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Abstract: Katz et al. provided a generic transform to construct aggregate message 

authentication codes and imposed a lower bound on the length of one aggregate MAC tag. 

The lower bound shows that the required tag length is at least linear with the number of 

messages when fast verification such as constant or logarithmic computation overhead is 

required. Aggregate message authentication codes are useful in settings such as mobile ad-hoc 

networks where devices are resource-constrained and energy cost is at a premium. In this 

paper, we introduce the notion of sequential aggregate message authentication code 

(SAMAC). We present a security model for this notion under unforgeability against chosen 

message and verification query attack and construct an efficient SAMAC scheme by 

extending a number-theoretic MAC construction due to Dodis et al. We prove the security of 

our SAMAC scheme under the CDH assumption in the standard model. Our SAMAC scheme 

improves the lower bound with the help of the underlying algebraic structure. Performance 

analysis shows that our SAMAC scheme yields constant computation for the verifier as well 

as fixed length for one aggregate.  

Keywords: Message authentication code; Sequential aggregate; CDH assumption; Chosen 

message and verification query attack 

 

1. Introduction 

Aggregate signature proposed by Boneh et al. [6] allows a collection of signatures from 

(possibly different) signers on (possibly different) messages to be aggregated into one short 

aggregate signature. The short aggregate signature can assure a verifier that all signers indeed 

signed for the collection of messages respectively. Aggregate signatures are very useful in 
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practical applications such as certificate chains, secure routing protocols [12] where 

compressing a collection of signatures will greatly improve application performance.  

Sequential aggregate signature proposed in [15], a variant of aggregate signature, is 

distinct from aggregate signature in that aggregation operations are performed by each signer 

in turn and it is well suited for secure BGP protocol [17]. It is also shown in [4] how to 

construct proxy signature via sequential aggregate signature. Lu et al. presented a sequential 

aggregate signature scheme [14] based on Waters signature [19] secure in the standard model 

with the advantage that the costly computational overhead (e.g, pairing operations) of it is 

constant, while that of the aggregate signature scheme [6] is linear with the number of the 

messages. 

Message authentication code, the private-key analog of digital signature, is one of the 

main primitives of interest in cryptography. Similarly, aggregate message authentication code 
is the private-key analog of aggregate signature. At present, there are relatively less research 

works on this topic [3,7] than those on aggregate signature. The formal study of it was not 

initiated until the work of Katz et al. [11]. It is pointed out in [11] that aggregate message 

authentication codes can also be used to improve efficiency of authenticated schemes that 

deal with aggregation of data in mobile ad-hoc networks [10,18], where devices are 

resource-constrained and the energy cost of communication is at a premium. They designed a 

security model that supports to aggregate MAC tags without any inherent order and 

constructed two secure aggregate message authentication code schemes. Their idea is to use 

XOR operations to compress MAC tags but the verification need re-compute MAC tags. 

One drawback of the first aggregate message authentication code scheme (KL Scheme 1) 

in [11] is that a verifier has to re-compute l  MAC operations to verify an aggregate MAC 

tag of fixed length on a set of l  messages. Although the verifier (e.g., base station) may be 

more powerful than other nodes, it is still desirable to offload the processing time of the 

verifier as much as possible. To address this issue, they suggested a trade off between the 

length of one aggregate tag and the time required to verify the tag. In other words, one can 

verify a tag in constant time at the price of the tag of ( )O l  length. The second aggregate 

message authentication code scheme (KL Scheme 2), which lies between the above two 
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extremes, achieves ( )O l  verification time but the aggregate tag has length ( )O l . 

Moreover, they also proved by their definition that the length of one aggregate MAC tag is at 

least ( )lΩ  when logarithmic (log )O l computation overhead for verification is required.  

