
On Symmetric Encryption with Distinguishable Decryption Failures*

Alexandra Boldyreva1, Jean Paul Degabriele2, Kenneth G. Paterson2, and Martijn Stam3

1 Georgia Institute of Technology
2 Royal Holloway, University of London

3 University of Bristol

Abstract. We propose to relax the assumption that decryption failures are indistinguishable in security mod-
els for symmetric encryption. Our main purpose is to build models that better reflect the reality of crypto-
graphic implementations, and to surface the security issues that arise from doing so. We systematically explore
the consequences of this relaxation, with some surprising consequences for our understanding of this basic
cryptographic primitive. Our results should be useful to practitioners who wish to build accurate models of
their implementations and then analyse them. They should also be of value to more theoretical cryptographers
proposing new encryption schemes, who, in an ideal world, would be compelled by this work to consider the
possibility that their schemes might leak more than simple decryption failures.

1 Introduction

ATTACKS BASED ON DECRYPTION FAILURES. Encryption schemes meeting strong notions of se-
curity typically introduce redundancy into their ciphertexts, and as a consequence ciphertexts may be
deemed invalid during decryption. A scheme’s correctness ensures that honestly generated ciphertexts
will always decrypt correctly, hence we expect decryption to ‘fail’ only for ciphertexts that are corrupted
during transmission or are adversarially generated. Typically, protocols making use of an encryption
scheme report decryption failures to the sender through error messages, and thus the fact that a de-
cryption failure has occurred becomes known to the adversary. After Bleichenbacher’s attack on RSA
PKCS#1 [8], it became recognised in the academic community that these decryption failures (and the
attendant error messages) may leak significant information to an adversary, undermining schemes’ con-
fidentiality properties. Other examples in the asymmetric setting were subsequently discovered [15, 20]
and called reaction attacks. Vaudenay then showed that similar issues can arise in the symmetric set-
ting [26], and his ideas were extended to produce significant attacks against (among others) SSL/TLS
[10, 22], IPsec [11, 12], ASP.NET [13], XML encryption [18] and DTLS [2]. Analysis of error mes-
sages in the symmetric setting was also crucial to the success of attacks against the SSH Binary Packet
Protocol [1].

THE RELATION BETWEEN ATTACKS AND SECURITY DEFINITIONS. At a very high level the above-
mentioned attacks on symmetric schemes have the common feature that during decryption some infor-
mation about the plaintext is leaked, due to error messages, their timing, or some other aspect of the
implementation. The leaked information is normally quite small, and the power of these attacks really
comes from the adversary’s ability to amplify this leakage through iteration. That is, given a target ci-
phertext, an adversary is able to produce a sequence of related ciphertexts which when decrypted will
leak more information about the target plaintext. If we now compare this to the IND-CCA security model,
it appears that such attacks should be fully accounted for and prevented, given the very conservative ap-
proach adopted in this model. Indeed, in the IND-CCA model, the adversary is given full access to a
decryption oracle for any ciphertext except the target ciphertext, from which he learns either the corre-
sponding plaintext or the fact that decryption fails; and yet this should not leak any information about
the target plaintext. Furthermore, several of the attacks above do not even make full use of the decryption
oracle, but only consider ciphertexts which result in decryption failures.

Why then are the attacks possible at all? Are the underlying encryption schemes actually IND-CCA
secure? Is the IND-CCA model the right one for capturing these classes of attack?

* A short version of this paper was published at FSE 2013. This is the full version.

SSL/TLS makes an instructive case study for answering these questions. At a high level, SSL/TLS
most commonly uses a Mac-then-Encrypt (MtE) construction, with either a stream cipher or CBC-mode
encryption of a block cipher as the encryption scheme. Thus SSL/TLS is covered by Krawczyk’s re-
sult [19], and one might reasonably conclude that its symmetric encryption scheme is IND-CCA secure.
Yet Canvel et al. [10] presented plaintext-recovering attacks against the OpenSSL implementation of
SSL/TLS when CBC-mode is used, in which the attacker does nothing other than submit certain cipher-
texts for decryption and analyse the results (i.e. the attacker ostensibly operates within the IND-CCA
model). The key point, however, is that at the time of Canvel et al.’s attacks in 2003, it was possible to
infer more from SSL/TLS decryption failures than the simple fact that decryption had failed: decryption
could fail either because either the underlying padding needed by CBC-mode was incorrectly format-
ted or because of a MAC failure, and it was possible to tell these conditions apart (either because they
were indicated by different error messages or because the error messages were produced at different
times during decryption processing). This additional information was sufficient to realise a padding or-
acle attack, in the style of [26]. Furthermore, this attack is technically outside the IND-CCA security
model, because this model only ever provides a single decryption failure symbol ⊥ to the adversary.
Thus, while SSL/TLS may be provably IND-CCA secure in theory, it turned out not to be in practice.
Suitable countermeasures involve making it hard for an attacker to learn the cause of decryption failures
and were incorporated into the TLS specification from version 1.1 onwards. Meanwhile, building an ac-
curate model of SSL/TLS’s symmetric encryption scheme and proving its security has turned out to be a
complex task that was only recently completed in [22]. Even there, however, it was necessary to assume
that all decryption failures are indistinguishable (since, otherwise, attacks like those of [26, 10, 2, 3] are
possible). A similar story could be told for MAC-then-encryption configurations of IPsec, to which the
theory in [19] and the attacks of [12] both apply.

So the answers to our questions above are, respectively, yes and no. Yes, the underlying encryption
schemes are provably IND-CCA secure. However, this is for some description of the schemes that may
not accurately reflect how they are actually implemented. And no, the standard model for IND-CCA
security is not the right one for capturing these attacks: in the current formalism, more specifically the
basic syntax adopted for encryption schemes, it is assumed that decryption failures are indistinguishable
and that each decryption failure will return the same error symbol ⊥. This creates a gap in the effective
power conferred by a decryption oracle between the IND-CCA model and practical attack scenarios
(where decryption failures are often distinguishable). In short, knowing why decryption failed may be
more informative to the adversary than the mere fact that decryption has failed.

OUR CONTRIBUTIONS. We propose to strengthen the existing security definitions for symmetric en-
cryption by letting the adversary distinguish various possible decryption errors. Our main purpose is to
build models that better reflect the reality of cryptographic implementations, and to surface the security
issues that arise from doing so. We are not the first to make this relaxation (see, for example, [21, 23]),
but we are the first to systematically explore its consequences, with some surprising consequences for
our understanding of this basic cryptographic primitive. Our results should be useful to practitioners
who wish to build accurate models of their implementations and then analyse them. They should also be
of value to more theoretical cryptographers proposing new encryption schemes, who, in an ideal world,
would be compelled by this work to consider the possibility that their schemes might leak more than
simple decryption failures. (Of course, an alternative reaction by the latter group would be to cast this
as an implementation issue and simply assume indistinguishable errors as usual; however, the history of
attacks tells us that this is hard to guarantee in practice and therefore a dangerous assumption to make.)

Our approach requires the adoption of a slightly different syntax for encryption schemes to the
standard one. Now, our decryption algorithm will either return a message from the message space, or an
error message from a predetermined finite set of values which we refer to as the error space. Technically,
then, encryption schemes with multiple errors are a slightly different object from single-error schemes.
This approach allows us to handle schemes that can fail in a finite number of distinguishable ways that
will be indicated in practice by different error messages. It also enables us to treat attacks in which
indistinguishable error messages are returned (perhaps because they are all encrypted, as is the case in

2

SSL/TLS), but in which the errors are returned at a discrete set of times. We note that our approach is
equally applicable to the asymmetric setting; here we will restrict our scope to the symmetric setting
only.

With this new syntax in hand, we re-examine the statement due to Bellare and Namprempre [9] that
semantic (IND-CPA) security in combination with integrity of ciphertexts (INT-CTXT) is sufficient to
imply chosen ciphertext (IND-CCA) security. One consequence of their results is that ‘IND-CPA + INT-
CTXT’ has come to be seen as the ‘right’ security notion to aim for in the symmetric case, with this
combined notion now being referred to as authenticated-encryption security. This seems to be mostly
because it implies IND-CCA security, and because that is by now the accepted notion in the asymmetric
setting. We show, through separations, that this important relation no longer holds for multiple error
symmetric encryption schemes. Indeed, it is easy to see where the proof of this relation in [9] breaks
down: in the passage from the INT-CTXT security game to the IND-CPA security game, the simulation
in [9] simply replies to all decryption queries with the error message ⊥; only if an adversary forges a
ciphertext does this simulation go awry. But this is not an accurate response in the multiple error setting,
since one of several possible error messages should be returned, and the simulation does not necessarily
know which.

We then go on to establish relations that are similar in spirit to the classic relations, in that they
combine a weak form of confidentiality with some form of ciphertext integrity to obtain strong confi-
dentiality. An interesting aspect that emerges in our analysis is that it is not at all obvious how the notion
of ciphertext integrity should be extended to the multiple-error setting. We identify two candidate def-
initions for ciphertext integrity, one being strictly stronger than the other. We compare and contrast the
two, and provide evidence (by means of a rather non-trivial counterexample) for requiring the stronger
variant in our relations.

We also provide a natural extension of the IND-CCA3 security notion to the multiple-error setting.
This notion, due to Rogaway and Shrimpton [25], is an elegant combination of semantic security and
ciphertext integrity into a single equivalent security notion. We show that it serves as a good security
notion for symmetric encryption with multiple errors. More specifically we show that our extension to
IND-CCA3 security does imply chosen-ciphertext security in the multiple error setting.

We conclude by showing that the encode-then-encrypt-then-MAC (EEM) construction is IND-CCA
secure for any encoding scheme, any IND-CPA secure encryption scheme with arbitrary error messages,
and any SUF-CMA MAC. Following the works of Bellare and Namprempre [9] and Krawczyk [19], this
result provides further formal grounds for preferring the EEM composition over other generic construc-
tions, for example MAC-then-encrypt.

In addition to the standard symmetric encryption notions, we provide equivalent results for security
definitions involving indistinguishability from random bits introduced by Rogaway [24], and for the
stateful setting introduced by Bellare, Kohno, and Namprempre [7]. Many of these additional results
follow rather straightforwardly, but we consider it valuable to include them for completeness.

2 Preliminaries

2.1 Notation

Unless otherwise stated, an algorithm may be randomized. An adversary is an algorithm. For any algo-
rithm A we use y ← A(x1, x2, . . .) to denote executing A with fresh coins on inputs x1, x2, . . . and
assigning its output to y. If S is a set then |S| denotes its size, and y ← $ S denotes the process of
selecting an element from S uniformly at random and assigning it to y. The set of all finite binary strings
is denoted by {0, 1}∗, for any positive integer n and bit b, we denote by bn the string of n consecutive b’s
and {0, 1}n represents the set of all binary strings of length n. The empty string is represented by ε. For
any two strings w and z and a positive integer i, w ‖ z denotes their concatenation, w ⊕ z denotes their
bitwise XOR, |w| denotes the length of w, and w[i] denotes the ith bit of w. If j is a non-negative integer,
then 〈j〉` denotes the unsigned `-bit binary representation of j. Accordingly 〈·〉−1 represents the inverse
mapping which maps strings of any length toN. If w is an `-bit string and i is an integer we use w+ i as

3

shorthand for 〈〈w〉−1 + i mod 2`〉`. We use Func(X ,Y) to denote the set of all functions with domain
X and codomain Y . We will often have that X = {0, 1}` or X = {0, 1}∗, and Y = {0, 1}n for some
positive integers ` and n. Accordingly we abbreviate notation for the corresponding sets of functions to
Func(`, n) and Func(∗, n) respectively.

