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Abstract. In 2010, Bouillaguet et al. proposed an efficient solver for
polynomial systems over F2 that trades memory for speed [BCC+10].
As a result, 48 quadratic equations in 48 variables can be solved on
a graphics card (GPU) in 21 minutes. The research question that we
would like to answer in this paper is how specifically designed hard-
ware performs on this task. We approach the answer by solving mul-
tivariate quadratic systems on reconfigurable hardware, namely Field-
Programmable Gate Arrays (FPGAs). We show that, although the al-
gorithm proposed in [BCC+10] has a better asymptotic time complex-
ity than traditional enumeration algorithms, it does not have a better
asymptotic complexity in terms of silicon area. Nevertheless, our FPGA
implementation consumes 25 times less energy than the GPU imple-
mentation. This is a significant improvement, not to mention that the
monetary cost per unit of computational power for FPGAs is generally
much cheaper than that of GPUs.
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1 Introduction

Solving a system of m nonlinear multivariate polynomial equations in n variables
over Fq is called the MP problem. It is known to be NP-hard even if q � 2 and if
we restrict ourselves to multivariate quadratic equations (in which case we call
the problem MQ). These problems are mathematical problems of natural interest
to cryptographers since an NP-hard problem whose random instances seem hard
could be used to design cryptographic primitives. Indeed, a seldom challenged
standard conjecture is “any probabilistic Turing machine has negligible chance of
successfully solving a random MQ instance with a given sub-exponential (in n)
complexity when m{n is a constant” [BGP06].

This led to the development of multivariate public-key cryptography over the
last decades, using one-way trapdoor functions to build cryptosystems such as



HFE [Pat96], SFLASH [CGP02], and QUARTZ [PCG01]. It also led to the study
of “provably-secure” stream ciphers like QUAD [BGP06].

In algebraic cryptanalysis, on the other hand, one distills from a crypto-
graphic primitive a system of multivariate polynomial equations with the secret
among the variables. This does not break AES as first advertised, but does break
KeeLoq [CBW08], for a recent example. Fast solving would also be a very useful
subroutine in attacks such as [BFJ+09].

Fast Exhaustive Search. When evaluating a quadratic system with n vari-
ables over F2, each variable can be chosen as either 0 or 1. Thus, a straight
forward approach is to evaluate each equation for all of the 2n choices of inputs
and to return any input that is evaluated to 0 by every single equation. The 2n in-
puts can be enumerated by, e.g., using the binary representation of a counter of n

bits where bit i is used as value for xi. Since there are n�pn�1q
2 pairs of variables

and since in a generic (random) system each coefficient is 1 with probability 1
2 ,

each generic equation has about n�pn�1q
2 � 1

2 quadratic terms. Therefore, this ap-

proach has an asymptotic time complexity of Op2n �m � n�pn�1q
2 � 1

2 q. Obviously,
the second equation only needs to be evaluated in case the first one evaluates
to 0 which happens for about 50% of the inputs. The third one only needs to be
evaluated if the second one evaluated to 0 and so forth. The expected number
of equations that need to be evaluated per iteration is

°m
i�1 21�i   2. Thus, the

overall complexity can be reduced to Op2n � 2 � n�pn�1q
2 � 12 q � Op2n�1pn� 1qnq or

more roughly Op2nn2q. Observe that the asymptotic time complexity is indepen-
dent of m, the number of equations in the system, and only depends on n, the
number of variables. This straight forward approach will be called full-evaluation
approach in the remainder of this paper.

The full-evaluation approach requires a small amount of memory. The equa-
tion system is known beforehand and can be hard-coded into program code. It
requires only n bits to store the current input value plus a small number of reg-
isters for the program state and temporary results. Thus, it has an asymptotic
memory complexity of Opnq.

However, [BCC+10] suggests that we can trade memory for speed. The full-
evaluation approach has the disadvantage that computations are repeated since
the input of two consecutive computations is only slightly different. For example,
for a counter step from 16 (10000b) to 17 (10001b) only the least significant bit
and thus the value of x0 has changed; all the other inputs do not change, the
computations not involving x0 are exactly the same as in the previous step.
In other examples, e.g., stepping from 15 (01111b) to 16 (10000b) more bits
and therefore more variables are affected. Nevertheless, it is not important in
which order the inputs are enumerated. The authors of [BCC+10] point out
that, by enumerating the inputs in Gray-code order, we can make sure that
between two consecutive enumeration steps only exactly one bit and therefore
only one variable is changed. Therefore only those parts of an equation need to
be recomputed that are affected by the change of that single variable. For F2

this means that in case variable xi has changed, we only need to add Bf
Bxi

pxq



to the previous result. This reduces the computational cost from evaluating a
quadratic multivariate equation in each enumeration step to evaluating a linear
multivariate equation.

Furthermore, comparing the inputs of two consecutive evaluations of Bf
Bxi

pxq
for a particular variable i, one observes that due to the structure of the Gray
code only one other variable xj of the input has changed. That is, the partial
derivative of each variable is also evaluated in Gray-code order, and hence the
trick can be applied recursively. Thus, by storing the result of the previous
evaluation of Bf

Bxi
pxq, we only need to compute the change in regard to that

particular variable xj , i.e., the second derivative B2f
BxiBxj

pxq, which is a constant

value for quadratic equations.
Therefore, as pointed out by [BCC+10], we can trade larger memory for

less computation by storing the second derivatives in respect to all pairs of
variables in a constant lookup table and by storing the first derivative in respect

to each variable in registers. This requires n�pn�1q
2 bits for the constant lookup

table of the second derivatives and n bits of registers for the first derivatives.
The computational cost is reduced to updating the value of one particular first
derivative (which requires one table lookup and an xor) and to computing the
result of the equation (which requires just another xor).

