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Abstract. Transferable conditional electronic-cash (e-cash) allows a payer to spend an e-cash
based on the outcome not known in advance. It also allows a payee to spend the e-cash to others,
or deposit the e-cash to a bank based on the future outcome. Among security properties, the
anonymity of the payer has been widely studied. However, the payer is linkable in the existing
conditional e-cash schemes. This paper presents the first optimally anonymous and transferable
conditional electronic-cash (e-cash) system based on two recent cryptographic primitives, i.e., the
Groth-Sahai(GS) proof system and the commuting signatures, to obtain the user’s unlinkability
and optimal anonymity. A publisher is introduced to publish the conditions, and is firstly for-
malized. By dividing the deposit protocol into two parts, the anonymity of the user is obtained
in the deposit protocol. Compared with the existing conditional e-cash schemes, this scheme has
the constant size for the computation and communication. Finally, we give the security proof in
the standard model.

Key words: Conditional E-cash; Transferability; Anonymity; Groth-Sahai Proofs; Commuting
Signatures.

1 Introduction

Electronic cash (E-cash) is the digital equivalent of regular money. E-cash was introduced by Chaum
[14] in 1982. It generally consists of three parts, i.e., the bank B, the user U and the merchant M.
The user firstly establishes an account and withdraws coins from the bank B. Then the user U spends
the cash to the merchant M. At last, the merchant M deposits the cash to the bank B. There are
some interesting varieties, such as divisible e-cash [14, 26, 19, 3, 4, 5, 6, 7, 31, 8, 9, 10, 11], transferable
e-cash [26, 21, 20, 23, 27, 18] and conditional e-cash [25, 17], et. al. Among them, the transferable
e-cash allows the recipient of a coin in a transaction to transfer it in a later payment transaction to a
third person without contacting a bank; the conditional e-cash allows a payer to spend a e-cash based
on the future outcome.

Conditional e-cash was firstly introduced by Shi et al. [25]. It allows a participant to spend an
e-cash to others based on the future outcome. After the outcome publishes, only one user (a payer/a
payee) deposits the conditional e-cash to the bank, if and only if the outcome is favorable to the user.
If the outcome is not favorable to the payer, the payer loses and the payee cashes the e-cash from B;
otherwise, the payer cashes back the e-cash. Therefore, only one user (the winner) deposits the e-cash
to B. There are many applications of conditional e-cash, i.e., securities trading [25], prediction markets
[25] and online betting [25].

The existing transferable conditional e-cash [17] consists of the users (payers and payees) U1,U2, · · · ,
Un, the bank B and the publisher P. B is responsible for issuing the conditional e-cash. P is responsible
for publishing two conditional commitments of two outcomes. However, the payer recognizes the coin
which he has observed previously and the payee Un’identity is not unlinkable. More precisely, Un is
not able to modify the zero-knowledge proof. Therefore, the payer can recognize the coin which he has
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observed previously; the bank knows the identity of the last payee. These do not satisfy the anonymity
property. The problem is left as an open problem.

To solve these problems, we propose the new transferable conditional e-cash using the Groth-Sahai
proof system and the commuting signature. We also introduce an judge J which is responsible for
registering new users and recovering the identity of double-spender. The whole processing is divided
into three parts. (1) The publisher publishes two conditions about two outcomes. In this paper, the
commitments represent the conditions. The user U1 registers one of the two outcomes at the publisher.
(2) U1 withdraws a coin co from the bank B, and then spends the coin to the user U2. The payee U2
spends the coin to the third user U3, or deposits the coin to B. (3) When the publisher publishes the
outcome, only the winner wins the coin, and then the winner cashes from the bank B. After B checks
the correctness of the coin, he decides to credits the M’s account or announce the judge to recover
the identity of the double-spender.

The transferable conditional e-cash has similarities with traditional transferable e-cash. The most
difference is that a condition is introduced in the transferable conditional e-cash. More precisely, in
the transferable conditional e-cash, the payee can not deposit the e-cash unless the outcome of the
condition is published and it is favorable to the payee, while in the traditional transferable e-cash the
user spends an e-cash without any condition. Additionally, the payer can cash back the e-cash in the
case of an unfavorable outcome to the payee, but this scenario is not applicable in the traditional
transferable e-cash. Therefore, new tools are needed to construct the transferable conditional e-cash.

1.1 Related Results

Much research has been performed in the e-cash. Okamoto and Ohata proposed the first ideal untrace-
able electronic cash [26] using the cut-and-choose methodology and introduces some basic properties,
i.e., untraceability, transferability and divisibility. The cut-and-choose methodology causes low efficien-
cy of Okamoto and Ohata’s scheme. Pailles constructed a new protocol for e-cash [2] which develops
the anonymity and the divisibility of the e-cash. Unfortunately, the bank has to perform a huge amount
of computations. As for divisibility, Eng and Okamoto proposed a single-term divisible e-cash [3] which
is not a practical divisible e-cash. Then Okamoto presented the first practical divisible e-cash [4] which
was subsequently improved by Chan et al. [5]. However, the schemes mentioned above are linkable,
since anyone can decide whether several spends come from the same coin. In 2000, Nakanishi and
Sugiyama provided an unlinkable divisible electronic cash [6] by introducing a trusted third party.

A trusted third party recovers the identity of double-spender. However, if the trusted third party is
compromised, the anonymity of the user is impossible. To solve the problem, Camenisch, Hohenberger
and Lysyanskaya described a compact e-cash [7] which allows the user to withdraw a wallet efficiently
containing 2L coins. Meanwhile, the scheme removes a trusted third party. Unfortunately, in the
withdrawal protocol the user chooses the number of the coins which have to be only spent one by one
in the spending protocol. Thus, the scheme is very inconvenient to the user, and the efficiency is very
low in the spending protocol. The first anonymous divisible e-cash scheme [8] was proposed by Canard
and Gouget. When a user spends a small number of coins, he must prove that the spending protocol
is constructed correctly using non-interactive zero-knowledge proof of knowledge. In the spending
protocol, the proof is constructed from the root node of the binary tree to the node spent, which is
well-known very costly. Au et al. constructed a divisible e-cash [9] using bounded accumulators. The
efficiency of the computation and the storage is improved in the spending protocol. Unfortunately,
it does not fulfill unforgeability. In order to obtain unforgeability, Canard and Gouget proposed a
divisible e-cash scheme [10]. The number of the accumulator is proportional to the level number of the
binary tree in the withdrawal protocol.

Transferability is the other important property. Okamoto and Ohta proposed two transferable e-
cash systems [30, 26] which only provide weak anonymity. Chaum and Pedersen [21] analyzed the size
of the transferred e-cash. They claimed that it is impossible to transfer a coin without increasing its
size. Later, Canard et al. proposed an anonymous transferable e-cash system [27], and analyzed the
anonymity [20] in transferable e-cash.



Optimally Anonymous and Transferable Conditional E-cash 3

The conditional e-cash is another interesting branch in e-cash. Shi et al. [25] firstly introduced the
definition of the conditional e-payments. The payer anonymously spends the e-cash to the payee. The
payee then transfers the e-cash to the next user or deposits the e-cash to the bank. The disadvantage
of this scheme is that the bank has to be on-line, and that it depends on the expensive cut-and-choose
techniques. Blanton [17] improved the efficiency of the conditional e-payments, then he instantiated
it using zero-knowledge proof, CL signature and verifiable encryption. However, the payer decides
whether he has already owned the coin which he has received. The identity of the last payee is known
by the bank. Moreover, Blanton left an open problem which the last payee is not unlinkable in the
spending and deposit protocol.

Groth and Sahai constructed the first efficient non-interactive proof system [24] which considers a
large class of statements over bilinear group. It is witness indistinguishable i.e., any adversary cannot
distinguish which witness is used by the user. The proof can be randomized to update the NIZK
proof. Based on Groth-Sahai proof system, Fuchsbauer presented commuting signatures and verifiable
encryption [22]. It preserves its public verifiability, and allows anyone to encrypt a message and the
corresponding signature. The signer who is given a commitment to a message creates a verifiably
encrypted signature on the committed message.

The security of schemes mentioned above are proved in the random oracle model. It is known that
some schemes [13, 12] proven secure in the random oracle model, are not secure in the standard model,
or can not be instantiated. Belenkiy, Chase, Kohlweiss and Lysyanskaya proposed a compact e-cash
system [31] with non-interactive spending in the standard model. This scheme is based on P-signature,
simulatable verifiable random functions and Groth-Sahai proofs systems. Fuchsbauer et al. constructed
the first practical transferable constant-size fair e-cash [23] in the standard model. However, each user
has to keep in memory the data associated to all past transactions to prove her innocence in case of a
fraud. Blazy et al. gave a similar construction [18] with stronger anonymity. More recently, Izabachene
and Libert built the first divisible e-cash [11] in the standard model. This scheme uses a new method
to split the wallet and authenticate node. Unfortunately, the scheme has very low efficient.

1.2 Optimal Anonymity Properties

Optimal anonymity properties are firstly divided into five levels: Weak Anonymity (WA), Strong
Anonymity (SA), Full Anonymity (FA) and two types of restricted Perfect Anonymity (PA1 and
PA2) by Canard and Gouget [20]. Then Blazy and Canard et al. [18] modified the terminologies of
Full Anonymity (FA) and Perfect Anonymity (PA1 and PA2), and defined the observe-then-receive
full anonymity (FA), spend-then-observe full anonymity (PA1) and spend-then-receive full anonymity
(PA2) as OtR-FA, StO-FA and StR-FA respectively. The specific definitions are given as follows.