2.2 Building Blocks

PSEUDORANDOM FUNCTIONS. A function family is a map F : K × X → Y . We refer to K as the key
space of F , X as the domain of F , and Y as the codomain of F . In this paper K, X , and Y will be sets
of bit-strings. For eack K ∈ K we define the map FK : X → Y by FK(x) = F (K,x) for all x ∈ X .
Thus F can be seen as a collection of maps from X to Y , each identified by some key in K . We will
refer to FK as an instance of F . We will often make use of function families that are pseudorandom.

Definition 1 (Pseudorandom functions). Let F : K × X → Y be a function family. Consider an
adversary A with oracle access to some function with domain X and codomain Y , that returns a single
bit as its output. We define the prf-advantage of adversary A with respect to the function family F as:

Advprf
F (A) = Pr

[
K ←$K : AFK(·) = 1

]
−Pr

[
f ←$ Func(X ,Y) : Af(·) = 1

]
.

F is said to be a pseudorandom function (PRF), if for every adversary A with reasonable resources its
prf-advantage Advprf

F (A) is small.

MACS. A message authentication code (MAC) MA = (K, T ,V) with associated error space Q⊥
consists of three algorithms. The randomized key-generation algorithm K takes no input and returns a
secret key K. We will sometimes abuse notation and regard K as a set of keys. The tagging algorithm T
may be randomized or stateful. It takes as input the secret key K and a message m ∈ {0, 1}∗ to return
a tag τ . The verification algorithm V is deterministic and stateless. It takes the secret key K, a message
m ∈ {0, 1}∗ and a candidate tag τ , and returns either 1 or an error message in Q⊥. We require that for
all K that can be output by K and all m ∈ {0, 1}∗, it hold (with probability 1) that if τ ← TK(m) then
VK(m, τ) = 1. Here, we allow multiple possible error messages forMA in order to be able to model
certain types of attack, e.g. that in [3].

The standard security notion for MACs is existential unforgeability under chosen message attacks
(UF-CMA). We will however require a stronger variant of this notion (SUF-CMA) which is defined
below.

Definition 2 (SUF-CMA). Let MA = (K, T ,V) be a message authentication code with associated
error space Q⊥. For an adversary A, define experiment Expsuf-cma

MA (A) as shown in Figure 1. A key K
is first generated by calling K . The adversary A is then given access to a tagging oracle Tag(·) and
a verification oracle Ver(·, ·). The adversary wins if it queries a valid message-tag pair that was not
previously returned by the tagging oracle. We define the adversary’s advantage as:

Advsuf-cma
MA (A) = Pr

[
Expsuf-cma

MA (A)
]
.

The scheme MA is said to be SUF-CMA secure if, for every adversary A consuming reasonable re-
sources its advantage Advsuf-cma

MA (A) is small.

The standard UF-CMA notion is defined analogously but the adversary is only granted a win if it
forges a tag for a message that was not previously queried to the tagging oracle.

ENCODING SCHEMES. When constructing symmetric encryption schemes from other components it is
common to perform some form of preprocessing on the message. Its purpose may be to map messages to
the message space of the encryption scheme, or as an attempt to extend the scheme’s functionality, such
as masking the message length. Generally such transformations are unkeyed, but may be randomized.
We model such transformations by encoding schemes.

4

Expsuf-cma
SE (A)

K ← K
L← ∅,win← 0

ATag(·),Ver(·,·)

return win

Tag(m)

τ ← TK(m)
L← L ∪ (m, τ)
return τ

Ver(m, τ)

v ← VK(m, τ)
if v 6∈ Q⊥ and (m, τ) 6∈ L

then win← 1
return v

Fig. 1. SUF-CMA experiment for message authentication codes.

An encoding scheme ES = (EC, DC) consists of two algorithms and associated domain, codomain,
and an error space. The encoding algorithm EC which may be randomized, takes as input a string from
its domain and maps it to some string in its codomain. The decoding algorithm DC is deterministic and
takes a string from its codomain and returns either a string in its domain or an error symbol from its error
space. The scheme must be correct, i.e. for every string m in its domain it holds that DC(EC(m)) = m.
An encoding scheme is length-regular if for any two strings m and m′ in its domain, it holds that if
|m| = |m′| then |EC(m)| = |EC(m′)|.

3 Symmetric Encryption with Multiple Errors: Definitions

SYNTAX. A symmetric encryption scheme SE = (K, E ,D) with associated message space M ⊆
{0, 1}∗, ciphertext space C ⊆ {0, 1}∗, and error space S⊥ consists of three algorithms. The randomized
key-generation algorithm K takes no input and returns a secret key K, an initial encryption state σ0, and
an initial decryption state %0. We will sometimes abuse notation and regard K as a set of keys. The ran-
domized and stateful encryption algorithm E : K×M×Σ → C×Σ takes as input the secret keyK ∈ K,
a plaintext m ∈ M, and the current encryption state σ ∈ Σ, and returns a ciphertext in C together with
an updated state. The deterministic and stateful decryption algorithmD : K×C×Σ → (M ∪ S⊥)×Σ
takes as input the secret key K, a ciphertext c ∈ C, and the current decryption state % to return the
corresponding plaintext m ∈ M or a special symbol from S⊥ (indicating that the ciphertext is invalid)
and an updated state.

Our syntax of symmetric encryption schemes differs in two main ways from the more conventional
way of modelling symmetric encryption schemes. Firstly it allows the decryption algorithm to indicate
invalid ciphertexts with distinct error messages within the error space. We will assume the error space be
a set of symbols {⊥1,⊥2, . . . ,⊥n} for some positive integer n. The symbol⊥ will be used interchange-
ably to denote a specific error symbol or a variable assuming values from the error space. We will use
the term multiple-error encryption scheme to indicate schemes with an error space of size strictly greater
than one. Secondly we adopt a stateful syntax for both encryption and decryption. This is without loss
of generality. Both encryption and decryption can be made stateless by defining K to always return the
empty string for the corresponding initial state, and having E ,D ignore (i.e. never update) the state.

For any ` ∈ N and any m = [m1, . . . ,m`] ∈ M`, we write (c, σ) ← EK(m, σ0) as shorthand for
(c1, σ1) ← EK(m1, σ0), (c2, σ2) ← EK(m2, σ1), . . . (c`, σ`) ← EK(m`, σ`−1), where c = [c1, . . . , c`]
and σ = σ`. Similarly we use (m′, %) ← DK(c, %0) to denote the analogous process for decryption.
Finally, we require that a symmetric encryption scheme satisfy correctness which is defined as follows:

Definition 3 (Correctness of SE). For all (K,σ0, %0) that can be output by K, all ` ∈ N, and all
m ∈ M`, it holds (with probability 1) that if (c, σ) ← EK(m, σ0) and (m′, %) ← DK(c, %0), then
m′ = m.

INDISTINGUISHABILITY NOTIONS. We adopt the ‘left-or-right’ model of indistinguishability from Bel-
lare et al. [5] to define three notions of confidentiality for symmetric encryption. Indistinguishability
under chosen-plaintext attack (IND-CPA), and indistinguishability under chosen-ciphertext attack (IND-
CCA) are fairly standard, except for the fact that for multiple-error schemes the decryption oracle will
now return one of many possible error messages. We introduce the notion of indistinguishability under
ciphertext-validity attack (IND-CVA), which can be seen as a strengthened adaption of a similar notion

5

Expind-cpa-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← ALoR(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1|
then return

(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c
return c

Expind-cva-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← ALoR(·),Val(·)

return b′

Val(c)

(m, %)← DK(c, %)
if m ∈M then m←
return m

Expind-cca-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← ALoR(·),Dec(·)

return b′

Dec(c)

(m, %)← DK(c, %)
if c ∈ C then m←
return m

Fig. 2. IND-ATK experiments for symmetric encryption schemes.

defined by Bauer et al. [4] to the symmetric setting. Here, in addition to an encryption oracle the adver-
sary is given access to a ciphertext-validity oracle which indicates whether a ciphertext is valid or not,
and if not, returns the exact error message output by the decryption algorithm.

Definition 4 (IND-ATK security). Let SE = (K, E ,D) be a symmetric encryption scheme. For an
adversaryA and a bit b, define the experiments Expind-atk-b

SE (A) where atk ∈ {cpa, cva, cca} as shown
in Figure 2. In all three experiments, a key K is first generated by calling K . The adversary A is then
given access to a left-or-right encryption oracle LoR(·), and possibly a ciphertext-validity oracle Val(·)
or a decryption oracle Dec(·). No restriction is imposed on the adversary’s queries, rather if it queries a
pair of messages of unequal length to LoR(·), or if it queries a ciphertext to Dec(·) previously returned by
LoR(·), the symbol is returned. In the Val(·) oracle the symbol indicates that the queried ciphertext
was valid.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b, and the experiment
returns b′ as well. For each of these three experiments we define the corresponding advantages of an
adversary A as:

Advind-atk
SE (A) = Pr

[
Expind-atk-1

SE (A) = 1
]
− Pr

[
Expind-atk-0

SE (A) = 1
]
.

The scheme SE is said to be IND-ATK secure, if for every adversary A with reasonable resources its
advantage Advind-atk

SE (A) is small.

INDISTINGUISHABILITY FROM RANDOM BITS. We can recast the above three security notions in terms
of indistinguishability from random bits as introduced by Rogaway [24]. Here the adversarial goal is to
distinguish encrypted messages from random bit-strings of the same length.

Definition 5 (IND$-ATK security). Let SE = (K, E ,D) be a symmetric encryption scheme. For an
adversary A and a bit b, define the experiments Expind$-atk-b

SE (A) where atk ∈ {cpa, cva, cca} as
shown in Figure 3. In all three experiments, a key K is first generated by calling K . The adversary A
is then given access to a special encryption oracle Enc$(·), if b = 1 the oracle returns the encrypted
message, otherwise it returns a uniformly-random bit-string of the same length. In the ind$-cva and
ind$-cca experiments, the adversary is additionally given access to a ciphertext-validity oracle Val(·)
and a decryption oracle Dec(·) respectively. Trivial-win conditions are avoided by having the decryption
oracle return in response to any ciphertext that was previously output by the encryption oracle. The
ciphertext-validity oracle uses to indicate that the queried ciphertext was valid or has been previously
output by the encryption oracle.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b, and the experiment
returns b′ as well. For each of these three experiments we define the corresponding advantages of an
adversary A as:

Advind$-atk
SE (A) = Pr

[
Expind$-atk-1

SE (A) = 1
]
− Pr

[
Expind$-atk-0

SE (A) = 1
]
.

6

Expind$-cpa-b
SE (A)

(K,σ, %)← K
b′ ← AEnc$(·)

return b′

Enc$(m)

(c, σ)← EK(m,σ)
if b = 0

then c←$ {0, 1}|c|
i← i+ 1, Ci ← c
return c

Expind$-cva-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← AEnc$(·),Val(·)

return b′

Val(c)

(m, %)← DK(c, %)
if m ∈M or c ∈ C

then m←
return m

Expind$-cca-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← AEnc$(·),Dec(·)

return b′

Dec(c)

(m, %)← DK(c, %)
if c ∈ C then m←
return m

Fig. 3. IND$-ATK experiments for symmetric encryption schemes.