Traditionally, pseudorandom functions are used to construct message authentication 

codes. Pseudorandom function constructions can be relied upon symmetric-based primitives 

such as CBC MAC [2] or number-theoretic assumptions [16]. Although the former have the 

speed advantage, their security cannot be reduced to number-theoretic assumptions and they 

lack algebraic properties useful for some specific applications. On the other hand, most 

number-theoretic pseudorandom function constructions are comparably inefficient. It is an 

open question how to build an efficient MAC based on number-theoretic assumptions such as 

DDH assumption. To address this issue, Dodis et al. [8] presented a novel idea to design 

efficient probabilistic message authentication codes based on number-theoretic assumptions. 

Their idea is to remove the public verification functionality inherent in digital signatures to 

construct message authentication codes. In other words, only the secret key is used to verify 

validity of MAC tags. 

We note that the generic construction of aggregation message authentication codes in [11] 

does not take potential algebraic structure into account and their result is obtained by 

assuming arbitrary order to aggregate MAC tags. Inspired by the ideas presented in [8], we 

aim to improve the lower bound [11] imposed on the length of one aggregate tag by 

constructing a sequential aggregation message authentication code (SAMAC) scheme based 

on number-theoretic assumptions. At first, it seems that we can simply use the technique in [8] 

to transform the sequential aggregate signature [14] secure in the standard model by removing 

the public verification functionality in order to yield a SAMAC scheme secure in the standard 

model. However, this method does not work because a signer in their scheme [14] need access 

the public keys of other users appearing in the aggregate-so-far in order to perform aggregate 

operation on it. The resulting scheme is not practical since the public key size required by 

their scheme [14] is quite large. For instance, the key of one user takes around 38KB to store 

if we assume a 160-bit collision resistant hash function. The authors [14] also suggested an 

open question to reduce the size of user keys for sequential aggregate signatures secure in the 
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standard model. On the other hand, it seems peculiar to keep the concept of public key in a 

symmetric primitive such as aggregate message authentication code.  

We choose to extend the message authentication code scheme MACBB [8] which is based 

on Boneh-Boyen signature [5] to yield an efficient SAMAC scheme secure in the standard 

model. Performance analysis shows that our SAMAC scheme only requires a verifier to 

compute less than three exponentiation operations to verify validity of an aggregate tag, 

independent of l , the number of signers. In addition, the length of an aggregate tag consists 

of only three group elements.  

The rest of this paper is organized as follows. At first, we describe the notations used in 

this paper and bilinear mappings in section 2. Syntax of SAMAC schemes is introduced in 

section 3. Katz et al. [11] considered security for aggregation message authentication codes 

under the notion of “unforgeability against chosen message attack(uf-cma)” [9]. It is 

reasonable in their setting because they mainly considered deterministic MACs constructed 

by primitives like block ciphers or hash functions. In this case, “unforgeability against chosen 

message (uf-cma) attack” is equivalent to “unforgeability against chosen message and 

verification query (uf-cmva) attack. For probabilistic MACs, some MAC constructions are 

only uf-cma secure, but not uf-cmva secure [1,13]. 

As our SAMAC scheme is probabilistic, we define security model for SAMAC schemes 

under the notion of “unforgeability against chosen message and verification query 

attack(uf-cmva)”. In view of XOR operations used by the generic construction [11] make it 

difficult to take advantage of potential algebraic properties, we design a SAMAC scheme by 

extending the “algebraic message authentication code scheme” MACBB proposed in [8] and 

prove our SAMAC scheme to be secure under the CDH assumption in the standard model. 

Our scheme is proven to be selectively secure. That is, an adversary must commit the target 

forgery in advance. It is well known that a selectively secure cryptographic scheme implies a 

full secure one at the price of loss of a security degradation factor by guessing the forgery. 

Finally, we evaluate the performance of our SAMAC scheme to show that our scheme yields 

constant computation for a verifier as well as fixed length for an aggregate tag. 