– Weak Anonymity (WA): An adversary is not able to link a spending to a withdrawal in a transaction.
However, the adversary may know if two spends are done by the same user or not.

– Strong Anonymity (SA): An adversary can not decide if two transactions are done by the same user
or not. However, the adversary may recognize a coin that he has already observed during previous
spends.

– Observe-then-Receive Full Anonymity (OtR-FA): An adversary can not link a coin he has received
to a previously observed coin between honest users. However, the adversary may be able to recognize
a coin he has already owned.

– Spend-then-Observe Full Anonymity (StO-FA): An adversary can not link a coin he has already
owned to a observed coin between honest users.

– Spend-then-Receive Full Anonymity (StR-FA): An adversary can not link two coins he has received.

In this paper, we use the definition of anonymity introduced by Blazy and Canard et al. [18]. If the
scheme fulfils the OtR-FA property, it fulfils SA property. If the scheme fulfils the SA property, it fulfils
WA property. Thus, the relation is OtR-FA⇒ SA⇒WA [20]. However, OtR-FA, StO-FA and StR-FA
are three separate properties [20] which are not comparable. Therefore, if the anonymous transferable
conditional e-cash scheme satisfies OtR-FA, StO-FA and StR-FA, it achieves optimal anonymity.
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1.3 Our Contribution

In this paper we propose an optimally anonymous and transferable conditional e-cash based on Groth-
Sahai proofs [24] and the commuting signatures [22] in the standard model. Our contributions are
listed as follows:

– A publisher is introduced to publish the outcomes. We firstly give the formal definition for the
publisher.

– We solve an open problem introduced by Blanton [17], which is that the identity of payee is unlinkable
in the spending and deposit protocol.

– The first optimally anonymous and transferable conditional e-cash is presented in the standard
model. Optimal anonymity properties, i.e., OtR-FA, StO-FA and StR-FA, are achieved.

– We compare the efficiency the new protocol and the existing protocols [25, 17], and find that our
protocol is the most efficient one.

1.4 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we describe the preliminaries on the various
cryptographic tools and assumptions. Security model of the conditional e-cash is presented in Section
3. In Section 4, we give the general description for this scheme. The main protocol is proposed in
Section 5. The security analysis is given in Section 6. And Section 7 concludes the paper.

2 Preliminaries

This section introduces some preliminaries which will be used in this paper.

2.1 Bilinear Map

A pairing is a bilinear mapping from two group elements to a group element. Let ê be a bilinear map
such that ê : G1 ×G2 → G3 and the following holds.

– G1, G2 and G3 are cyclic multiplicative groups of prime order p.
– Each element of G1, G2 has unique binary representation.
– The elements g, h generate G1 and G2 respectively.
– ê : G1 × G2 is a non-degenerate bilinear map so ê(g, h) generates G3 and for all a, b ∈ Zp we have
ê(ga, hb) = ê(g, h)ab.

– We can efficiently compute group operations, compute the bilinear map and decide membership.

2.2 Diffie−Hellman pair

A pair (x, y) ∈ G1 × G2 is defined as a Diffie − Hellman pair [22], if there exists a ∈ Zp such
that x = ga, y = ha, where g, h generate G1 and G2 respectively. We denote the set of DH pairs by
DHa = {(ga, ha)|a ∈ Zp}.

2.3 Mathematical Assumptions

The security of this scheme is based on the following existing mathematical assumptions, i.e., the
Symmetric External Diffie-Hellman (SXDH) [24] and the asymmetric double hidden strong Diffie-
Hellman assumption (q-ADH-SDH) [15].
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Definition 1. (Symmetric External Diffie-Hellman). Let G1, G2 be cyclic groups of prime order,
g1 and g2 generate G1 and G2, and let ê : G1 ×G2 → G3 be a bilinear map. The Symmetric External
Diffie-Hellman (SXDH) Assumption states that the DDH problem is hard in both G1 and G2. For
random a, b, g1, g

a
1 , g

b
1 ∈ G1 and g2, g

a
2 , g

b
2 ∈ G2 are given, it is hard to distinguish gab1 and gab2 from a

random element from G1 and G2 respectively.

Definition 2. (q-ADH-SDH). Let g, f, k ∈ G1, h ∈ G2 and x, ci, vi ∈ Zp be random. Given (g, f, k,
gx;h, y = hx) and

(ai = (k · gvi)
1

x+ci , bi = f ci , di = hci , ui = gvi , wi = hvi)

for 1 ≤ i ≤ q− 1, it is hard to output a new tuple (a = (k · gv)
1

x+c , b = f c, d = hc, u = gv, w = hv) with
(c, v) 6= (ci, vi) for all i. i.e., one that satisfies

ê(a, y · d) = ê(k · u, h), ê(b, h) = ê(f, d), ê(u, h) = ê(g, w).

2.4 Useful Tools

Groth-Sahai Proofs. Groth and Sahai [24] constructed the first NIZK proof systems. They prove a
large class of statements in the context of groups with bilinear map in the standard model. In order
to prove the statement, the prover firstly commits to group elements. Then the prover produces the
proofs and sends the commitments and the proofs to the verifier. And last the verifier verifies the
correctness of the proof.

In this paper, SXDH-based commitments are used to commit to group elements. The simple de-
scription of SXDH-based commitments is given in the following.

SXDH − based commitments.
Setup. On input the public parameter pp = (p,G1, G2, G3, ê, g, h), choose α1, α2, t1, t2 ∈ Zp. The

output is the commitment key ck = (pp,u1,u2,v1,v2), where u1 = (u1,1, u1,2) = (g, gα1),u2 =
(u2,1, u2,2) = (gt1 , gα1t1),v1 = (v1,1, v1,2) = (h, hα1) and v2 = (v2,1, v2,2) = (ht1 , hα1t1).

Commit. Define the commitment to a group element X ∈ G1 as

cX = Com(ck,X, r = (r1, r2)) = (ur11,1 · u
r2
2,1, X · u

r1
1,2 · u

r2
2,2),

where r1, r2 ∈ Zp. So the commitment to Y ∈ G2 is

cY = Com(ck, Y, s = (s1, s2)).

where s1, s2 ∈ Zp.
Randomization to commitment. Define the randomization to the commitment cX as

RdCom(ck, cX , r
′) = cX � Com(ck, 1, r′) = (cX,1 · u

r′1
1,1 · u

r′2
2,1, cX,2 · u

r′1
1,2 · u

r′2
2,2),

where r′ = (r′1, r
′
2), r′1, r

′
2 ∈ Zp, � denotes component-wise multiplication.

To prove relations satisfied by the associated plaintexts, SXDH-based Groth-Sahai proofs are used.
The simple description of SXDH-based Groth-Sahai proofs is given in the following.

SXDH − based Groth-Sahai Proof.
Using SXDH-based commitments, Groth and Sahai construct NIZK proofs. It asserts that a set of

committed values satisfies the pairing product equation. The pairing product equation is denoted as

E(X1, · · · , Xm;Y1, · · · , Yn) :

n∏
i=1

ê(Aj , Yj)

m∏
i=1

ê(Xi, Bi)

m∏
i=1

n∏
j=1

ê(Xi, Yj)
γi,j = y,

where Xi, Aj ∈ G1, Yj , Bi ∈ G2, γi,j ∈ Zp for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and y ∈ G3. We use E as a
shorthand for the above pairing product equation.
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Following the definition [22], we prove that Xi ∈ G1, Yi ∈ G2 satisfy the above equation E. The
proof is defined as Prove(ck,E, (Xi, ri)

m
i=1, (Yj , sj)

n
j=1;Z), where ri, sj ∈ Z2

p, and Z ∈ Z2×2
p is the

internal randomness.
Randomization to proof. It is similar to the randomization to the commitment. We random the

proof by replacing the internal randomness Z. Therefore, the randomization to proof is defined as

RdProve(ck,E, (Xi, ri + r′i)
m
i=1, (Yj , sj + s′j)

n
j=1;Z ′),

where r′i, s′j ∈ Z2
p, r′i and s′j are the randomness of the commitments ci = Com(ck,Xi, r

′
i) and cj =

Com(ck, Yj , s
′
j). The Groth-Sahai proof is witness indistinguishability. It guarantees the anonymity of

the payers and payees during the withdrawal protocol, spending protocol and deposit protocol. The
randomization of the commitments and corresponding proofs provides unlinkability of transferable
conditional e-cash.

Commuting Signatures. Commuting signatures [22] combines a signature scheme, an encryption
scheme and a proof system. A signer can encrypt both signature and message and prove validity. Using
the commuting signature, the signer can create a verifiably encrypted signature on the encrypted
message. Thus the signing and the encrypting commute. The commitment and the verification key
can be modified by RdCom. Meanwhile, the corresponding proof can also be updated by RdProve.
This paper instantiates the signature scheme, encryption scheme and proof system with Structure-
Preserving signature (SP-signature) [15, 29], SXDH-based Groth-Sahai commitment and Groth-Sahai
proof system [24] respectively. We review two results of [22] relevant to this paper in the following.

SigCom. Given a commitment cM to a message M and a signing key sk, this algorithm allows a
signer to make a commitment cσ to a signature σ on M under sk, and a proof that the content of cσ
is a valid signature on the message committed in cM . The message space is a Diffie-Hellman pair.

In the following, we simply give the description of the signature of a message, the commitments to a
signature on a committed message and a proof of validity. A Diffie-Hellman pair (M,N) is committed.

Setup. The input is p,G1, G2, G3, ê, g, h. The output is some additional generators f, k, t ∈ G1. The
message space is a Diffie-Hellman pair (M = gm, N = hm) for m ∈ Zp.