The scheme SE is said to be IND$-ATK secure, if for every adversary A with reasonable resources its
advantage Advind$-atk

SE (A) is small.

STATEFUL INDISTINGUISHABILITY NOTIONS. Secure protocols like SSH, SSL/TLS and IPsec aim to
protect against replay and reordering of ciphertexts. These security goals are not captured by any of the
above security notions. Bellare, Kohno, and Namprempre [7] introduced a notion called IND-sfCCA.
This notion implies IND-CCA security and additionally protects against replay and reordering of cipher-
texts. We recall this notion and introduce natural variants in terms of indistinguishability from random
bits and ciphertext-validity attacks. Of course, our definitions are also for the setting of multiple errors.
In what follows we will classify the adversary’s decryption queries to be in-sync, if the sequence of
queried ciphertexts is a prefix of the sequence of ciphertexts returned by the encryption oracle. Accord-
ingly we refer to the first decryption query (and any subsequent one) for which this is no longer true as
an out-of-sync query.

Definition 6 (Stateful indistinguishability). Let SE = (K, E ,D) be a symmetric encryption scheme.
For an adversary A and a bit b, define experiments Expind-sfcca-b

SE (A) and Expind$-atk-b
SE (A) where

atk ∈ {sfcva, sfcca} as shown in Figure 4. In all three experiments, a key K is first generated by
calling K . In the ind-sfcca experiment the adversary is given access to a left-or-right encryption oracle
LoR(·), and a stateful decryption oracle sfDec(·). The stateful decryption oracle returns the decrypted
ciphertexts only for out-of-sync queries, and returns otherwise. Similarly in the ind$-atk experiments
the adversary is given access to the special encryption oracle Enc$(·), and either a stateful ciphertext-
validity oracle sfVal(·) or a stateful decryption oracle sfDec(·).

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b, and the experiment
returns b′ as well. For each of these three experiments we define the corresponding advantages of an
adversary A as:

Advind-sfcca
SE (A) = Pr

[
Expind-sfcca-1

SE (A) = 1
]
− Pr

[
Expind-sfcca-0

SE (A) = 1
]

Advind$-atk
SE (A) = Pr

[
Expind$-atk-1

SE (A) = 1
]
− Pr

[
Expind$-atk-0

SE (A) = 1
]
.

The scheme SE is said to be IND-sfCCA or IND$-ATK secure, if for every adversaryA with reasonable
resources its respective advantage Advind-sfcca

SE (A) or Advind$-atk
SE (A) is small.

The naming of these notions is partly justified by the fact that the decryption and ciphertext-validity
oracles are stateful. In addition, it is easy to see that for an encryption scheme to be IND-sfCCA or
IND$-sfCCA secure, its decryption algorithm must be stateful. However, a scheme need not have a
stateful decryption algorithm to be IND$-sfCVA secure. As the reader may have noticed, we did not
define an IND-sfCVA notion. This is because in the presence of a left-or-right encryption oracle, the
sfVal(·) oracle reduces to a Val(·) oracle, and therefore IND-sfCVA (defined in the obvious way) is
equivalent to IND-CVA.

7

Expind-sfcca-b
SE (A)

(K,σ, %)← K
i← 0, j ← 0
C← (), sync← 1

b′ ← ALoR(·),sfDec(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1|
then return

(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c
return c

sfDec(c)

j ← j + 1
(m, %)← DK(c, %)
if j > i or c 6= Cj

then sync← 0
if sync = 1 then m←
return m

Expind$-sfcva-b
SE (A)

(K,σ, %)← K
i← 0, j ← 0
C← (), sync← 1

b′ ← AEnc$(·),sfVal(·)

return b′

Enc$(m)

(c, σ)← EK(m,σ)
if b = 0

then c←$ {0, 1}|c|
i← i+ 1, Ci ← c
return c

Expind$-sfcca-b
SE (A)

(K,σ, %)← K
i← 0, j ← 0
C← (), sync← 1

b′ ← AEnc$(·),sfDec(·)

return b′

sfVal(c)

j ← j + 1
(m, %)← DK(c, %)
if j > i or c 6= Cj

then sync← 0
if sync = 1 or m ∈M

then m←
return m

Fig. 4. Stateful indistinguishability experiments for symmetric encryption schemes.

CIPHERTEXT INTEGRITY. We define ciphertext integrity analogously to Bellare and Namprempre [9],
and we also consider its stateful variant [7] which additionally protects against replay and reordering
attacks. Here an adversary trying to forge a ciphertext is granted multiple attempts by giving it access to
a verification oracle Try(·), in addition to a standard encryption oracle. When extending these notions to
schemes with multiple errors, it is not clear how to interpret the verification oracle’s functionality. That is,
should the verification oracle indicate only whether a ciphertext is valid or not, or should it additionally
return the exact error message output by the decryption algorithm if the ciphertext is invalid? For single-
error schemes the two interpretations are equivalent, but this does not hold in general (see Section 4).
For each of the standard and stateful notions we consider both variants and we denote the weaker variant
(i.e. the one that is less informative to the adversary) with ‘∗’. In what follows we classify verification
queries to be in-sync or out-of-sync in an analogous manner as we did for decryption.

Definition 7 (Ciphertext Integrity). Let SE = (K, E ,D) be a symmetric encryption scheme. For
an adversary A define the experiments Expint-atk

SE (A) where atk ∈ {ctxt, ctxt∗, sfctxt, sfctxt∗} as
shown in Figure 5. In all experiments, a key K is first generated by calling K . The adversary A
is then given access to an encryption oracle Enc(·), and one of the following verification oracles
Try(·),Try∗(·), sfTry(·), or sfTry∗(·). The Try∗(·) oracle (and similarly the sfTry∗(·) oracle) returns
 if the queried ciphertext is valid, or if the ciphertext has been previously output by the encryption ora-
cle (respectively: if the verification query is in-sync), and returns⊥ if the ciphertext is invalid. The Try(·)
and sfTry(·) oracles operate analogously but return the exact error message output by the decryption
oracle when a ciphertext is invalid.

In the int-ctxt and int-ctxt∗ experiments the adversary’s goal is to make a valid verification query
not previously output by the encryption oracle. In the int-sfctxt and int-sfctxt∗ experiments the adver-
sary’s goal is to make a valid out-of-sync verification query. In all cases the experiment outputs a bit
indicating the adversary’s success. For each experiment we define the advantage of an adversary A as:

Advint-atk
SE (A) = Pr

[
Expint-atk

SE (A) = 1
]
.

The scheme SE is said to be INT-ATK secure, if for every adversary A with reasonable resources its
advantage Advint-atk

SE (A) is small.

8

Expint-ctxt
SE (A)

(K,σ, %)← K
i← 0, C← (), win← 0

AEnc(·),Try(·)

return win

Expint-sfctxt∗
SE (A)

(K,σ, %)← K
i← 0, j ← 0, C← ()
sync← 1, win← 0

AEnc(·),sfTry∗(·)

return win

sfTry(c)

j ← j + 1
(m, %)← DK(c, %)
if j > i or c 6= Cj

then sync← 0
if sync = 0 and m 6∈ S⊥

then win← 1
if m 6∈ S⊥ then m←
return m

Expint-sfctxt
SE (A)

(K,σ, %)← K
i← 0, j ← 0, C← ()
sync← 1, win← 0

AEnc(·),sfTry(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
i← i+ 1, Ci ← c
return c

Try∗(c)

(m, %)← DK(c, %)
if c 6∈ C and m 6∈ S⊥

then win← 1
if m ∈ S⊥ then m←⊥
else m←
return m

Expint-ctxt∗
SE (A)

(K,σ, %)← K
i← 0, C← (), win← 0

AEnc(·),Try∗(·)

return win

Try(c)

(m, %)← DK(c, %)
if c 6∈ C and m 6∈ S⊥

then win← 1
if m 6∈ S⊥ then m←
return m

sfTry∗(c)

j ← j + 1
(m, %)← DK(c, %)
if j > i or c 6= Cj

then sync← 0
if sync = 0 and m 6∈ S⊥

then win← 1
if m ∈ S⊥ then m←⊥
else m←
return m

Fig. 5. Ciphertext integrity experiments for symmetric encryption schemes.

ERROR INVARIANCE. Although an encryption scheme may have multiple error messages, not all error
messages may be ‘available’ to the adversary. In particular an adversary may not be able to produce
(invalid) ciphertexts that generate all possible error messages. We introduce a simple security notion
that captures exactly this situation. Informally an encryption scheme is error-invariant if no efficient
adversary can generate more than one of the possible error messages. Of course any single-error scheme
is trivially error invariant.

Definition 8 (INV-ERR security). Let SE = (K, E ,D) be a symmetric encryption scheme with error
space S⊥. For any ⊥∈ S⊥ and an adversary A, define the experiment Expinv-err

SE,⊥ (A) as shown in
Figure 6. A key K is first generated by callingK . The adversaryA is then given access to an encryption
oracle Enc(·) and a decryption oracle Dec(·).

The adversary’s goal is to submit a ciphertext to the decryption oracle which results in an error
message not equal to ⊥ . The experiment outputs a bit indicating the adversary’s success. We define the
advantage of an adversary A with respect to ⊥ as:

Advinv-err
SE,⊥ (A) = Pr

[
Expinv-err

SE,⊥ (A) = 1
]
.

The scheme SE is said to be INV-ERR secure if there exists a unique ⊥∈ S⊥ such that for every
adversary A with reasonable resources its advantage Advinv-err

SE,⊥ (A) is small.

Expinv-err
SE,⊥ (A)

(K,σ, %)← K
win← 0

AEnc(·),Dec(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
return c

Dec(c)

(m, %)← DK(c, %)
if m ∈ S⊥ and m 6=⊥

then win← 1
return m

Fig. 6. INV-ERR experiment for symmetric encryption schemes.

9

ADDITIONAL NOTES. The reader may be wondering how exactly to interpret the symbol, given that
we assign to it different meanings in our security definitions. In general we use it to ‘suppress’ certain
outputs from an oracle, and hence limit the information conveyed by the oracle to the adversary. We
use it to avoid trivial win conditions by suppressing the output of in-sync decryption queries, or left-or-
right queries containing messages of different lengths. We also use it to define ciphertext-validity and
verification oracles by suppressing any plaintext that is output by the decryption algorithm.

For each security definition we have defined the corresponding advantage of an adversary with re-
spect to some cryptographic scheme. We will sometimes refer to the maximum advantage with respect
to a cryptographic scheme over all adversaries consuming reasonable resources. Any advantage not
parametrized by an adversary is to be interpreted this way.

4 Relations and Separations

INTERPRETING OUR IMPLICATIONS AND SEPARATIONS. An implication from security notion X to
security notion Y, indicated by X −→ Y, means that any scheme which is X-secure is also Y-secure.
More formally there exists a constant κ > 0 such that for any symmetric encryption scheme SE and any
Y adversary Ay there exists a X adversary Ax (with similar resources) such that:

Advy
SE(Ay) ≤ κ ·Advx

SE(Ax)

A separation from security notion X to security notion Y indicated by X 6−→ Y, means that there exists
a symmetric encryption scheme which meets notion X but for which we can exhibit an attack showing
that it does not meet notion Y. The separation is interesting only if there exists some scheme which
meets security notion X, as otherwise the implication X −→ Y is vacuously true. Our separations can
be categorised into two types. In the former we will assume that there exists some scheme SE which
meets notion X, and use it to construct a scheme SE which meets notion X but is insecure in the Y
sense. From the foregoing discussion, such an assumption is in some sense minimal. In the second
type of separations we will assume the existence of pseudorandom functions and UF-CMA MACs to
construct a scheme which meets notion X but not notion Y. In this paper for all separations of the
latter type we will have that X −→ IND-CPA. It is a well-known result that the existence of IND-CPA-
secure symmetric encryption implies the existence of pseudorandom functions [17, 16, 14]. In addition
a pseudorandom function can be combined with an almost-universal hash function to obtain a variable-
input-length pseudorandom function, which in turn yields a UF-CMA MAC. Thus from a theoretical
viewpoint the underlying assumptions for either type of separation are equivalent.