The computational cost for each equation is independent from the values of n
and m and thus will be considered constant for asymptotic estimations. However,
since a state is updated in every iteration, all equations need to be computed (in
parallel, e.g., using the bitslicing technique as suggested in [BCC+10]) in every
single iteration. Therefore, the asymptotic time complexity for this approach

is Op2n � mq. The asymptotic memory complexity is Opm � pnpn�1q
2 � nqq �

Opmnpn�1q
2 q or more roughly Opn2mq.

Note that both the Gray-code approach and the full-evaluation approach
can be combined by using only mg equations for the Gray-code approach, thus
producing 2n�mg solution candidates to be tested by the remaining m � mg

equations using full evaluation.
Lastly, we note that Gröbner-basis methods like XL [CKP+00] and F5 [Fau02]

using sparse linear solvers such as Wiedemann might have better performance
than exhaustive search even over F2. For example, they are claimed to asymp-
totically outperform exhaustive search when m � n with guessing of � 0.45n
variables [YCC04; BFS+13]. However, as with all asymptotic results, one must
carefully check all explicit and implicit assumptions to see how they hold in
practice. When taking into account the true cost of Gröbner-basis methods, e.g.,
communication involved in running large-memory machines, the cross-over point
is expected to be much higher than n � 200 as predicted in [BFS+13]. However,
even systems in 200 variables are out of reach for todays computing capabilities.

The Research Question. The Gray-code approach implementation described
in [BCC+10] for x86 CPUs and GPUs can solve 48 quadratic equations in 48
binary variables using just one NVIDIA GTX 295 graphics card in 21 minutes.
The research question that we would like to answer in this paper is how specifi-



cally designed hardware would perform on this task. We approach the answer by
solving multivariate quadratic systems on reconfigurable hardware (FPGAs).

While the Gray-code approach has a lower asymptotic time complexity than
full evaluation and is — given a sufficient amount of memory — the best choice
for a software implementation, we show in Sec. 2.1 that both approaches have
the same asymptotic area complexity. Therefore, for an FPGA implementation
the choice of using either Gray code or full evaluation depends on the specific
parameters and the target architecture of the implementation. We motivate our
choice and describe our implementation for the Xilinx Spartan-6 FPGA in Sec. 2.

A question that has not been discussed in [BCC+10] is the probability of
having collisions of solutions during the computation: For a massively parallel
implementation on GPUs or FPGAs, it is most efficient to work on a set of input
values in a batch. In this case, it is necessary to detect whether more than one
input value in a batch is a solution for the equation system. The implementation
must guarantee that no solution is silently dropped. We discuss this effect in
detail in Sec. 2.3, followed by the discussion of the implementation results and
the conclusion of this paper in Sec. 3.

2 Implementation

The target hardware platform of our implementation is a Xilinx FPGA of the
Spartan-6 architecture, device xc6slx150, package fgg676, and speed grade -3.
The Spartan-6 architecture offers three different types of logic slices: SLICEX,
SLICEL, and SLICEM.

The largest amount with about 50% of the slices is of type SLICEX. These
slices offer four 6-input lookup tables (LUTs) and eight flip-flops. The LUTs
can either be interpreted as logic or as memory: Seen as logic, each LUT-6 is
computing the output value of any logical expression in 6 binary variables; seen
as memory, each LUT-6 uses the 6 input wires to address a bit in a 64-bit
read-only memory. Alternatively, each LUT-6 can be used as two LUT-5 with
identical input wires and to independent output wires.

About 25% of the slices are of type SLICEL, additionally offering wide mul-
tiplexers and carry logic for large adders. Another roughly 25% of the slices are
of type SLICEM, which offer all of the above; in addition, the LUTs of these
slices can be used as shift registers or as distributed read-and-write memory.

2.1 Full Evaluation or Gray Code?

There is a major difference between programming for general-purpose architec-
tures (from an FPGA perspective, even recent programmable GPUs are consid-
ered “general purpose”) and implementing algorithms in hardware. For general-
purpose architectures, the programmer has to use the resources provided by
the specific architecture as efficiently as possible; the architecture has a major
influence on the choice of the algorithm. However, FPGAs allow the engineer



time memory comp. logic area

full evaluation Op2nn2q Opnq Opn2mq Opn2mq

Gray code Op2nmq Opn2mq Opmq Opn2mq

Table 1: Asymptotic complexities of the two approaches for exhaustive search.

to choose the hardware according to his particular needs, choosing different al-
gorithms allows also to choose different hardware resources. For example, as
described above, LUTs can either be used for logic or as memory.

Table 1 summarizers asymptotic time and memory complexities of the full-
evaluation approach and the Gray-code approach. Considering a software im-
plementation, for larger systems, the Gray-code approach obviously is the more
efficient choice, since it has a significantly lower time complexity and it is rather
computational than memory bound. Because the memory complexity is much
smaller than the time complexity, the memory demand can be handled easily by
most modern architectures for such choices of parameters n and m that can be
computed in realistic time.