KeyGen. The input is x ∈ Zp. The output is a verification key pair vk = (X = gx, Y = hx) for
sk = x.

Commit.The public parameters are (ck, p,G1, G2, G3, ê, g, h, f, k, t). ck is the user’s commitment
key. The user sends the following commitments and proofs to the signer, cm = (cM , cN , πM , cP , cQ, πP , U,
πU ), where U = tι1 ·M , ι1 ∈ Zp, P = gι1 and Q = hι1 . P and Q are auxiliary values for proof of cm.
The pairing product equations are

EDH(M,N) : ê(g−1, N)ê(M,h) = 1

EU (M,Q) : ê(t−1, Q)ê(M,h−1) = ê(U, h)−1.

The first equation proves that (M,N) is a Diffie-Hellman pair. The second proves that U is constructed
correctly. We use EDH and EU as a shorthand for the above equations. Thus, the corresponding proofs
of the commitments are

πM ← Prove(ck,EDH, (M,µ), (N,ν)),

πP ← Prove(ck,EDH, (P,ρ), (Q,%)),

πU ← Prove(ck,EU , (M,µ), (Q,%)),

where µ,ν,ρ,% ∈ Z2
p.

The user sends the commitment cm of the message (M,N) to the signer.
Sign. The signer verifies the proofs. If these are OK, the signer chooses c, r ∈ Zp and computes the

“pre-signature”

s0 = {A = (k · tr · U)
1

x+c , B = f c, D = hc, R′ = gr, S′ = hr}
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The signer constructs the following commitments to the signature s0.

cs0 = (cA = Com(ck,A,α), cB = Com(ck,B,β), cD = (ck,D, δ),

cR = cP � Com(ck,R′, 0) = Com(ck,R,ρ),

cS = cQ � Com(ck, S′, 0) = Com(ck, S,%)).

where α,β, δ ∈ Z2
p.

The corresponding proofs are {πA, πB , πR}.
In order to complete the proof, it needs the following verification equations

EA(A,M ;S,D) : ê(t−1, S)ê(A, Y )ê(M,h−1)ê(A,D) = ê(k, h)

EB(B;D) : ê(f−1, D)ê(B, h) = 1

ER(R;S) : ê(g−1, S)ê(R, h) = 1

We use EA, EB and ER as a shorthand for the above equations respectively.
The proofs πA, πB and πR attest that the values committed satisfy the above three equations.
To make the proof of πA, another pairing product equation

EA†(A;D) : ê(A, Y )ê(A,D) = 1

is given. We use EA† as a shorthand for the above equation. So the proofs of {πA, πB , πR} are

π′A ← πU � Prove(ck,EA† , (A,α), (hc, δ))

πA ← RdProof(ck,EA, (cA, 0), (cD, 0), (cM , 0), (cS ,%
′), π′A)

πR ← RdProof(ck,ER, (cR,ρ
′), (cS ,%

′), πP )

πB ← Prove(ck,EDH, (f
c,β), (hc, δ)).

Obtain− Signature The user knows ι1 and computes R = R′ · gt and S = S′ · ht. At last, the user
obtains a commitment signature cs0 = (cA, cB , cD, cR, cS , πA, πB , πR).

AdCκ. This allows anyone to commit to the verification key. It also adapts a proof asserting that
a commitment contains a valid signature on a new verification key.

Given a commitment cm to a message pair (M,N), a commitment cσ to a signature σ and a proof of
validity to a verification key vk, the signer adapts the verification key and makes corresponding proof.
Firstly, the signer makes a new commitment cvk to a verification key vk = (X = gx, Y = gy), where
x, y ∈ Zp. By verifying the proof of cvk = (Com(ck,X, ξ), Com(ck, Y,ψ), P rove(ck,EDH, (X, ξ), (Y,ψ))),
anyone knows that the structure of the new verification key is correct, where ξ,ψ ∈ Z2

p. Then, a pairing
product equation

EÂ(A,M ;S, Y,D) : ê(t−1, S)ê(M,h)ê(A, Y )ê(A,D) = ê(k, h)

is given. We use EÂ as a shorthand for the above equation. And last, πA is modified to

πÂ = RdProof(ck,EÂ, (cA, 0), (cM , 0), (cS , 0), (Com(ck, Y, 0),ψ), (cD, 0), πA).

Thus, new proof is π = (πÂ, πB , πR).

3 The Model

In this section, we introduces a publisher to publish two outcomes. Then, we give the definitions of
the algorithms and security properties.

The anonymous transferable conditional e-cash needs two outcomes for the spending and deposit.
Thus, we introduce a publisher to publish two outcomes. Shi and Blanton’s schemes gave only informal
arguments about the publisher. In this paper, a new algorithm Publish() and a oracle OPubl() are
introduced for the publisher. New algorithms DComGen(),PComGen() and JComGen() are used for
generating the commitments key. To obtain optimal anonymity, the bank B is divided into W for the
withdrawal phase and D for the deposit phase.
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3.1 New Algorithms

The transferable conditional e-cash system consists of the conditional protocol, withdrawal protocol,
spending (transferring) protocol, deposit protocol and identify procedure. The procedures are given as
follows.

– ParamSetup(1λ). It is a probabilistic algorithm. 1λ is the input. The output is the public parameters
params. λ is the security parameter. In the following, we assume that params contains λ and that
it is a default input of all other algorithms.

– WKeyGen(), DKeyGen(), JKeyGen(), UKeyGen(), PKeyGen(). They are probabilistic algorithms
executed respectively byW,D,J , U or P. The outputs are (pkW , skW), (pkD, skD), (pkJ , skJ ), (pkU ,
skU ) and (pkP , skP).

– DComGen(), JComGen(), PComGen(). They are probabilistic algorithms executed by D,J or P
respectively. The outputs are the commitment keys (ckD, ekD), (ckJ , ekJ ) and (ckpr, ekpr).

– Withdraw(U(skU , pkU , pkW , pkJ , ckD, ckJ ),W(skW , pkW , pkU , ckD, ckJ )). It is an interactive proto-
col, in which U withdraws a transferable conditional coin from W. At the end, U outputs a coin co1
or ⊥. W checks the public key of the user, and deducts a coin from the user and outputs a view V
or ⊥.

– Publish(D/U ,P(ckpr, ekpr, ckpe, ekpe)). It is an unilateral protocol between P and D/U . P generates
two commitments for two outcomes. The user registers a commitment for outcome he agrees with.
Then P sends the two commitments to D and U . After P publishes the outcome, P sends the
extraction key to the winner and D.

– Spend(U1(co1, skU1 , pkD, pkJ , ckD, ckJ ),U2(skU2 , pkD, pkJ , ckD, ckJ )). It is an interactive protocol
in which U1 spends/transfers the coin co1 to U2. At the end, U2 outputs a coin co2 or ⊥, and U1
outputs ok or ⊥.

– Deposit(U(co1, skU , pkD, pkJ , ckD, ckJ ),D(skD, pkD, pkJ , ckD, ckJ )). It is divided into two parts:
exchanging and cashing. We assume that the payer U is the winner. In exchanging, U needs to cash
back the e-cash from D. U firstly spends co1 to D. Then D verifies whether the coin is correct. If
the coin is correct, D deposits the coin to the database and sends a value mo = (pm, jpkU , csm , πcm)
to U . In cashing, U updates the commitment and proof of mo, and sends a new value mo′ to D. At
the end, D outputs OK.

– Identify(co, co′, ekJ ). If co and co′ are correct, the algorithm is executed by the judge. The output
is the public key pkU of double-spender. Otherwise, it outputs OK.

3.2 Security Properties

This section gives the security definitions for the transferable conditional e-cash system. Every security
property is given by a game between the adversary A and the challenger C. Firstly, we assume that
the adversary arbitrarily and adaptively queries to oracles. The oracles are defined as follows.

– OSetup(). This oracle allows A to add a new user into the system, or to corrupt an honest user.
When A interacts with the oracle, A obtains the key of the user or the bank. If an honest user is
corrupted, the secret key is ⊥.

– OWith(). This oracle plays the role of the bank or the user in the withdrawal protocol.A can withdraw
a conditional e-cash from the oracle acting the bank. He can also issue an e-cash to the oracle acting
the user.

– OSpend(). This oracle enables A to act a payee, and then receive a conditional e-cash. A can also act
a payer to spend a conditional e-cash.

– ODepo(). This oracle plays the role of the bank or the user in the deposit protocol. A can obtain a
conditional e-cash from the oracle acting the user, or spend an e-cash to the oracle acting the bank.

– OODepo(). This oracle permits the adversary to observe the transaction in the deposit protocol. He
can not receive the output from the oracle.
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– OIdt(). This oracle plays the role of the judge in the identity procedures. A can submit two e-cash
to the oracle and obtain the identity of the double-spender.

– OPubl(). This oracle allows the publisher to extract the secret value. Then A can obtain the outcome
by interacting with the oracle.

In this paper, the publisher and the judge are trust organizers. The judge can not recover the
identity of an honest user except that the bank gives two double-spending e-cash. The publisher only
publishes and announces the outcome correctly, and can not extract the outcome before publishing the
outcome. Although the judge can trace coins and users, this is the requirement of the fair e-cash [28].
We require all the length of the conditional e-cash are same. Note that the publisher and the judge
are honest, thus the adversary A can not obtain any information from the publisher and the judge.
More precisely, in the conditional protocol, the publisher publishes two conditional commitments; in
the Identify(), the judge recovers the identity of the double-spender. However, they can not supply any
information for A to recover the identity of an honest user or generate a double-spending on the same
outcome. The security properties are defined formally as follows.

