
How to Sign Paper Contracts?

Conjectures & Evidence Related to Equitable &

Efficient Collaborative Task Scheduling

Eric Brier1, David Naccache2, Li-yao Xia2

1 Ingenico
1, rue Claude Chappe, bp 346, f-07503 Guilherand-Granges, France

eric.brier@ingenico.com
2 École normale supérieure, Département d’informatique

45, rue d’Ulm, f-75230, Paris Cedex 05, France.
{david.naccache,li-yao.xia}@ens.fr

Abstract. This paper explores ways of performing commutative tasks
by N parties. Tasks are defined as commutative if the order at which
parties perform tasks can be freely changed without affecting the final
result. It is easy to see that arbitrary N-party commutative tasks cannot
be completed in less than N − 1 basic time units.

We conjecture that arbitrary N-party commutative tasks cannot be per-
formed in N−1 time units by exchanging less than 4N−6 messages and
provide computational evidence in favor this conjecture. We also explore
the most equitable commutative task protocols.

1 Introduction

This paper explores ways of performing commutative tasks by N parties
denoted A0, . . . ,AN−1. Tasks are defined as commutative if the order at
which parties perform them can be freely changed without affecting the
final result.

A typical example, used throughout this work, is the material signature
of a contract by N parties. As the contract signing protocol P ends each
party obtains a printed contract bearing the N signatures of all other
parties. Empty contracts can be printed by all parties. Each contract must
transit through all parties to eventually bear all the required signatures.

This problem is not only of theoretical interest. Cryptography conceals
the meaning of information but not its existence. In many cases network
monitoring allows to infer useful information from the message flow. This
attack is called traffic analysis. A well-known way to defeat traffic analysis
consists in continuously padding the communication channel with dummy
packets to simulate constant bandwidth occupation.

[1] states that "...it is very hard to hide information about the size or
timing of messages. The known solutions require Alice to send a continu-
ous stream of messages at the maximum bandwidth she will ever use...This
might be acceptable for military applications, but it is not for most civilian
applications..."

And [2] mentions that: "... In practice this problem has been known
for a very long time, and countermeasures are routinely used in modern
link encryptors, by making sure that they always send information be-
tween sender and receiver, inserting dummy information if necessary [3].
By doing so, they seek to obscure the difference between actual commu-
nication and non-communication. Unfortunately, the approach taken by
link encryptors to "keep the channel full" is infeasible on the Internet,
due to the requirement that the communication infrastructure serves the
needs of multiple parties..."

It is hence useful to look for economical ways in which parties can ex-
change information without revealing their activity. Here envelopes repre-
sent constant-size encrypted data containers3. We show how to exchange
4N −6 containers between N parties in a way that ascertains that ∀i 6= j,
party Ai can send a message to Aj in N − 1 elementary time units, pro-
vided that the container’s capacity has not been exceeded.

We study protocols according the following three natural criteria:

Communication. Envelopes containing partially signed contracts must
circulate between all the parties. We assume that if party A wants to
send several contracts to party B, A can put all those contracts in one
envelope and pay a fixed postage fee for the envelope (hereafter $1), i.e.,
the cost of sending several contracts in an envelope is independent of the
number of contracts sent. The following day, B will receive the contracts
and sign them4. Therefore, the total postage fees paid by A at a given day
is proportional to the number of envelopes sent by A, which is also the
number of parties to which A sent at least one contract. A first natural
goal consists in minimizing the postage fees Cost(P, N). We prove that
minP Cost(P, N) = 2N − 2.

3 Ai gets a container, decrypts it and examines its contents: Ai extracts any messages
sent to him and erases these messages from the container. Ai potentially inserts into
the container new messages for other parties and re-encrypts the container for the
next receiving party without changing the container’s size.

4 Assuming that the received contracts do not already bear B’s signature.

Latency. It is easy to see that the contract signing task cannot be com-
pleted in less than N − 1 days. We call protocols that run in N − 1 days
fast protocols. If N days are allowed, reaching the $(2N − 2) cost’s lower
bound is simple (e.g. protocol Pseq in section 2). Hence, we will focus our
attention on the costs of fast protocols. We show how to construct fast
protocols that cost $(4N − 6) and conjecture that this cost is optimal:

Conjecture 1. For all N the cheapest fast protocol costs $(4N − 6).

We checked this conjecture by exploiting problem symmetries and by
using backtracking for N ≤ 8.

Equitableness. It is interesting to find protocols in which postage costs
are distributed between parties as evenly as possible.

We observed that for 6 ≤ N ≤ 8 there exist fast protocols in which
N − 6 parties pay $4 and 6 parties pay $3.

