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Abstract. Goldwasser and Micali (1984) highlighted the importance of randomizing the plaintext for
public-key encryption and introduced the notion of semantic security. They also realized a cryptosystem
meeting this security notion under the standard complexity assumption of deciding quadratic residuosity
modulo a composite number. The Goldwasser-Micali cryptosystem is simple and elegant but is quite
wasteful in bandwidth when encrypting large messages. A number of works followed to address this
issue and proposed various modifications.
This paper revisits the original Goldwasser-Micali cryptosystem using 2k-th power residue symbols. The
so-obtained cryptosystems appear as a very natural generalization for k ≥ 2 (the case k = 1 corresponds
exactly to the Goldwasser-Micali cryptosystem). Advantageously, they are efficient in both bandwidth
and speed; in particular, they allow for fast decryption. Further, the cryptosystems described in this paper
inherit the useful features of the original cryptosystem (like its homomorphic property) and are shown
to be secure under a similar complexity assumption. As a prominent application, this paper describes an
efficient lossy trapdoor function based thereon.

Keywords: Public-key encryption, quadratic residuosity, Goldwasser-Micali cryptosystem, homomor-
phic encryption, standard model.

1 Introduction

Encryption is arguably one of the most fundamental cryptographic primitives. Although it seems an easy
task to identify properties that a good encryption scheme must fulfill, it turns out that rigorously defining
the right security notion is not trivial at all. Security is context sensitive. Merely requiring that the plaintext
cannot be recovered from the ciphertext is not enough in most applications. One may require that the
knowledge of some a priori information on the plaintext does not help the adversary to obtain any new
information, that is, beyond what can be obtained from the a priori information. This intuition is formally
captured by the notion of semantic security, introduced by Goldwasser and Micali in their seminal paper [21].
They also introduced the equivalent notion of indistinguishability of encryptions, which is usually easier to
work with. Given the encryption of any two equal-length (distinct) plaintexts, an adversary should not be
able to distinguish the corresponding ciphertexts.

Clearly, the latter notion is only achievable by probabilistic public-key encryption schemes. One such
cryptosystem was also presented in [21]. It achieves ciphertext indistinguishability under the Quadratic
Residuosity (QR) assumption. Informally, this assumption says that it is infeasible to distinguish squares
from non-squares in JN (i.e., the set of elements in Z∗N whose Jacobi symbol is 1) where N = pq is an
RSA-type modulus of unknown factorization.

The Goldwasser-Micali cryptosystem is simple and elegant. The public key comprises an RSA modulus
N = pq and a non-square y ∈ JN while the private key is the secret factor p. The encryption of a bit m ∈ {0, 1}

? A preliminary version of this paper appears in the proceedings of EUROCRYPT 2013. This is the full version.
?? Part of this work was done while this author was with Technicolor, France.
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is given by c = ym x2 mod N for a random x ∈ Z∗N. The message m is recovered using p, by checking
whether c is a square: m = 0 if so, and m = 1 otherwise —observe that a non-square y ∈ JN is also a
non-square modulo p. The encryption of a string m = (mk−1, . . . ,m0)2, with mi ∈ {0, 1}, proceeds by forming
the ciphertexts ci = ymi x2 mod N, for 0 ≤ i ≤ k − 1. The scheme is computationally efficient but somewhat
wasteful in bandwidth as k · log2 N bits are needed to encrypt a k-bit message. Several proposals were made
to address this issue.

A first attempt is due to Blum and Goldwasser [8]. They achieve a better ciphertext expansion: the
ciphertext has the same length as the plaintext plus an integer of the size of modulus. The scheme is proved
semantically secure assuming the unpredictability of the output of the Blum-Blum-Shub’s pseudorandom
generator [6,7] which resides on the factorisation hardness assumption. Details about this scheme can be
found in [20].

Another direction, put forward by Benaloh and Fischer [12,5], is to use a k-bit prime r such that r |
p − 1, r2 - p − 1 and r - q − 1. The scheme also requires y ∈ Z∗N such that yφ(N)/r . 1 (mod N), where
φ(N) = (p − 1)(q − 1) denotes Euler’s totient function. A k-bit message m (with m < r) is encrypted as
c = ym xr mod N, where x ∈R Z∗N. It is recovered by searching over the entire message space, [0, r) ⊆ {0, 1}k,
for the element m satisfying (yφ(N)/r)m

≡ cφ(N)/r (mod N). The scheme is shown to be secure under the prime-
residuosity assumption (which generalizes the quadratic residuosity assumption). With the Benaloh-Fischer
cryptosystem, the ciphertext corresponding to a k-bit message is short but the decryption process is now
demanding. In practice, the scheme is therefore limited to small values of k, say k < 40.

The Benaloh-Fischer cryptosystem was subsequently extended by Naccache and Stern [41]. They observe
that the decryption can be sped up by rather considering a product of small (odd) primes R =

∏
i ri such

that ri | φ(N) but ri
2 - φ(N) for each prime ri. Given a ciphertext, the plaintext m is reconstructed from

mi := m mod ri through Chinese remaindering. The advantage is that each mi is searched in the subspace
[0, ri) instead of the entire message space. A variant of this technique was used by Groth [22].

Other generalizations and extensions of the Goldwasser-Micali cryptosystem but without formal security
analysis can be found in [55,34,46] and, more recently and concurrently to this paper, in [24] that presents
essentially the same schemes but with an incomplete security analysis. In [40,39], Monnerat and Vaudenay
developed applications using the more general theory of characters, specifically with characters of order≤ 4.
Related cryptosystems are described in [51,50]. Yet another, different approach was proposed by Okamoto
and Uchiyama [44], who suggested to use moduli of the form N = p2q. This allows encrypting messages of
size up to log2 p bits. This was later extended by Paillier [45] to the setting N = p2q2. In 2005, Boneh, Goh
and Nissim [10] showed an additively homomorphic system also supporting one multiplication.

A useful application of additive homomorphic encryption schemes resides in the construction of lossy
trapdoor functions (or LTDFs in short). These functions, as introduced by Peikert and Waters [47], are function
families wherein injective functions are computationally indistinguishable from lossy functions, which
lose many bits of information about their input. LTDFs have proved to be very powerful and versatile
in the cryptographer’s toolbox. They notably imply chosen-ciphertext-secure public-key encryption [47],
deterministic encryption [2,9] as well as cryptosystems that retain some security in the absence of reliable
randomness [3] or in the presence of selective-opening adversaries [4].

Our contributions

New Homomorphic Cryptosystem. We suggest an improvement of the original Goldwasser-Micali cryp-
tosystem. It can be seen as a follow-up of the earlier works due to Benaloh and Fischer [12] and Naccache
and Stern [41]. Before discussing it, we quote from [41]:

“Although the question of devising new public-key cryptosystems appears much more difficult
[. . . ] we feel that research in this direction is still in order: simple yet efficient constructions may
have been overlooked.”

It is striking that the generalized cryptosystem in this paper was not already proposed because, as will
become apparent (cf. Section 3), it turns out to be a very natural generalization. Our approach consists in
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considering nth-power residues modulo N with n = 2k (the Goldwasser-Micali system corresponds to the case
k = 1). This presents many advantages. First, the resulting cryptosystem is bandwidth-efficient. Only log2 N
bits are needed for encrypting a k-bit message in typical applications (e.g., using the KEM/DEM paradigm).
Second, the decryption process is very fast, even faster than in the Naccache-Stern cryptosystem. Searches are
no longer needed (not even in smaller subspaces) in the decryption algorithm as plaintext messages can be
recovered bit by bit. In its basic version, our decryption algorithm is asymptotically slower than in Paillier’s
cryptosystem as the number of bit operations is quartic. However, we suggest several optimizations to speed
up the decryption process. In one of these, the decryption cost is dominated by O(k) modular squarings
and multiplications —which only takes O(k3) operations— at the expense of storing the equivalent of O(k)
RSA moduli throughout intermediate steps. As a last advantage, the underlying complexity assumption is
similar to that used by Goldwasser and Micali. The proposed cryptosystem is shown to be secure under the
quadratic residuosity assumption for RSA moduli N = pq such that p, q ≡ 1 (mod 2k) and the hardness of
determining the Jacobi symbol of an element y ∈ Z∗N given (x,N) where x = y2 mod N.