Note that when proving a separation we do not require the scheme to have distinct error messages,
as we are interested solely in the existence of a counterexample showing that the relation under question
cannot be established. Secondly any multiple-error scheme which is secure under some notion X implies
the existence of a single-error scheme which is also secure under notion X (simply by mapping all error
messages to a single error message). Consequently it is best to prove separations using schemes with
an error space of minimal cardinality. It then follows that the separation also holds for all schemes of
higher error-space cardinality.

STRAIGHTFORWARD RELATIONS. The following set of relations are self-evident. We state them here
for the sake of completeness without proofs.

10

Proposition 9.

IND-sfCCA // IND-CCA // IND-CVA // IND-CPA

IND$-sfCCA //

//

IND$-CCA // IND$-CVA // IND$-CPA

IND$-sfCVA

OO

INT-sfCTXT //

//

INT-CTXT // INT-CTXT∗

INT-sfCTXT∗

OO

REVISITING CLASSIC RELATIONS. If a symmetric encryption scheme having a single error symbol
satisfies both passive confidentiality (IND-CPA) and integrity of ciphertexts (INT-CTXT), then a result
of [9] guarantees that it also offers confidentiality against chosen-ciphertext attacks. An analogous result
for the stateful setting was proved in [7]. Often, when analysing a particular scheme, its chosen-plaintext
security and ciphertext integrity are proved first, and then these classic results are used to guarantee
chosen-ciphertext security. Indeed, the combination of IND-CPA and INT-CTXT (or their stateful ver-
sions) has come to be the accepted security notion for symmetric encryption. We proceed to re-examine
these relations from [9, 7] in the context of encryption schemes with multiple error messages.

The following theorem serves as the basis for the two separations in Corollaries 11 and 12, showing
that the classic relations no longer hold for multiple-error schemes. Its proof is in Appendix A.1. We
point out that in proving the separations, we adopt the stronger interpretations of ciphertext integrity so
as to make the results as strong as possible.

Theorem 10 (IND-CPA ∧ INT-sfCTXT 6−→ IND-CCA). Let F : Ke × {0, 1}` → {0, 1}n be a pseu-
dorandom function, and letMA = (Km, T ,V) be a UF-CMA secure MAC with tag length `tag < n .
Consider the stateful symmetric encryption scheme SE1 having message space {0, 1}n−`tag and error
space {⊥0,⊥1} shown in Figure 7. For any IND-CPA adversary Acpa and any INT-sfCTXT adver-
sary Aint against SE1, both making at most 2` − 1 encryption queries, there exist two corresponding
adversaries Aprf and Auf using roughly the same resources as Acpa and Aint, respectively, such that:

Advind-cpa
SE1 (Acpa) ≤ 2 ·Advprf

F (Aprf) , (1a)

Advint-sfctxt
SE1 (Aint) ≤ Advuf-cma

MA (Auf) . (1b)

Moreover there exist efficient adversaries Acca and A′uf such that:

Advind-cca
SE1 (Acca) = 1−Advuf-cma

MA (A′uf) . (1c)

Combining Theorem 10 and Proposition 9 yields the following two separations corresponding to the
aforementioned relations from [9] and [7].

Corollary 11 (IND-CPA ∧ INT-CTXT 6−→ IND-CCA). Let F : Ke × {0, 1}` → {0, 1}n be a pseudo-
random function, and letMA = (Km, T ,V) be a UF-CMA secure MAC with tag length `tag < n . Then
there exists a symmetric encryption scheme that is both IND-CPA secure and INT-CTXT secure but that
is not secure in the IND-CCA sense.

Corollary 12 (IND-CPA ∧ INT-sfCTXT 6−→ IND-sfCCA). Let F : Ke × {0, 1}` → {0, 1}n be a pseu-
dorandom function, and letMA = (Km, T ,V) be a UF-CMA secure MAC with tag length `tag < n .
Then there exists a symmetric encryption scheme that is both IND-CPA secure and INT-sfCTXT secure
but that is not secure in the IND-sfCCA sense.

11

Algorithm K

Ke ←$Ke

Km ← Km

σ ← 1, %← 1
K ← Ke ‖ Km

return (K,σ, %)

Algorithm EK(m,σ)

τ ← TKm(〈σ〉` ‖ m)
c← FKe(〈σ〉`)⊕ (m ‖ τ)
σ ← σ + 1 mod 2`

return (c, σ)

Algorithm DK(c, %)

if |c| 6= n then %← 0
if % = 0 then

return (⊥0, %)
w ← FKe(〈%〉`)⊕ c
parse w as m ‖ τ
v ← VKm(〈%〉` ‖ m, τ)
if v = 1

then %← %+ 1 mod 2`

else
%← 0
if m[1] = 0 then m←⊥0

else m←⊥1

return (m, %)

Fig. 7. The scheme SE1 of Theorem 10.

Note that in proving Theorem 10 we resorted to a stateful scheme. Only a stateful scheme can be INT-
sfCTXT secure, and therefore the counterexample used to prove Corollary 12 needs to be stateful. The
same cannot be said however about the separation in Corollary 11, and in fact it can be proven more
generally using a stateless scheme, but we omit the details for the sake of brevity.

NEW RELATIONS. We now go on to investigate how chosen-ciphertext security can be obtained in the
multiple-error setting. Given how useful the relations of [9] and [7] have turned out to be, it would make
sense to attempt to derive analogous relations that hold more generally. The following theorem extends
the relation of [9] to schemes with multiple errors. Its proof is in Appendix A.2.

Theorem 13 (IND-CVA∧ INT-CTXT −→ IND-CCA). Let SE = (K, E ,D) be a symmetric encryption
scheme. For any IND-CCA adversary Acca there exist adversaries Acva and Aint consuming similar
resources to Acca such that:

Advind-cca
SE (Acca) ≤ Advind-cva

SE (Acva) + 2 ·Advint-ctxt
SE (Aint) . (2)

A similar relation can be established for stateful chosen-ciphertext security, and each of these re-
lations can be re-proven for security notions involving indistinguishability from random bits. We state
these relations below.

Proposition 14.

IND-CVA ∧ INT-sfCTXT −→ IND-sfCCA

IND$-CVA ∧ INT-CTXT −→ IND$-CCA

IND$-sfCVA ∧ INT-sfCTXT −→ IND$-sfCCA

NECESSITY OF STRONG CIPHERTEXT INTEGRITY. The above relations can be seen as strengthened
variants of the relations from [9] and [7], where we replaced CPA security with CVA security and adopted
the stronger notions of ciphertext integrity. It is natural to ask whether the left-hand side of each relation
can be somehow relaxed. We have seen in Corollaries 11 and 12 that reverting from CVA security to
CPA security is not an option. However it is not evident whether it is necessary to require the stronger
variants of ciphertext integrity. Theorem 15 answers this question by means of a separation, proving that
strong ciphertext integrity is necessary for Theorem 13 to hold. Its proof is in Appendix A.3.

Theorem 15 (IND-CVA∧ INT-CTXT∗ 6−→ IND-CCA). Let SE = (K, E ,D) be a symmetric encryption
scheme with a large message spaceM and an error space {⊥0}, such that it is both IND-CVA secure
and INT-CTXT∗ secure. Let the length of its ciphertexts be bounded above by 2` for some integer

12

Algorithm K

(K,σ, %)← K
m∗ ←$M
(c∗, σ)← EK(m∗, σ)
(m, %)← DK(c∗, %)
K0 ← (K,m∗, c∗)
return (K0, σ, %)

Algorithm EK0(m,σ)

if (m = m∗) then c← c∗

else (c, σ)← EK(m,σ)
return (0 ‖ c, σ)

Algorithm DK0(c, %)

parse c as b ‖ c′
if (b = 0) then

if (c′ = c∗) then m← m∗

else (m, %)← DK(c′, %)
else ψ ← 〈|c∗|〉` ‖ c∗

if 〈c′〉−1 ≤ |ψ| then
d← ψ[〈c′〉−1], m←⊥d

else m←⊥0

return (m, %)

Fig. 8. The scheme SE of Theorem 15.

`. Consider the scheme SE having message space M and error space {⊥0,⊥1} shown in Figure 8.
For any IND-CVA adversary Acva making qe left-or-right queries, and any INT-CTXT∗ adversary Aint

making qt verification queries, there exist adversariesA1
cva,A2

cva, andA1
int (consuming similar resources

to Acva and Aint) such that:

Advind-cva
SE (Acva) ≤ Advind-cva

SE (A1
cva) +

1

2
·Advind-cva

SE (A2
cva) +

qe
|M|

, (3a)

Advint-ctxt∗
SE (Aint) ≤ Advint-ctxt∗

SE (A1
int) +

qt
|M|

. (3b)

Moreover there exists an adversary Acca, making at most (` +maxm∈M(|m|) + 1) decryption queries
and one left-or-right query such that:

Advind-cca
SE (Acca) = 1 . (3c)

Theorem 15 also serves as a separation between INT-CTXT∗ and INT-CTXT, showing that the
latter is strictly stronger. Separations similar to that of Theorem 15 corresponding to the relations of
Proposition 14 can also be established.

Proposition 16.

IND-CVA ∧ INT-sfCTXT∗ 6−→ IND-sfCCA

IND$-CVA ∧ INT-CTXT∗ 6−→ IND$-CCA

IND$-sfCVA ∧ INT-sfCTXT∗ 6−→ IND$-sfCCA

4.1 More Separations

We now present a separation showing that IND-CVA is strictly stronger than IND-CPA. We actually show
something slightly stronger, in that the separation also holds for schemes which are error invariant. This
separation further serves to point out that, even for single-error schemes, Theorem 13 does not reduce to
the relation of Bellare and Namprempre from [9]. The proof of Theorem 17 is in Appendix A.4.

Theorem 17 (IND-CPA∧INV-ERR 6−→ IND-CVA). Let F : Ke×{0, 1}` → {0, 1}n be a pseudorandom
function, where ` is sufficiently large. Then the symmetric encryption scheme SE2 having message space
∪k≥1{0, 1}nk and error space {⊥} shown in Figure 9 is such that, for any IND-CPA adversary Acpa

making q encryption queries totalling µ bits of plaintext, there exists a corresponding adversary Aprf

(consuming similar resources to Acpa) with:

Advind-cpa
SE2 (Acpa) ≤ 2 ·Advprf

F (Aprf) +
(µ
n
+ q
)(q − 1

2`

)
. (4a)

13

Moreover there exists an efficient adversary Acva such that:

Advind-cva
SE2 (Acva) = 1 . (4b)

Algorithm K

K ←$Ke

σ ← ε, %← ε
return (K,σ, %)

Algorithm EK(m,σ)

if |m| 6∈ {αn : α ≥ 1} then
return ⊥

p← |m|/n
parse m as m1 ‖ . . . ‖ mp

mp+1 ← 0n, c0 ←$ {0, 1}`
for i← 1 to p+ 1 do

ci ← FK(c0 + i)⊕mi

c← c0 ‖ c1 ‖ . . . ‖ cp+1

return (c, σ)

Algorithm DK(c, %)

if |c| 6∈ {`+ αn : α ≥ 2} then
return ⊥

q ← (|c| − `)/n
parse c as c0 ‖ . . . ‖ cq
for i← 1 to q do

mi ← FK(c0 + i)⊕ ci
if mq 6= 0n then m←⊥
else m← m1 ‖ . . . ‖ mq−1

return (m, %)

Fig. 9. The scheme SE2 of Theorem 17.