We do not know how to construct such optimally equitable protocols
otherwise than by computerized search. We call such protocols equitable.

Although current evidence that equitable protocols exist for all N is
very limited, heuristics (cf. to section 10) suggest that all fast protocols
are inherently inequitable in the following sense:

Conjecture 2. In every fast N -party protocol, the most burdened party
must pay $Ω(N).

Convention: In "xxxx-protocol" the xxxx will stand for any combination
of the letters F,C,E,M meaning: fast, cheap, equitable and minimal.

Convention: The notation Ai
k
 Aj will mean "Ai signs k contracts

and sends them to Aj".

2 Straightforward Non-Fast Protocols

A trivial sequential protocol is the following:

The Sequential Protocol Pseq

Day Event

0 A0 prints N empty contracts.

i = 0, . . . , N − 2 Ai
N
 Ai+1

N − 1 For j = 0, . . . , N − 2:

AN − 1
1
 Aj.

Note that:

– Pseq is not fast because Pseq validates the contracts on day N , assum-
ing that indexing days starts from 0.

– Pseq is cost-optimal, i.e. Cost(Pseq, N) = 2N − 2.

– Pseq is inequitable because AN−1 pays $(N−1) while all other parties
pay $1.

3 Graphic Representation

A protocol is entirely defined by the path followed by each contract, i.e.
the sequence of Ais that the contracts transit through each day (one line
in Fig. 1).

For such a matrix to reflect a valid protocol, each Ai must appear at
least once in each line and once in the last column.

We will use a very convenient graphic representation to illustrate pro-
tocols (e.g. Fig. 1). The graph of a protocol for N parties and D days is
a bi-dimensional graph with N × (D + 1) vertices.

Vertex (d, i) represents Ai on day d.

An edge is drawn between (d, i) and (d+1, j) if Ai sends an envelope
to Aj on day d. Edges may be labeled with the number of contracts in
the corresponding envelope.

Note that such graphs may not uniquely characterize a protocol (see
Fig. 2).

0 1 2 3 4 5 0

0 1 2 3 4 5 1

0 1 2 3 4 5 2

0 1 2 3 4 5 3

0 1 2 3 4 5 4

0 1 2 3 4 5 5 0 1 2 3 4 5 6
0

1

2

3

4

5

5

5

5

5

5

Fig. 1. The matrix and the graph of Pseq

0 1 2 0

1 0 2 1

0 1 2 2

0 1 2 0

0 1 2 1

1 0 2 2

1 0 2 0

0 1 2 1

0 1 2 2
2

2

Fig. 2. A graph may correspond to several different protocols

4 Fast Protocols

It is easy to see that it takes at least N − 1 days to complete the contract
signing process and that there is a very simple solution for doing so:

The Circular Protocol Pcir

Day Event

0 Each party prints one empty contract.

i = 0, . . . , (N − 1) For j = 0, . . . , N − 1:

Aj
1
 Aj+1 mod N .

– Pcir is fast because Pcir validates the contracts on day N−1, assuming
that indexing days starts from 0.

– Pcir is far from being cost-optimal, i.e. Cost(Pcir, N) = N(N − 1).

– Pcir is equitable because each party pays $(N − 1).

Pcir outperforms Pseq by one day but this (small) improvement comes
at the rather high price of a quadratic increase in postage costs.

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

0 1 2 3 4

Fig. 3. The matrix and the graph of Pcir

It is hence natural to ask if linear-cost fast protocols exist and, more
generally, find out what the cost CFP(N) of the cheapest fast protocol is.

5 A Linear Protocol

The following protocol was designed following the intuition that to reduce
costs, contracts must follow very similar routes. The obstruction to this
is that each contract must also carefully avoid one participant, namely
the party at which this contract’s route will end. We hence design two
parallel routes with one contract jumping from one route to the other, at
each step.

The Linear Protocol Plin

Day Event

0 A0 prints N − 1 empty contracts.
A1 prints one empty contract.

i = 0, . . . , N − 3 ⊲ Ai has N − i− 1 contracts;

Ai
1
 Ai+2;

Ai
N−i−2
 Ai+1;

⊲ Ai+1 has i+ 1 contracts;

Ai+1
i+1
 Ai+2.