We also note that, similarly to the Goldwasser-Micali cryptosystem, our generalized cryptosystem enjoys
an additive property known as homomorphic encryption. If c1 and c2 denote two ciphertexts corresponding
to k-bit plaintexts m1 and m2, respectively, then c1 · c2 (mod N) is an encryption of the message m1 + m2
(mod 2k). This reveals useful in several applications like voting schemes. An interesting extension would
be to thresholdize it as was done in [31].

As another useful property, the new scheme also inherits the selective opening security3 [16,4] of the
Goldwasser-Micali system (in the sense of a simulation-based definition given in [4]). We actually prove its
semantic security by showing that its public key is indistinguishable from a so-called lossy key for which
encryptions reveal nothing about the encrypted message.

We thus believe our system to provide an interesting competitor to Paillier’s cryptosystem for certain
applications. As a salient example, we show that it provides a dramatically improved lossy trapdoor
function.

New Efficient Lossy Trapdoor Functions. The initial LTDF realizations [47] were based on the Decision
Diffie-Hellman and Learning-with-Error [49] assumptions. More efficient examples based on the Composite
Residuosity assumption were given in [9,17,18] while Kiltz et al. [32] showed that the RSA permutation
provides a lossy function. Under the quadratic residuosity assumption, three distinct constructions were
put forth in [23,17,18,53]. Those of Freeman et al. [17,18] and of Wee [53] must be used in combination with
the results of Mol and Yilek [38] as they only lose single bits of information about the input. Hemenway and
Ostrovsky [23] suggested a more efficient realization, of which Wee’s framework [53] is a generalization.
While their QR-based LTDF has found applications in the design of deterministic encryption schemes [11],
it is conceptually very similar to the Peikert-Waters matrix-based schemes and suffers from similarly large
outputs and descriptions.

We show that our variant of the Goldwasser-Micali cryptosystem drastically improves the efficiency of
the Hemenway-Ostrovsky LTDF. Specifically, it reduces the length of the output (resp. the description of the
function) by a factor of O(κ) (resp. O(κ2)), where κ is the security parameter. By appropriately selecting the
parameters, we obtain evaluation keys and outputs consisting of a constant number of Z∗N elements (and
thus O(κ) bits, instead of O(κ2) or O(κ3) as in the previous constructions). We thus obtain a DDH/QR-based
LTDF, whose efficiency is competitive with Paillier-based realizations [9,17,18]. These improvements carry
over to the deterministic encryption setting, when the Hemenway-Ostrovsky LTDF is used as a building
block of the Brakerski-Segev system [11].

3 This notion refers to an attack scenario where the adversary is given t encryptions of possibly correlated messages,
opens t/2 out of these (and thereby obtains the messages and encryption coins) before attempting to harm the security
of remaining ciphertexts.
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Outline of the paper

In the next section, we introduce some mathematical background and review some complexity assumptions.
In Section 3, we present our generalized cryptosystem and prove its security. Section 4 discusses certain
implementation aspects. In Section 5, we describe our new lossy trapdoor function. Finally, we conclude in
Section 6. Optimized decryption algorithms are presented in Appendix B.

Corrigendum As stated in the proceedings version ([28]), Theorem 3 is incomplete for the construction of
LTDFs. It additionally requires the DDH assumption. This is corrected in this full version. We also correct in
this version the statement of Theorem 1; the SJS assumption (see Definition 3) is missing in [28]. Finally, we
note that the faster decryption algorithms of Appendix B are not present in the proceedings version. This is
a new contribution.

2 Background

We review some useful background and fix the notation. In particular, we define the n-th power residue
symbol. We refer the reader to [26,52,54] for further details on (quadratic) residuosity. More information
about encryption schemes can be found in textbooks in cryptography; e.g. [20,30].

2.1 nth-power residues

Let N ∈ N. For each integer n ≥ 2, we define (Z∗N)n = {xn
| x ∈ Z∗N} the set of nth-power residues modulo N. If

the relation a = xn has no solution in Z∗N then a is called a nth-power non-residue modulo N. Suppose that p is
an odd prime. For any integer a with gcd(a, p) = 1, it is easily verified that a is a nth-power residue modulo p
if and only if

a
p−1

gcd(n,p−1) ≡ 1 (mod p) .

When n = 2 (and so gcd(n, p − 1) = 2), this is known as Euler’s criterion. It allows one to distinguish
quadratic residues from quadratic non-residues. This defines the Legendre symbol.(

a
p

)
=

1 if a is a quadratic residue modulo p
−1 if a is a quadratic non-residue modulo p

.

There are several ways to generalize the Legendre symbol (see [35]). In this paper, we consider the n-th
power residue symbol for a divisor n of (p − 1), as presented in [54, Definition 1.6.21].

Definition 1. Let p be an odd prime and let n ≥ 2 such that n | p − 1. Then the symbol(
a
p

)
n

= a
p−1

n mods p

is called the n-th power residue symbol modulo p, where a
p−1

n mods p represents the absolute smallest residue of
a

p−1
n modulo p (namely, the complete set of absolute smallest residues are: −(p − 1)/2, . . . ,−1, 0, 1, . . . , (p − 1)/2).

It satisfies the following properties. Let a and b be two integers that are co-prime to p. Then:

1. If a ≡ b (mod p) then
(

a
p

)
n

=
(

b
p

)
n
;

2.
(

an

p

)
n

= 1;

3.
(

ab
p

)
n

=
(

a
p

)
n

(
b
p

)
n

(mods p);

4.
(

1
p

)
n

= 1 and
(
−1
p

)
n

= (−1)
p−1

n .
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2.2 Quadratic residuosity

Let N = pq be the product of two (odd) primes p and q. For an integer a co-prime to N, the Jacobi symbol is the
product of the corresponding Legendre symbols, namely

(
a
N

)
=

(
a
p

)(
a
q

)
. This gives rise to the multiplicative

group JN of integers whose Jacobi symbol is 1, JN =
{
a ∈ Z∗N |

(
a
N

)
= 1

}
. A relevant subset of JN is the set of

quadratic residues modulo N, QRN =
{
a ∈ Z∗N |

(
a
p

)
=

(
a
q

)
= 1

}
. The set of integers whose Jacobi symbol is −1

is denoted by JN; i.e., JN =
{
a ∈ Z∗N |

(
a
N

)
= −1

}
= Z∗N \ JN.

The Quadratic Residuosity (QR) assumption says that, given a random element a ∈ JN, it is hard to decide
whether a ∈ QRN if the prime factors of N are unknown. To emphasize that this should hold for moduli
N = pq with p, q ≡ 1 (mod 2k), we will refer to it as the k-QR assumption. Formally, we have:

Definition 2 (Quadratic Residuosity Assumption). Let RSAGen be a probabilistic algorithm which, given a
security parameter κ, outputs primes p and q such that p, q ≡ 1 (mod 2k), and their product N = pq. The Quadratic
Residuosity (k-QR) assumption asserts that the function Advk-QR

D
(1κ), defined as the distance∣∣∣∣Pr[D(x,N) = 1 | x R

← QRN] − Pr[D(x,N) = 1 | x R
← JN \QRN]

∣∣∣∣
is negligible for any probabilistic polynomial-time distinguisher D; the probabilities are taken over the experiment of
running (N, p, q)← RSAGen(1κ) and choosing at random x ∈ QRN and x ∈ JN \QRN.

We also introduce a new assumption for RSA moduli N = pq when p, q ≡ 1 (mod 4). Since −1 is a
square modulo p and q, the square roots of any element ofQRN all have the same Jacobi symbol modulo N.
The new assumption, which we call the Squared Jacobi Symbol (SJS) assumption, posits the infeasibility of
determining whether

( y
N

)
= 1 or −1 given (x,N) where x = y2 mod N. Formally, we define:

Definition 3 (Squared Jacobi Symbol Assumption). Let RSAGen be a probabilistic algorithm which, given a
security parameter κ, outputs primes p and q such that p, q ≡ 1 (mod 2k), and their product N = pq. The Squared
Jacobi Symbol (k-SJS) assumption asserts that the function Advk-SJS

D
(1κ), defined as the distance∣∣∣∣Pr[D(y2 mod N,N) = 1 | y R

← JN] − Pr[D(y2 mod N,N) = 1 | y R
← JN]

∣∣∣∣
is negligible for any probabilistic polynomial-time distinguisher D; the probabilities are taken over the experiment of
running (N, p, q)← RSAGen(1κ) and choosing at random y ∈ JN and y ∈ JN.