However, a key measure for the complexity of a hardware design is the area
consumption of the implementation: A smaller area consumption of a single in-
stance of the implementation allows either to reduce cost or to increase the num-
ber of parallel instances and thus to reduce the total runtime. The area can be
estimated as the sum of the logic for computation and the logic required for mem-
ory: The asymptotic complexity for the computational logic of the full-evaluation
approach is about Opn2q for each equation line, thus in total Opn2mq. The mem-
ory complexity is Opnq, so the area complexity is Opn � n2mq � Opn2mq. We
point out that in contrast to the time complexity, the area complexity depends
on m. The asymptotic complexity for the computational logic of the Gray-code
approach is Opmq, the memory complexity is Opn2mq; the area complexity in
total is Opn2m �mq � Opn2mq. Therefore, the asymptotic area complexity of
the full-evaluation approach is equal to the area complexity of the Gray-code
approach. In contrast to a software implementation, it is not obvious from the
asymptotic complexities, which approach eventually gives the best performance
for specific hardware and specific values of n and m. The question is: which ap-
proach is using the resources of an FPGA more efficiently for those parameters.
Before we discuss our choice, we describe the overall architecture of a parallel
implementation in the following paragraphs.

Parallelization using Accelerators. Exhaustive search for solutions of multi-
variate systems is embarrassingly parallel — all inputs are independent from each
other and can be tested in parallel on as many instances as physically available.
Furthermore, resources can be shared during the computation of inputs that
have the same value for some of the variables.

Assume that we want to compute 2i instances in parallel. We simply clamp
the values of i variables such that xn�i, . . . , xn�1 are constant for each in-
stance, e.g., in case i � 4 for instance 5 � 0101b variable xn�1 � 0, xn�2 � 1,



xn�3 � 0, and xn�4 � 1. Therefore, the 2n inputs for computations of a system
in n variables can be split into 2i new systems of 2n�i inputs for n� i variables
using precomputation. These 2i independent systems can either be computed
in parallel on 2i computing devices or sequentially on any smaller number of
devices. (Obviously there is a limit on the efficiency of this approach; choosing
i � n would result in solving the whole original system during precomputation.)
The same procedure of fixing variables can be repeated to cut the workload into
parallel instances to exploit parallelism on each computing device.

After fixing variables xn�i, . . . , xn�1, all 2i instances of one polynomial share
the same quadratic terms; all terms involving xn�i, . . . , xn�1 become either lin-
ear terms or constant terms. Therefore, the computations of the quadratic terms
can be shared: For the Gray-code approach, the second derivatives can be shared
between all instances while one set of first derivatives needs to be stored per in-
stance; for full evaluation, the logic for the quadratic terms can be shared while
the logic for the linear terms differs between the instances. Sharing resources
requires communication between the instances and therefore is particularly suit-
able for computations on one single device. Given a sufficient amount of in-
stances, the total area consumption is dominated by the instances doing the
linear computations rather than by the shared computations on the quadratic
part; therefore, the computations on the linear part require the most attention
for an efficient implementation.

In the following, we investigate the optimal choices of n and m and the num-
ber of instances to exhaust the resources of one single FPGA most efficiently.
Larger values of n can easily be achieved by running such a design several times
or in parallel on several FPGAs. Larger values of m can be achieved by for-
warding solution candidates from the FPGA to a host computer. The flexibility
in choosing n and m allows to cut the total workload into pieces that take a
moderate amount of computation time on a single FPGA. This has the benefit
of recovering from hardware failures or power outages without loss of too many
computations.

Choosing the Most Efficient Approach. As described above, for fixed pa-
rameters n and m we want to run as many parallel instances as possible on
the given hardware. Since the quadratic terms are shared by the instances, the
optimization goal is to minimize the resource requirements for the computations
on the linear terms.

The main disadvantage of the Gray-code approach is that it requires access
to read-and-write memory to keep track of the first derivatives. The on-chip
memory resources, i.e., block memory and distributed memory using slices of
type SLICEM, are quite limited. In contrast, the full-evaluation approach “only”
requires logic that can be implemented using the LUTs of all types of slices.

However, each LUT in a SLICEM can store 64 bits; this is sufficient space for
the first derivatives of 64 variables using the Gray-code approach. On the other
hand, there are four times more logic-LUTs than RAM-LUTs. Four LUT-6 can
cover at most the evaluation of 24 variables. Therefore, the Gray-code approach
is using the available input ports more efficiently. This is due to the fact that the



inputs for the Gray-code approach are addresses of width Oplog nq, whereas full
evaluation requires Opnq inputs for the variables. This also reduces bus widths
and buffer sizes for pipelining.

Finally, the Gray-code approach allows to easily reuse a placed and routed
design for different equation systems by exchanging the data in the lookup tables.
An area-optimized implementation of the full-evaluation approach only requires
logic for those terms of an equation that have a non-zero coefficient. To be able
to use the same design for different equation systems, one would have to provide
logic for all terms regardless of their coefficients, thus roughly doubling the
required logic compared to the optimal solution. The Xilinx tool chain does not
include a tool to exchange the LUT data from a fully placed and routed design,
so we implemented our own tool for this purpose.

All in all, the Gray-code approach has several benefits compared to the full-
evaluation approach that make it more suitable and more efficient for an FPGA
implementation on a Spartan-6. The figures might be different, e.g., for an ASIC
implementation or for FPGAs with different LUT sizes. We decided to use the
Gray-code approach for the main part of our implementation to produce a num-
ber of solution candidates from a subset of the equations. These candidates are
then checked for the remaining equations using full evaluation, partly on the
FPGA, partly on the host computer.