Anonymity. This scheme achieves optimal anonymity and satisfies at the same time OtR-FA,
StO-FA and StR-FA. The anonymity guarantees that no coalition of users, publisher and judge can
distinguish which user executes the spending protocol. pk = (RU ,SU) represents the public keys of
users. The RU are the public keys of the users who have received a coin from A. The SU are the public
keys of the users who have only spent a coin to A. The judge is honest, thus he can not recover the
identity of an honest user.

Firstly, the security description of OtR-FA is given as follows.

– (Initialization Phase.) A runs ParamSetup(1λ) and obtains the public parameters params, the
key pairs (pkB, skB), (pkJ , skJ ) and (pkP , skP). Then A gives pkB, pkJ and pkP to C, and keeps
skB, skJ and skP to herself. In order to simplify description, (pkB, skB) includes (pkW , skW) and
(pkD, skD).

– (Probing Phase.) A can perform a polynomially bounded number of queries to the oracles in an
adaptive manner. A can add and corrupt any user by OSetup(). For each OWith() and OSpend(), A
can act as bank or user in the withdrawal protocol or spending protocol. In deposit protocol, A
interacts with ODepo() and OODepo(), and obtains any output of a deposit procedure. A can obtain
the identity of the user from OIdt(), or obtain the extraction key from the oracle OPubl(). In OtR-FA
property, the public keys obtained are from SU .

– (Challenge Phase.) C randomly chooses two public keys pkU0 and pkU1 , which come from SU in
Probing Phase. Then C at random chooses one of them. C uses the public key pkUi (i = 0/1)
interacting with A. The two public keys come from SU . Thus, A only observes the public keys pkU0
and pkU1 . A acting the bank or the user interacts with C. A can not ask C to over-spend any coin,
and can also not query on OIdt() and OPubl(). And last, A obtains a coin coM.

– (End Game Phase.) A decides which public key C uses.

For the security description of StO-FA. Every phase is similar to OtR-FA except that the two
public keys obtained are any keys in the Probing Phase, and A only observes the spending between
two honest users in Challenge Phase. In Challenge Phase, A can not directly spend with C. This
prevents A from receiving co0 or co1. This is the requirement of the StO-FA property.

For the security description of StR-FA. The every phase is similar to OtR-FA except that the two
public keys obtained are any keys in the Probing Phase, and A only interacts with OODepo() in the
Probing Phase. The limited interaction makes sure that the adversary only observes the transaction
in the deposit protocol. This is the requirement of StR-FA property.

For all non-uniform polynomial time adversary A, the advantage breaking the anonymity is defined
by

AdvanonTCE,A = Pr[Expanon−1TCE,A (λ) = 1]− Pr[Expanon−0TCE,A (λ) = 1]

where TCE is an anonymous transferable conditional e-cash system.
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If AdvanonTCE,A is negligible for any polynomial-time adversary A, this scheme is anonymous.
Unforgeability. No coalition of users and merchants can deposit more coins than the coins that

they withdrew. We give the following experiment and definition.

– (Initialization Phase.) C runs the ParamSetup(1λ) and obtains the public parameters params,
the key pairs (pkB, skB), (pkJ , skJ ) and (pkP , skP). Then C sends pkB, pkJ and pkP to A and keeps
skB, skJ and skP to herself.

– (Probing Phase.) A can perform a polynomially bounded number of queries to the oracles in an
adaptive manner. A can add and corrupt any user by OSetup(). The value of e-cash possessed by
A is defined by vua and initialized with zero. For each OWith(), A acts as user and withdraws
a conditional e-cash of value vui in the withdrawal protocol. In the transferring protocol, A can
perform queries to the oracle OSpend(). A acting as payer transfers an e-cash of value vuo to the
payee, or acting as payee receives an e-cash of value v1ui. A interacts with ODepo() and deposits the
e-cash of value vde to C acting as the bank in the deposit protocol. A can obtain the identity of the
user from OIdt(), or obtain the extraction key from the oracle OPubl(). At last, A obtains the e-cash
of value vua = vui + v1ui − vuo − vde.

– (End Game Phase.) A wins the game if it can deposit vua + 1 to C.

For all non-uniform polynomial time adversary A, the advantage breaking the unforgeability is
defined by

AdvunforTCE,A = Pr[ExpunforTCE,A(λ) = 1]

where TCE is an anonymous transferable conditional e-cash system.
If AdvunforTCE,A is negligible for any polynomial-time adversary A, this scheme is unforgeable.
Identification of Double-spender. It guarantees that coalition of users and merchants can

not double-spend a coin with the same serial number. After the two conditionals commitments are
publisher, the commitments can not be changed by A. The publisher and judge are honest, thus
they can not supply any information with A to generate a double-spending. We give the following
experiment and definition.

– (Initialization Phase.) The Initialization Phase is similar to that in the unforgeability property.
– (Probing Phase.) A can perform a polynomially bounded number of queries to the oracles in

an adaptive manner. A can add and corrupt any user by OSetup(). A engages in the withdrawal
protocol, spending protocol and the deposit protocol as many times as he likes. If A deposits the
same serial number coin twice, and the output of the algorithm Identify() is OK, he must break
the unforgeability of the commuting signature and the soundness and witness indistinguishability of
Groth-Sahai proofs.

– (End Game Phase.) A wins the game if it can deposit a coin twice, the output of the Deposit() is
OK and the Identify() cannot output the public key.

For all non-uniform polynomial time adversary A, the advantage breaking the double-spending is
defined by

AdvundouTCE,A = Pr[ExpideTCE,A(λ) = 1]

where TCE is an anonymous transferable conditional e-cash system.
If AdvideTCE,A is negligible for any polynomial-time adversary A, this scheme can identify the double-

spending.
Exculpability. No coalition of the banks and users can accuse an honest user of double-spending

a coin. The judge and the publisher are honest, thus they can not generate an honest user’s e-cash and
frame the user of double-spending. We give the following experiment and definition.

– (Initialization Phase.) The Initialization Phase is similar to that in the anonymity property.
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– (Probing Phase.) A can perform a polynomially bounded number of queries to the oracles in an
adaptive manner. A can add and corrupt any user by OSetup(). C runs the withdrawal protocol
with A acting as the bank to obtain coins. Then A acts as the merchant and runs the spending
protocol with C acting the user. A also acts the bank and accepts a deposit from C. At last, if A
can forge a conditional e-cash of the same serial number spent by C, he frames an honest user of
double-spending.

– (End Game Phase.) A wins the game if it can forge a e-cash of the same serial number and prove
the spending is correct.

For all non-uniform polynomial time adversary A, the advantage breaking the exculpability is
defined by

AdvexcuTCE,A = Pr[ExpexcuTCE,A(λ) = 1]

where TCE is an anonymous transferable conditional e-cash system.
If AdvexcuTCE,A is negligible for any polynomial-time adversary A, this scheme is exculpability.

4 General Description

In a transferable conditional e-cash, the payer anonymously transfers an e-cash until the outcome of
the condition is published. The e-cash is valid to both the payer and the last payee, and only one of
them can deposit the e-cash. When the outcome is published, if the outcome is favorable for the payer,
the payer is the winner. Then the publisher sends the extraction key to the winner by an authenticated
and secure channel. If a user wants to deposit the e-cash to the bank, the bank detects whether the
user has happened a double-spending. If so, the bank recovers the identity of the user by the identify
procedure, otherwise the e-cash is deposited to the bank.

The transferable conditional e-cash consists of the conditional protocol, the withdrawal protocol,
spending (transferring) protocol, deposit protocol and the identify procedure. The message space of the
instantiation signature of the commuting signature is the Diffie-Hellman pair. Thus, a coin is represent-
ed by a unique chain of DH pairs s = DHn||DHm||DHn0 ||DHn1 || · · · ||DHni for n,m, n0, · · · , ni ∈ Zp.
The n,m are chosen by the publisher, while n0, n1, · · · , ni are randomly chosen by a consecutive owner
of the coin. We provide a new algorithm to construct the transferable conditional e-cash system based
on the outcome of the condition. The general description is given as follows.

The payer U1 firstly withdraws an e-cash co1 from the bank, and decides to spend the e-cash to
the payee U2 based on a condition. In order to protect the identities of U1, he randomizes co1 as co′1.
Then U1 spends co′1 to U2, and U2 continues to spend the e-cash to U3. Because U2 generates the new
e-cash co2 which includes the co′1. However, the verification key of U1 is public to verify the correctness
of U1’s commitment signature. Thus, we modify U1’s verification key and corresponding proof using
commuting signature technology to protect the verification key of U1. At last, Ui do not want to spend
the e-cash to others, he deposits the e-cash to the bank. If he directly deposits the e-cash to the bank,
the identity of Ui would be recovered by the information in the bank. Therefore, the deposit protocol
is divided into two parts, i.e., exchanging and cashing to obtain the anonymity of the last user.

In this scheme, the most important problem is how to obtain the conditional e-cash, namely, two
outcomes for the user U1 and another user Ui. This goal is achieved by introducing a publisher who
gives two commitment/extraction keys. The two commitment/extraction keys commit two secret value
for the two outcomes. When the outcome is favorable to a user, the corresponding secret value is sent
to the user by an authenticated and secure channel. The publisher is very important, since he publishes
the conditions of the event. The judge is introduced to recover the identity of double-spender. The
user registers the public key with the judge.
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5 Transferable Conditional E-cash

Transferable conditional e-cash allows the user to spend a conditional e-cash to others based on the
outcome in the future. In the following, we give the details of this scheme.