3 A New Public-Key Encryption Scheme

We generalize the Goldwasser-Micali cryptosystem so that it can efficiently support the encryption of larger
messages while remaining additively homomorphic.

3.1 Description

The setting is basically the same as for the Goldwasser-Micali cryptosystem. The only additional requirement
is that primes p and q are chosen congruent to 1 modulo 2k where k denotes the bit-size of the messages
being encrypted.

In more detail, our encryption scheme is the tuple (KeyGen,Encrypt,Decrypt) defined as follows.

KeyGen(1κ) Given a security parameter κ, KeyGen defines an integer k ≥ 1, randomly generates primes
p, q ≡ 1 (mod 2k), and sets N = pq. It also picks y ∈ JN\QRN. The public and private keys are pk = {N, y, k}
and sk = {p}, respectively.
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Encrypt(pk,m) LetM = {0, 1}k. To encrypt a message m ∈ M (seen as an integer in {0, . . . , 2k
− 1}), Encrypt

picks a random x ∈ Z∗N and returns the ciphertext c = ym x2k
mod N.

Decrypt(sk, c) Given c ∈ Z∗N and the private key sk = {p}, the algorithm first computes z =
(

c
p

)
2k

and then

finds m ∈ {0, . . . , 2k
− 1} such that the relation[(y

p

)
2k

]m

= z (mods p)

holds. An efficient method to recover message m in a bit-by-bit fashion is detailed in the next section
(§ 3.2). More efficient variants are provided in Appendix B.

The correctness is easily verified by observing that α :=
(y

p

)
2k

has order 2k as an element inZ∗p. Indeed, letting

n = ordp(α) the order of α, we have n | 2k since, by definition, α ≡ y
p−1

2k (mod p). But n cannot be equal to 2k′

for some k′ < k because α2k′

≡ 1 (mod p) would imply y
p−1

2 ≡ 1 (mod p), which contradicts the assumption
that y ∈ JN \ QRN ⇐⇒

(y
p

)
=

(y
q

)
= −1. The decryption algorithm recovers the unique m ∈ {0, . . . , 2k

− 1}
such that αm

≡ z (mod p).

Remark 1. We notice that the case k = 1 corresponds to the Goldwasser-Micali cryptosystem. Indeed, the
2k-th power residue symbol is then the classical Legendre symbol and the assumption p, q ≡ 1 (mod 2k) is
trivially verified.

3.2 Fast decryption

At first glance, from the above description, it seems that the decryption process amounts to a search through
the entire message space {0, 1}k, similarly to some earlier cryptosystems. But we can do better. One of the
main advantages of the proposed cryptosystem is that it provides an efficient way to recover the message.
Hence, it remains practical, even for large values of k. The decryption algorithm proceeds similarly to the
Pohlig-Hellman algorithm [48] and is detailed below.

Algorithm 1 Decryption algorithm
Input: Ciphertext c, private key p (and public-key elements y and k)
Output: Plaintext m = (mk−1, . . . ,m0)2

1: m← 0; B← 1
2: for i = 1 to k do
3: z←

(
c
p

)
2i

; t←
(y

p

)m

2i
mods p

4: if (t , z) then m← m + B
5: B← 2B
6: end for
7: return m

The message m ∈ {0, 1}k is viewed as a k-bit integer given by its binary expansion m =
∑k−1

i=0 mi 2i, with
mi ∈ {0, 1}. Given c = ymx2k

mod N, we have(
c
p

)
2i

=

ymx2k

p


2i

=

y
∑i−1

j=0 m j 2 j

p


2i

=

(y

p

)∑i−1
j=0 m j 2 j

2i

(mods p)

since ymx2k
= y

∑i−1
j=0 m j 2 j

·

(
y
∑k−1

j=i m j 2 j−i
x2k−i

)2i

, for 1 ≤ i ≤ k. As a result, m can be recovered bit by bit using p,
starting from the rightmost bit. The algorithm uses an accumulator B which contains the successive powers
of 2.
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3.3 Security analysis

The case k = 1 corresponds to the Goldwasser-Micali cryptosystem which has indistinguishable encryptions
under the standard Quadratic Residuosity assumption. So, we henceforth assume k ≥ 2. We will prove that
for k ≥ 2 the scheme provides indistinguishable encryptions under the k-QR and k-SJS assumptions.

The k-QR assumption states that, without knowing the factorization of N, random elements of QRN
are computationally indistinguishable from random elements of JN \ QRN. Here, it will be convenient to
consider a gap variant of the k-QR assumption. We chose the terminology “gap” (not to be confused with
computational problems which have an easy decisional counterpart [43]) by analogy with certain lattice
problems, where not every instance is a yes or no instance since a gap exists between these.

Definition 4 (Gap 2k-Residuosity Assumption). Let RSAGen be a probabilistic algorithm which, given a security
parameter κ, outputs primes p and q such that p, q ≡ 1 (mod 2k), and their product N = pq. The Gap 2k-Residuosity
(Gap-2k-Res) problem in Z∗N is to distinguish the distribution of the following two sets given only N = pq:

V0 = {x ∈ JN \QRN} and V1 = {y2k
mod N | y ∈ Z∗N} .

The Gap 2k-Residuosity assumption posits that the advantage AdvGap-2k-Res
D

(1κ) of any PPT distinguisherD, defined
as the distance ∣∣∣∣Pr[D(x, k,N) = 1 | x R

← V0] − Pr[D(x, k,N) = 1 | x R
← V1]

∣∣∣∣
where probabilities are taken over all coin tosses, is negligible.

The latter assumption was independently considered by Abdalla, Ben Hamouda and Pointcheval [1] who
used it to provide tighter security proofs for forward-secure signatures.

In the above definition, we explicitly give k to the distinguisher and remark that this information should
be of little help considering that it can always be guessed with non-negligible probability. Also observe that
from p, q ≡ 1 (mod 2k), it follows that 2k

| N − 1.

We now investigate the relationship between the Gap 2k-Residuosity assumption and other more natural
assumptions; namely, we will show that it is implied by the k-QR and k-SJS assumptions. To this end, it
is useful to introduce two intermediate assumptions: the “special” QR assumption and the “special” SJS
assumption.

Definition 5 (Special QR Assumption). Let RSAGen be a probabilistic algorithm which, given a security pa-
rameter κ, outputs primes p and q such that p, q ≡ 1 (mod 2k), and their product N = pq. The Special Quadratic
Residuosity (k-QR?) assumption asserts that the function Advk-QR?

D
(1κ), defined as the distance∣∣∣∣Pr[D(x,N) = 1 | x = y2 mod N, y R

← JN] − Pr[D(x,N) = 1 | x R
← JN \QRN]

∣∣∣∣
is negligible for any probabilistic polynomial-time distinguisher D; the probabilities are taken over the experiment of
running (N, p, q)← RSAGen(1κ) and choosing at random y ∈ JN and x ∈ JN \QRN.

Definition 6 (Special SJS Assumption). Let RSAGen be a probabilistic algorithm which, given a security
parameter κ, outputs primes p and q such that p, q ≡ 1 (mod 2k), and their product N = pq. The Special Squared
Jacobi Symbol (k-SJS?) assumption asserts that the function Advk-SJS?

D
(1κ), defined as the distance∣∣∣∣Pr[D(y2 mod N,N) = 1 | y R

← JN \QRN] − Pr[D(y2 mod N,N) = 1 | y R
← JN]

∣∣∣∣
is negligible for any probabilistic polynomial-time distinguisher D; the probabilities are taken over the experiment of
running (N, p, q)← RSAGen(1κ) and choosing at random y ∈ JN \QRN and y ∈ JN.