2.2 Implementation of the Gray-Code Approach

As described in Sec. 1, the Gray-code approach trades larger memory for less
computation. Algorithm 1 shows the pseudo code of the Gray-code approach
(see the extended version of [BCC+10]). In case of the FPGA implementation,
the initialization (Alg. 1, lines 20 to 35) is performed during compile time and
hard-coded into the program file.

Instead of evaluating the polynomial, first and second derivatives in respect to
each variable are stored in lookup tables d1 and d2 (Alg. 1, lines 27 and 32). The
second derivatives are constant and thus only require read-only memory. They
require a quadratic amount of bits depending on the number of variables n. The
first derivatives are computed in each iteration step based on their previous value
(Alg. 1, line 16). Therefore, the first derivatives are buffered in a relatively small
random access memory with a size linear to n.

The implementation of the Gray-code approach works as follows: Due to the
structure of the Gray code, when looking at two consecutive values vi�1, vi in
Gray-code enumeration, the position k1 of the least-significant non-zero bit in
the binary representation of i is the particular bit that is toggled when stepping
from vi�1 to vi. Therefore, the first derivative Bf

Bxk1
in respect to variable xk1

needs to be considered for the evaluation. Furthermore, since the last time the
bit i had toggled, only the bit at the position k2 of the second least-significant

non-zero bit in i has changed. So we need to access B2f
Bxk1

Bxk2
in the static lookup

table.



1: function RUN(f, n)
2: s Ð INIT(f, n);
3: while s.i   2n do
4: NEXTpsq;
5: if s.y � 0 then
6: return s.y;
7: end if
8: end while
9: end function

10:
11: function NEXT(s)
12: s.i Ð s.i� 1;
13: k1 Ð BIT1ps.iq;
14: k2 Ð BIT2ps.iq;
15: if k2 valid then
16: s.d1rk1s Ð s.d1rk1s ` s.d2rk1, k2s;
17: end if
18: s.y Ð s.y ` s.d1rk1s;
19: end function

20: function INIT(f � an,n�1xnxn�1 �
an,n�2xnxn�2�� � ��a1,0x1x0�anxn�
an�1xn�1 � � � � � a0x0 � a, n)

21: state s;
22: s.i Ð 0;
23: s.x Ð 0;
24: s.y Ð a;
25: for all k, 0   k   n, do
26: for all j, 0 ¤ j   k, do
27: s.d2rk, js Ð ak,j ;
28: end for
29: end for
30: s.d1r0s Ð a0;
31: for all k, 1 ¤ k   n, do
32: s.d1rks Ð s.d2rk, k � 1s ` ak;
33: end for
34: return s;
35: end function

Alg. 1: Pseudo code for the Gray-code approach (see [BCC+10]). The functions BIT1

and BIT2 return the positions of the first and second least-significant non-zero
bits respectively.

Fig. 1 shows the structure of the parallel FPGA implementation of the Gray-
code approach for 2i instances. To compute k1 and k2 (Alg. 1, lines 13 and 14), we
use a module counter that is incrementing a counter by 1 in each cycle (cf. Alg. 1,
line 12). The counter counts from 0 to 2n�i. To determine its first and second
least-significant non-zero bits, we feed the counter value to a module called
gray tree that derives the index positions of the first and the second non-zero bit
based on a divide-and-conquer approach. The output of the gray tree module are
buses k1 and k2 of width rlog2pnqs and two wires enable1 and enable2 (not shown
in the figure) indicating whether k1 and k2 contain valid information (e.g., for
all counter values 2i the output k2 is invalid since the binary representation of
2i has at most one non-zero bit).

Next, we compute the address addr of the second derivative in the lookup
table from the values k1 and k2 as addr � k2pk2 � 1q{2 � k1 (cf. Alg. 1, line
16). The computation is implemented fully pipelined to guarantee short data
paths and a high frequency at runtime. The modules counter and gray tree and
the computation of the address for the lookup in the table are the same for all
instances and all equations and therefore are required only once.

Now, the address is forwarded to the logic for the first equation eq0. Here, the
buses addr and k1 are buffered and in the next cycle forwarded to the lookup
table of equation eq1 and so on. The address is fed to the constant memory
that returns the value of the second derivative d20. We implement the constant
memory using LUTs. The address of an element in the lookup table is split into
segment and offset: The 6 least significant bits address an offset into a particular
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Fig. 1: Structure of the overall architecture.

LUT that holds the data for the address; the according LUT is selected by the
remaining bits.

After value d20 of the second derivative of eq0 has been read from the lookup
table, it is forwarded together with k1 to the first instance inst0,0 of eq0. Here,
d20 and k1 are buffered to be forwarded to the next instance of eq0 in the next
cycle and so on.

In instance inst0,0, the value of the first derivative in respect to xk1 is up-
dated and its xor with the previous result y is computed. For the random access
memory storing the first derivatives we are using distributed memory imple-
mented by slices of type SLICEM. Figure 2 shows a schematic of a Gray-code
instance instj,k. Storing the first derivative requires one single LUT-6 for up to
64 variables. Storing the result y of each iteration step requires a one-bit storage;
we use a flip-flop for this purpose. The logic for updating the first derivative re-
quires three inputs: d2, the first derivative d1, and enable2 to distinguish whether
d2 is valid (see Alg. 1, line 15 and 16). The logic for updating y requires two
inputs, the new first derivative d1 and the previous value of y (Alg. 1, line 18).
We combine both computations in one single LUT-6 by using one LUT-6 as two
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Fig. 2: Schematic of a Gray-code instance group.

