 without the FL functions lacks round con-
stants, and hence, makes this variant susceptible to related-key slide attacks.
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We note that this seems to be the first case of a “reasonable” cipher vari-
ant whose security completely collapses (up to the point of a practical time
complexity attack) against this sort of related-key attacks.

As we showed, combinations of these weaknesses can be deployed by an adversary
to mount practical-time attacks on 5-round MISTY1 with all FL layers, and on
the full MISTY1 without the FL layers (the latter in the related-key model).

In comparison, it is interesting to see how these weakness were handled by
ETSI’s SAGE task force working for the GSM association in the design of KA-
SUMI (based on MISTY1):

1. The FI function was strengthened by adding a fourth round to the Feistel
structure, while the FO function remained with a 3-round structure. As
we showed in Section 4.8, this thwarts the Square attack only partially, still
allowing to divide the state into two 16-bit parts. As a result, a Square attack
with complexity of 268 operations is applicable to 5-round KASUMI.

2. A rotation by one bit was added to the FL function, thus making it impos-
sible to divide it into 16 independent functions.

3. Round constants were inserted into the round subkeys, thwarting the related-
key slide attack completely. On the other hand, the key schedule was simpli-
fied, which led to a practical-time related-key attack on the full KASUMI [9],
which does not apply to MISTY1.

Our conclusion is that while our results clearly do not pose any threat to
the security of the full MISTY1 block cipher, they point out weaknesses of its
components, which should be avoided in future designs based on MISTY1.
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