7



Lemma 1. Using the previous notation, we have k-QR + k-SJS =⇒ k-QR? + k-SJS?. More precisely, any PPT
distinguisherA against k-QR or k-SJS is also a distinguisher against k-QR? or k-SJS? with advantage satisfying

Advk-QR?+k-SJS?
A

(1κ) ≤ 2 ·Advk-QR+k-SJS
A

(1κ) .

Proof. Consider a PPT algorithmA taking on input N and x ∈ JN. For x R
← JN, we let

ε1 = Pr[A(x,N) = 1 | x ∈ JN \QRN] , ε′2 = Pr[A(x,N) = 1 | x = y2
∈ QRN and y ∈ JN \QRN] ,

ε′′2 = Pr[A(x,N) = 1 | x = y2
∈ QRN and y ∈ QRN] , ε3 = Pr[A(x,N) = 1 | x = y2

∈ QRN and y < JN] .

Against k-QR, k-SJS, k-QR?, and k-SJS?, its advantage is denoted

α1 :=
∣∣∣ε1 −

1
4 (ε′2 + ε′′2 ) − 1

2ε3

∣∣∣ , α2 :=
∣∣∣ 1

2 (ε′2 + ε′′2 ) − ε3

∣∣∣ , α3 :=
∣∣∣ε1 −

1
2 (ε′2 + ε′′2 )

∣∣∣ , and α4 :=
∣∣∣ε′2 − ε3

∣∣∣ ,
respectively.

We have to show that if the k-QR and k-SJS assumptions hold then so do the k-QR? and k-SJS?

assumptions. The k-QR and k-SJS assumptions imply that α1 and α2 are negligible. We also note that
any significant difference between ε′2 and ε′′2 would lead to a distinguisher against k-QR. We thus have
|ε′2 − ε

′′

2 | ≤ α1.
From the definitions of α3 and α4, we can write

α3 =
∣∣∣ε1 −

1
2 (ε′2 + ε′′2 )

∣∣∣ =
∣∣∣ε1 −

1
4 (ε′2 + ε′′2 ) − 1

2ε3 + 1
2ε3 −

1
4 (ε′2 + ε′′2 )

∣∣∣
≤

∣∣∣ε1 −
1
4 (ε′2 + ε′′2 ) − 1

2ε3

∣∣∣ +
∣∣∣ 1

2ε3 −
1
4 (ε′2 + ε′′2 )

∣∣∣
= α1 + 1

2α2

and

α4 =
∣∣∣ε′2 − ε3

∣∣∣ =
∣∣∣ 1

2ε
′

2 + 1
2ε
′′

2 − ε3 + 1
2ε
′

2 −
1
2ε
′′

2

∣∣∣ ≤ ∣∣∣ 1
2 (ε′2 + ε′′2 ) − ε3

∣∣∣ +
∣∣∣ 1

2 (ε′2 − ε
′′

2 )
∣∣∣

≤ α2 + 1
2α1 .

The previous inequalities show that when α1 and α2 are negligible then so are α3 and α4.
The lemma follows by noting that α3 + α4 ≤

3
2α1 + 3

2α2 ≤ 2(α1 + α2). ut

Theorem 1 (k-QR + k-SJS =⇒ Gap-2k-Res). For RSA moduli N = pq such that p, q ≡ 1 (mod 2k), the Gap
2k-Residuosity assumption holds if the k-QR assumption and the k-SJS assumption hold. More precisely, for any PPT
distinguisher B0 against the latter, there exist k-QR distinguishers B1 and B3 and a k-SJS distinguisher B2 with
comparable running times and for which

AdvGap-2k-Res
B0

(1κ) ≤ 2k ·
(
Advk-QR

B1
(1κ) + Advk-SJS

B2
(1κ)

)
+ Advk-QR

B3
(1κ) .

Proof. To prove the result, we consider a sequence of distributions which will help us bridge the gap between
the assumptions. More precisely, for 0 ≤ i < k, we consider the subsets Di of JN given by

Di = {y2i
mod N | y ∈ JN \QRN} .

We also need another distribution which can be seen as the complement of Di in the set of 2i-th residues
that are not 2i+1-th residues:

D′i = {y2i
mod N | y ∈ JN} .

Finally we define the subgroup of 2k-th residues, Rk = {y2k
mod N | y ∈ Z∗N}.
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If we consider the sets V0 and V1 (presented in Definition 4), we have V0 = D0 and V1 = Rk. The
proof will actually proceed by showing the computational indistinguishability of the distributions of the
corresponding subsets. Namely, unless either the k-QR? assumption or the k-SJS? assumption is false, we
will prove

D0
c
≈ D′1

c
≈ D1

c
≈ D′2

c
≈ D2

c
≈ · · ·

c
≈ D′k−1

c
≈ Dk−1

and, finally, that Dk−1
c
≈ Rk unless the k-QR assumption is false.

Note that since Di−1 = {y2i−1
| y ∈ JN \QRN} and D′i = {y2i

| y ∈ JN} = {x2i−1
| x = y2

∈ QRN and y ∈ JN}, it
turns out that Di−1 and D′i are disjoint, for 1 ≤ i ≤ k−1. The same is true for D′i and Di since D′i = {y2i

| y ∈ JN}
and Di = {y2i

| y ∈ JN \QRN}. Finally note that Dk−1 = {y2k−1
| y ∈ JN \QRN} and Rk = {y2k

| y ∈ Z∗N} are also
disjoint.

Claim 1. If k-QR? holds, for each i ∈ {1, . . . , k − 1}, no PPT adversary can distinguish the distributions of
Di−1 and D′i .

Let D be a distinguisher that can tell apart Di−1 and D′i with non-negligible advantage ε. We show
that D implies a k-QR? distinguisher B1 with advantage ε for moduli N = pq such that p, q ≡ 1
(mod 2k).
Our distinguisher B1 takes as input a composite integer N = pq such that p, q ≡ 1 (mod 2k) and an
element w ∈ Z∗N which belongs to one of the two distributions

dist0 = {y2 mod N | y R
← JN} , dist1 = {y | y R

← JN \QRN} .

Its task is to decide if w is in dist0 or in dist1. To this end,B1 chooses a random element z R
← JN. It then

defines x = z2i w2i−1
mod N and feeds D with (x, i,N). When the distinguisher D halts, B1 outputs

whateverD outputs.
– Let us first assume that w ∈ dist0. In this case, if w′ denotes an arbitrary square root of w, we

know that w′ ∈ JN and x = (zw′)2i
mod N. Further, since z R

← Jn, we have zw′ ∈ JN and thus
x ∈R D′i .

– Now let us assume that w ∈R JN \ QRN. In this case, we clearly have x ∈R Di−1 because x =

(z2w)2i−1
mod N and z2w ∈ JN \QRN. �

Claim 2. If k-SJS? holds, for each i ∈ {1, . . . , k− 1}, no PPT adversary can distinguish the distributions of D′i
and Di.

Let D be a distinguisher with non-negligible advantage ε between Di and D′i . We show that D
implies a k-SJS? distinguisher B2 with advantage ε for RSA moduli N = pq such that p, q ≡ 1
(mod 2k). Given w ∈ Z∗N which belongs to one of the two distributions

dist0 = {y2 mod N | y R
← JN \QRN} , dist1 = {y2 mod N | y R

← JN} ,

B2 constructs x = w2i−1
mod N which is used to feed the distinguisherD. When the latter outputs a

result, B2 produces the same output. It is clear that, if w ∈ dist0 (resp. w ∈ dist1), then x is in Di (resp.
D′i ). Hence, ifD is a successful distinguisher, so is B2. �

Claim 3. If k-QR holds, no PPT adversary can distinguish the distributions of Dk−1 and Rk.