 

2. Preliminaries 
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2.1 Notation 

We denote by λ  a security parameter. If A  is a randomized algorithm, then 

1 2( , , ; )y A x x r�←  means that A  has input 1 2, ,x x �  and uniform random coins r , and 

the output of A  is assigned to y . We use the notation Rx S←  to mean “the element x  

is chosen with uniform probability from the set S ”. 

2. 2 Bilinear pairing 

Given a security parameter λ , an efficient algorithm (1 )PG λ
 outputs ( , , , , )Te G G g p , 

where G  is a cyclic group of a prime order p  generated by g . TG  is a cyclic group of 

the same order, and let : Te G G G× →  be a efficiently computable bilinear function with 

the following properties: 

1. Bilinear: ( , ) ( , ) ,a b abe g g e g g=  for all , pa b Z∈ . 

2. Non-degenerate: ( , ) 1
TG

e g g ≠  

 

3. Sequential aggregate message authentication codes 

3.1 Syntax of sequential aggregate message authentication codes 

A sequential aggregate message authentication code (SAMAC) scheme consists of the 

following algorithms: 

(1) Setup: Given a security parameter λ , output a common parameter cpar . 

(2) KG: Given the common parameter cpar , this key-generation algorithm generates a 

secret key k  and its unique public reference id .  

(3) Mac: Given a message m  and a secret key k , this tagging algorithm outputs a tag 

by running (( , ), )Mac k id m t→ . 

(4) AMac: Given a message m , a key-reference pair ( , )k id , an aggregate-so-far tag 

pt , a set of message-reference pairs 1{( , )}li i iMI id m
=

= , l n< . Let 1{ }li iI id
=

=  be the 

corresponding set of references derived from MI . n  is a system parameter that serves as 

an upper bound on the number of signers. If id I∉ , this aggregate-tagging algorithm outputs 
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an aggregate tag: (( , ), , , )AMac k id MI m pt t→ .  This description means that a signer is 

not allowed to sign twice in one aggregate tag.  

(5) Vrfy: Given a set of message-reference pairs 1{( , )}li i iMI id m
=

= , a set of 

key-reference pairs: 1{( , )}li i iK k id
=

= , l n≤ , and a tag t , this verification algorithm first 

verifies that no reference appears more than once, and outputs 1 to denote t  is a valid tag on 

the messages in MI  under the keys in K ; otherwise it outputs 0. There is no inherent order 

enforced by this verification algorithm. 

Correctness: For any message m , key-reference pair ( , ) (1 )k id KG λ
← , an 

aggregate-so-far tag pt , and two sets: 1{( , )}li i iMI id m
=

= , 1{( , )}li i iK k id
=

= ,  l n< , if 

( , , ) 1Vrfy MI K pt →  and ( , , , )AMac k MI m pt t→ ，we require:  
             Pr[ ( ( , ), ( , ), ) 1] 1Vrfy MI m id K k id t → =∪ ∪  

3.2 Security model for sequential aggregate message authentication codes 

3.2.1 Unforgeability  

Given a sequential aggregate message authentication code (SAMAC) scheme, consider 

the following game 
uf-cmva

SAMACExp ( , , )A nλ  between an adversary A  and a game challenger 

S . Our description is obtained by extending the standard security notion of unforgeability 

under chosen message and verification query attack for MAC schemes. 

Stage 1: The challenger S  runs (1 )KG λ
  to obtain a challenge key-reference pair 

* *( , )k id  and two empty sets ,KS TS  are also created, which are used to keep track of the 

registered keys as well as tag queries issued by the adversary respectively. Then A  is 

provided with the reference 
*id .  