N − 2 AN−2
1
 AN−1

For j = 0, . . . , N − 2:

AN−1
1
 Aj

a

a Each Aj gets from AN−1 the contract unsigned by Aj

1 2 3 4 5 0

0 2 3 4 5 1

0 1 3 4 5 2

0 1 2 4 5 3

0 1 2 3 5 4

0 1 2 3 4 5

Fig. 4. The matrix and the graph of Plin

Cost(Plin, N) = 4N−6. The cost vector of Plin (fees paid by {A0, . . . ,AN−1})
is:

(2, 3, 3, . . . , 3, 3︸ ︷︷ ︸
N−3 times

, 2, N − 1)

As mentioned previously, we conjecture $(4N − 6) to be optimal i.e.
CFP(N) = 4N − 6. We thus call $(4N − 6) protocols "cheap protocols".

6 Counting Protocols

We denote by
SN : the set {0, . . . , N − 1}
SN : the set of N ! permutations of SN

6.1 Observations

Label each contract by the index of the party that will eventually own
this contract; the sequence of parties that each contract n goes through
in N − 1 days must be a permutation of the set {A0, . . . ,AN−1}. As such
we can identify a fast protocol with an ordered set of N permutations5,
in which the n-th permutation ends with n.

No matter what the fast protocol is, on day N − 1 there will always
be N envelopes sent, one to each party.

6.2 Number of Protocols

We have tried to enumerate fast protocols and look for some pattern in
their structure.

As pointed-out supra, a fast protocol can be bijectively mapped to an
ordered set of N permutations of SN denoted P = (P0, . . . ,PN−1) where
Pn(N − 1) = n.

Using P = Plin in Fig. 4 as an example, the n-th line Pn is the cycle
γ(n, . . . ,N) = (0, . . . , n− 2, n − 1, n+ 1, n + 2, . . . , N, n).

For n = 0, . . . , N−1, consider the n-th line without its last coordinate :
(Pn(0), . . . ,Pn(N − 2)) is a permutation of SN \ {n} ≃ SN−1.

The last coordinate that was removed must be equal to the line index.
Consequently, fast protocols can be bijectively mapped onto sets of N
permutations of SN−1. There are therefore ((N − 1)!)N fast protocols.
Using that identification, we denote the set of fast protocols by SN

N−1.

Using symmetry. There is a lot of symmetry in this problem, that we
exploited to examine a (somewhat) lesser number of protocols.

The relabeling of P by a permutation σ ∈ SN is the protocol obtained
by renaming each party An as Aσ(n):

5 of SN .

σ(P) = (σ ◦Pσ−1(0), σ ◦Pσ−1(1), . . . , σ ◦Pσ−1(N−1))

Notice that the change of index is such that (σ(P))n(n) = n.

Protocol isomorphism. Two protocols P,P′ are isomorphic if P can
be transformed into P′ by relabeling. We denote this relation by P ≡ P′.

P ≡ P′ def
⇐⇒ ∃σP′ = σ(P)

The number of isomorphism classes NFMP(N) =
∣∣SN

N−1/SN

∣∣ (number
of fast protocols) as a function of N is currently unknown for N > 6.

A naïve algorithm for deciding if P ≡ P′ requires O(N2 · N !) time.
We will now show that the protocol isomorphism decisional problem6 can
be solved in O(N3) time.

An interesting relabeling is σId = P−1
n for some n ∈ SN . σId satisfies:

(σId(P))N−1 = Id

And this equality holds if and only if σId = P−1
n for some n.

In the lexicographical order on permutations π = (π(0), . . . , π(N −1))
seen as words of length N , Id is the smallest of all permutations.

Hence, when looking at protocols, which are ordered sets of N per-
mutations (Qn)n=0,...,N−1 as the concatenation (QN−1, . . . ,Q0) (this is a
relation on N ×N matrices used as words of length N2), we notice that
that the set IP = {P−1

n (P) |n = 0, . . . , N − 1} contains the lexicograph-
ically smallest protocols which are isomorphic to P: it is exactly the set
of protocols isomorphic to P such that the last line of their matrix is Id.

Note that IP does not always have cardinality N , e.g. in Pcir illustrated
in Fig. 3, IPcir

= {Pcir} is a singleton.

By examining only the N permutations that constitute P, it is possible
to determine in O(N3) time the smallest protocol in the isomorphism class
of P (e.g. Fig. 5)

It is then a matter of checking equality between those single minimal
representatives to decide if two protocols are isomorphic.

All in all, this process claims O(N3) time.

6 i.e. Given P,P′ ∈ SN
N−1, decide if P ≡ P′.

2 1 4 3 0

3 2 4 0 1

P = 0 1 4 3 2

2 1 4 0 3

3 2 1 0 4

4 1 2 3 0

3 0 2 4 1

σ(P) = 3 0 1 4 2

0 1 2 4 3

0 1 2 3 4

σ

Fig. 5. Two isomorphic protocols P (above) and P′ = σ(P) (below), where σ = P−1

0 =
(4 1 0 3 2). P′ is the lexicographically smallest protocol isomorphic to P.