LetD be an algorithm that can distinguish Dk−1 and Rk with non-negligible advantage. We build a
k-QR distinguisher B3 out ofD.
AlgorithmB3 takes as input N = pq such that p, q ≡ 1 (mod 2k) as well as an element w ∈ JN with the
goal of deciding whether w ∈ QRN or w ∈ JN \QRN. To do this, B3 simply defines x = w2k−1

mod N
and runsD on input of (x, k,N). WhenD halts and outputs b ∈ {0, 1}, B1 outputs the same bit.
It is easy to see that, if w ∈R QRN, then x ∈R Rk. If w ∈R JN \QRN, we immediately have x ∈R Dk−1. �
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To conclude the proof, we remark that, if a PPT distinguisher B0 exists for the Gap-2k-Res assumption
(i.e., if D0 6

c
≈ Rk), then

– either Dk−1 6
c
≈ Rk, contradicting k-QR (Claim 3); or

– there exists 1 ≤ i < k such that D′i 6
c
≈ Di−1 or D′i 6

c
≈ Di. The above arguments show that either situation

would contradict the k-QR? assumption (Claim 1) or the k-SJS? assumption (Claim 2) —or by Lemma 1,
the k-QR assumption or the k-SJS assumption. ut

It is not hard to see that the semantic security of the scheme is equivalent to the Gap-2k-Res assumption.
We thus obtain the following theorem as a corollary.

Theorem 2. The scheme is semantically secure under the k-QR and k-SJS assumptions. More precisely, for any
IND-CPA adversaryA, we have either k-QR distinguishers B1 and B3 or an k-SJS distinguisher B2 such that

Advind-cpa
A

(1κ) ≤ 2k ·
(
Advk-QR

B1
(1κ) + AdvSJS

B2
(1κ)

)
+ Advk-QR

B3
(1κ) .

Proof. The proof proceeds by simply changing the distribution of the public key. Under the Gap-2k-Res
assumption, instead of picking y uniformly in JN \QRN, we can choose it in the subgroup of 2k-th residues
without the adversary noticing. However, in this case, the ciphertext carries no information about the
message and the IND-CPA security follows. ut

Interestingly, the proof of Theorem 2 implicitly shows that, like the original Goldwasser-Micali system,
our scheme is a lossy encryption scheme [4] (i.e., it admits an alternative distribution of public keys for which
encryptions statistically hide the plaintext), which provides security guarantees against selective-opening
attacks [16]. Moreover, for a lossy key (y,N), there exists an efficient algorithm that opens a given ciphertext c
to any arbitrary plaintext m (by finding random coins that explain c as an encryption of m). It implies that
our scheme satisfies the simulation-based definition [4] of selective-opening security.

4 Implementation and Performance

We detail here some implementation aspects. We explain how to select the parameters involved in the
system set-up and key generation. Finally, we discuss the ciphertext expansion and give a comparison with
previous schemes.

4.1 Parameter selection

The key generation (cf. § 3.1) requires two primes p and q such that p, q ≡ 1 (mod 2k) and an element
y ∈ JN \ QRN, where N = pq. The condition y ∈ JN \ QRN is equivalent to

(y
p

)
=

(y
q

)
= −1. So, we need to

generate an element y ∈ Z∗N such that (i) y mod p is primitive in Z∗p, and (ii) y mod q is primitive in Z∗q.
Finding a primitive element modulo a prime number p is not difficult when the factorization of p − 1 is
known. Therefore, we suggest to select prime p as a k-quasi-safe prime, that is, p = 2k p′ + 1 for some prime
p′ (likewise for prime q, we take q = 2k q′ + 1 for some prime q′). An efficient algorithm for generating
k-quasi-safe primes is discussed in [29, Section 4.2].

Consider now the primitive 2k-th root of unity ζ2k = e2iπ/2k
with i =

√
−1. It generates a cyclic group of

order 2k under multiplication. In our case, the key observation is that, when p is 2k-quasi-safe prime, if y is
a square modulo p then ζ2k y is not. Indeed, we have(

ζ2k y

p

)
=

(
ζ2k

p

)(y

p

)
≡ ζ2k

p−1
2

(y

p

)
≡ (eiπ)p′

(y

p

)
= −

(y

p

)
(mod p)

since p′ is odd. This leads to the following algorithm.
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Algorithm 2 Generation of y
Input: Modulus N = pq (with p = 2k p′ + 1 and q = 2k q′ + 1), primes p, q, p′, q′, and integer k ≥ 1
Output: y ∈ JN \QRN

1: Pick at random yp ∈ Z∗p and yq ∈ Z∗q

2: if
(yp

p

)
= 1 then yp ← ζ2k yp mod p

3: if
(yq

q

)
= 1 then yq ← ζ2k yq mod q

4: Set y← yp + p
(
p−1(yq − yp) mod q

)
5: return y

The primes p and q are chosen so that p, q ≡ 1 (mod 2k). Sharing common factors for (p − 1) and (q − 1)
was used already in several other systems; see e.g. [19,36]. Letting r denote a common factor of (p − 1) and
(q−1), a baby-step giant-step approach developed by McKee and Pinch [37] can factor RSA modulus N = pq
in essentially O(N1/4/r) operations. In our case, we have r = 2k. For security it is therefore necessary that
1
4 log2 N − k > κ, or equivalently,

k < 1
4 log2 N − κ

where κ is the security parameter.
A powerful LLL-based technique due to Coppersmith [13,14] also bounds the size of k to at most

1
2 min(log2 p, log2 q) bits as, otherwise, the factors of N would be revealed. Going beyond polynomial-time
attacks, one should add an extra security margin to take into account exhaustive searches [42]. RSA moduli
being balanced (i.e., 1

2 min(log2 p, log2 q) = 1
4 log2 N), we so end up with the same upper bound as for the

McKee-Pinch’s approach: k < 1
4 log2 N − κ.

In practice, this restriction on k is not a limitation because, as described in the next section, long messages
can be encrypted using the KEM/DEM paradigm. For example, a specific parameter choice is k = 128 and
log2 N = 2048.

4.2 Ciphertext expansion

Hybrid encryption allows designing efficient asymmetric schemes, as suggested by Shoup in the ISO 18033-2
standard for public-key encryption [27]. An asymmetric cryptosystem is used to encrypt a secret key that is
then used to encrypt the actual message. This is the so-called KEM/DEM paradigm.

The next table compares the ciphertext expansion in the encryption of k-bit messages for different
generalized Goldwasser-Micali cryptosystems. Only cryptosystems with a formal security analysis are
considered. Further, the value of k is assumed to be relatively small (e.g., 128 or 256) as the “message” being
encrypted is typically a symmetric key (for example a 128- or 256-bit AES key) in a KEM/DEM construction.

Table 1. Ciphertext expansion in a typical encryption

Encryption scheme Assumption Ciphertext size
Goldwasser-Micali [21] Quadratic Residuosity (QR) k · log2 N
Benaloh-Fisher [12] Prime residuosity (PR)

⌈
k

log2 r

⌉
· log2 N

Naccache-Stern [41] Prime residuosity (PR) log2 N
Okamoto-Uchiyama [44] p-subgroup log2 N
Paillier [45] N-th residuosity 2 log2 N

This paper
Quadratic residuosity (k-QR)

Squared Jacobi Symbol (k-SJS) log2 N
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It appears that the Goldwasser-Micali cryptosystem has the higher ciphertext expansion but its semantic
security relies on the standard quadratic residuosity assumption. The ciphertext expansion of Benaloh-
Fischer cryptosystem is similar to that of Naccache-Stern cryptosystem for small messages; i.e., when
k ≤ log2 r. For larger messages, the Naccache-Stern cryptosystem should be preferred. It also offers the
further advantage of providing a faster decryption procedure. The same is true for the Okamoto-Uchiyama
cryptosystem. The Paillier cryptosystem produces twice larger ciphertexts.

The encryption scheme proposed in this paper has the same ciphertext expansion as in the Naccache-
Stern cryptosystem. Moreover, its decryption algorithm is fast (it is even faster than in the Naccache-Stern
cryptosystem), requires less memory, and the security relies on a quadratic residuosity assumption.

5 More Efficient Lossy Trapdoor Functions from the k-Quadratic Residuosity
Assumption

In this section, we show that our homomorphic cryptosystem allows constructing a lossy trapdoor function
based on the k-QR, k-SJS and DDH assumptions with much shorter outputs and keys than in previous
QR-based or DDH-based examples.

In comparison with the function of Hemenway and Ostrovsky [23], for example, it compresses function
values by a factor of k when we work with a modulus N = pq such that p, q ≡ 1 (mod 2k). Moreover, the
size of the evaluation key is decreased by a factor of O(k2) while increasing the lossiness by 2k more bits.
Finally, our inversion trapdoor has constant size, whereas [23] uses a trapdoor of size O(n) to recover n-bit
inputs. Our function also compares favorably with the QR-based function of Freeman et al. [17,18], which
only loses a single bit.