Stage 2: A  can issue key queries, tag queries as well as verification queries which are 

handled as follows: 

( )Key ⋅  

    ( , ) (1 )i ik id KG λ
← ; 
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{ }iKS KS id← ∪ ; return ik ; 

     

( , , )Tag m MI pt  

    Let 1{( , )}li i iMI id m
=

=  and 1{ }li iI id
=

=  be derived from MI ; 

    If l n≥ , return ⊥ ; 

If iid I∃ ∈  but iid KS∉ , return ⊥ ; 

If 
*id I∉  and each reference iid I∈  appears only once, 

   
* *(( , ), , , )AMac k id MI m pt t→ ; { }TS TS m← ∪ ;  

return t ; 

 

( , )V MI t  

    Let 1{( , )}li i iMI id m
=

=  and 1{ }li iI id
=

=  be derived from MI ; 

    If l n> , return ⊥ ; 

If iid I∃ ∈  but iid KS∉ , return ⊥ ; 

Let 1{( , )}li i iK k id
=

= , where ik  is the secret key associated with iid I∈ ; 

If each reference iid I∈  appears only once, 

      Run ( , , )Vrfy MI K t b→ ; return the bit b ; 

Otherwise return ⊥ ; 

        

Finally, A  outputs a forgery 
*t  on a set of message-reference pairs 

*

1{( , )}li i iMI id m
=

= . Let 
*

1{ }li iI id
=

=  be the set of references derived from 
*MI . We 

require 
* *,id I l n∈ ≤  and each reference in 

*I  appears only once. Let 
*

1{( , )}li i iK k id
=

= , 

where ik  is the secret key associated with 
*

iid I∈ . A  wins the game if the following 

hold: 
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(1)
* * *( , , ) 1Vrfy MI K t → ; 

(2) and the message 
*m  bound with 

*id  is not queried to the tag oracle by the 

adversary. That is, 
*m TS∉ .  

The advantage 
uf-cmva

SAMACAdv ( , , )A nλ  of A  is defined to be the probability of A  

winning in this game. A SAMAC scheme is unforgeable if 
uf-cmva

SAMACAdv ( , , )A nλ  is negligible 

in λ  for every PPT adversary A .  

Remark: Selective security is defined by 
suf-cmva

SAMACExp ( , , )A nλ , which is the same as 

uf-cmva

SAMACExp ( , , )A nλ  except that the adversary must declare its target message 
*m  bound 

with 
*id  in advance. 

 

4 Our SAMAC scheme 

    We adapt the message authentication code scheme MACBB in [8] to yield a SAMAC 

scheme, which consists of the following algorithms:  

1. Setup: Given the security parameter λ , (1 )PG λ
 outputs ( , , , , )Te G G g p . The 

common parameter is ( , , , , )Tcpar e G G g p= . Messages to be signed are viewed as 

elements in pZ . 

2. KG: Picks a secret key k = 3

1 2( , , ) R px x y Z← . The public reference for this key is a 

unique identifier id .  

3. Mac: Given a secret key k = 1 2( , , )x x y  and a message m , a tag is generated as:  

1 1 2 1 2

1 2 3( , , ) ( , , )x y x m x x m xt t t t U g U g⋅ ⋅ + ⋅ +
= = ⋅ , \{1 }R GU G←  

where 1G  is the identity over the group G . The seemingly redundant 1 2x m xg ⋅ +
 in this 

tag is introduced for fast aggregation. 

4. AMac: Given a message m , a key-reference pair ( , )k id , an aggregate-so-far tag 
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pt , a set of message-reference pairs 1{( , )}li i iMI id m
=

= , l n< , an aggregate tag is 

generated as follows:  

(1) Let 1{ }li iI id
=

=  be the corresponding set of references derived from MI .  If 

id I∈ , return ⊥ ; 

(2) Otherwise parse pt  as 1 2 3( , , )pt pt pt  and the secret key k  as 1 2( , , )x x y ;  

(3) If 1 1Gpt = , return ⊥ ; 

(4) Compute 1 1 2

2 2 1( )x y x m xt pt g pt⋅ ⋅ +
= ⋅ ⋅ , 1 2

3 3

x m xt pt g ⋅ +
= ⋅ ; 

(5) Pick � R pu Z←  and compute 
� �

1 1 2 2 3, ( )u ut pt g t t t= ⋅ = ⋅ ; 

(6) Output 1 2 3( , , )t t t t= . 