Backtracking. We have designed a backtracking algorithm to enumerate
all mutually non-isomorphic fast protocols.

Only one representative of each isomorphism class is visited. To suit
the above comparison algorithm, we chose to visit the minimal represen-
tatives. One property of such lexicographically smallest representatives is
that the last line of their corresponding matrix is Id.

The number of protocols with this latter property is ((N − 1)!)N−1 ;
compared with the original ((N−1)!)N , this saves the effort of one iterative
layer over a set of permutations.

Furthermore, the sets IP define a partition of that last protocol set,
IP has size at most N , and only one protocol per set will be visited.

Hence a lower bound on the number of different visited protocols (fast
and minimal protocols) is:

NFMP(N)
def
=

∣∣SN
N−1/SN

∣∣ ≥ ((N − 1)!)N−1

N

This is also a rough estimate of the actual cardinality of SN
N−1/SN ,

assuming that for most protocols |IP| ∼ N .
For N = 5, we found that there are NFMP(5) = 66, 360 different proto-

cols up to isomorphism, which is pretty close to (4!)4

5 = 66, 355.2

For N = 6 we get NFMP(6) = 4, 147, 236, 820 ≃ (5!)5

6 = 4, 147, 200, 000.

The backtracking consists in incrementally completing a partial pro-
tocol in every possible way while keeping track of a lower bound on the
cost, and pruning as soon as an upper limit is reached (e.g. when the lower
bound exceeds 4N − 6)

When a complete protocol is obtained, we check if it is lexicographi-
cally minimal in its isomorphism class, in which case it can be processed
or stored for further examination.

To prune even more possibilities, we can further exploit the fact that
the protocols we are looking for need to be the lexicographically smallest.
For example, instead of checking minimality once the protocol has been
completed, it is possible to relabel the partial protocol to see that any
completion of it will not be minimal. Unfortunately, in our attempt to
code this trick the resulting overhead outweighed the pruning. We assume
this is due to the small values of N that we could examine, and that this
modification yields a faster algorithm for larger N values.

By exhaustively examining all protocols whose last line is Id, we could
enumerate all fast protocols for N ≤ 6 (Table 2).

And using backtracking as described above, we enumerated all cheap
protocols for N ≤ 8 (Table 1) while checking7 that protocols cheaper than
$(4N − 6) do not exist.

N NCMP(N) NCEMP(N) ATICMP(N) TICEMP(N)

2 1 1 0 0
3 2 2 0 0
4 9 9 0.020136 0.020136
5 61 61 0.037728 0.011069
6 663 5 0.057825 0
7 8,529 12 0.077496 0.005786
8 134,772 27 0.094730 0.008475

NCMP = number of cheap minimal protocols
NCEMP = number of cheap and equitable minimal protocols
ATICMP = average Theil index of cheap minimal protocols
TICEMP = Theil index of cheap and equitable minimal protocols
Table 1. Minimal protocols represent their isomorphism class

Table 2 also provides the number of $c protocols for 4N − 6 ≤ c ≤
N(N − 1).

7 our Ocaml code is available from http://www.eleves.ens.fr/home/xia/posting

http://www.eleves.ens.fr/home/xia/posting

NFMP(N) ց N = 4 N = 5 N = 6 N = 7 N = 8

cost = $10 9
cost = $11 10
cost = $12 104
cost = $14 61
cost = $15 416
cost = $16 1,918
cost = $17 6,300
cost = $18 15,221 663
cost = $19 21,180 8,206
cost = $20 21,264 69,138
cost = $21 433,554
cost = $22 2,269,917 8,529
cost = $23 9,945,474 186,484
cost = $24 36,922,032 2,331,501
cost = $25 114,376,002 22,592,196
cost = $26 298,714,009 181,221,263 134,772
cost = $27 628,381,792 1,263,557,229 4,745,712
cost = $28 1,019,946,014 7,833,563,489 86,813,703
cost = $29 1,213,515,356 43,633,739,654 unknown
cost = $30 822,654,663 unknown unknown
cost > $30 unknown unknown

total 123 66,360 4,147,236,820 unknown unknown
Table 2. Number of protocols per N and per cost (number of isomorphism classes).
Note that there are no $13 protocols.

7 Equitableness

In Plin, all parties but one pay a fixed fee, and one party pays a fee that
increases with N . This is not an equitable protocol. We hence looked for
the most equitable cheap protocol.

We measure equitableness using the Theil index:

TN (P) =
1

N

N∑

n=1

mn

m̃
log(

mn

m̃
)

where mn is the fee paid by An and

m̃ =
1

N

N∑

n=1

mn

is the average fee.