In fact, by appropriately tuning our construction, we obtain the first lossy trapdoor function with
short outputs, description and trapdoor that loses many input bits and relies on another assumption
than Paillier. Among known lossy trapdoor functions based on traditional number-theoretic assumptions
[47,9,17,18,32,23,38], this appears as a rare efficiency tradeoff. To the best of our knowledge, it has only been
achieved under the Composite Residuosity assumption [9,17,18] so far.

Interestingly, our LTDF provides similar efficiency improvements to the QR-based deterministic encryp-
tion scheme of Brakerski and Segev [11], which also builds on the Hemenway-Ostrovsky LTDF. Note that
the scheme of [11] is important in the deterministic encryption literature since it is one of the only known
schemes providing security in the auxiliary input setting in the standard model.

5.1 Description and security analysis

We start by recalling the following definition.

Definition 7 ([47]). Letκ ∈N be a security parameter and n :N→N, ` :N→ R be non-negative functions ofκ. A
collection of (n, `)-lossy trapdoor functions (LTDF) is a tuple of efficient algorithms (InjGen,LossyGen,Eval, Invert)
with the following specifications.

– Sampling an injective function: Given a security parameter κ, the randomized algorithm InjGen(1κ) outputs
the index ek of an injective function of the family and an inversion trapdoor t.

– Sampling a lossy function: Given a security parameter κ, the probabilistic algorithm LossyGen(1κ) outputs
the index ek of a lossy function.

– Evaluation: Given the index of a function ek —produced by either InjGen or LossyGen— and an input
x ∈ {0, 1}n, the evaluation algorithm Eval outputs Fek(x) such that:
• If ek is an output of InjGen, then Fek(·) is an injective function.
• If ek was produced by LossyGen, then Fek(·) has image size 2n−`. In this case, the value n−` is called residual

leakage.
– Inversion: For any pair (ek, t) produced by InjGen and any input x ∈ {0, 1}n, the inversion algorithm Invert

returns F−1
ek (t,Fek(x)) = x.
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– Security: The two ensembles {ek | (ek, t)← InjGen(1κ)}κ∈N and {ek | ek← LossyGen(1κ)}κ∈N are computation-
ally indistinguishable.

Our construction goes as follows.

Sampling an injective function. Given a security parameter κ, let `N(κ) and k(κ) be security parameters
determined by κ. Let also n(κ) be the desired input length. Algorithm InjGen defines m = n/k (we
assume that k divides n for simplicity) and conducts the following steps.

1. Generate a modulus N = pq > 2`N such that p = 2kp′ + 1 and q = 2kq′ + 1 for primes p, q and odd
prime integers p, q, p′, q′. Choose y R

← JN \QRN.
2. For each i ∈ {1, . . . ,m}, pick hi in the subgroup of order p′q′, by setting hi = gi

2k
mod N for a randomly

chosen gi
R
← Z∗N.

3. Choose r1, . . . , rm
R
← Zp′q′ and compute a matrix Z =

(
Zi, j

)
i, j∈{1,...,m}

given by

Z =


yz1,1 · h1

r1 mod N . . . . . . yz1,m · hm
r1 mod N

...
...

yzm,1 · h1
rm mod N . . . . . . yzm,m · hm

rm mod N

 ,
where (zi, j)i, j∈{1,...,m} denotes the identity matrix.

The evaluation key is ek :=
(
N, (Zi, j)i, j∈{1,...,m}

)
and the trapdoor is t := {p, y}.

Sampling a lossy function. The process followed by LossyGen is identical to the above one but the matrix
(zi, j)i, j∈{1,...,m} is replaced by the all-zeroes m ×m matrix.

Evaluation. Given ek =
(
N, (Zi, j)i, j∈{1,...,m}

)
, algorithm Eval parses the input x ∈ {0, 1}n as a vector of k-bit

blocks x̃ = (x1, . . . , xm), with xi ∈ Z2k for each i. Then, it computes and returns ỹ = (y1, . . . , ym), with
y j ∈ Z∗N, where

ỹ =
( m∏

i=1

Zi,1
xi mod N, . . . ,

m∏
i=1

Zi,m
xi mod N

)
=

(
y
∑m

i=1 zi,1xi · h1

∑m
i=1 rixi mod N, . . . , y

∑m
i=1 zi,mxi · hm

∑m
i=1 rixi mod N

)
.

Inversion. Given t = p and ỹ = (y1, . . . , ym) ∈ Zm
N, Invert applies the decryption algorithm of § 3.2 to each

y j, for j = 1 to m. Observe that when (zi j)i, j∈{1,...,m} is the identity matrix,
(y j

p

)
2k
≡

[(y
p

)
2k

]x j
(mod p). From

the resulting vector of plaintexts x̃ = (x1, . . . , xm) ∈ Z2k
m, it recovers the input x ∈ {0, 1}n.

The Hemenway-Ostrovsky construction of [23] is slightly different in that, as in the DDH-based con-
struction of Peikert and Waters [47], the evaluation key includes a vector of the form G = (gr1 , . . . , grm )T,
where g ∈ QRN, and the trapdoor is t = (logg(h1), . . . , logg(hm)). In their scheme, the evaluation algorithm
additionally computes

∏m
i=1 (gri )xi while the inversion algorithm does not use the factorization of N but

rather performs a coordinate-wise ElGamal decryption. Here, explicitly using the factorization of N in the
inversion algorithm makes it possible to process k-bit blocks at once. In addition, it allows for a very short
inversion trapdoor: the inversion algorithm only needs y and the factorization of N.

Theorem 3. The above construction is a (n(κ),n(κ) − log2(p′q′))-LTDF if the Gap-2k-Res assumption holds and if
the DDH assumption holds in the subgroup Rk of 2k-th residues.
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Proof. We first prove that lossy functions are indistinguishable from injective functions. To this end, we
consider a sequence of hybrid experiments. We first define an experiment Exp0 which is an experiment
where the key generation algorithm outputs the description of an injective function with the difference that
y is chosen as a 2k-th residue instead of being drawn as y R

← JN \ QRN. The result of Theorem 1 shows
that, under the Gap-2k-Res assumption, Exp0 is computationally indistinguishable from an experiment
where the adversary is given the description of an injective function. Next, for each i ∈ {1, . . . ,m} we define
experiment Expi as an experiment where y ∈R Rk and the key generation algorithm outputs a matrix (Zi, j)i, j
which encrypts a hybrid matrix (zi, j)i, j whose first i columns all contain zeroes whereas the last m− i columns
are those of the m ×m identity matrix.

Claim. If the DDH assumption holds in the subgroup of 2k-th residues, for each i ∈ {1, . . . ,m}, experiment
Expi is computationally indistinguishable from Experiment Expi−1.

The claim is proved in the same way as a similar claim about the DDH-based lossy TDF of Peikert
and Waters [47]. Since y lives in the cyclic subgroup of 2k-th residues, we are free to invoke the
semantic security of the ElGamal encryption scheme (and thus the DDH assumption in this group)
to justify that an ElGamal encryption of y can be replaced by an ElGamal encryption of 1 without
any PPT distinguisher noticing. Concretely, the ElGamal challenger generates an ElGamal public
key (g, h) in the subgroup of order p′q′. The public key is generated by setting hi = h and h j = gα j ,
with α j

R
← ZbN/4c for each j , i. We can define two messages M0 = y and M1 = 1 and send them

to the ElGamal challenger. The latter replies with a ciphertext (C0,C1) = (gr,M · yr) where either
M = y or M = 1. The evaluation key is generated by setting the entry (i, i) of the matrix as Zi,i = C1

while the i-th row is obtained by setting Zi, j = Cα j

1 . Other columns are generated by choosing the
encryption exponents faithfully, as in Experiment Expi−1. It should be clear that, if the ElGamal
challenger chooses to encrypt y (resp. 1), the evaluation key is distributed as in Experiment Expi−1
(resp. Experiment Expi). ut

The proof now follows by remarking that, in lossy functions, the output is entirely determined by∑m
i=1 rixi mod p′q′, so that the image size is smaller than p′q′. The residual leakage is thus at most log2(p′q′)

bits. ut

It is worth noting that, with N = pq such that p, q ≡ 1 (mod 2k), a side effect of working in the subgroup
of odd order is an improved lossiness. Indeed, we lose n − log2(p′q′) bits in comparison with n − log2 φ(N)
in [23].