5. Vrfy: Given a set of message-reference pairs 1{( , )}li i iMI id m
=

= , a set of 

key-reference pairs: 1{( , )}li i iK k id
=

= , l n≤ , and a tag t , the verification algorithm first 

verifies that each reference appears only once and proceeds as follows: 

(1) Parse the tag t  as 1 2 3( , , )t t t , the secret key 
( ) ( ) ( )

1 2( , , )i i i

ik x x y= ,1 i l≤ ≤ ; 

(2) Let 
( ) ( ) ( ) ( )

1 2 1

1 1

,
l l

i i i i

l i l

i i

a x m x b x y
= =

= ⋅ + =∑ ∑ . Output 1 if     

                1 2 1 31 ( )l l lb a a

Gt t g t t g≠ ∧ = ⋅ ∧ =                         (1) 

We consider (1 ,1 ,1 )G G Gpt =  as a valid tag under an empty set of signers. In this case, 

we take 0 0 0a b= = . In addition, it is not difficult to verify that the output of 

�(( , ), , , (1 ,1 ,1 ); )G G GAMac k id m pt u t∅ = →  over the randomness �u is identically 

distributed to that of (( , ), )Mac k id m t→ . 

Correctness: For any message m , key-reference pair ( , ) (1 )k id KG λ
← , an 

aggregate-so-far tag pt , and two sets: 1{( , )}li i iMI id m
=

= , 1{( , )}li i iK k id
=

= , 1 l n≤ < , if 

( , , ) 1AVrfy MI K pt → , we proceed as follows:  
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(1) Parse the aggregate-so-far tag pt  as 1 2 3( , , )pt pt pt , the secret keys k = 1 2( , , )x x y , 

and 
( ) ( ) ( )

1 2( , , )i i i

ik x x y= ,1 i l≤ ≤ ; 

(2) Let 
( ) ( ) ( ) ( )

1 2 1

1 1

,
l l

i i i i

l i l

i i

a x m x b x y
= =

= ⋅ + =∑ ∑ . ( , , ) 1AVrfy MI K pt →  means: 

1 2 1 3( ) 1 ( )l l lb a au

Gpt g pt g pt pt g= ≠ ∧ = ⋅ ∧ =  

Assume � R pu Z←  be the randomness used by the algorithm Amac. The output 

1 2 3( , , )t t t t=  of �(( , ), , , ; )AMac k id MI m pt u  is computed as follows: 

    At step (4) of Amac, 1 1 2

2 2 1( )x y x m xt pt g pt⋅ ⋅ +
= ⋅ ⋅ , 1 2

3 3

x m xt pt g ⋅ +
= ⋅ ; 

    Plugging the expressions of 1 2 3, ,pt pt pt  into 2 3,t t , we obtain:    

    1 1 2

2 1 1( ( ) ) ( )l lb a x y x m xt g pt g pt⋅ ⋅ +
= ⋅ ⋅ ⋅ 1 1 2

1( )l lb x y a x m x
g pt

+ ⋅ + ⋅ +
= ⋅  

1 21 2

3
l la a x m xx m xt g g g

+ ⋅ +⋅ +
= ⋅ =  

At the re-randomization step (5) of Amac, 
� �

1 1

u u ut pt g g +
= ⋅ = ,

�

2 2 3( )
ut t t= ⋅ .  

�
1 1 2 1 2

2 1( ) ( )l l lb x y a x m x a x m x ut g pt g
+ ⋅ + ⋅ + + ⋅ +

= ⋅ ⋅   

  
�

1 1 2 1 1 2

1( ) ( )l l l lb x y a x m x b x y a x m xu ug g g t
+ ⋅ + ⋅ + + ⋅ + ⋅ ++

= ⋅ = ⋅  

The above result means ( ( , ), ( , ), ) 1Vrfy MI m id K k id t →∪ ∪ .  