5.1 Setup

We choose bilinear groups (G1, G2, G3) of order p > 2λ. The elements g ∈ G1 and h ∈ G2 generate G1

and G2 respectively. It also generates a common reference string (g, h,u1,u2,v1,v2) for the perfectly
soundness reference. Therefore, the public parameter is params = {(G1, G2, G3), (g, h,u1,u2,v1,v2)}.

The bank W, the detector D, the judge J and the publisher P respectively generate key pairs
(pkW , skW), (pkD, skD), (pkJ , skJ ) and (pkP , skP) for commuting signature. W, J and P respec-
tively choose a random group element t, tJ , tP for the public parameter of commuting singature.The
double-spending detector D generates a pair of commitment/extraction key (ckD, ekD) which is used
to commit the serial number of the e-cash. The publisher gives four pairs of commitment/extraction
keys (ckpr, ekpr), (ckpe, ekpe), (ck

′
pr, ek

′
pr) and (ck′pe, ek

′
pe). (ckpr, ekpr) is used to commit the coin for

the payer. The second key pair (ckpe, ekpe) is used to commit the coin for the payee. (ck′pr, ek
′
pr) and

(ck′pe, ek
′
pe) are used for the proof. The publisher also generates the third commitment/extraction

key (ckP , ekP) which is used to commit the serial number of the e-cash. The judge gives two pairs
of commitment/extraction keys (ckJ , ekJ ) and (cksp, eksp). The former is used for identification of
double-spender. The latter is used for the proof of this scheme. The bank maintains a database DB
which is used to save the spent e-cash. DB′ is introduced to save the exchanging cash mo in the deposit
protocol. These databases are initialized to be empty.

Each user Ui generates key pairs pkUi = ((g, h)skUi , skUi) for commuting signature, where skUi ∈ Zp.
Each Ui also registers their public keys pkUi = (gskUi , hskUi ) = (M,N) to the judge. U1’s register is
given as follows.

The user firstly generates the following commitments and corresponding correctness proofs to her
public key. To simplify, the commitment jpkU1 contains the commitments and correctness proofs for
the committed value.

jpkU1 = (cckJM , cckJN , cckJP , cckJQ , U = tι3J · g
skU1 , πjpkU1

= (πckJM , πckJP , πckJU ))

Then the user sends her public key, the commitments and proofs to the judge. The judge detects
whether the public key, the commitments and proofs are correct. If these are correct, the judge generates
a membership certificate cskJsU1 by algorithm SigCom, and sends the membership certificate cskJsU1 =

(cAU1 , cBU1 , cDU1 , cRU1 , cSU1 , π
skJ
sU1

= (πAU1 , πBU1 , πRU1 )) to the user, otherwise the judge aborts the
protocol.

5.2 The Conditional Protocol

The conditional protocol allows the publisher to publish two commitments of two outcomes as described
in Figure 1. The details of the conditional protocol are given as follows.

A commitment to message M is defined as pM using ckP . The publisher chooses n,m ∈ Zp for two
outcomes. The publisher also generates two Diffie−Hellman pairs (DH pairs) DHn and DHm. Two
commitments pn and pm are defined that P commits n and m using her commitment keys ckpr and

ckpe. Two commitments c
ckpr
gn and c

ckpe
gm in pn and pm are defined that P commits gn and gm using her

commitment keys ckpr and ckpe respectively. To make the security proof, two commitments1 p̃n and
p̃m are defined that P commits n and m using her commitment keys ck′pr and ck′pe. In the following,
we give the protocol in detail.

1. To obtain two outcomes, U1 sends her public key pkU1 and corresponding commitment cpkU1 to P.
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U1 P

pkU1 = (g, h)skU1 , cpkU1
pkU1 ,cpkU1−−−−−−−−−−−−−−−→

verify commitment cpkU1
n,m, ι5, ι6 ∈ Zp, tP ∈ G1

µP ,µ
′
P ,νP ,ν

′
P ∈ Z2

p

make commitments pn, pm
make proofs πn, πm

pn,p̃n,πn,pm,p̃m,πm←−−−−−−−−−−−−−−−
obtain pn, p̃n, πn, pm, p̃m, πm

Fig. 1. U1 obtains two commitments of outcomes from P.

2. P verifies cpkU1 . If it is correct, P picks at random nonces n,m, ι5, ι6 ∈ Zp, tP ∈ G1,µP ,µ
′
P ∈ Z2

p

and generates DH pairs DHn = (gn, hn) and DHm = (gm, hm). Then P generates two commitments
and correctness proofs

pn = (c
ckpr
gn , c

ckpr
hn , c

ckpr
P , c

ckpr
Q , Un = tι5P · g

n, πpn = (π
ckpr
gn , π

ckpr
P , π

ckpr
Un

))

and

pm = (c
ckpe
gm , c

ckpe
hm , c

ckpe
P , c

ckpe
Q , Um = tι6P · g

m, πpm = (π
ckpe
gm , π

ckpe
P , π

ckpe
Um

))

using commitment keys ckpr and ckpe respectively. P also gives two commitments p̃n and p̃m which
are introduced to prove the scheme completely. Meanwhile, two proofs πn and πm are given to prove
that two committed values in pn and pn are equal. The proof πn is given as follows.

πn ← Prove(ckD;Eeq, (n,µP), (n,µ′P)),

where

Eeq(x, y) : ê(x, h−1)ê(y, h) = 1

for x, y ∈ G1. This equation asserts that the variables x and y are same value.
The proof πm is similar to the proof πn.
P sends {pn, p̃n, πn, pm, p̃m, πm} to U1 and the detector D by an authenticated and secure channel.

5.3 The Withdrawal Protocol

The withdrawal protocol allows U1 to withdraw a coin co from W2 as described in Figure 2. Two
commitments jM and dM are defined that J and D commit a message M using ckJ and ckD. A
commitment j̃n is defined that J commits n using cksp. j̃n is introduced to be an auxiliary value for

our proof. The definitions of cckDgn1 , c
ckJ
gn1 , c

ckJ
M , cckJN , cckJP and cckJQ are similar to c

ckpe
gm . The commitment

signatures cskJsU1 and cskWsU1 are defined that J and W generate commitment signatures cskJsU1 and cskWsU1
to the commitment jpkU1 . Note that the definition of cskJsU1 is different from c

ckpe
gm . In cskJsU1 , the symbol

sU1 is defined for a signature. Thus, cskJsU1 asserts that U1 generates a commitment signature cskJsU1 . In
the following, we give the protocol in detail.

1 Groth-Sahai proofs are witness indistinguishable and a conditional e-cash is represented by randomizable
extractable commitments, so the e-cash can not reveal any information about serial number, public keys
and so on. Thus, p̃n and p̃m are introduced as auxiliary values for our proof.
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U1 W

n1, ι1, ι2, ι3, ι4 ∈ Zp, tU1 ∈ G1

µU1 ,µ
′
U1 ,νU1 ,ν

′
U1 ∈ Z2

p

rU1 , r
′
U1 , sU1 , s

′
U1 ∈ Z2

p

generate DHn1 = (gn1 , hn1)
make dn1 , jn1

make πgn1 , πhn1

make jpkU1 , j̃pkU1
make πM , πN

generate c
skJ
sU1

pkU1 ,jpkU1
,jn1

,c
skJ
sU1

,π
skJ
sU1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

verify π
skJ
cU1

n0, ι
0
1, ι

0
2 ∈ Zp, tW ∈ G1

µW ,µ
′
W ,νW ,ν

′
W ∈ Z2

p

generate DHn0 = (gn0 , hn0)
make dn0 , jn0

make πgn0 , πhn0

generate csn , csm , csn0
, csn1

, cskWsU0
jn0 ,dn0 ,πn0 ,csn ,πsn ,csm ,πsm ,csn0

,πsn0
,csn1

,πsn1
,c

skW
sU1

,π
skW
sU1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

obtain co1

Fig. 2. U1 withdraws a conditional e-cash from W.

1. U1 picks at random nonces n1 ∈ Zp, ι1, ι2, ι3, ι4 ∈ Zp,µU1 ,µ′U1 ,νU1 ,ν
′
U1 , rU1 , r

′
U1 , sU1 , s

′
U1 ∈ Z2

p, tU1 ∈
G1 and generates a DH pair DHn1

= (gn1 , hn1). Then U1 makes commitments and proofs

dn1
= (cckDgn1 , c

ckD
hn1 , c

ckD
P , cckDQ , Udn1

= tι1U1 · g
n1 , πdn1

= (πckDgn1 , π
ckD
P , πckDdn1

))

using the commitment key ckD, where

cckDgn1 = Com(ckD, g
n1 ,µU1),

cckDhn1 = Com(ckD, h
n1 ,νU1),

cckDP = Com(ckD, P,ψU1),

cckDQ = Com(ckD, Q,χU1),

πckDgn1 ← Prove(ckD, EDH, (g
n1 ,µU1), (hn1 ,νU1)),

πckDP ← Prove(ckD, EDH, (P,ψU1), (Q,χU1)),

πckDU ← Prove(ckD, EU , (g
n1 ,µU1), (Q,χU1)).

cckDgn1 and cckDhn1 are the commitments of gn1 and hn1 . πckDgn1 is the proof that the two committed

values in cckDgn1 and cckDhn1 are equal. cckDP and cckDQ are the commitments of P and Q, where P = gι1 ,

Q = hι1 . πckDP is the proof that the two committed values in cckDP and cckDQ are equal. πckDU proves
that U is constructed correctly. To prove that two committed values in cM and cN are equal,
the equation EDH(M,N) : ê(g−1, N)ê(M,h) = 1 is verified in Groth-Sahai proofs. The equation
EU (M,Q) : ê(t−1, Q)ê(M,h−1) = ê(U, h)−1 is used to verify that U is constructed correctly.