Using the techniques of Peikert and Waters [47], it is easy to construct an equally efficient all-but-one
trapdoor function providing the same amount of lossiness under the same assumptions. A difference is that,
in order to enable inversion, the resulting all-but-one function handles k/2 bits (instead of k) in each chunk.
The details are given in Appendix A for completeness.

More importantly, the dimension m of the matrix and the output vector can be reduced to a fairly small
constant, as illustrated below.

5.2 Efficiency

Here, we consider chosen-ciphertext security as the targeted application.
By combining the lossy and all-but-one trapdoor function, a CCA-secure encryption scheme can be

obtained using the construction of [47]. We argue that m = O(1) suffices for this purpose. Recall that the
scheme of [47] combines a pairwise independent hash function H : {0, 1}n → {0, 1}τ, an (n, `)-lossy function
and an (n, `′)-all-but-one function such that ` + `′ ≥ n + ν and τ ≥ ν − 2 log2(1/ε), for some ν ∈ ω(log n)
and where ε is the statistical distance in the modified Leftover Hash Lemma used in [15]. If we choose
ε ≈ 2−κ and τ = k in order to encrypt k-bit messages, we can set ν = k + 2κ. Setting ` = `′ = n − log2(p′q′),
the constraint ` + `′ ≥ n + ν translates into n − 2 log2(p′q′) ≥ ν. If we set k = 1

4 log2 N − κ, we have
log2(p′q′) = log2 φ(N) − 2k ≈ 4(k + κ) − 2k = 2k + 4κ, which yields n ≥ 3k + 6κ. If k > κ, it is sufficient to set
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n ≥ 9k. If we take into account the fact that our all-but-one function processes blocks of k/2 bits, we find that
m = 2n/k = 18 suffices here.

As it turns out, when the Peikert-Waters construction [47, § 4.3] of CCA-secure encryption is instantiated
with our lossy and all-but-one trapdoor functions, it only requires a constant number of exponentiations
while retaining constant-size public keys and ciphertexts.

With the exception of [25] (which relies on a weaker assumption), to the best of our knowledge, it yields
the only known CCA-secure QR-based cryptosystem combining the aforementioned efficiency properties.
Up to now, the most efficient chosen-ciphertext-secure cryptosystem strictly based on the QR assumption
was the one of Kiltz et al. [33], where O(κ) exponentiations are needed to encrypt and the public key
contains O(κ) group elements. On the other hand, our construction requires more specific moduli than [33]
and additionally appeals to the k-SJS and DDH assumptions.

6 Conclusion

This paper introduced a new generalization of the Goldwasser-Micali cryptosystem. The so-obtained cryp-
tosystems are shown to be secure under well-defined assumptions. Further, they enjoy a number of useful
features including fast decryption, optimal ciphertext expansion, and homomorphic property. We believe
that our proposal is the most natural yet efficient generalization of the Goldwasser-Micali cryptosystem. It
keeps the nice attributes and properties of the original scheme while improving the overall performance.

When applied to the Peikert-Waters framework for building lossy trapdoor functions, it yields a practical
construction based on quadratic-residuosity related and DDH assumptions, with companion deterministic
encryption scheme and CCA-secure cryptosystem.
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A An All-But-One Trapdoor Function

Let κ ∈N be a security parameter and n :N→N, ` :N→ R be non-negative functions of κ. A collection of
(n, `)-all-but-one trapdoor functions (ABO-TDF) is a tuple of efficient algorithms (BranchGen,ABOGen,Eval,
Invert) with the following specifications.
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– Sampling a branch: Given a security parameter κ, BranchGen is a randomized algorithm that outputs a
branch b ∈ {0, 1}∗ of appropriate length.

– Sampling a function: ABOGen is a probabilistic algorithm that takes as input a security parameter κ and
a branch b? produced by BranchGen. It outputs the description ek of a function and a trapdoor t.

– Evaluation: For any branch b? produced by BranchGen, any pair (ek, t) produced by ABOGen(1κ, b?),
any branch b and any input x ∈ {0, 1}n, the evaluation algorithm Eval outputs Fb,ek(x) such that:
• If b , b?, then Fb,ek(·) is an injective function;
• If b = b?, then Fb?,ek(·) has image size 2n−`. In this case, the value n − ` is called residual leakage.

– Inversion: For any b? produced by BranchGen and any pair (ek, t)produced by ABOGen(1κ, b?), any
branch b , b? and any input x ∈ {0, 1}n, the inversion algorithm Invert returns F−1

b,ek(t,Fb,ek(x)) = x.
– Security: For any distinct b, b′ ∈ {0, 1}∗ produced by BranchGen, the ensembles

{ek | (ek, t)← ABOGen(1κ, b)}κ∈N and {ek | (ek, t)← ABOGen(1κ, b′)}κ∈N

are computationally indistinguishable.

Our ABO-TDF is described below. A difference with the Paillier-based construction of [17] is that, when
inverting the function, we must pay attention to the fact that the output of the function may contain
encryptions of values which are not invertible modulo 2k. In order to avoid the need to invert in Z2k , we
perform the division over the integers. To this end, we have to adjust the parameter k so as to make sure
that, for any branches b, b? and any input block x, the product (b − b?) · x will be smaller than 2k.

Sampling a branch. Given a security parameter κ ∈ N and another security parameter λ(κ) determined
by κ, the algorithm chooses b R

← {0, 1}λ.
Sampling a function. The function sampling algorithm takes as input a security parameterκ, other security

parameters `N(κ) and λ(κ) that are determined by κ, the desired input length n(κ) and a branch b? ∈
{0, 1}λ. It sets k = 2λ and defines m = n/λ (we assume that λ divides n for simplicity) and does the
following.
1. Generate an RSA modulus N = pq > 2`N such that p = 2kp′ + 1 and q = 2kq′ + 1 for large primes p, q

and odd prime integers p′, q′. Choose y R
← JN \QRN.

2. For each i ∈ {1, . . . ,m}, pick hi in the subgroup of order p′q′, by setting hi = gi
2k

mod N for a randomly
chosen gi

R
← Z∗N.

3. Choose r1, . . . , rm
R
← Zp′q′ and compute a matrix

Z =
(
Zi, j

)
i, j∈{1,...,m}

=


y−z1,1b?

· h1
r1 mod N . . . . . . yz1,m · hm

r1 mod N
...

...
yzm,1 · h1

rm mod N . . . . . . y−zm,mb?
· hm

rm mod N

 ,
where

(
zi, j

)
i, j∈{1,...,m}

is the identity matrix; i.e., Zi,i = y−b?hi
ri mod N and Zi, j = h j

ri mod N if j , i.

The evaluation key of the ABO function is ek :=
(
N, (Zi, j)i, j∈{1,...,m}

)
and the trapdoor is t := p.

Evaluation. In order to evaluate the function on a branch b ∈ {0, 1}λ for the input x ∈ {0, 1}n using the
evaluation key ek =

(
N, (Zi, j)i, j∈{1,...,m}

)
, algorithm Eval parses x ∈ {0, 1}n as a vector of λ-bit blocks

x̃ = (x1, . . . , xm), with xi ∈ Z2λ for each i. Then, it defines the matrix

Zb = (Zb
i, j)i, j∈{1,...,m}

=


yb
· Z1,1 mod N Z1,2 . . . Z1,m

Z2,1 yb
· Z2,2 mod N . . . Z2,m

...
. . .

...
Zm,1 . . . . . . yb

· Zm,m mod N

 ,
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i.e., Zb
i, j = Zi, j if i , j and Zb

i,i = yb
· Zi,i mod N for each i, j ∈ {1, . . . ,m}. Then, it computes and returns

ỹ =
( m∏

i=1

(Zb
i,1)xi mod N, . . . ,

m∏
i=1

(Zb
i,m)xi mod N

)
=

(
y(b−b?)x1 · h1

∑m
i=1 rixi mod N, . . . , y(b−b?)xm · hm

∑m
i=1 rixi mod N

)
.