A smaller TN (P) value expresses a more equitable protocol.

For N = 7, the average Theil index computed over all minimal rep-
resentatives of protocol isomorphism classes is ≃ 0.077 whereas the mini-
mum index is ≃ 0.0058, reached by the 12 FCEM-protocols given in the
appendix. We also illustrate in Fig. 6 one of the 27 FCEM-protocols for
N = 8, found by automated search.

1 5 6 4 7 2 3 0

4 5 6 3 7 2 0 1

0 1 6 3 4 5 7 2

1 5 6 4 7 2 0 3

1 5 6 3 7 2 0 4

0 1 6 4 7 2 3 5

0 1 2 3 4 5 7 6

0 1 2 3 4 5 6 7

Fig. 6. Equitable protocol, N = 8 of cost vector (4, 3, 3, 4, 3, 3, 3, 3) (example).

7.1 Symbol Insertion Experiments

It is natural to wonder if FCE-protocols can be constructed from smaller
ones. To get a hint, we took all 27 eight-party FCEM-protocols P1, . . . ,P27

and performed the following exploration:

for i = 1→ 27 do
for ℓ = 1→ 8 do
M ← the matrix of Pi where line ℓ was suppressed.
M ′ ←M where all occurences of ℓ were suppressed.
Check if the protocol corresponding to M ′ is an FCE-protocol.

end for
end for

Indeed, the above algorithm detected 168 different ways to build (non
necessarily minimal) eight-party FCE-protocols by inserting new symbols
into 7 seven-party FCEM-protocols. The process is illustrated in Fig. 7.

The experiment was repeated mutatis mutandis by eliminating all pos-
sible combinations of two rows (and their corresponding pairs of symbols).
There were 136 ways to obtain eight-party FCE-protocols using symbol

5 7 2 3 6 1 4 0

✁0 7 2 3 4 5 6 1

5 7 ✁0 3 6 1 4 2

✁0 1 2 7 4 5 6 3

5 7 ✁0 3 6 1 2 4

✁0 7 2 3 6 1 4 5

✁0 1 2 7 4 5 3 6

✁0 1 2 3 4 5 6 7

7 2 3 4 5 6 1

5 7 3 6 1 4 2

1 2 7 4 5 6 3

5 7 3 6 1 2 4

7 2 3 6 1 4 5

1 2 7 4 5 3 6

1 2 3 4 5 6 7

Fig. 7. Symbol Deletion Experiment (example). The deleted symbol is 0.

insertions into six-party FCEM-protocols. Only 2 protocols out of the 5
equitable six-party protocols enabled these insertions, and 17 out of the
27 eight-party FCEM-protocols could be reached that way.

Results are available on line8.

We doubt that this process would allow to infer a general process for
constructing (N + 1)-party FCE-protocols by extending N -party FCE-
protocols for the following reason: for N = 6, 7, 8 all FCE-protocols have
4 active parties on day N − 2. Never 2 or 3, nor 5.

The exhaustive list of matrices for N = 6, 7, 8 hints that we cannot
do better than 4 parties on day N − 2. If there was an algorithm allowing
to build FCE-protocols from smaller ones, this algorithm would have to
add active parties on day N − 2, and it would be unexpected for it not to
work for 6, 7 or 8 parties.

We regard this as evidence that the algorithmic construction of FCEM-
protocols is a non-trivial problem.

This approach can be used to find a way of generating cheap protocols
rather than equitable protocols. Indeed, we have discovered a pattern,
though without using this approach, as explained in section 9.1.

8 Lower Bounds

8.1 General Case

With no conditions on the protocol’s duration D we show that

min
P

Cost(P, N) = 2N − 2

8 http://www.eleves.ens.fr/home/xia/posting

http://www.eleves.ens.fr/home/xia/posting

as achieved by Pseq.

It should be noted that in general having some party hold a contract
for several consecutive days without sending it away is an allowed "move",
which is of course free of charge.

Only with the now unassumed constraint of contract validation in N−
1 days it becomes necessary to have all contracts circulating in envelopes
every day.

The same applies as well to the fact that a contract can transit through
one same party multiple times.

Proof. The proof is done by induction on the number of parties N .

When N = 1, it is clear that Cost(P, 1) = 0.

Assume that for every N -party protocol P′, Cost(P′) ≥ 2N − 2. Let
us prove that for every (N + 1)-party protocol, Cost(P) ≥ 2N .

Let P be a $c (N + 1)-party protocol.