Although our scheme does not allow a signer to sign more than once in an aggregate tag, 

we can adopt the trick suggested in [section 3.2, 14] to handle this issue.  

 

5 Security Analysis 

Theorem 1: Assume there is an adversary A  running in time t  that can win the 

experiment 
suf-cmva

SAMACExp ( , , )A nλ  with probability ε . We can construct a simulator S that is 

able to solve the CDH problem over the group G  equipped with bilinear mapping with 

probability 
/

ε ε≥ , running in time 
/ ( )k t Vt t O q q q= + + + , where , ,k t Vq q q  are the 

number of key queries, tag queries and verification queries issued by A  respectively. 

Proof: The simulator S  takes an instance {( , , ) : , }x y

R pg g g x y Z←  of the CDH problem 



11 

over the group G  equipped with bilinear mapping as input and simulates the environment of 

suf-cmva

SAMACExp ( , , )A nλ  for the adversary A  as follows. 

At first, S  receives the target message *m  chosen by A . S  picks R pa Z← , the 

public reference 
*id  and implicitly defines the secret key 

* *

1 2( , , )k x x x x y= ← ← , 

where 
* *x a m x← − ⋅ . With this definition of the secret key 

*k , a correct tag on a message 

m  under 
*k  is of the form: 

                   
( ( *)) ( *)( , , )u xy u a x m m a x m mt g g g+ + − + −

=                      (2) 

The queries issued by A  are handled as follows: 

( )Key ⋅  

   Pick a secret key ik =
( ) ( ) ( ) 3

1 2( , , )i i i

R px x y Z← . The reference for this key is a unique 

public identifier id . 

{ }iKS KS id← ∪ ; return ik ;   

 

( , , )Tag m MI pt  

If 
*m m= , return ⊥ ;  

If MI  is empty,          

    Pick pr Z←  and implicitly define 
*( ) ( )u y m m r= − − + .  

As 0u =  implies 
*( )y m m r= − ⋅ , we can output the CDH solution 

*( )( )xy x m m rg g − ⋅
= . In the following, assume 0u ≠ . A correctly distributed tag is constructed 

as follows: 

    
/ ( ( *)) ( *)( , , )u xy u a x m m a x m mt g g g+ + − + −

= ; 

    
*

1

( )u y rm mg g g

−

−= ⋅ , 
*( ( *)) ( *)( ) ( )

a

xy u a x m m y a r x m m rm mg g g g

−

+ + − ⋅ − ⋅−= ⋅ ⋅ , 

    
( *) *( )a x m m a x m mg g g+ − −

= ⋅ ; 

    { }TS TS m← ∪ ;  
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    return 
/t ; 

Otherwise, let 1{( , )}li i iMI id m
=

=  and 1{ }li iI id
=

=  be derived from MI ; 

(1) If l n≥ , return ⊥ ; 

(2) If iid I∃ ∈  but iid KS∉ , return ⊥ ; 

(3) If 
*id I∉  and each reference iid I∈  appears only once, the simulator now 

constructs the rest of the required aggregate t  by adding to /t  the component on im  

computed by running (( , ), , , )i i iAMac k id m⋅ ⋅  in turn,1 i l≤ ≤ , where ik  is the secret key 

of iid .  

This can be accomplished because the simulator knows the registered secret keys. The 

output is identical to that of 
* *(( , ), , , )AMac k id MI m pt  on condition that the 

aggregate-so-far pt  is correct.  This is because the positions of signers appearing in an 

aggregate are interchangeable by the structure of the aggregate and our aggregation operation 

involves re-randomization such that the output is uniformly distributed over the correct 

aggregates. This is also the proof strategy adopted in [14]. 