Inversion. Given a description ek =
(
N, (Zi, j)i, j∈{1,...,m}

)
of the function, the trapdoor t = p and the output

ỹ = (y1, . . . , ym) ∈ Zm
N, the function can be inverted for the branch b , b? by proceeding as follows.

1. Define the vector (w1, . . . ,wm) ∈ Zm
N as (w1, . . . ,wm) = (y1, . . . , ym) if b > b? (when the bitstrings b and

b? are interpreted as natural integers) and (w1, . . . ,wm) = (y1
−1 mod N, . . . , ym

−1 mod N) if b < b?.
2. For i = 1 to m, apply the decryption algorithm of § 3.2 to wi.
3. From the vector of plaintexts x̃ = (x1, . . . , xm) ∈ Zm

2λ
obtained at Step 2, define x̃′ = (x′1, . . . , x

′
m) ∈ Zm

2λ

such that x′i = xi/abs(b − b?) (the division being performed over Z), where abs(b − b?) = b − b? if
b > b? and b? − b otherwise.

4. From x̃′ = (x′1, . . . , x
′
m), recover the original input x ∈ {0, 1}n by concatenating the binary representa-

tions the coordinates of x̃′.

The correctness of the inversion algorithm stems from the fact that, since we have xi, b, b? < 2λ, it holds
that abs(b− b?) · xi < 22λ = 2k for each i ∈ {1, . . . ,m}, so that x′i can be computed over the integers at step 3 of
the inversion algorithm.

It is easy to prove that the description of the function computationally hides the underlying lossy branch
if the k-QR and k-SJS assumptions hold and if the DDH assumption holds in the subgroup of odd order.
The proof is essentially identical to the proof of Theorem 3 and omitted.

B Optimized Decryption Algorithms

In its basic version, the decryption requires O(k) modular exponentiations inZ∗p in order to compute higher
power residue symbols. As a result, the number of bit operations is quartic in the security parameter. This
section shows that a suitable pre-processing phase allows significantly increasing the decryption speed.
At the price of extra storage requirements, the receiver’s workload even drops to a cubic number of bit
operations, which is asymptotically on par with, e.g., Paillier and Okamoto-Uchiyama cryptosystems.

B.1 First modified decryption algorithm

In the following, we define the private decryption key as (p′,D) for some precomputed value D.
Let N = pq where p and q are prime, and p, q ≡ 1 (mod 2k) but p, q . 1 (mod 2k+1). In this case, we can

write p = 2k p′ + 1 and q = 2k q′ + 1 for some odd integers p′ and q′.
Therefore as p = 2k p′ + 1 with p′ odd and since y ∈ JN \QRN, it is easily seen that

y2k−1p′
≡ −1 (mod p) .

The proof of this statement is straightforward since we have y2k−1p′
≡ y(p−1)/2

≡

(y
p

)
≡ −1 (mod p).

Now, consider the ciphertext c = ym x2k
mod N of message m =

∑k−1
i=0 mi 2i with mi ∈ {0, 1}. If, for 1 ≤ j ≤ k,

we define λ j = 2k− jp′ and
C j = cλ j mod p .

Then, we have

C j ≡
(
ym x2k)λ j

≡ ym2k− jp′
≡ y(m mod 2 j)2k− jp′

≡ y(m j−12 j−1+
∑ j−2

i=0 mi2i)2k− jp′
≡ ym j−12k−1p′ y(m mod 2 j−1)2k− jp′

≡ (−1)m j−1 y(m mod 2 j−1)λ j (mod p) .
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Hence, it follows that (
c

ym mod 2 j−1

)λ j

≡ (−1)m j−1 (mod p) .

This yields the following decryption algorithm. The private key now consists of the pair (p′,D) where
D = y−p′ mod p. The input is the ciphertext c and the output is plaintext m.

1: m← 0; B← 1; D← D
2: C← cp′ mod p
3: for j = 1 to k do
4: z← (C · Dm)2k− j

mod p
5: if (z , 1) then m← m + B
6: B← 2B
7: end for
8: return m

Variable m in the for-loop contains the lowest part of the plaintext m. As one bit of plaintext m is correctly
obtained per iteration, there is no need to recompute Dm mod p. Instead, it suffices to update it using C as
an accumulator. Further, we only perform the for-loop until iteration k − 1 to save a couple of operations.
We thus obtain:

Algorithm 3 New decryption algorithm
Input: Ciphertext c, private key (p′,D) (and public-key elements y and k)
Output: Plaintext m = (mk−1, . . . ,m0)2

1: m← 0; B← 1; D← D
2: C← cp′ mod p
3: for j = 1 to k − 1 do
4: z← C2k− j mod p
5: if (z , 1) then m← m + B; C← C · D mod p
6: B← 2B; D← D2 mod p
7: end for
8: if (C , 1) then m← m + B
9: return m

As a variant, we remark that D can be precomputed instead as being explicitly included in the private
key.

B.2 Second modified decryption algorithm

Compared to the basic decryption algorithm (Alg. 1), the new decryption algorithm (Alg. 3) does not require
more memory for its implementation. We present below a even faster variant by augmenting the private
key.

We now define the decryption key to be the tuple (p′,D[1], . . . ,D[k − 1]) where D[ j] = D2 j−1
mod p for

1 ≤ j ≤ k − 1.
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Algorithm 4 New decryption algorithm (2)
Input: Ciphertext c, private key (p′,D[1], . . . ,D[k − 1]) (and public-key elements y and k)
Output: Plaintext m = (mk−1, . . . ,m0)2

1: m← 0; B← 1
2: for j = 1 to k − 1 do D[ j]← D[ j]
3: C← cp′ mod p
4: for j = 1 to k − 1 do
5: z← C2k− j mod p
6: if (z , 1) then m← m + B; C← C · D[ j] mod p
7: B← 2B
8: end for
9: if (C , 1) then m← m + B

10: return m

B.3 Third modified decryption algorithm

Yet a further optimization consists in computing the different values of C2k− j
before the for-loop. We start

with our first algorithm. The decryption key is now the pair (p′, D̃) where D̃ = D−1 mod p; i.e., D̃ = yp′ mod p.

Algorithm 5 New decryption algorithm (3)
Input: Ciphertext c, private key (p′, D̃) (and public-key elements y and k)
Output: Plaintext m = (mk−1, . . . ,m0)2

1: m← 0; A← 1; B← 1; D← D̃
2: C[0]← cp′ mod p
3: for j = 1 to k − 1 do C[ j]← C[ j − 1]2 mod p
4: for j = 1 to k − 1 do
5: if (A , C[k − j]) then m← m + B; A← A · D mod p
6: B← 2B; D← D2 mod p
7: end for
8: if (A , C[0]) then m← m + B
9: return m

We observe that, at the cost of storing {C[ j]}k−1
j=0 from step 3 to step 7, the decryption complexity is now

dominated by that of one exponentiation in Z∗p as well as 2k squarings and k multiplications, which incurs
O(k3) bit operations.

B.4 Fourth modified decryption algorithm

We apply the modification as in our second decryption algorithm to the previous algorithm. The decryption
key is defined as the tuple (p′, D̃[1], . . . , D̃[k − 1]) where D̃[ j] = D̃2 j−1

mod p for 1 ≤ j ≤ k − 1.
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Algorithm 6 New decryption algorithm (4)
Input: Ciphertext c, private key (p′, D̃[1], . . . , D̃[k − 1]) (and public-key elements y and k)
Output: Plaintext m = (mk−1, . . . ,m0)2

1: m← 0; A← 1; B← 1
2: for j = 1 to k − 1 do D[ j]← D̃[ j]
3: C[0]← cp′ mod p
4: for j = 1 to k − 1 do C[ j]← C[ j − 1]2 mod p
5: for j = 1 to k − 1 do
6: if (A , C[k − j]) then m← m + B; A← A · D[ j] mod p
7: B← 2B
8: end for
9: if (A , C[0]) then m← m + B

10: return m
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