LUT-5, giving four inputs d2, d1, enable2, and y and receiving two outputs for
the new first derivative and for the new y. Furthermore, we compute the or with
the solutions of the previous equations as solj,k � solj�1,k _ y using another
LUT. Finally, the inputs d2, enable2, and k1 as well as the output are buffered
using flip-flops.

Each SLICEM has four LUTs that can be addressed as memory. However,
they can only be written to if they all share the same address wires as in-
put. Therefore, we combine four instances instj,k...k�3 of an equation j in one
SLICEM using the same address as input. As a side effect, this reduces the num-
ber of buffers that are required for the now four-fold shared inputs. All in all, for
up to 64 variables, a group of four instances for one equation requires 4 slices,
one of them being a SLICEM.

Finally the buffered results solj,k...k�3 are forwarded to instj�1,k...k�3 of eqj�1

in the next cycle. After the result of instj�1,k has been computed as described
before, the cumulated result solj�1,k � solj,k _ y is computed and forwarded to
instance instj�2,k and so on.

Eventually, the result solmg�1,k is put on a bus together with an ID that
defines the value of the clamped variables. If more than one instance finds a
solution candidate in the same enumeration step, there might be a collision
on the bus. We describe these collisions and our counter measures in detail in
Sec. 2.3.

In each cycle, the solution candidates together with their ID are forwarded
from bus segment busi to busi�1 until they eventually are leaving the bus after
the last segment has been reached.

We are using the remaining resources of the FPGA to compute the actual so-
lutions of the equation system. The computations using the Gray-code approach



drastically reduce the search space from 2n to 2n�mg . Therefore, we only need
single instances of the remaining equations to check the candidates we receive
from the Gray-code part. Since the inputs are quasi-random, we use full eval-
uation to check the candidates. If the system has more equations than we can
fit on the FPGA, the remaining solution candidates are eventually forwarded to
the host for final processing.

In order to check a solution candidate on the FPGA, we need to compute
the actual Gray code for the input first. Since the design is fully pipelined, the
value of each solution candidate from the Gray-code part is uniquely defined by
the cycle when it appears. Therefore, we use a second counter (counter2) that
runs in sync, delayed by the pipeline length, to the original counter (counter).
We compute the according Gray code from the value ctr2 of this counter as
x � ctr2 ` pctr2 ¡¡ 1q. This value is appended to the ID and xmg�1 � pid, xq is
forwarded into a fifo queue.

To give some flexibility when fitting the design to the physical resources
on the FPGA, our design allows the instances to be split into several pillars,
each with their own bus, gray code module and fifo queue. The data paths are
merged in module merge by selecting one solution candidate per cycles from the
fifo queues in a round-robin fashion.

The solution candidate is forwarded to a module eqmg
which simply evalu-

ates equation mg for the given input. The implementation of the evaluation is
explained in detail below. the terms of the each equation to LUTs. The result
of eqmg

is or-ed to solmg�1 and forwarded to eqmg�1 together with a buffered
copy of xmg�1 and so on.

Eventually, a vector x, its solution sol and the warning signal warn are
returned by the module solver. In case sol is equal to zero, i.e., all equations
evaluated to zero for input x, the vector x is sent to the host.

The whole computation is fully pipelined and allows us to compute one eval-
uation in every cycle (after a warm-up latency of several cycles).

Full Evaluation. The full-evaluation approach requires logic to evaluate all
equations for any given input. Furthermore, there must be logic to check whether
all equations evaluate to zero for a particular input. We implemented each equa-
tion as a separate module in Verilog. The input to the module is a bus x of n
wires, one wire for each variable. The output is a single wire sol for the result
of the evaluation.

Given the input wires, the equation can be easily evaluated in Verilog (as
in any other hardware description language (HDL)) by assigning a logical ex-
pression of the input wires to the output wire, e.g., the quadratic equation
x5x4 � x3x1 � x2x0 � x1x0 � x5 � x3 � x0 � 1 can be evaluated as:

assign sol = (x[5] & x[4]) ^ (x[3] & x[1]) ^ (x[2] & x[0])

^ (x[1] & x[0]) ^ x[5] ^ x[3] ^ x[0] ^ 1’b1;

However, for large equations of several hundred terms this may result in long
data paths and thus in a low clock frequency. Furthermore, long expressions make
the work of the FPGA tool chain more difficult and increase processing time



during synthesis. We encountered very long compile times even for equations
with a moderate number of variables. Therefore, we are generating optimized
Verilog code automatically for a given equation by explicitly transferring the
logic of an equation into LUTs.

Our target architecture is a Spartan-6 FPGA, which has LUTs with 6 input
ports; each of these LUT-6 can cover 6 variables and thus at most

�
6
2

� � 15
quadratic terms. We do not need to worry about the linear and constant terms;
assuming that each variable appears in at least one quadratic term, linear and
constant terms can be packed “for free” into the LUTs computing the quadratic
terms. For example the equation above requires only one single LUT with the
inputs x0 to x5.

Mapping the quadratic terms to LUTs breaks down to the Set Cover Problem:
Given a universe U and a set S of subsets of U , find a minimal cover C � S of U
such that the union of C is U and such that |C| is minimal. The elements in the
universe U we want to cover are the quadratic terms of the equation. The sets
in S are given by picking for all choices of 6 variables the terms of the equation
that are pairwise combinations of these variables. The Set Cover Problem is NP-
complete; therefore we implemented a Greedy algorithm to obtain a reasonable
approximation of the optimal solution in a moderate amount of time.