In Section 3 it was noted that if the IND-sfCVA experiment is defined in the obvious way, it would
be syntactically equivalent to the IND-CVA experiment. In the case of indistinguishability from random
bits, an analogous equivalence is not evident from the syntax. Theorem 18 settles this in the negative. Its
proof is in Appendix A.5.

Theorem 18 (IND$-CVA ∧ INV-ERR 6−→ IND$-sfCVA). Let F : Ke × {0, 1}` → {0, 1}n be a pseu-
dorandom function, where ` is sufficiently large. LetMA = (Km, T ,V) be a single-error MAC where
T : Km×{0, 1}∗ → {0, 1}`tag is pseudorandom. Consider the symmetric encryption scheme SE3 having
message space ∪k≥1{0, 1}nk and error space {⊥} shown in Figure 10. For any IND$-CVA adversary
Acva making q encryption queries totalling µ bits of plaintext, there exist three adversaries A1

prf, A2
prf,

and Auf with:

Advind$-cva
SE3 (Acva) ≤Advprf

F (A1
prf) +Advprf

T (A2
prf) +Advuf-cma

MA (Auf)

+
µ

n
·
(
q − 1

2`

)
+
q(q − 1)

2`+n+1
.

Moreover there exist efficient adversaries Asfcva and A′uf such that:

Advind$-sfcva
SE3 (Asfcva) = 1−Advuf-cma

MA (A′uf) . (5a)

Algorithm K

Ke ←$Ke

Km ←$Km

K ← Ke ‖ Km

σ ← ε, %← ε
return (K,σ, %)

Algorithm EK(m,σ)

if |m| 6∈ {αn : α ≥ 1} then
return ⊥

p← |m|/n
parse m as m1 ‖ . . . ‖ mp

c0 ←$ {0, 1}`
for i← 1 to p do

ci ← FK(c0 + i)⊕mi

c← c0 ‖ c1 ‖ . . . ‖ cp
τ ← TKm(c)
return (c ‖ τ, σ)

Algorithm DK(ψ, %)

if |ψ| 6∈ {`+ `tag + αn : α ≥ 1}
then return (⊥, %)

parse ψ as c ‖ τ
v ← VKm(c, τ)
if (v 6= 1) then

return (⊥, %)
q ← (|c| − `)/n
parse c as c0 ‖ . . . ‖ cq
for i← 1 to q do

mi ← FK(c0 + i)⊕ ci
m← m1 ‖ . . . ‖ mq

return (m, %)

Fig. 10. The scheme SE3 of Theorem 18.

14

Expind$-cca3-b
SE,⊥ (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← AEnc$(·),Dec∅(·)

return (b′)

Enc$(m)

(c, σ)← EK(m,σ)

if b = 0 then c← {0, 1}|c|
i← i+ 1, Ci ← c
return c

Dec∅(c)

(m, %)← DK(c, %)
if b = 0 then m←⊥
if c ∈ C then m←
return m

Fig. 11. IND$-CCA3 experiment for multiple-error symmetric encryption schemes.

5 Further Relations and the IND$-CCA3 Notion

AUTHENTICATED-ENCRYPTION SECURITY. Following the work of Bellare and Namprempre [9], chosen-
plaintext security and ciphertext integrity were identified as the two security goals for symmetric encryp-
tion. Rogaway and Shrimpton [25] presented a single security notion, sometimes referred to as IND$-
CCA3 and more commonly called authenticated-encryption security, that is equivalent to the combina-
tion of chosen plaintext security and ciphertext integrity. We now present a natural extension of this
notion to the multiple error setting. Then in Theorem 20 we show that this characterisation is equivalent
to the combination of chosen-plaintext security, weak chosen ciphertext integrity, and error invariance.

Definition 19 (IND$-CCA3 notion for multiple-error symmetric encryption). Let SE = (K, E ,D)
be a multiple-error symmetric encryption scheme with error space S⊥. For an adversary A, an error
⊥∈ S⊥ and a bit b, define experiment Expind$-cca3-b

SE,⊥ (A) as shown in Figure 11. First K is called to
generate a key K, an initial encryption state σ, and an initial decryption state %. The adversary A is
then given access to a special encryption oracle Enc$(·) and a special decryption oracle Dec∅(·). When
b = 1 both oracles behave as normal encryption and decryption oracles. When b = 0 then Enc$(·) will
return a random bit string (of the same length as an actual ciphertext would have been), and Dec∅(·)
will always return ⊥ (unless the queried ciphertext was output by Enc$(·), in which case it will return
).

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b. The experiment returns
b′ as well and, for ⊥∈ S⊥ and an adversary A, the advantage is defined as:

Advind$-cca3
SE,⊥ (A) = Pr

[
Expind$-cca3-1

SE,⊥ (A) = 1
]
− Pr

[
Expind$-cca3-0

SE,⊥ (A) = 1
]
.

The scheme SE is said to be IND$-CCA3 secure if there exists ⊥∈ S⊥ such that for every adversary A
with reasonable resources its advantage Advind$-cca3

SE,⊥ (A) is small.

Note: An IND-CCA3 notion can be defined by replacing the Enc$(·) oracle with a real-or-random
encryption oracle (cf. [5]). Such an oracle returns either an encryption of the queried message or an
encryption of a random message of the same length.

The proof of the following theorem can be found in Appendix A.6.

Theorem 20 (IND$-CPA ∧ INT-CTXT∗ ∧ INV-ERR −→←− IND$-CCA3). Let SE = (K, E ,D) be a
symmetric encryption scheme with error space S⊥.

– For any ⊥∈ S⊥ and any adversary Acca3 there exist adversaries Acpa, Aint and Aerr (consuming
similar resources to Acca3) such that:

Advind$-cca3
SE,⊥ (Acca3) ≤ Advind$-cpa

SE (Acpa) +Advint-ctxt∗
SE (Aint) +Advinv-err

SE,⊥ (Aerr) . (6)

– For any ⊥∈ S⊥ and any three adversaries A′cpa, A′int and A′err there exist three corresponding ad-
versaries A1

cca3, A2
cca3 and A3

cca3 (consuming similar resources to A′cpa, A′int and A′err, respectively)
such that:

Advind$-cpa
SE (A′cpa) ≤ Advind$-cca3

SE,⊥ (A1
cca3) , (7a)

Advint-ctxt∗
SE (A′int) ≤ 2 ·Advind$-cca3

SE,⊥ (A2
cca3) , (7b)

Advinv-err
SE,⊥ (A′err) ≤ 2 ·Advind$-cca3

SE,⊥ (A3
cca3) . (7c)

15

It can be similarly shown that:

Proposition 21. IND-CPA ∧ INT-CTXT∗ ∧ INV-ERR −→←− IND-CCA3 .

It is easy to see that IND$-CCA3 security guarantees IND$-CCA security in the multiple error setting,
which is what we are ultimatly after. In fact we can say something slightly stronger, as indicated in
Proposition 22. The proof is straightforward and we omit it.

Proposition 22.

IND$-CCA3 −→ IND$-CVA ∧ INT-CTXT −→ IND$-CCA

IND-CCA3 −→ IND-CVA ∧ INT-CTXT −→ IND-CCA

6 The Security of Encode-then-Encrypt-then-MAC

Results of Bellare and Namprempre [9] and Krawczyk [19] provide formal evidence for preferring
Encrypt-then-MAC (EtM) over other generic compositions like MAC-then-encrypt (MtE). On the other
hand, by combining results from [19] and [6], it can be shown that MtE is actually IND-CCA secure when
instantiated with CBC-mode encryption or a secure stream cipher (instantiated using counter-mode en-
cryption, for example). Thus the analysis of [9, 19] does not help to separate EtM and MtE when both
are suitably instantiated.

Nonetheless practical secure communications systems (employing CBC and counter-mode encryp-
tion) based on EtM have so far proved themselves less vulnerable to attack than ones based on MtE. For
example, attacks on TLS in [10, 2, 3] and IPsec in [12] exploit weaknesses in specific MtE constructions,
while attacks against deployed EtM constructions seem rarer.

Reconsidering the EtM and MtE compositions in the multiple-error setting provides new formal
grounds for preferring the EtM composition. In what follows, we show that the EtM composition enjoys
a robust form of security (in a sense to be made precise). We then go on to show how the above-
mentioned attacks on specific MtE constructions can be captured in our multiple-error setting.

To make our considerations more realistic, in place of EtM, we actually consider an encode-then-
encrypt-then-MAC (EEM) composition, where the encoding step accounts for the pre-processing (such
as padding) that is common in practical schemes. Similarly, we will consider the MAC-then-Encode-
then-Ecrypt (MEE) composition in place of MtE when discussing attacks.

Our EEM composition is specified in Figure 12. Theorem 23 shows that the EEM composition is
robust, in the sense that it provides IND-CVA and INT-CTXT security, and therefore IND-CCA security,
in the multiple-error setting. The result holds irrespective of the encoding scheme used (and any error
messages it returns) and independent of whatever error messages the encryption component returns, so
long as the encryption component is IND-CPA and the MAC is SUF-CMA. The proof of Theorem 23 is
in Appendix A.7.

Theorem 23 (EEM provides IND-CVA + INT-CTXT). Suppose SE = (Ke, E ,D) is a symmetric
encryption scheme with message space M and error space S⊥. Let MA = (Km, T ,V) be a MAC
with error space Q⊥ producing tags of length `tag. Let ES = (EC,DC) be a length-regular encoding
scheme with domain M, codomain M, and error space U⊥. Figure 12 then defines a symmetric en-
cryption scheme EEM with message spaceM and error space S⊥= S⊥∪ Q⊥∪ U⊥∪ {⊥0}, for some
⊥0 6∈ S⊥∪ Q⊥∪ U⊥. For any IND-CVA adversary Acva and any INT-CTXT adversary Aint against
EEM, there exist adversaries Acpa, A1

suf, and A2
suf such that:

Advind-cva
EEM (Acva) ≤ Advind-cpa

SE (Acpa) +Advsuf-cma
MA (A1

suf) , (8)

Advint-ctxt
EEM (Aint) ≤ Advsuf-cma

MA (A2
suf) . (9)

Moreover, these adversaries consume similar resources to Acva and Aint.

16

Algorithm K

(Ke, σ, %)← Ke

Km ← Km

K ← Ke ‖ Km

return (K,σ, %)

Algorithm EK(m,σ)

w ← EC(m)
(c, σ)← EKe(w, σ)
τ ← TKm(c)
return (c ‖ τ, σ)

Algorithm DK(ψ, %)

if |ψ| < `tag + 1 then
return (⊥0, %)

parse ψ as c ‖ τ
v ← VKm(c, τ)
if v ∈ Q⊥ then

return (v, %)
(w, %)← DKe(c, %)
if w ∈ S⊥ then

return (w, %)
m← DC(w)
return (m, %)

Fig. 12. The generic Encode-then-Encypt-then-MAC composition EEM with distinguishable decryption failures.