2 To achieve the security property of StR-FA, B is divided to W and D. Thus, U spending an e-cash to W.
This prevents the adversary A from acting as D [20].
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Meanwhile, U1 makes commitments and proofs

jn1
= (cckJgn1 , c

ckJ
hn1 , c

ckJ
P , cckJQ , Ujn1

= tι2U1 · g
n1 , πjn1

= (πckJgn1 , π
ckJ
P , πckJUjn1

))

using the commitment key ckJ . The proof πjn1
is similar to the proof πdn1

. When a double-spending
happens, J extracts a DH pair DHn1 to verify the double-spending. U1 also gives the following proof
πn1

that the two committed values in pn and pn are equal [23].

πgn1 ← Prove(ckD, ckJ ;Eeq, (g
n1 ,µU1), (gn1 ,µ′U1)),

πhn1 ← Prove(ckD, ckJ ;Eeq, (h
n1 ,νU1), (hn1 ,ν′U1)),

Moreover, U1 makes commitments and proofs

jpkU1 = (cckJM , cckJN , cckJP , cckJQ , UjpkU1
= tι3U1 · g

skU1 , πjpkU1
= (πckJM , πckJP , πckJUjpkU1

))

and

j̃pkU1 = (c̃
cksp
M , c̃

cksp
N , c̃

cksp
P , c̃

cksp
Q , Uj̃pkU1

= tι4U1 · g
skU1 , πj̃pkU1

= (π̃
cksp
M , π̃

cksp
P , π̃

cksp
Uj̃pkU1

))

to the public key pkU1 = (gskU1 , hskU1 ). The first commitment jpkU1 is used to recover the identity

of the user when a double-spending happens. The second j̃pkU1 is used for the security proof. The
proofs πjpkU1

and πj̃pkU1
are similar to the proof πdn1

. We need to prove that the committed value in

jpkU1 and j̃pkU1 are equal. pkU1 = (M,N) and pkU1 = (M ′, N ′) are defined for the committed values

in jpkU1 and j̃pkU1 respectively. A proof πpkU1 is given.

πM ← Prove(ckJ , cksp;Eeq, (M, rU1), (M ′, r′U1)),

πN ← Prove(ckJ , cksp;Eeq, (N, sU1), (N ′, s′U1)).

U1 also gives a membership certificate (commitment signature) cskJsU1 = (cAU1 , cBU1 , cDU1 , cRU1 , cSU1 ,

πskJsU1
= (πAU1 , πBU1 , πRU1 )). The member certificate asserts that cskJsU1 contains a valid signature on

the value committed in jpkU1 . The corresponding proof πskJsU1
= (πAU1 , πBU1 , πRU1 ) [22] is given.

πAU1 ← RdProof(ckJ , EA, (cAU1 , 0), (cDU1 , 0), (cMU1 , 0), (cSU1 ,%
′), π′A),

πRU1 ← RdProof(ckJ , ER, (cRU1 ,ρ
′), (cSU1 ,%

′), πP ),

πBU1 ← Prove(ckJ , EDH, (f
c,β), (hc, δ)),

where

EA(A,M ;S,D) : ê(t−1, S)ê(A, Y )ê(M,h−1)ê(A,D) = ê(k, h),

ER(R;S) : ê(g−1, S)ê(R, h) = 1,

EDH(M,N) : ê(g−1, N)ê(M,h) = 1.

The proofs π′A and πP are

π′A ← πU � Prove(ck,EA† , (A,α), (hc, δ)),

πP ← Prove(ck,EDH, (P,ρ), (Q,%)),

where

EA†(A;D) : ê(A, Y )ê(A,D) = 1,

EDH(M,N) : ê(g−1, N)ê(M,h) = 1.

The user U1 sends the following values to W: {pkU1 , jpkU1 , jn1 , c
skJ
sU1

, πskJsU1
}.
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2.W verifies the NIZK proof πskJsU1
and the public pkU1 . If they are correct, W chooses random nonces

n0, ι
0
1, ι

0
2 ∈ Zp for the coin and generates a DH pair DHn0

= (gn0 , hn0). Note that ι01 and ι02 are
random values chosen by W. W generates two commitments

dn0 = (cckDgn0 , c
ckD
hn0 , c

ckD
P 0 , c

ckD
Q0 , U = tι

0
1 · gn0 , πdn0

)

and

jn0
= (cckJgn0 , c

ckJ
hn0 , c

ckJ
P 0 , c

ckJ
Q0 , U = tι

0
2 · gn0 , πjn0

)

W also gives a proof

πgn0 ← Prove(ckD, ckJ ;Eeq, (g
n0 ,µW), (gn0 ,µ′W))

This asserts that the two committed values in jn0 and dn0 are equal. Then W respectively produces
committed signatures

csn = (cAn , cBn , cDn , cRn , cSn , πsn)

csm = (cAm , cBm , cDm , cRm , cSm , πsm)

csn0
= (cAn0

, cBn0
, cDn0

, cRn0
, cSn0

, πsn0
)

csn1
= (cAn1

, cBn1
, cDn1

, cRn1
, cSn1

, πsn1
)

cskWsU1 = (c′AU1 , c
′
BU1

, c′DU1 , c
′
RU1

, c′SU1 , π
skW
sU1

)

on n,m,n0,n1 and pkU1 by running SigCom on pn,pm,jn0
, jn1

and jpkU1 . The corresponding proofs

are πsn , πsm , πsn0
, πsn1

and πskWsU1
. They are similar to the proof πskcU1 .

W sends the following values to U1: {jn0
, dn0

, πn0
, csn , πsn , csm , πsm , csn0

, πsn0
, csn1

, πsn1
, cskWsU1 , π

skW
sU1
}.

Finally, U1 forms the coin co1 = (pn, p̃n, πn, pm, p̃m, πm, jn0
, dn0

, πn0
, jn1

, dn1
, πn1

, jpkU1 , j̃pkU1 , πpkU1 ,

cskJsU1 , π
skJ
cU1

, csn , πsn , csm , πsm , csn0
, πsn0

, csn1
, πsn1

, cskWsU1 , π
skW
sU1

).

5.4 The Spending (Transferring) Protocol

This protocol makes a payer U1 to transfer a coin to the payee U2 as described in Figure 3. In order
to obtain the anonymity of the user, U1 needs to randomize the coin coi by RdCom and RdProve.
W ′s verification key is public while U ′1s verification key must be hidden. Thus, after U1 generates

commitment signatures csn1
, csn2

and c
skU1
sU2

and corresponding proof, U1 updates the proof using the
algorithm Adcκ to protect U ′1s verification key. This hides the identity of U1.

1. U2 picks at random nonces n2, ι
2
1, ι

2
2, ι

2
3, ι

2
4 ∈ Zp,µU2 ,µ′U2 ,νU2 ,ν

′
U2 , rU2 , r

′
U2 , sU2 , s

′
U2 ∈ Z2

p, tU2 ∈ G1

and generates a DH pair DHn2 = (gn2 , hn2). Note that the symbols ι21, ι
2
2, ι

2
3 and ι24 are defined

that U2 randomly chooses nonces ι21, ι
2
2, ι

2
3 and ι24. U2 makes commitments dn2

and jn2
. The proof

πn2
asserts that two committed values in dn2

and jn2
are equal. Moreover, U2 makes commit-

ments jpkU2 and j̃pkU2 . Meanwhile, the proof πpkU2 proves that two committed values are equal.

The proof πpkU2 is similar to the proof πpkU1 . U2 also gives a membership certificate cskJsU2 =

(cAU2 , cBU2 , cDU2 , cRU2 , cSU2 , π
skJ
sU2

= (πAU2 , πBU2 , πRU2 )). The proof πskJsU2
= (πAU2 , πBU2 , πRU2 ) is

similar to πskJsU1
in Section 5.3. It is given to assert that the value in cskJsU2 is a valid signature on the

value in jpkU2 .

The user U2 sends the following values to U1: {jpkU2 , jn2
, csU2 , π

skJ
sU2
}.

2. U1 firstly checks the proof πskJcU2
. If the verification is correct, U1 randomizes co1 as co11 =

(p1n, p̃
1
n, π

1
n, p

1
m, p̃

1
m, π

1
m, j

1
n0
, d1n0

, π1
n0
, j1n1

, d1n1
, π1
n1
, j1pkU1

, j̃1pkU1
, π1
pkU1

, j1cU1 , π
1
cU1
, c1sn , π

1
sn , c

1
sm , π

1
sm , c

1
sn0

,
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U2 U1

n2, ι
2
1, ι

2
2, ι

2
3, ι

2
4 ∈ Zp, t2 ∈ G1

µU2 ,µ
′
U2 ,νU2 ,ν

′
U2 , rU2 , r

′
U2 , sU2 , s

′
U2 ∈ Z2

p

generate DHn2 = (gn2 , hn2)
make commitments dn2 , jn2

make proofs πgn2 , πhn2

make commitments jpkU2 , j̃pkU2
make proofs πM , πN

generate commitment signature c
skJ
sU2

pkU1 ,jpkU2
,jn2

,c
skJ
sU2

,π
skJ
sU2−−−−−−−−−−−−−−−−−−−−−−−−−−→

verify π
skJ
cU2

randomize co1 to co11

generate csn1
, csn2

, c
skU1
sU2

generate πsn1
, πsn2

, π
skU1
sU2

co11,csn1
,πsn1

,csn2
,πsn2

,c
skU1
sU2

,π
skU1
sU2←−−−−−−−−−−−−−−−−−−−−−−−−−−

obtain the coin co2

Fig. 3. U1 spends a conditional e-cash to U2.