By conveniently removing one party from P, we will create an N -party
protocol P′ that costs at most $(c− 2).

c− 2 ≥ Cost(P′)

Then, using the inductive hypothesis for P′,

Cost(P′) ≥ 2N − 2

will conclude the inductive step.

At least one party is to print an empty copy of the contract, which
will be sent using one envelope. Without loss of generality, we can assume
that AN is one of those who print contracts, that is the party we will want
to remove from this protocol.

A first protocol transformation: Instead of having AN print contracts
(on day 0) and send them to Aα0

,Aα1
, . . . (not necessarily on day 0), we

will have Aα0
,Aα1

, . . . print these contracts. Because AN is assumed to
print at least one contract, at least one less envelope will be used (Fig. 8).

We now have to consider the points in time at which AN receives some
contracts.

This must happen at least once, as every party must receive a final
copy of the contract at some point.

A second protocol transformation: The following transformation re-
moves another envelope from the process.

– If AN receives only one envelope containing only the contract that AN

is to own, then we can just remove this envelope from the protocol.

– Otherwise, AN receives some contracts which are to be signed by AN .
Then these contracts need to be rerouted away (not necessarily on the
same day), excluding the contract that is ultimately bound to reach
AN that we will just remove.

Denote by Aβ0
,Aβ1

, . . . the parties those contracts will be sent to next.
There must be at least one of them, Aβ0

. Since AN is to be removed,
we can change the destination of the contracts to Aβ0

instead of AN ,
and one less envelope will be used as Aβ0

does not need to send a
contract to himself (Fig. 9).

With the above two transformations, we can obtain an N -party proto-
col instead of an N +1 one, while removing at least one envelope by each
transformation. Therefore the resulting protocol costs at most $(c− 2).

We can conclude that for all N -party protocols, Cost(P) ≥ 2N − 2.

AN

Aα0

Aα1

Aα2

· · ·

· · ·

0 1 2

N N α0 · · ·

N α1 ∗ · · ·

N α2 ∗ · · ·

...
. . .

α0 α0 α0 · · ·

α1 α1 ∗ · · ·

α2 α2 ∗ · · ·

...
. . .

Fig. 8. Transformation on day 0 (first transformation)

8.2 Fast Protocols

Although still unsatisfactory, a lower bound CFP(N) ≥ 3N − 5 + log2(N)
can be proven.

We first prove that CFP(N) ≥ 3N − 4.

· · ·

· · ·

Aγ0

Aγ1

Aγ2

AN

Aβ0

Aβ1

Aβ2

d− 1 d d+ 1 d+ 2

· · · γ0 N N β0 · · ·

· · · γ1 N β1 ∗ · · ·

· · · γ2 N β2 ∗ · · ·

...
...

...
...

. . .

· · · γ0 β0 β0 β0 · · ·

· · · γ1 β0 β1 ∗ · · ·

· · · γ2 β0 β2 ∗ · · ·

...
...

...
...

. . .

Fig. 9. Transformation when AN receives envelopes (second transformation)

Proof. Assume that CFP(N) ≤ 3N − 5 for some N .
Since CFP(2) = 2, we can assume that N ≥ 3.
Let P be a $CFP(N) protocol, i.e. a protocol using less than 3N − 5

envelopes.
We know that on day N − 2, exactly N envelopes are sent. Hence

between days 0 and N − 3, strictly less than 2(N − 2) envelopes would be
sent.

On at least one day ≤ N − 3, only one envelope is sent, therefore all
contracts go through one same party, and on the last day the contract that
this party receives would have gone through it twice, which is impossible.

The N contracts must follow N different paths between days 0 and
N − 2, as the final destination of each contract is the only party it hasn’t
gone through during days 0 to N−2. Moreover, we can bound the number
of different available paths when using 3N − 4 + q envelopes by 2q+1.

Proof. We say that party An is active on day d in protocol P if An has
at least one contract on day d. i.e. ∃k such that Pk(d) = n.

For every active party on each day between days 1 and N − 3, choose
one envelope among those sent, we call those chosen envelopes default
envelopes. Also choose only one default envelope on day 0.

The number of default envelopes is equal to the cumulated number of
active parties in days 1 to N−3, plus one on day 0. That is at least 2N−5

as a consequence of the previous proof. There are also N envelopes sent
on day N − 2.

Therefore there are at most q+1 non-default envelopes between days
0 and N − 2.

We associate any path between days 0 and N − 2 with the set L of
non-default envelopes that it contains9. This defines an injection into the
set of subsets of non-default envelopes, whose size is at most 2q+1.

The reverse procedure to recover a path ∆ from its associate set L
consists in the following, starting on day 0:

– If no envelope sent on day 0 is in L, then path ∆ starts with the default
envelope.