In fact, we can prove that EEM also provides IND-CCA3 security if its MAC component only has a
single error message. We omit the details.

As a complement to the above result, it is instructive to model attacks on instantiations of the MAC-
then-Encode-then-Ecrypt (MEE) composition in our multiple-error setting.

– TLS uses a MEE composition in which the encoding step involves the addition of padding having
a specific format. This format should be checked for upon decryption, with a failure resulting in an
error message. Likewise, the MAC verification may fail, resulting in an error message. Error mes-
sages in TLS are encrypted in general, and MAC failures and padding failures are indicated by the
same error message. The attacks on TLS [10] and on DTLS [2] use timing differences to distinguish
MAC failures from padding failures. These differences can be modelled by introducing distinct error
messages for the two failure events (even if at the byte level, the messages are indistinguishable).

– Certain configurations of IPsec use a MEE composition to cryptographically protect IP packets.
The security of these configurations were studied in detail in [12]. Here, the encoding step includes
a padding portion as well as a header portion, and it is the ability to discern between malformed
padding and a malformed header that gives rise to the attacks in [12]. In fact, malformed padding
leads to packets being silently dropped, while malformed headers lead to encrypted error messages
being sent on the network. Again, the attacks can be modelled by introducing distinct error messages
for the different events, even though one of the events does not result in an actual error message being
sent (since the absence of a message also leaks information to the adversary).

– The recent Lucky 13 attack on TLS [3] exploits timing differences arising in HMAC’s verification
algorithm. More specifically each compression function evaluation in HMAC results in additional
processing time during decryption that can be detected by the adversary from the time delay in re-
turning TLS’s MAC failure message; the size of the delay relates to the amount of TLS padding
previously removed and can be used to infer plaintext in an extension of Vaudenay’s padding oracle
attack [26]. This timing channel can be modelled in our framework by transforming HMAC into
a multiple-error MAC. Then the error messages that this version of HMAC returns can be easily
predicted from the length of the string on which the tag is to be verified. It follows from this ob-
servation that any proof of SUF-CMA security for the usual single-error HMAC can be extended
to this multiple-error version of HMAC. So, while this multiple-error HMAC is still SUF-CMA se-
cure, its interaction with the TLS padding renders the MEE composition used in TLS insecure. By
contrast, as established in Theorem 23, an EEM composition would not be compromised by such an
implementation flaw.

Acknowledgements

This work has been supported in part by the European Commission through the ICT programme un-
der contract ICT-2007-216676 ECRYPT II. Alexandra Boldyreva is supported by NSF: CNS-0831184.
Jean Paul Degabriele is supported by Vodafone Group Services Limited, a Thomas Holloway Research

17

Studentship, and the Strategic Educational Pathways Scholarship Scheme (Malta), part-financed by the
European Union European Social Fund. Kenneth Paterson is supported by EPSRC Leadership Fellow-
ship EP/H005455/1.

References

[1] M.R. Albrecht, K.G. Paterson, and G.J. Watson. Plaintext recovery attacks against SSH. In IEEE Symposium on Security
and Privacy, pages 16–26. IEEE Computer Society, 2009.

[2] N.J. AlFardan and K.G. Paterson. Plaintext-recovery attacks against Datagram TLS. In Proceedings of the 19th Annual
Network & Distributed System Security Symposium (NDSS 2012).

[3] N.J. AlFardan and K.G. Paterson. Lucky thirteen: Breaking the TLS and DTLS record protocols. To appear in IEEE
Symposium on Security and Privacy 2013, available at http://www.isg.rhul.ac.uk/tls/TLStiming.pdf.

[4] A. Bauer, J.S. Coron, D. Naccache, M. Tibouchi, and D. Vergnaud. On the broadcast and validity-checking security
of PKCS#1 v1.5 encryption. In J. Zhou and M. Yung (eds.), ACNS 2010, volume 6123 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2010.

[5] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption. In Proceedings
of 38th Annual Symposium on Foundations of Computer Science (FOCS 1997), pages 394–403. IEEE, 1997.

[6] M. Bellare, O. Goldreich, A. Mityagin. The power of verification queries in message authentication and authenticated
encryption. IACR Cryptology ePrint Archive, http://eprint.iacr.org/2004/309.

[7] M. Bellare, T. Kohno, and C. Namprempre. Breaking and provably repairing the SSH authenticated encryption scheme:
A case study of the encode-then-encrypt-and-MAC paradigm. ACM Transactions on Information and Systems Security,
7(2):206–241, 2004.

[8] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In
H. Krawczyk (ed.), CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science, pages 1–12. Springer, 1998.

[9] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the generic com-
position paradigm. In T. Okamoto (ed.), ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
531–545. Springer, 2000.

[10] B. Canvel, A.P. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password interception in a SSL/TLS channel. In D. Boneh
(ed.), CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 583–599. Springer, 2003.

[11] J.P. Degabriele and K.G. Paterson. Attacking the IPsec standards in encryption-only configurations. In IEEE Symposium
on Security and Privacy, pages 335–349. IEEE Computer Society, 2007.

[12] J.P. Degabriele and K.G. Paterson. On the (in)security of IPsec in MAC-then-encrypt configurations. In E. Al-Shaer,
A.D. Keromytis and V. Shmatikov (eds.), ACM Conference on Computer and Communications Security, pages 493–504.
ACM, 2010.

[13] T. Duong and J. Rizzo. Cryptography in the web: The case of cryptographic design flaws in ASP.NET. In IEEE
Symposium on Security and Privacy, pages 481–489. IEEE Computer Society, 2011

[14] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. In Journal of ACM, volume 33 no. 4,
pages 792–807. ACM, 1986.

[15] C. Hall, I. Goldberg and B. Schneier. Reaction attacks against several public-key cryptosystems. In V. Varadharajan and
Y. Mu (eds.), ICICS 99, Sydney, volume 1726 of Lecture Notes in Computer Science, pages 2–12. Springer, 1999.

[16] J. Håstad, R. Impagliazzo, L.A. Levin, and M. Luby. A pseudorandom generator from any one-way function. In SIAM
Journal on Computing, volume 28 no. 4, pages 1364–1396. SIAM, 1999.

[17] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptography (extended abstract).
In Proceedings of 30th Annual Symposium on Foundations of Computer Science (FOCS 1989), pages 230–235. IEEE,
1989.

[18] T. Jager and J. Somorovsky. How to break XML encryption. In Y. Chen, G. Danezis and V. Shmatikov (eds.) ACM
Conference on Computer and Communications Security, pages 413–422. ACM, 2011.

[19] H. Krawczyk. The order of encryption and authentication for protecting communications (or: How secure is SSL?). In
J. Kilian (ed.), CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 310–331. Springer, 2001.

[20] J. Manger. A chosen ciphertext attack on RSA optimal asymmetric encryption padding (OAEP) as Standardized in
PKCS #1 v2.0. In J. Kilian (ed.), CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 230–238.
Springer, 2001.

[21] K.G. Paterson and G.J. Watson. Plaintext-dependent decryption: A formal security treatment of SSH-CTR. In H. Gilbert
(ed.), EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 345–361. Springer, 2010.

[22] K.G. Paterson, T.E. Shrimpton and T. Ristenpart. Tag size does matter: Attacks and proofs for the TLS record protocol.
In D.H. Lee and X. Wang (eds.), ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 372–389,
Springer, 2011.

[23] K.G. Paterson and G.J. Watson. Authenticated-encryption with padding: A formal security treatment. In D. Naccache
(ed.), Cryptography and Security 2012, volume 6805 of Lecture Notes in Computer Science, pages 83–107. Springer,
2012.

[24] P. Rogaway. Nonce-based symmetric encryption. In B. Roy and W. Meier (eds.), FSE 2004, volume 3017 of Lecture
Notes in Computer Science, pages 348–359. Springer 2004.

18

[25] P. Rogaway, and T. Shrimpton. A provable-security treatment of the key-wrap problem. In S. Vaudenay (ed.), EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 373–390. Springer, 2006.

[26] S. Vaudenay. Security flaws Induced by CBC padding - Applications to SSL, IPSEC, WTLS. In L.R. Knudsen (ed.),
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 534–546. Springer 2002.

A Proofs

A.1 Proof of Theorem 10

The correctness of the constructed scheme is easy to verify and we therefore proceed to prove the first
part of the theorem. For any adversry Acpa, making at most 2` − 1 encryption queries, we construct
Aprf as follows. Adversary Aprf runs Km to get a key for the MAC, it then runs Acpa and provides it
with a simulation of its left-or-right encryption oracle. Essentially Aprf selects a uniformly random bit
d and uses its own oracle together with its MAC key to encrypt md according to the construction in
Figure 7, where the pseudorandom function is replaced by its own oracle. Finally, if Acpa’s output is
equal to d, then Aprf outputs 1 otherwise it outputs 0. Now when Aprf’s oracle is instantiated with F
it provides Aprf with a perfect simulation of the IND-CPA experiment. On the other hand when Aprf’s
oracle is a random function, the ciphertexts returned to Acpa provide no information about d, i.e. d is
information-theoretically hidden. Therefore we have that:

Advprf
F (Aprf) = Pr

[
Ke ←$Ke : A

FKe (·)
prf = 1

]
−Pr

[
f ←$ Func(`, n) : Af(·)

prf = 1
]

= Pr
[
d← {0, 1} : Expind-cpa-d

SE1 (Acpa) = d
]
− 1

2

=
1

2
+

1

2
·Advind-cpa

SE1 (Acpa)−
1

2
=

1

2
·Advind-cpa

SE1 (Acpa) .

Inequality (1a) thus follows, and we now prove the second inequality.
For any adversaryAint making at most 2`−1 encryption queries, adversaryAuf proceeds as follows.

It samples a key Ke for the pseudorandom function F and then runs adversary Aint. It simulates the
encryption oracle by using its own tagging oracle and the pseudorandom function under the sampled
key. In addition it also maintains an ordered list of the messages Aint queries to the encryption oracle
together with their corresponding ciphertexts. It then simulates the try oracle as follows. As long as
Aint’s queries are in sync, i.e. they match the ciphertexts in Auf’s list in the exact same order, it returns
 . Alternatively considerAint’s first out-of-sync query ci, let this be its ith try query. In this caseAuf first
checks that |ci| = n and if not it halts, otherwise it computes the XOR of ci and FKe(〈i〉`). It then parses
the result into a message and a tag, prepends the message with the string 〈i〉`, submits it together with
the tag to its verification oracle and halts.

Note that due to the scheme’s construction Aint can only win within its first 2` − 1 try queries.
Since we are interested in bounding its advantage we only need to consider the case where i ≤ 2` − 1 .
Now Auf provides Aint with a perfect simultation of the INT-sfCTXT experiment until Aint makes its
first out-of-sync try query, at which point Aint will either win or lose the experiment (again due to the
scheme’s construction). Moreover because Auf’s only verification query corresponds to an out-of-sync
query and Aint can only make at most 2` − 1 encryption queries, it follows that the message prepended
with 〈i〉` could not have been previously queried by Auf to its tagging oracle. Thus whenever Aint wins
Auf also wins, and inequality (1a) follows.