After splitting the equation into sub-equations of up to 6 variables, these
intermediate results are added up in a tree fashion. Our approach performs
the mapping of the equation to LUTs much faster than the FPGA tool chain
and gives slightly better results (i.e., a smaller number of LUTs). Furthermore,
this code-generation approach allows us to fully pipeline the evaluation of the
equation at each level of the tree.

It would be possible to reduce the number of LUTs further by sharing the
result of common subexpressions between several equations. However, the as-
signment of LUT is complicated and we require the full evaluation only to check
solution candidates provided by the Gray-code approach; the percentage of full
evaluation on the overall design is very small. Therefore, there is no need to put
too much effort in fully optimizing this part of the design.

2.3 Collisions, or Overabundance of Candidate Solutions

A parallelized brute-force enumerative solution of a system of equations is akin
to a map-reduce process, wherein V � 2n input vectors (n being the number of
variables) are passed to many small instances that each screen a portion of the
inputs against a subset of k equations. Solution candidates which pass this stage
move to a stage where they are checked against the remaining equations.

Every input processed by one of the processing instances may become a can-
didate solution with probability 2�k. This is an individually very unlikely event.
Logically, the checking stage requires only a small fraction of the throughput of
the screening stage, occupying a correspondingly smaller amount of resources.
How to collect the candidate solutions from a large number of screening instances
and channel them to the checker becomes a problem.



When the screening instances are execution threads or processor cores on
standard CPUs, there will be relatively few of them, each with dedicated multiple
kB of high-speed static RAM as well as processor state, control logic and read-
write ports on the memory bus. Thus it is viable for each instance (core or
thread) to process its own pile of candidate solutions.

When performing the same computation on a GPU or fully-pipelined FPGA,
the same resources mentioned above — SRAM, control logic, and memory band-
width — are scarce. The programmer has to partition inputs into small pools.
Some buffering then enables all candidate solutions in this pool to be recovered
up to a given number, past which an error is returned and most of the pool
must be re-checked. Re-checking may be delegated to a CPU, as in [BCC+10,
Sec. 7.2], which is a highly efficient GPU implementation with a buffer depth of
only 2, and it was experimentally shown that the costs of re-checking does not
overwhelm the cost of the initial screening.

Expecting Collisions. Let us assume that each of 2n candidate vectors is
checked against k equations in pools of size P � 2s. [BCC+10] using a GPU
such as the NVIDIA GTX 295 has pn, k, sq � p48, 32, 11q. A reasonable setup on
a Spartan-6 FPGA might have pn, k, sq � p48, 28, 9q or pn, k, sq � p48, 14, 10q.

A back-of-the-envelope calculations would go as follows: There are approxi-
mately V {2k � 2n�k candidate solutions, randomly spread among V {P � 2n�s

pools. The birthday paradox says that we may reasonably expect one or more
collisions from x balls in y bins as soon as x Á ?

2y, therefore we should ex-
pect a small but non-zero number of “collisions”, pools that have more than one
solution.

To articulate the above differently, each test vector has probability 2�k to
pass screening, and the event for each vector may be considered independent.
Thus, the probability to have two or more solutions among a pool of P is given
by the sum of all coefficients of the quadratic and higher terms in the expansion
of p1 � px � 1q{2kqP . The quadratic term represent the probability of having a
collision of two values, the cubic term the probability of three values, and so
on. The quadratic coefficient can be expected to be the largest and contribute
to most of the sum. The expected number of collisions among all inputs is V {P
times this sum, which is roughly

pV {P q �x2
� �p1� 2�kq � 2�kx

�P � p1� 2�kqP�2 pP � 1q
22k�n�1

� 2s�n�2k�1.

The last approximation holds when p1�2�kqP�2 � exp
�
2�pk�sq

� � 1 and P " 1.
We can judge the quality of this approximation by the ratio between the

quadratic and cubic term coefficients, which is pP � 2q2�k{3 À 2�pk�1�sq. In
other words, if k�s ¡ 3, the number of expected collisions is roughly 2n�s�p2k�1q

with an error bar of 5% or less. Similarly, the expected number of c-collisions
(with at least c solutions among the same pool) is

pV {P q rxcs �p1� 2�kq � 2�kx
�P � 2n�ck�pc�1qs{c!.



2.4 Choosing Parameters

The parallel implementation described in Sec. 2.2 has two crucial parameters:
the number of instances 2i and the number of Gray-code equations mg. This
section describes how to choose these parameters to fit the capabilities of the
target FPGA.

In case of the Spartan-6 xc6slx150-fgg676-3 FPGA, the slices are physically
located in a quite regular, rectangular grid of 128 columns and 192 rows. The
grid has some large gaps on top and in the bottom as well as several large vertical
and a few small horizontal gaps. By picking a subset of slices in the center of the
FPGA we obtain a regular grid structure of 116 columns and 144 rows. Each
row has 29 groups of 4 slices: one SLICEM, one SLICEL and two SLICEX. Such
a group has enough resources for four Gray-code instances each. Therefore, the
whole region can be used for up to 29 � 4 � 144 � 16704 Gray-code instances. The
area below the slices for the Gray-code instances is used for the modules counter
and gray tree, for the computation of the address, and for the second-derivative
tables. The area above the instances contains enough logic for evaluating the
remaining equations using full evaluation and for the logic necessary for FPGA-
to-host communication.