π1
sn0

, c1sn1
, π1
sn1

, c1su1
, π1
su1

) using RdCom and RdProve [16, 23]. Then U1 respectively computes com-

mitted signatures csn1
, csn2

and c
skU1
sU2

on the values which are committed in jn1
, jn2

and jpkU2 using

SigCom. U1 also outputs the proofs π′sn1
, π′sn2

and {πskU1sU2
}′. To hide the verification key of U1, U1

converts π′sn1
, π′sn2

and {πskU1sU2
}′ to πsn1

, πsn2
and π

skU1
sU2

by running AdCκ. The transformation of

π′sn1
and π′sn2

are similar to {πskU1sU2
}′. In the following, U1 converts {πskU1sU2

}′ = (πs2A′ , π
s2
B , π

s2
R ) to

π
skU1
sU2

= (πs2A , π
s2
B , π

s2
R ), where pkU2 = (gskU2 , hskU2 ) = (M,N). Note that since the last two proofs in

{πskU1sU2
}′ is the same as those in π

skU1
sU2

, U1 only changes πs2A′ to πs2A .

πs2A = RdProof(ckU1 , EÂ, (c
s2
A , 0), (cs2M , 0), (cs2S , 0), ck′U1 = (Com(ckU1 , Y

s2 , 0),ψ), (cs2D , 0), πs2A′),

where

EÂ(A,M ;S, Y,D) : ê(t−1, S)ê(M,h)ê(A, Y )ê(A,D) = ê(k, h).

U1 sends the following values to U2: {co11, csn1
, πsn1

, csn2
, πsn2

, c
skU1
sU2

, π
skU1
sU2
}.

Finally, the user U2 generates the coin co2 = (co11, jn2
, dn2

, πn2
, jpkU2 , j̃pkU2 , πpkU2 , c

skJ
sU2

, πskJsU2
, csn1

,

πsn1
, csn2

, πsn2
, c
skU1
sU2

, π
skU1
sU2

).

5.5 The Deposit Protocol

After the outcome is published, we assume that the outcome is favorable to the payee, thus the payee
proves that he owns the commitment of the condition and the correct proof of the commitment to
the publisher by an authenticated and secure channel. If the proof is correct, the publisher sends the
extraction key to the winner and the bank. Therefore, the payee obtains the extraction key ekpe and
extracts the secret value DHm. To achieve the anonymity of the user, the deposit protocol is divided
into two parts, i.e., Exchanging and Cashing.

Exchanging. By Exchanging, Ui+1 exchanges the conditional e-cash for a new value mo. The
description of Exchanging is as follow.
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1. Ui+1 randomizes coi as co1i = (pin, p̃
i
n, π

i
n, p

i
m, p̃

i
m,DHm, πim, pim, coi1, coi−12 , · · · , co2i−1, j1ni

, d1ni
, π1
ni
, j1pkUi

,

j̃1pkUi
, π1
pkUi

, {cskJsUi }
1, {πskJcUi

}1, c1sni−1
, π1
sni−1

, c1sni
, π1
sni
, {c

skUi−1
sUi

}1, {π
skUi−1
sUi

}1), and sends co1i to D.

Ui+1 runs the spending protocol with D.
2. In order to detect the double-spending, D firstly verifies the correctness of the secret value DHm and

commitment pim, and checks whether DHm is the value committed in pim. If not, this protocol aborts,
otherwise D opens the commitments din0

, di−1n1
, · · · , d2ni−1

, d1ni
contained in the coin using the extrac-

tion key of D. D obtains the serial number s = DHm||DHn0
||DHn1

||DHn2
|| · · · ||DHni

, and checks
whether the coin is found in the database DB. If not, D sends the value mo = (pim, j

1
pkUi

, csm , πcm)

to Ui. csm is the commitment signature to the commitments pim and j1pkUi
, and πcm proves that the

committed value in csm is a valid signature to the values committed in pim and j1pkUi
. mo is a correct

deposit of the user. D also saves mo to the database DB′. Otherwise D runs the Identify Procedures.

Cashing. By Cashing, Ui+1 cashes from D. The description of Cashing is as follow.

1. To protect the identity of Ui+1, Ui+1 converts the value mo = (pim, j
1
pkUi

, csm , πcm) to mo′ =

({pim}′, {j1pkUi}
′, c′sm , π

′
cm , c

′
sm , πsm) by running RdCom, RdProve and AdCκ. The committed value

in c′sm is a valid signature under the value committed in {j1pkUi}
′, and πsm is the corresponding

proof. Then Ui+1 directly contacts D through an authenticated and secure channel and supplies his
account number and mo′.

2.D detects that mo′ includes the correct signature, Ui+1 exchanges this piece of currency for credit to
his account. If the user double-supplies mo, D recovers the identity of double-spender by the Identify
Procedures.

If the outcome is favorable to the payer U1, U1 cashes back the coin from the bank as the above proce-
dure except that U1 spends the coin co11 andD obtains the serial numberDHn||DHn0

||DHn1
|| · · · ||DHni

.

5.6 The Identify Procedures

The Identify Procedures makes sure that when a double-spending is found, D sends coi and co1i+1 to
J to recover the identity of double-spender. The description of the Identify Procedures is as follow.
D finds another serial number which begins with n inDB, i.e., s′ = DHn||DH′n0

||DH′n1
||DH′n2

|| · · · ||
DH′ni

, this asserts that Ui+1 is a double-spender. D compares the two serial numbers s and s′ and
stops at the last t such that DHnt = DH′nt

. Finally, D sends two coins to J . In order to identify the
defrauder, J extracts the identity committed in jpkUi+1

using extraction key ekJ .

5.7 Efficiency

Schemes Shi [25] Blanton [17] Ours

Efficiency O(m1m2k) O(λlogm3) O(λ′)

Security model Random oracle model Standard model

Table 1. Efficiency Comparison between related work and our scheme

We analyze the efficiency and security model by comparing the computation and communication
in Table 1. In Shi et al.’s scheme [25], the computation and communication are O(m2k) to achieve the
probability 1/m in cut-and-choose techniques with a security parameter m. When U1 withdraws the
e-cash from B, B needs to do m1−1 verification for achieving the probability 1/m1. When U1 transfers
the e-cash to U2, U2 needs m2 − 1 verification. Therefore, Shi et al.’s scheme [25] requires O(m1m2k)
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computation and communication, where m1 and m2 are the security parameters of the cut and choose
techniques, and k is a security parameter for RSA-based systems.

In Blanton’s scheme, he constructed a conditional e-cash using verifiable encryption. The verifiable
encryption [32] needs O(logk1) computation and communication, where k1 is the security parameter of
the verifiable encryption. When an user spends the conditional e-cash to another, he needs to prove the
correctness of the construction using the verifiable encryption. Blanton’s scheme thus needsO(λlogm3),
where λ is a security parameter for groups with bilinear maps and m3 is the security parameter of the
verifiable encryption.

On the contrary, the commitments and corresponding proofs are used to represent a conditional
e-cash in this scheme. The proofs are given using Groth-Sahai proofs. The Groth-Sahai proofs are
not-interactive, thus the prover only needs to supply the commitments and corresponding proofs,
and then the verifier verifies the correctness of the proofs. Therefore, the user only needs to transfer
some commitments and proofs in the conditional protocol, the withdrawal protocol, spending protocol
and the deposit protocol. Moreover, the communication number only needs one round. Therefore,
computation and communication in this scheme are constant, i.e., O(λ′), where λ′ is the security
parameter of this scheme.

As for the security model, Shi et al. and Blanton’s schemes are proven in the random oracle model.
However, our new scheme is proven in the standard model.

6 Security Analysis

This section gives the rigid security proof. The scheme fulfills four security requirements, i.e., Anonymi-
ty, Unforgeability, Identification of Double-spender and Exculpability. An adversary is defined by A.
A challenger is defined by C. A series of games is given in A and C to prove the security properties. In
all games, we suppose that U1 firstly withdraws an e-cash co1 from B. Then U1 spends the e-cash co1
to U2, and U2 obtains an e-cash co2. And last, Ui deposits an e-cash coi to B.

Theorem 1. The transferable conditional e-cash scheme provides anonymity under the following as-
sumptions: SXDH assumption and soundness and witness indistinguishability of Groth-Sahai proofs.

Proof. Our scheme achieves optimal anonymity: StO-FA, StR-FA and OtR-FA.

– Spend-then-Observe Full Anonymity (Sto-FA). To achieve Sto-FA property, the adversary A can
not observe the coin in the challenge phase [18]. In this scheme, the coins transferred between the
users are represented using SXDH-based commitments. If A wants to determine which public key
is chosen by the challenger C in Challenge phase, he needs to know the public key committed in
jpkUi . Thus, A can break the soundness and witness indistinguishability of Groth-Sahai proofs [20].