– Otherwise there should be a unique such envelope, and this is the first
envelope in the path.

The reason why we chose only one default envelope on day 0 is that
we do not know yet where the path begins from. This default envelope
allows to set a default starting party at the same time.

Once the first envelope in ∆ is found, ∆(0) and ∆(1) are known.
We carry on by induction. On each day d = 1, . . . , N − 2, assume that

∆(d) is known, there is at most one envelope in L which was sent on day
d. If there is none, then ∆(d + 1) is the recipient of the default envelope
sent by ∆(d).

A conflict in this procedure, where there are several envelopes in L
among those sent on day d, means that L is not associated with any path.

This procedure shows that there are at most 2q+1 paths.

Since there must be at least N paths, q ≥ log2(N)− 1.
In conclusion,

CFP(N) ≥ 3N − 5 + log2(N)

9 Leads

Looking at the proof of the previous lower bound, it is natural to wonder
whether we can improve on the lower bound of 2 envelopes per day.

This is however the best we can do as illustrated in Fig. 11.

9 The reader is referred to Fig. 10 for a clarifying example.
An edge (d,α) − (d+ 1, β) means that Aα sends an envelope to Aβ on day d.
The path (1, 5, 6, 4, 7, 2, 3) is associated to the set {(0, 1) − (1, 5); (2, 6) −

(3, 4); (5, 2)− (6, 3)} (the final destination of the corresponding contract is A0).
Note that all available paths in this graph are not necessarily taken by a contract,

e.g. (4, 5, 6, 4, 7, 2, 3) is associated to {(0, 4)− (1, 5); (5, 2) − (6, 3)}.

1 5 6 4 7 2 3 0

4 5 6 3 7 2 0 1

0 1 6 3 4 5 7 2

1 5 6 4 7 2 0 3

1 5 6 3 7 2 0 4

0 1 6 4 7 2 3 5

0 1 2 3 4 5 7 6

0 1 2 3 4 5 6 7

Fig. 10. Protocol from Fig. 6 where edges representing default envelopes are drawn in
thick lines.

3 2 1 0

3 2 0 1

0 1 3 2

0 1 2 3

Fig. 11. On day 1, only two envelopes are sent.

This example can be generalized to all N ≥ 4.
Other examples were found where only two envelopes were sent on a

day other than N − 3.

9.1 A wider class of protocols

Given a cheap protocol P for N ≥ 2, such that on day 0 only two par-
ties print empty contract copies, we can build an (N + 1)-party protocol
verifying the same property.

This construction can produce the Plin protocol and many more cheap
protocols that do not comply with the above property, starting from
smaller-size protocols.

Extend every path in protocol P by appending N at the beginning
(N paths are defined that way).

Choose n ∈ SN , consider the path ∆ ending at n, draw a new path
that begins at n, ends at N , and follows ∆ in between.

This method hints that the number of cheap protocols grows at least
a fast as a factorial. Example: Fig. 12.

4 3 2 1 0

4 3 2 0 1

4 0 1 3 2

4 0 1 2 3

3 0 1 2 4

Fig. 12. Extension of the protocol of Fig. 11

10 Open Questions & Further Research

Besides proving (or refuting) conjectures 1 and 2, we encourage readers
to research the following open problems:

Algorithmic construction of FCE-protocols: If equitable protocols
exist for all N , design an efficient strategy for constructing FCE-protocols.
Here "efficient" means constructing a protocol in O(N c) for some fixed c.

It seems there cannot be more than four "active" parties on day N−2,
whatever the protocol is. If that is true then, and because there must be

N envelopes sent on this last day, one of the parties is going to pay at
least $N/4. The best case is $N/4 for every four parties.

Assume on the contrary that equitable protocols exist for all N , or
even a weaker form of equitableness where the individual cost is bounded
by a constant C. On day N − 2, N envelopes must be sent. Since every
party pays less than $C, there are at least N/C active parties on day
N−2, N/C2 on day N−3 and so on. There would be a tree-like structure
at the end of the corresponding graph, which means a lot of active parties
– whereas the idea behind the current minimal cost protocols is quite the
opposite. When N is large enough, this takes a lot of envelopes to set up,
in fact we believe that it takes too many, and that there won’t be enough
on the first days. But we are unsure and maybe such a tree would actually
be possible.

Being able to look for equitable protocols for N = 9 would be a first
step. Finding out if equitable protocols still exist for N = 12 or 13, would
provide very strong evidence (in favor or) against the existence of equitable
protocols for all N .