Using 128 rows, we could fit 128 � 4 � 512 instances of 28 equations of the
Gray-code approach onto the FPGA — one equation per column, four instances
per row — while guaranteeing short signal paths, leaving space of four slice
columns for the bus, and giving more space for full evaluation on the top. With
28 equations in 29 instances, collisions of two solutions during one cycle are very
rare and easy to handle by the host CPU. The obvious optimization to double
the number of instances (and halve the runtime), however, introduces additional
complications: Even if we can fit 14 equations into the Gray-code approach,
Sec. 2.3 shows that one collision appears every 210 cycles on average. We can no
longer use the simple approach of re-checking all blocks with collisions on the
CPU, we have to handle collisions on the FPGA. We describe in the following
how to achieve 210 instances for up to 14 (actually only 12) equations.

Handling of Collisions. Due to the physical layout of the FPGA and in order
to save space for input-buffers, our implementation groups four instances with
the same inputs together into an instance group. Instead of resolving a collision
within an instance group right away, we forward a word of four bits, one for each
instance, to the bus and cope with those collision later.

Whenever there is a collision at a instance group j, i.e., there is already
a solution candidate on the bus in segment busj , the candidate of group j is
postponed giving precedence to the candidate on the bus. However, the actual
input giving this solution candidate is not stored in the Gray-code instances
but is later derived from the cycle in which the solution was found. Therefore,
delaying the solution distorts the computation of the input value. Computing
the input value immediately at each bus segment would require a lot of logic
and would increase the bus width to n. Instead, we count how many cycles a
candidate is postponed. We use 4 bits to encode this information. Therefore, we
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Fig. 3: Schematic of a bus segment.

can cope with a push-back of at most 14 cycles, encoding 15 and more cycles of
bush-back as 1111b; this value is treated as an error in the following logic and
is reported to the host. Since the delay has a very limited maximum number
of cycles, we can not use classical bus congestion techniques like exponential
backoff; we must ensure that candidates are pushed onto the bus as soon as
possible. This leads to high congestion in particular at the end of the bus.

Due to the push-back, our collision pool has become temporal as well as
spatial. That is, it might happen that another solution candidate is produced by
the same instance group before the previous one is handed to the bus. Therefore,
we provide four buffer slots for each instance group to handle the rare cases where
candidates are pushed back for several cycles while further candidates come up.
If there are more candidates than there are buffer slots available, a warning
signal is fired up and the involved input values are recomputed by the host.

All in all, the bus is transporting i� 7 signals for 2i instances; i� 2 signals
for the instance-group ID of the solution candidate, 4 signals for the push-back
counter, 4 signals for the four outputs of a group of instances, and 1 warning
signal.

Figure 3 shows a schematic of a bus segment. The solutions from an instance
group of eqmg

are sent in from the left using signal sol ; the inputs from the
previous bus segment are shown in the bottom. Whenever there is no signal on
the bus, i.e., sol in is all high, the control logic sets the signal step to high and a
buffered result is pushed onto the bus; further delayed results are forwarded to
the next buffer. If an available result can not be sent to the bus because there
is already data on the bus, the step signal is set to low and each cycle counter
in the counter buffers is incremented by one.

The logic for each bus segment covering a group of 4 instances requires 5
slices (the area of 2.5 instances) including buffers, counters, and multiplexers.



Therefore, even though 29 instances would fit into one row on the FPGA, with
two buses and two pillars of instances we can only fit instances for 12 equations,
but we do achieve the desired 210 � 1024 instances.

At the end of the buses, two FIFOs buffer the solution candidates so that
the two data streams can be joined safely to forward a single data stream to the
following logic for further handling of solution candidates (see Fig. 1). Here also
the occasional collisions of solutions are resolved that might occur in an instance
group of four instances as described above. Since the Gray-code part is using
210 instances and 12 equations, there is one solution candidate on average every
212�10 � 4 cycles going into full evaluation.

With each bus averaging 1{8 new entries and being capable of dispatching 1
entry every cycle, the buses should not suffer from too much congestion (con-
firmed by simulations and tests). With a push-back of maximally 14 cycles, an
unhandleable super-collision should only happen if 15 candidates appear within
15 consecutive 4-instance groups each with probability 2�10, all within 15 cy-
cles. The back-of-the-envelope probability evaluation like in Sec. 2.3 gives us�
225
15

� �
2�10

�15 � 6.4� 10�21. Just to be very sure, such super-collisions are still
detected and passed to the host CPU, which re-checks the affected inputs. We
can see that the CPUs on even a 256-FPGA Rivyera have sufficient computa-
tion power to recheck 1 in 5 million blocks. In all our tests and simulations, we
have detected no super-collisions, which confirms that our push-back buffer and
counter sizes are sufficient to prevent too many unhandled collisions that needs
to be passed back to CPU.

We are able to fit logic for full evaluation of at least 42 more equations on
the chip, giving 54 equations in the FPGA in total. This reduces the amount of
outgoing solution candidates from the FPGA to the host computer to a marginal
amount. Therefore, the host computer is able to serve a large amount of FPGAs
even for a large total amount of equations in the system.

3 Performance Results and Concluding Remarks

We tested our implementation on a “RIVYERA S6-LX150 FPGA Cluster” from
SciEngines. The RIVYERA has a 19-inch chassis of 4U height with an off-the-
shelf host PC that controls 16 to 128 Spartan-6 LX150 FPGAs (xc6slx150-
fgg676-3); our RIVYERA has 16 FPGAs. The FPGAs are mounted on extension
cards of 8 FPGAs each with an extra FPGA exclusively for the communication
with the host via PCIe.

Area Consumption. The Spartan-6 LX150 FPGA has 23,038 slices. In total,
our logic occupies 18,613 slices (80.79%) of the FPGA. We are using 63.44% of
the LUTs and 44.47% of the registers.