– Spend-then-Receive Full Anonymity (StR-FA). For StR-FA property, A is allowed to obtain any
challenge coins co0 and co1 for the public keys pkU0 and pkU1 in Probing phase while he can not act
as D in Challenge phase. Therefore, A only observes the deposit in the Probing pahse. Because A
is given the challenge coin owned before, he must not know D′s key to detect double-spending.
Groth-Sahai proofs are witness indistinguishable. If the commitment key is set up as perfectly hiding,
the commitments and the random values are indistinguishable. Meanwhile, the corresponding proof
can also be simulated by the trapdoor information. In our scheme, the coins are represented by
randomizable extractable commitments. Thus, the coins can not reveal anything about the serial
number, the public keys and certificates. In order to simulate the deposit oracle, identification oracle
and conditional oracle, three commitments: di, j̃i and p̃i are introduced for auxiliary proof. We
simulate this scheme by the following game.
Game 0: This is the real scheme.
Game 1: As Game 0, except that the committed values from the commitments di, j̃i and p̃i are
extracted to detect, trace double-spending and obtain the condition respectively. Under soundness
and witness indistinguishability of Groth-Sahai proofs, this change is negligible.
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Game 2: As Game 1, except that the judge and publisher’s keys for the commitments j and p are
set up as perfectly hiding. Under SXDH assumption, this change is negligible.
Game 3: As Game 2, except that all proofs under the different keys are simulated. This can be
done using the trapdoor information for the commitments.
Game 4: As Game 3, except that all commitments dni , jni and pni are replaced with random values.
Under SXDH assumption, the commitments and the random values are indistinguishable.
For StO-FA, A only observes the spending in the Probing phase. The SXDH-based commitments
and Groth-Sahai proofs are witness indistinguishable. When a spending is challenged, A observes
the spending while he can not distinguish the coin with another coin which is perfectly random.
Therefore, if A win the games, he can break SXDH assumption, the soundness and the witness
indistinguishable of Groth-Sahai proofs.

– Observe-then-Receive Full Anonymity (OtR-FA). The proof is similar to that in StO-FA, except
that A can not receive the challenge coin while he can control the deposit oracle. A has never seen
the challenge coin. Thus, a spending is challenged in OSpend() query, we can replace all commitments
by random values or simply leave the commitments. Under SXDH assumption, the commitments
and random values are indistinguishable.

It is known A can win if he can solve the SXDH assumption, and break the soundness and the
witness indistinguishable of Groth-Sahai proofs.

Theorem 2. The transferable conditional e-cash scheme provides unforgeability under the following
assumptions: SXDH assumption, unforgeability of the commuting signature scheme and soundness and
witness indistinguishability of Groth-Sahai proofs.

Proof. Let A be an adversary, and C be a challenger. The probability that A breaks the unforgeability
is Pr[ExpunforTCE,A(λ) = 1]. We prove that the probability is negligible. C acting the bank generates both
the public key and the secret key of the bank. coua is the value of the e-cash received by A in the whole
protocol, and is initialized with zero. We gradually modify A’s views in each of the following games.

Game 0: This is the real scheme. In this game, C runs ParamSetup(1λ) and obtains the public
parameters params and the key pair (pkB, skB). Then C sends pkB to A and keeps skB to itself.

Game 1: In OWith() query, A acting U1 randomly chooses n1, and gives the corresponding com-
mitments and proofs. A sends the public key and other commitments to C acting B. Then A obtains
two conditional commitments pn and pm. And last, C verifies the public key and proofs. If these are
correct, C chooses n0, and gives the corresponding commitments and proofs. Clearly, A′views are the
conditional commitments, the random nonce sent by the bank, and the committed signatures. Under
SXDH assumption, the commitments and the random value are indistinguishable. Therefore, the Game
is identical to her view in Game 0. vui is defined for the value of the e-cash withdrew by A.

Game 2: OSpend() is similar to OWith() except that A acting U1 randomizes the e-cash co1 to co11,
and updates the committed signature to protect the identity of A. vuo is defined for the value of the
e-cash spent by A in OSpend() query. v1ui is defined for the value of the e-cash obtained by A in OSpend()
query. In ODepo(), A acting B firstly spends an e-cash to C acting B, which is similar to OSpend(). vde
is defined for the value of the e-cash deposited. Then C obtains the e-cash vde, and checks whether the
database contains the e-cash. If not, the Game aborts. Otherwise, vui + v1ui − vuo > vde. This asserts
that A has spent a coin which is not withdrew from the bank.

If the above event occurs, the unforgeability of commuting signature is broken. A can break SXDH
assumption, unforgeability of the commuting signature scheme and soundness and witness indistin-
guishability of Groth-Sahai proofs. It is known that the probability is negligible.

Theorem 3. The transferable conditional e-cash scheme provides identification of double-spender un-
der the following assumptions: SXDH assumption, unforgeability of the commuting signature scheme
and soundness and witness indistinguishability of Groth-Sahai proofs.

Proof. We assume that A is an adversary who double-spends coins while the identification algorithm
does not output A′s public key. In the following, a series of games is given to prove that the probability
of double-spending is negligible.
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Game 0: This is the real scheme. In this game, C supplies the judge’s public key. C runs the
ParamSetup(1λ) and obtains the public parameters params and the key pair (pkJ , skJ ). Then C
sends pkJ to A and keeps skJ to itself.

Game 1: In OWith(), A acting U1 firstly chooses n1, and gives the corresponding commitments
and proofs. A sends the public key and other commitments to C acting B. Then A obtains two
conditional commitments pn and pm. And last, C verifies the public key and proofs. If these are
correct, C chooses n0, and gives the corresponding commitments and proofs. Clearly, A′views are the
conditional commitments, the random nonce sent by the bank, and the committed signatures. As in
the proof of unforgeability, this Game is identical to her view in Game 0.

Game 2: A failure event E1 is introduced. Let C aborts if the extracted key - which C obtains
by running the knowledge extractor of the commitments - is such that pkU1 6= (g, h)skU1 . Therefore,
Game 2 and Game 1 are identical until E1 occurs. If this occurs, A is able to break the soundness of
Groth-Sahai proofs. It is known that this is negligible. Game 2 is thus indistinguishable from Game 1.

Game 3: OSpend() and ODepo() queries are similar to that in Game 2 of unforgeability. In this
Game, C acting B aborts if A acting Ui deposits an e-cash co which is not withdrew from C. Under
the soundness of Groth-Sahai proofs, each valid coin must contain a valid certificate for the public key
corresponding to each transfer. Thus, A has forged the certificate of co. Meanwhile, A acting Ui has
also forged a commitment signature for the certificate. Therefore, by the unforgeability of commuting
signature and the soundness of Groth-Sahai proofs, Game 3 and Game 2 are indistinguishable. These
imply that A cannot produce a new coin which is not signed by C.

If the above event occurs, the unforgeability of commuting signature is broken. A can break SXDH
assumption, unforgeability of the commuting signature scheme and soundness and witness indistin-
guishability of Groth-Sahai proofs. It is known that the probability is negligible.

Theorem 4. The transferable conditional e-cash scheme provides exculpability under the following
assumptions: SXDH assumption, unforgeability of the commuting signature scheme and soundness and
witness indistinguishability of Groth-Sahai proofs.

Proof. The exculpability is that A can accuse an honest user of happening a double-spending. The
proof is similar to that of the unforgeability, except that we request the commuting signature is issued
by an honest user rather than the bank. In the following, a series of games is given to prove that the
probability of exculpability is negligible.

Game 0: This is the real scheme. In this game, C supplies a security parameter to A. A runs
ParamSetup(1λ) and obtains the public parameters params and the key pair (pkB, skB). Then A
sends pkB to C and keeps skB to itself.

Game 1: In OWith() query, C acting U1 chooses n1, and gives the corresponding commitments
and proofs. C also sends the public key and other commitments to A acting B . Then C obtains two
conditional commitments pn and pm. And last, A verifies the public key and proofs. If these are correct,
A chooses n0, and gives the corresponding commitments and proofs. Clearly, A generates both the
public key and the secret key, so he know the e-cash withdrew by C. From this game, A can not obtain
more knowledge than Game 0.

Game 2: In OSpend() query, A acting U2 firstly chooses n2, and sends the corresponding com-
mitments and proofs to C. C acting U1 checks the proofs. If the proofs are correct, C generates the
commuting signature csu2

for the the commitment of U2’s public key using her private key. Then C
sends the commuting signature and corresponding proofs to A. As for ODepo() query, C acting Ui
spends the e-cash to A acting B. This spending is similar to that in OSpend() query. After A checks
the e-cash, A exchanges the e-cash with a value mo. And last, C cashes from A.

In this Game, we introduce a event E1 and let A gives two coins co and co′ with serial numbers
DHm = DH′m, DHn0 = DH′n0

, · · · DHni = DH′ni
and DHni+1 6= DH′ni+1

. csui
contains the user’s

public key pkui
. By the soundness of the Groth-Sahai proofs, they contain two commuting signatures

on pkui
and pk′ui

. These imply thatA generates a commuting signature c′sui
for the private key of C. It is

known that the commuting signature is unforgeability. Thus, Game 2 and Game 1 is indistinguishable.
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If the above event occurs, the unforgeability of commuting signature is broken. A can break SXDH
assumption, unforgeability of the commuting signature scheme and soundness and witness indistin-
guishability of Groth-Sahai proofs. It is known that the probability is negligible.

7 Conclusion

In this paper, we presented the first optimally anonymous and transferable conditional e-cash in the
standard model. To obtain the conditional e-cash, a publisher is introduced and firstly formalized.
One important in this scheme is that the spending and deposit protocol are anonymous. Meanwhile,
we used a verifiable commitment signature and updated verification key by commuting signature to
obtain the optimal anonymity. To solve the linkability issue of the last payee, we modified commitments
and corresponding proof using the randomization of Groth-Sahai proofs. Compared with the existing
conditional e-cash schemes, our scheme has the constant size for the computation and communication.
At last, we prove the security properties in the standard model.
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