(4) The simulator then proceeds as follows:  

   If ( , , ) 1Vrfy MI K pt → , return t ; 

   Otherwise,  

       If 1 1Gpt = ,  return ⊥ ; 

       If 2 1( )l lb a
pt g pt≠ ⋅ , compute 

*

2 2 ,b R pt t g b Z= ⋅ ← ; 

       If 3
lapt g≠ , compute 

*

3 3 ,c R pt t g c Z= ⋅ ←  

       return t ; 

 

( , )V MI t  

    Let 1{( , )}li i iMI id m
=

=  and 1{ }li iI id
=

=  be derived from MI ; 

    If  l n> , return ⊥ ; 
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If iid I∃ ∈  but iid KS∉ , return ⊥ ; 

Let 1{( , )}li i iK k id
=

= , where ik  is the secret key associated with iid I∈ ; 

The case 
*id I∉  can be handled easily. Hence we only consider the case that 

*id I∈ . 

Assume that each reference iid I∈  appears only once and without loss of generality 

*

1id id= .  

If 
*

1m m= , return ⊥ ; otherwise proceed as follows: 

(1) Parse the tag t  as 1 2 3( , , )t t t , 
( ) ( ) ( )

1 2( , , )i i i

ik x x y= , 2 i l≤ ≤ ; 

(2) Let 
( ) ( ) ( ) ( )

1 1 2 1 1

2 2

,
l l

i i i i

l i l

i i

a x m x b x y
− −

= =

= ⋅ + =∑ ∑ ; 

(3) Compute 
/ /

2 2 1 3 3( ( ) ),l l lb a a
t t g t t t g= ⋅ = ;  

That is, we eliminate the parts involved with the registered secret keys to decide whether 

/ /

1 2 3( , , )t t t  is a correctly distributed tag on 1m  under 
*id ; 

(4) Assume 1 1( ( *)) ( *))/ /

1 2 3( , , ) ( , , )xy u a x m m z a x m m wut t t g g g+ + − + + − +
= ;                                               

(5) If 1 1Gt =  or 
/ *

3 ( )a x m mt g g −
≠ ⋅ , outputs 0; otherwise assume 

*

1( ) ( )u y m m r= − − +  for some unknown pr Z∈ ;              

(6) Plugging the expression of u  into /

1 2( , )t t , we have 

1t =
*

1

1

( )m my rg g

−

−
⋅ ; 

*
1 1 1( ( *)) ( *)/

2 ( )

a

xy u a x m m z r m m m mx a r y zt g g g g g

−

+ + − + ⋅ − −⋅ ⋅
= = ⋅ ⋅ ⋅ ; 

Compute 
* *

1 1( ) ( )

1

m m r m myt g g
− −

= , 1( *)/

2 1( )
r m ma x zt t g g⋅ −⋅

= ⋅ . 

(7) If 
*

1( )/

2 1 1( , ( ) ) ( , )
m ma x ye g t t e g t g

−
= , the simulator outputs 1 since this implies 

0z = ; otherwise it outputs 0. 

 

Finally, A  outputs a forgery 
*t  on a set of message-reference pairs 
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*

1{( , )}li i iMI id m
=

= . Let 
*

1{ }li iI id
=

=  be the set derived from 
*MI . We require 

* *,id I l n∈ ≤  and each reference appears only once.  Assume without loss of generality 

*

1id id=  and 
*

1m m=  since the positions of signers are interchangeable by the structure of 

an aggregate.  

Let 
*

1{( , )}li i iK k id
=

= , where ik  is the secret key associated with 
*

iid I∈ .  

(1) Parse 
* * * *

1 2 3( , , )t t t t= ,
( ) ( ) ( )

1 2( , , )i i i

ik x x y= , 2 i l≤ ≤ ; 

(2) If 
*m TS∉ , proceed as follows: 

Let 
( ) ( ) ( ) ( )

1 1 2 1 1

2 2

,
l l

i i i i

l i l

i i

a x m x b x y
− −

= =

= ⋅ + =∑ ∑ ; 

The adversary A  wins if * * *( , , ) 1Vrfy MI K t → , which means: 

* *
1 1 1 1* * * * *

2 1 1 1 1( ) ( ) ( ) ( )l l l lb a b axy x m x xy at g g t t g g t t− − − −⋅ +
= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ . 