The logic for the Gray-code evaluation occupies the largest area with 15,281
slices (67.43%). Only 253 of those slices are used for the second-derivative tables,
the counter, and address calculation. The bus occupies 2,740 slices, the remaining
12,288 slices are used for the 1,024 instances of 12 equations.



The logic for full evaluation of the remaining 42 equations, the fifo queues, and
the remaining logic requires 1,702 slices (7.39%). Each equation in 54 variables
requires 88 LUTs for computational logic, thus about 22 slices. All these slices
are located in an area above the Gray-code logic. More than 50% of the slices in
this area are still available, leaving space to evaluate more equations using full
evaluation if required.

The logic for communication with the host using SciEngine’s API requires
1,377 slices (5.98%).

Performance Evaluation. The GPU implementation of [BCC+10] from 2010
uses a GTX 295 graphics card. We also tried to run their CUDA program on a
GTX 780 graphics card which is state-of-the-art in 2013. However, the compu-
tation took slightly more time on the GTX 780 than on the GTX 295, although
the GTX 780 should be more than three times faster than the GTX 295: the
GTX 780 has 2304 ALUs running at 863MHz while the GTX 295 has 480 ALUs
running at 1242MHz. We suspect that the relative decrease of SRAM compared
to the number of ALUs and the new instruction scheduling of the new generation
of NVIDIA GPUs is responsible for the tremendous performance gap. To get full
performance on the GTX 780 a thorough adaption and hardware-specific opti-
mization of the algorithm would be required; the claim of NVIDIA that CUDA
kernels can just be recompiled to profit from new hardware generations does not
apply. Since most of the computing power of the GTX 780 is wasted for the
currently available GPU implementation, we will continue the discussion based
on the outdated GTX 295 graphics card.

Our Spartan-6 FPGA design runs at 200MHz. The design is fully pipelined
and evaluates 210 input values in each clock cycle. Thus, we can find all solutions
of a system of 48 variables and 48 equations by evaluating all possible 248 input
values in 248�10{200MHz � 23min with a single FPGA. The GTX 295 graphics
card computes all solutions of the system in 21min. Therefore, a Spartan-6 FPGA
performs about the same as the [BCC+10] GPU implementation.

However, total runtime is not the only factor that affects the overall cost
of the computation; power consumption is another important factor. We mea-
sured both the power consumptions of the Spartan-6 FPGA and the GTX 295
during computation: Our RIVYERA requires 305W on average during the com-
putation using all 16 FPGAs. The host computer with all FPGA cards removed
requires 165W. Therefore, a single FPGA requires p305W�165Wq{16 � 8.8W on
average, including communication overhead. We measured the power consump-
tion of the GTX 295 in the same way: During computation on the GTX 295,
the whole machine required 357W on average. Without the graphics card, the
GPU-host computer requires 122W. Therefore, the GTX 295 requires 235W on
average during computation. For a system of 48 variables, a single Spartan-6
FPGA requires 8.8W � 23min � 3.4Wh for the whole computation. The GPU re-
quires 235W � 21min � 82.3Wh. Therefore, the Spartan-6 FPGA requires about
25 times less energy than the GTX 295 graphics card. More recent graphics cards
are more power efficient than the GTX 295 but still an adapted version of the
algorithm would require more energy than a Spartan-6 FPGA.



time energy
energy cost

Germany USA

48 variables
Spartan-6 23 min 3.4Wh – –
GTX 295 21 min 82.3Wh – –

64 variables
Spartan-6 1,042 days 216kWh e56 US$28
GTX 295 956 days 5,390kWh e1,401 US$701

80 variables
Spartan-6 187,182 years 14.4GWh e3.7 mil. US$1.9 mil.
GTX 295 171,603 years 353.3GWh e91.8 mil. US$45.9 mil.

Table 2: Comparison of the runtime and cost for systems in 48, 64, and 80 variables.

For a system of 64 variables, the very same FPGA design needs about
264�10{200MHz � 1042 days and therefore about 216kWh. For this system, the
GPU requires about 965 days and roughly 5, 390kWh. A single kWh costs, e.g.,
about e0.26 in Germany∗ and about US$0.13 in the USA∗∗. Therefore, solving a
system of 64 variables with an FPGA costs about 216kWh�e0.26{kWh � e56 in
Germany and 216kWh �US$0.13{kWh � US$28 in the US. Solving the same sys-
tem using a GTX 295 GPU costs e1, 401 or US$701. Table 2 shows an overview
for systems in 48, 64, and 80 variables.

80-bit Security. We want to point out that it is actually feasible to solve a
system in 80 variables in a reasonable time: using 280�64 � 216 � 65, 536 FPGAs
in parallel, such a system could be solved in 1042 days. Building such a large
system is feasible; e.g., the Tianhe-2 supercomputer has 80, 000 CPUs.

Each RIVYERA has up to 128 FPGAs; therefore, this computation would
require 512 RIVYERAs. The list price for one RIVYERA is e70, 000, about
US$90,000. Therefore, solving a system in 80 variables in 2.85 years costs at
most US$48 million, including the electricity bill of US$2.2 million for a contin-
uous supply of 660kW. For comparison, the budget for the Tianhe-2 supercom-
puter was 2.4 billion Yuan (US$390 million), not including the electricity bill
for its peak power consumption of 17.8MW. Therefore, 80-bit security coming
from solving 80-variable systems over F2 is, as more cryptographers gradually
acknowledge, no longer secure against institutional attackers and today’s com-
puting technology.
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