We conclude the proof by describing adversary Acca which breaks the IND-CCA security of SE1.
The adversary submits (0‖0n−`tag−1, 1‖0n−`tag−1) to the left-or-right oracle and gets in return a cipher-
text c∗. It then submits c∗ ⊕ (0n−`tag−1‖1) to the decryption oracle. If the decryption oracle returns ⊥0

thenAcca outputs 0, otherwise it outputs 1. Due to the scheme’s construction, this adversary will always
win except for the case where the decryption oracle returns m 6∈ {⊥0,⊥1}. However this would imply
a MAC forgery. Adversary Acca can then be easily transformed into a UF-CMA adversary A′uf against
MA such that equation (1c) holds.

ut

19

A.2 Proof of Theorem 13

To any IND-CCA adversary Acca we can associate an IND-CVA adversary Acva and an INT-CTXT ad-
versary Aint . Both Acva and Aint operate by running Acca, and then attempt to simulate its enviroment
as follows. Adversary Acva forwards Acca’s left-or-right queries to its own left-or-right oracle, and for-
wards decryption queries to its validation oracle. If the ciphertext turns out to be invalid it returns the
error message toAcca, otherwise it aborts. It then outputs whateverAcca outputs. AdversaryAint picks a
bit uniformly at random, and uses this together with its encryption oracle to simulateAcca’s left-or-right
oracle. It forwards decryption queries to its verification oracle and returns any error messages back to
Acca.

Let W represent the event Expind-cca-b
SE (Acca) = b where b is picked uniformly at random. Let E

represent the event that Acca makes a valid decryption query. We then have that:

Pr [W] = Pr
[
W ∧ E

]
+Pr [W ∧ E]

≤ Pr
[
W ∧ E

]
+Pr [E] .

We now bound each of the terms on the right-hand side of the last inequality. Note that Aint simulates
Acca’s environment perfectly until the point where Acca makes a valid decryption query. Thus it follows
that whenever E occurs, Aint wins the INT-CTXT experiment. On the other hand if E does not occur,
then Acva’s simulation of Acca’s environment is perfect. Consequently whenever event W ∧ E occurs,
Acva wins the IND-CVA experiment. Equation (2) follows by combining the above and noting that:

Advind-atk
SE (A) = 2 ·Pr

[
b← {0, 1} : Expind-atk-b

SE (A) = b
]
− 1 . (10)

ut

A.3 Proof of Theorem 15

Correctness of the constructed scheme follows easily from the correctness of the original scheme, and
we thus proceed to prove equation (3a). Adversary A1

cva starts by picking a message m∗ uniformly at
random from the message space and computes ψ by querying (m∗,m∗) to its left-or-right oracle. A1

cva
also submits c∗ to its ciphertext-validity oracle to maintain the states of its oracles synchronised and
thereby correctly simulate SE . It then runs Acva and simulates its oracles according to the construction
in Figure 8 using its own oracles. Note that A1

cva provides a perfect simulation to Acva, unless the latter
queries m∗. In that case A1

cva aborts and outputs a bit chosen uniformly at random.
LetW andW 1 represent respectively the events Expind-cva-b

SE (Acva) = b and Expind-cva-d
SE (A1

cva) =
d where b and d are picked uniformly at random. Furthermore let E denote the event thatAcva makes an
encryption query which includes m∗. We then have that:

Pr
[
W 1
]
= Pr

[
W ∧ E

]
+

1

2
·Pr [E]

Pr
[
W 1
]
− 1

2
·Pr [E] +Pr [W ∧ E] = Pr

[
W ∧ E

]
+Pr [W ∧ E]

Pr
[
W 1
]
+

1

2
·Pr [E] ≥ Pr [W]

Advind-cva
SE (A1

cva) +
1

2
·Pr [E] ≥ Advind-cva

SE (Acva) . (11)

It now remains to bound Pr [E]. Note that (due to the details of SE’s construction)Acva can recover the
encryption of m∗ from its ciphertext-validity oracle, and consequently we cannot bound Pr [E] using
an information-theoretic argument. Instead we construct adversary A2

cva such that if Acva can do signifi-
cantly better than what is information-theoretically possible, then A2

cva breaks the IND-CVA security of

20

SE . Adversary A2
cva proceeds exactly as A1

cva, except that it computes c∗ by querying (m+,m∗) to its
left-or-right oracle for some message m+ chosen uniformly at random. Then if at any point during its
runtime Acva queries m∗, A2

cva outputs 1 else it outputs 0. It then follows that:

Advind-cva
SE (A2

cva) = Pr
[
Expind-cva-1

SE (A2
cva) = 1

]
− Pr

[
Expind-cva-0

SE (A2
cva) = 1

]
≥ Pr [E]− 2qe

|M|
. (12)

The second line follows from the fact that by definition A2
cva ouptuts 1 exactly when E occurs; whereas

in the second experimentA2
cva has no information aboutm∗ and hence an information theoretic argument

can be applied. Combining equations (11) and (12) yields equation (3a).
Adversary A1

int picks a message m∗ uniformly at random, computes c∗ using its encryption oracle,
and then queries c∗ to its try oracle to maintain the states synchronised. It then runs Aint and simulates
its environment using its own oracles. Specifically it forwards encryption queries to its own encryption
oracle and prepends the resulting ciphertexts with a 0 bit. If Aint queries m∗ it returns 0‖c∗. As regards
verification queries, it returns⊥ for ciphertexts starting with a 1 bit, and for all other queries it chops off
the first bit and forwards the remaining ciphertext to its own verification oracle. This provides Aint with
a perfect simulation of its environment. Let Z and Z1 represent respectively the events thatAint andA1

int
win the INT-CTXT∗ experiment, and let F represent the event that Aint queries 0‖c∗ to its verification
oracle without querying m∗ to its encryption oracle. We then have that:

Pr [Z] = Pr
[
Z ∧ F

]
+Pr [Z ∧ F]

≤ Pr
[
Z1
]
+Pr [F]

Advint-ctxt∗
SE (Aint) ≤ Advint-ctxt∗

SE (A1
int) +

qt
|C|

. (13)

The bound on Pr [F] follows from the fact that unlessAint queries m∗ to its encryption oracle, it has no
partial information about c∗. Thus equation (3b) follows from equation (13) by noting that |C| is at least
as large as |M| (from the correctness of SE).

We now conclude the proof by describing adversary Acca . Note (from the construction of SE) that
the decryption of 1‖〈i〉` leaks the ith bit of the string ψ = 〈|c∗|〉`‖c∗ through the returned error message.
Thus Acca starts by making a series of ` decryption queries, 1‖〈0〉`, 1‖〈1〉`, 1‖〈2〉`, . . . , 1‖〈`− 1〉`, to
recover the value |c∗|. It then makes a second series of decryption queries, 1‖〈`〉`, 1‖〈` + 1〉`, . . . , 1‖
〈`− 1 + |c∗|〉`, to recover c∗. It can now recover the message m∗ by querying the ciphertext 0‖c∗ to its
decryption oracle. Having recovered m∗, it submits the pair (m∗,m◦) to its left-or-right oracle, where
m∗ 6= m◦. If the returned ciphertext is equal to 0‖ c∗ the adversary outputs 0, otherwise it outputs 1.
This adversary is always successful, and hence equation (3c) follows.

ut

A.4 Proof of Theorem 17

It is easy to verify that the constructed scheme is correct, and since its error space contains only a
single element it is trivially INV-ERR. We therefore proceed to prove that it is IND-CPA secure. For any
adversaryAcpa we construct adversaryAprf as follows. AdversaryAprf selects a uniformly random bit d,
runs Acpa and simulates its left-or-right encryption oracle. It does so by using its own oracle to encrypt
md according to the construction in Figure 9, where the pseudorandom function is replaced by Aprf’s
oracle. Then if Acpa’s output is equal to d, Aprf outputs 1 otherwise it outputs 0. Note that when Aprf’s
oracle is instantiated with F it provides Aprf with a perfect simulation of the IND-CPA experiment. On
the other hand when Aprf’s oracle is a random function, the ciphertexts returned to Acpa provide no
information about d, unless Aprf’s oracle is queried on the same input more than once. Let E denote

21

the event that Aprf queries its oracle on the same input more than once when simulating the left-or-right
oracle. We then have that:

Advprf
F (Aprf) = Pr

[
K ←$Ke : AFK(·)

prf = 1
]

−Pr
[
f ←$ Func(`, n) : Af(·)

prf = 1
]

Advprf
F (Aprf) +Pr

[
f ←$ Func(`, n) : Af(·)

prf = 1
]
= Pr

[
d← {0, 1} : Expind-cpa-d

SE2 (Acpa) = d
]

bounding the left-hand side and using equation (10) on the right-hand side,

Advprf
F (Aprf) +

1

2
· (1−Pr [E]) +Pr [E] ≥ 1

2
+

1

2
·Advind-cpa

SE2 (Acpa)

Advprf
F (Aprf) +

1

2
·Pr [E] ≥ 1

2
·Advind-cpa

SE2 (Acpa) .

Furthermore it can be shown that (cf. [5, Lemma 10]):

Pr [E] ≤
(µ
n
+ q
)(q − 1

2`

)
.

By combining the above we get inequality (4a). Now, adversary Acva proceeds as follows. It queries the
message pair (1n ‖ 1n, 1n ‖ 0n) to the left-or-right oracle, and gets an ` + 3n bit long ciphertext in
return. It then takes this ciphertext, truncates the last n bits, and submits it to the validation oracle. If the
oracle returns ⊥ the adversary outputs 0 (left), else if is returned it outputs 1 (right). It is easy to see
that Acva always succeeds and therefore its advantage is 1.

ut

A.5 Proof of Theorem 18

The constructed scheme is similar to that of Theorem 17, except that it does not append the message
with a block of 0’s, and the ciphertext is additionally authenticated with a MAC. We will prove that the
scheme is IND$-CVA secure in two steps. For any adversaryAcva we first construct adversaryAuf and an
IND$-CPA adversary Acpa against SE3 . In the second step we then show how to construct adversaries
A1

prf and A2
prf from any such IND$-CPA adversary. Combining the two steps yields the desired result.

AdversaryAuf runs Ke to obtain a key for F , picks a bit uniformly at random, and then runsAcva . It
then uses the random bit, the PRF indexed by the generated key, and its own tagging oracle to simulate
an Enc$(·) oracle for Acva according to the construction of Figure 10. It handles validation queries by
parsing the queried ciphertext into a ‘message’ and a tag, and forwards the two to its verification oracle.
Adversary Acpa runs Acva, and simulates its encryption oracle using its own oracle. To all validation
queries it responds with ⊥ , and it outputs whatever Acva outputs. Note that Acpa also makes q encryp-
tion queries totalling µ bits of plaintext. Now let W represent the event that Acva wins the IND-CVA
experiment, and let F represent the event that it makes a successful validation query. It then follows
that:

Pr [W] ≤ Pr
[
W ∧ F

]
+Pr [F] .

We can assume without loss of generality that Acva never queries to its validation oracle a ciphertext
that was previously returned by the encryption oracle. We can then bound each of the terms on the right-
hand side of the inequality as follows. First note that Auf provides Acva with a perfect simulation of the
IND-CVA experiment, and clearly whenever E occurs Auf successfully forges a tag for a new message.