Finding a protocol matching (or best matching) a given cost
vector: Given a cost-vector:

c = {c0, c1, . . . , cN−2, 4N − 6−

N−2∑

i=0

ci}

identify the protocol Ps that deviates as little as possible from c.

What are the possible cost vectors? Let PN = {P1, . . . ,PNCP(N)} be
all N -party FC-protocols. Let si denote the cost vector of Pi ∈ PN with
elements sorted by increasing order10. How many different sis are there?
What can be said about their frequencies?

Non-constant postage fees: We assumed that the cost of an envelope is
independent of the number of contracts sent. What happens for a general
cost function f(k), for instance f(k) = ak + b or f(k) = a⌈k/b⌉?

Continuous flow communication: This paper dealt with a latency of
N − 1 days. What happens if N − 1 shifted protocols are started simul-
taneously so that N − 1 protocols are always run in parallel? Here the

10 i.e. renumbering the parties by increasing workload.

most equitable setting would be N − 6 parties paying $(4N − 10) and 6
parties paying $(4N − 9) but is this achievable?11. If so, how regular can
the spending rate of each party be? (i.e. avoid sudden "spending bursts").

If Conjecture 2 is true: Does relaxing the fast protocol requirement
enable equitableness?

Bandwidth vs. latency: In this paper we considered latency rather
than bandwidth. A trivial protocol for thwarting traffic analysis consists
in rotating a single container circularly12. This is cheaper than opening
a channel between every pair of parties (the problem addressed in this
paper) but comes at the cost a reduced bandwidth. Compare the two
approaches.

References

1. N. Ferguson and B. Schneier, Practical Cryptography, John Wiley & Sons, 2003.
2. K. McCurley, Language Modeling and Encryption on Packet Switched Networks,

Advances in Cryptology - Eurocrypt 2006, Lecture Notes in Computer Science
Volume 4004, 2006, pp. 359-372.

3. V. Voydoc and S. Kent, Security mechanisms in high-level network protocols. ACM
Computing Surveys, pp. 135–171, 1983.

11 e.g. if we launch 7 shifted instances of Fig. 6 we get a very uneven split of cost where
A0 and A3 pay $4 every day (i.e. a total of $28 each) whereas the other 6 parties
pay $3 every day (i.e. a total of $21 each).

12 In other words, on day i do Ai
1
 Ai+1 mod N .

11 Appendix: FCEM-Protocols for N = 7

1 4 5 6 2 3 0

0 4 5 6 2 3 1

0 1 5 3 4 6 2

1 4 5 6 2 0 3

0 1 5 6 2 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

1 4 5 6 2 3 0

3 4 5 6 2 0 1

0 1 5 3 4 6 2

1 4 5 6 2 0 3

0 1 5 6 2 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

4 5 1 6 2 3 0

0 5 2 3 4 6 1

0 5 1 3 4 6 2

4 5 1 6 2 0 3

0 5 1 6 2 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

2 5 4 6 1 3 0

0 5 2 3 4 6 1

0 5 4 6 1 3 2

2 5 4 6 1 0 3

0 5 2 6 1 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

4 5 2 6 1 3 0

0 5 2 3 4 6 1

4 5 0 6 1 3 2

4 5 0 6 1 2 3

0 5 2 6 1 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

1 5 2 3 4 6 0

4 5 0 6 2 3 1

1 5 0 3 4 6 2

4 5 0 6 2 1 3

1 5 0 6 2 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

5 1 2 3 4 6 0

4 5 0 6 2 3 1

1 5 0 3 4 6 2

4 5 0 6 2 1 3

1 5 0 6 2 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

6 1 2 3 4 5 0

4 5 0 6 2 3 1

1 5 0 3 4 6 2

4 5 0 6 2 1 3

1 5 0 6 2 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

1 5 2 3 4 6 0

2 5 4 6 0 3 1

1 5 4 6 0 3 2

2 5 4 6 0 1 3

1 5 2 6 0 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

1 5 2 3 4 6 0

4 5 2 6 0 3 1

4 5 1 6 0 3 2

4 5 1 6 0 2 3

1 5 2 6 0 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

5 1 2 3 4 6 0

2 5 0 3 4 6 1

4 5 0 6 1 3 2

4 5 0 6 1 2 3

2 5 0 6 1 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

6 1 2 3 4 5 0

2 5 0 3 4 6 1

4 5 0 6 1 3 2

4 5 0 6 1 2 3

2 5 0 6 1 3 4

0 1 2 3 4 6 5

0 1 2 3 4 5 6

	How to Sign Paper Contracts? Conjectures & Evidence Related to Equitable & Efficient Collaborative Task Scheduling