(3) The simulator outputs the CDH solution as: 

   1 1* *

2 1( ( ) )l lb a axyg t g t− −+
= ⋅  

   The correctness of the solution can be checked as follows:  

1 1

?
* *

2 1( , ) ( , ( ( ) ))l lb a ax ye g g e g t g t− −+
= ⋅  

Let E  be the event “the implicitly defined randomness 0u =  when answering one 

tag query” and F  be the event “the simulator S solves the CDH problem”. As the simulator 

S provides a perfect simulation for the adversary A  on condition that E  occurs, the 

probability 
/

ε  that S solves the CDH problem can be estimated as follows: 

 
/ Pr[ | ]Pr[ ] Pr[ | ]Pr[ ]F E E F E Eε = +  

   1 Pr[ ] Pr[ ] Pr[ ] (1 )E E Eε ε ε ε= ⋅ + = + ⋅ − ≥  

Although our scheme is selectively secure, it is well known that a selectively secure 

cryptographic scheme implies a full secure one at the price of loss of a security degradation 
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factor by guessing the forgery. In addition, the typical message transmitted in the mobile 

ad-hoc networks may be very short (e.g. 16 bit status information [11]). 

 

6. Performance Analysis 

In this section, we evaluate the performance of our sequential aggregation message 

authentication code scheme and the two aggregate message authentication code schemes [11] 

in terms of the computational cost to verify an aggregate and the length of an aggregate. The 

result is stated in Table 1, where l  is the number of signers. Exp, MAC denote one 

exponentiation operation and one underlying MAC operation respectively. | |T  represents 

the length of a MAC tag T  produced by the underlying MAC scheme. | |G  represents the 

length of one element of the group G . The optimized processing time of one 

multi-exponentiation 
a bg h  is less than that of 1.5 Exp. 

The KL scheme 1 in [11] requires a verifier to re-compute l  MAC operations when the 

length of an aggregate is fixed. On the other hand, they show constant verification time can be 

achieved at the price of a tag of length | |l T . They also demonstrated that the length of one 

aggregated tag is at least ( )lΩ  when logarithmic computation overhead is required for 

verification. To address this issue, they presented an scheme, which lies between the above 

two extremes, to obtain ( )O l  verification time and the aggregate tag has length 

| | ( )T O l . 

As their result is obtained by assuming to aggregate MAC tags in any order and XOR 

operations used by their generic construction make it difficult to take advantage of potential 

algebraic properties, we present a sequential aggregated MAC scheme based on the 

number-theoretic CDH assumption to improve the lower bound in [11]. As a result, we obtain 

constant verification time as well as fixed length for one aggregate as shown in the table.  

 

7. Conclusion 
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The formal study of aggregate message authentication code was not initiated until the 

work of Katz et al. [11]. Aggregate message authentication codes are useful for improving the 

efficiency of authenticated schemes that deal with aggregation of data in mobile ad-hoc 

networks. They also demonstrated that the length of one aggregate MAC tag is at least linear 

when logarithmic verification time is required. In this paper, we introduce the notion of 

sequential aggregate message authentication code and provide an efficient SAMAC 

construction by extending the number-theoretic message authentication code scheme MACBB 

[8]. The selective security of our SAMAC scheme is proved under the CDH assumption 

without random oracles. The algebraic structure underlying our construction helps to yield 

constant verification time and fixed length for one aggregate. 
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Table 1. Performance comparison  

Scheme Computation cost to verify 

an aggregate tag 

Length of an aggregate tag 

KL scheme 1 [11] l MAC | |T  

KL scheme 2  [11] ( )O l MAC (| | )O T l  

The proposed 

SAMAC scheme 

<2.5Exp 3 | |G  

 

 

 

 

 

 