22

Contrarily if F does not occur then Acpa simulates Acva’s environment perfectly, and thus whenever
W ∧ F occurs, Acpa wins the IND-CPA experiment. This yields:

Advind$-cva
SE3 (Acva) ≤ Advind$-cpa

SE3 (Acpa) +Advuf-cma
MA (Auf) . (14)

We now move to the second step of the proof and bound Acpa’s advantage. Towards this aim we
define a hybrid experiment ExpH, similar in spirit to the two IND$-CPA experiments corresponding to
each bit value. The hybrid experiment proceeds exactly as the Expind$-cpa-1

SE3 experiment except for one
detail. In the encryption oracle the intermediate string which constitutes the unauthenticated ciphertext
is replaced with a uniformly random string of the same length and the MAC is then applied to this string
instead. Thus we have that:

Advind$-cpa
SE3 (Acpa) =

(
Pr
[
Expind$-cpa-1

SE3 (Acpa) = 1
]
− Pr [ExpH(Acpa) = 1]

)
+
(
Pr [ExpH(Acpa) = 1]− Pr

[
Expind$-cpa-0

SE3 (Acpa) = 1
])

. (15)

Now we consider each of the above terms in the braces separately, and in each case consider Acpa’s
success in distinguishing between the two experiments. For any adversary Acpa distinguishing between
the two experiments in the first term we can associate a PRF adversary A1

prf against F . Adversary
A1

prf proceeds by running Km to obtain a key forMA, and then runs Acpa . It simulates its encryption
oracle by using MA under the obtaineds key and its own oracle to recreate the encryption algorithm
of Figure 10. Then A1

prf outputs whatever Acpa outputs. Note that if A1
prf’s oracle is instantiated with

F , it perfectly simulates a ‘real’ encryption oracle for A1
prf . On the other hand if its oracle is a random

function it simulates the encryption oracle of the hybrid experiment as long as it does not query the
random funtion on the same input more than once. Let E1 denote the event that A1

prf queries its oracle
on the same input more than once when simulating Acpa’s encryption oracle, let Zb represent the event
that Expind$-cpa-b

SE3 (Acpa) = 1, and let ZH represent the event that ExpH(Acpa) = 1. The first term in
equation (15) can then be bounded as follows:

Pr [Z1]−Pr [ZH] ≤ Pr
[
Z1 | E1

]
−Pr

[
ZH | E1

]
+Pr [E1]

≤ Pr
[
K ←$Ke : A1

prf
FK(·)

= 1
]

−Pr
[
f ←$ Func(`, n) : A1

prf
f(·)

= 1
]
+Pr [E1]

≤ Advprf
F (A1

prf) +
µ

n
·
(
q − 1

2`

)
. (16)

The bound on Pr [E1] follows from Lemma 10 in [5]. Now for any adversary Acpa distinguishing be-
tween the two experiments in the second term we construct a PRF adversary A2

prf against T . Adversary
A2

prf runs Acpa and simulates its encryption oracle as follows. It first verifies that queried message is in
the message space and outputs ⊥ otherwise. It then samples a random string of length ` + |m|, where
m is the queried message, and submits it to its own oracle. It then appends the oracle’s output to the
random string and returns it to Acpa. Now when A2

prf’s oracle is instantiated with T , it provides Acpa

with a perfect simulation of the hybrid experiment. Alternatively if its oracle is a random function it
simulates the ‘random’ encryption oracle of the IND$-CPA experiment, as long as it does not query the

23

same string more than once. Let E2 denote this event, we then have that:

Pr [ZH]−Pr [Z0] ≤ Pr
[
ZH | E2

]
−Pr

[
Z0 | E2

]
+Pr [E2]

≤ Pr
[
K ←$Km : A2

prf
TK(·)

= 1
]

−Pr
[
f ←$ Func(∗, n) : A2

prf
f(·)

= 1
]
+Pr [E2]

≤ Advprf
F (A2

prf) +
q(q − 1)

2`+n+1
. (17)

The second term on the right-hand-side of the last inequality results from a brithday bound on event E2.
Combining equations (14) (15) (16) (17) yields inequality (5a). This proves that scheme SE3 is IND$-
CVA secure. To conclude the proof we now describe an adversary Asfcva that breaks the IND$-sfCVA
security of this scheme. Adversary Asfcva queries two distinct messages m1 and m2 to its encryption
oracle in this exact order, and gets in return two corresponding ciphertexts c1 and c2. It then makes an
out-of-sync query c2 to the validation oracle. If the oracle returns it outputs 1 otherwise it outputs
0. Now if the encryption oracle returned a ‘real’ encryption the validation oracle will always return .
Alternatively if c2 is a random string the probability that the validation oracle returns is bounded by
Advuf-cma

MA (otherwise there exists a trivial adversary againstMA). Inequality (5a) thus follows.
ut

A.6 Proof of Theorem 20

We prove the first part of Theorem 20 by showing that for any ⊥∈ S⊥ and any IND$-CCA3 adversary
Acca3 we can construct three adversariesAcpa,Aint,Aerr that correspond to the IND$-CPA, INT-CTXT∗,
and INV-ERR experiments respectively. Moreover whenever Acca3 is successful, then at least one of
the three constructed adversaries will also be successful. Each of the three adversaries runs Acca3 and
attempts to simulate its enviroment as follows. Acpa forwards encryption queries to its own Enc$(·)
oracle and responds to decryption queries always with ⊥. It then outputs whatever Acca3 outputs. As
for Aint and Aerr, these respond to Acca3’s encryption queries using their own encryption oracle, and
hence always returns a valid encryption. Furthermore Aint forwards any decryption queries that Acca3

makes to its Try(·) oracle, and always returns ⊥. Finally Aerr forwards all decryption queries to its own
decryption oracle.

Now let Zb represent the event that Expind-cca3-b
SE,⊥ (Acca3) = 1. For b = 1 let E and F denote

the respective events where Acca3 queries a ciphertext c to its decryption oracle such that Dec∅(c) ∈
S⊥ \ {⊥}, and Dec∅(c) ∈M. We then have that:

Pr [Z1] = Pr
[
Z1 ∧ F ∧ E

]
+Pr

[
Z1 ∧ F ∧ E

]
+Pr [W ∧ E]

≤ Pr
[
Z1 ∧ F ∧ E

]
+Pr

[
F ∧ E

]
+Pr [E] .

Acca3’s advantage can then be expressed as:

Advind$-cca3
SE,⊥ (Acca3) = Pr [Z1]−Pr [Z0]

≤ (Pr
[
Z1 ∧ F ∧ E

]
−Pr [Z0]) +Pr

[
F ∧ E

]
+Pr [E] .

Now each of the three terms on the right-hand side of the last inequality can be bounded as follows.
Note thatAerr providesAcca3 with a perfect simulation of the IND$-CCA3 experiment for the case when
b = 1. Thus whenever E occurs,Aerr wins the INV-ERR experiment for ⊥. On the other hand if E does
not occur then Aint provides Acca3’s with a perfect simulation of the IND$-CCA3 experiment for the

24

case when b = 1. This is true until F occurs, at which point Aint wins the INT-CTXT∗ experiment.
Finally if E and F do not occur, then Acpa provides Acca3 with a perfect simulation of IND$-CCA3
experiment. It then follows that the first term corresponds to Acpa’s advantage. Combining the above
yields inequality (6). Note that each of the three adversaries uses similar resources as Acca3.

The second part of the theorem is easier to prove. Adversary A1
cca3 runs A′cpa, forwards encryption

queries to its own Enc$(·) oracle and outputs whatever A′cpa outputs. Since this provides A′cpa with a
perfect simulation of its environment, it follows that they both have the same advantage. AdversaryA2

cca3
runs A′int and simulates its oracles using its Enc$(·) oracle and its Dec∅(·) oracle. If at any point A′int
queries a ciphertext (not previously returned by the encryption oracle) wich decrypts successfully, then
A2

cca3 halts and outputs 1. Otherwise it outputs a uniformly-random bit. Note that when b = 1 A2
cca3

provides A′int with a perfect simulation of its environment, but when b = 0 A′int has zero probability of
winning. Inequality (7b) then follows from:

Advind$-cca3
SE,⊥ (A2

cca3) = Expind$-cca3-1
SE,⊥ (A2

cca3)−Expind$-cca3-0
SE,⊥ (A2

cca3)

=
1

2
· (1−Advint-ctxt∗

SE (A′int)) +Advint-ctxt∗
SE (A′int)−

1

2

=
1

2
·Advint-ctxt∗

SE (A′int)) .

Adversary A3
cca3 proceeds in a similar fashion. It runs A′err and simulates its oracles using its Enc$(·)

oracle and its Dec∅(·) oracle. If at any point A′int queries a ciphertext which returns an error symbol
in S⊥ \ {⊥}, then A3

cca3 halts and outputs 1. Otherwise it outputs a uniformly-random bit. Again when
b = 1 A3

cca3 provides A′err with a perfect simulation of its environment, but when b = 0 A′err has zero
probability of winning. Inequality (7c) then follows as in the previous case. Finally note that in all three
cases the respective constructed IND$-CCA3 adversaries use the same resources as A′cpa, A′int and A′err.

ut

A.7 Proof of Theorem 23

Correctness of the constructed scheme follows easily from the correctness of its constituent schemes,
and we thus proceed to prove its security. We start by proving inequality (8).

Adversary Acpa simply runs Km to get a key for the MAC and then runs Acva. It answers its left-
or-right encryption queries by first encoding both messages, it then submits them to its own oracle,
computes a tag for the resulting ciphertext and retuns the ciphertext cocatenated with the tag. Validation
queries are handled by extracting the tag from the submitted ciphertext, verifiying the tag on the remain-
ing string using the derived MAC key, and returning the output to Acva. If the submitted ciphertext is
shorter than `tag it returns ⊥0 instead. It then outputs whatever Acva outputs.

Adversary A1
suf runs Ke to get an encryption key, picks a bit uniformly at random, and uses these

together with its tagging oracle to simulate Acva’s left-or-right oracle. It handles decryption queries by
extracting the tag from the submitted ciphertext, and submitting the tag together with the remaining
string to its verification oracle, and forwards the output to Acva. If the submitted ciphertext is shorter
than `tag it returns ⊥0 instead.

Now let W represent the event Expind-cva-b
EEM (Acva) = b where b is picked uniformly at random. Let

E represent the event that Acva makes a validation query which returns an error message in S⊥ \ Q⊥.
We then have that:

Pr [W] = Pr
[
W ∧ E

]
+Pr [W ∧ E]

≤ Pr
[
W ∧ E

]
+Pr [E] .

We bound each term on the right-hand side of the last inequality as follows. Note thatA1
suf simulates

Acva’s environment perfectly until one of Acva’s queries results in a forgery for A1
suf. It then follows

25

that whenever E occurs, A1
suf wins the SUF-CMA experiment. On the other hand if E does not occur,

then Acpa’s simulation of Acva’s environment is perfect. Consequently whenever event W ∧ E occurs,
Acpa wins the IND-CPA experiment. Equation (8) then follows by combining the above and using equa-
tion (10).

Adversary A2
suf runs Ke to get an encryption key, picks a bit uniformly at random, and uses these

together with its tagging oracle to simulate Aint’s encryption oracle. For each encryption query that
Aint’s submits, it first encodes the message and then encrypts it with EK . It then obtains a tag for the
resulting ciphertext from its own oracle, and returns the ciphertext concatenated with the tag. Queries to
the Try(·) oracle are handled by extracting a tag from the ciphertext, and submitting tag together with
the remaining string to its verification oracle, and the output is returned to Aint. On the other hand if
the submitted ciphertext cannot be parsed ⊥0 is returned. Note that A2

suf provides Aint with a perfect
simulation of the INT-CTXT experiment until the point at which Aint makes a successful try query.
Moreover wheneverAint forges a ciphertext, A2

suf’s corresponding verification query will also constitute
a forgery. Inequality (9) thus follows.

ut

26

