
Implementing Lightweight Block Ciphers on x86 Architectures

Ryad Benadjila1, Jian Guo2,?, Victor Lomné1, and Thomas Peyrin2,?

1 ANSSI, France
2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore
{ryad.benadjila, victor.lomne}@ssi.gouv.fr

{ntu.guo,thomas.peyrin}@gmail.com

Abstract. Lightweight block ciphers are designed so as to fit into very constrained environments, but usually not
really with software performance in mind. For classical lightweight applications where many constrained devices
communicate with a server, it is also crucial that the cipher has good software performance on the server side. Recent
work has shown that bitslice implementations applied to Piccolo and PRESENT led to very good software speeds,
thus making lightweight ciphers interesting for cloud applications. However, we remark that bitslice implementations
might not be interesting for some situations, where the amount of data to be enciphered at a time is usually small, and
very little work has been done on non-bitslice implementations.
In this article, we explore general software implementations of lightweight ciphers on x86 architectures, with a
special focus on LED, Piccolo and PRESENT. First, we analyze table-based implementations, and we provide a
theoretical model to predict the behavior of various possible trade-offs depending on the processor cache latency
profile. We obtain the fastest table-based implementations for our lightweight ciphers, which is of interest for legacy
processors. Secondly, we apply to our portfolio of primitives the vperm implementation trick for 4-bit Sboxes, which
gives good performance, extra side-channels protection, and is quite fit for many lightweight primitives. Finally, we
investigate bitslice implementations, analyzing various costs which are usually neglected (bitsliced form (un)packing,
key schedule, etc.), but that must be taken in account for many lightweight applications. We finally discuss which type
of implementation seems to be the best suited depending on the applications profile.

Keywords: lightweight cryptography, software, vperm, bitslice, LED, Piccolo, PRESENT

1 Introduction

RFID tags and very constrained computing devices are expected to become increasingly important for many applications
and industries. In parallel to this general trend, the growth of ubiquitous computing and communication interconnections
naturally leads to more entry points and increased potential damage for attackers. Security is crucial for many situations,
but often left apart due to cost and feasibility constraints. In order to fulfill the need in cryptographic primitives that
can be implemented and executed in very constrained environments (area, energy consumption, etc.), aka lightweight
cryptography, the research community has recently made significant advances in particular in the domain of symmetric-
key cryptography.

Current NIST standards for block cipher (AES [9]) or hash function (SHA-2 [24] or SHA-3 [2]) are not really
fit for very constrained environments and several alternatives have been proposed, such as PRESENT [4], KATAN [6],
LED [12], Piccolo [22], TWINE [23] for block ciphers and QUARK [1], PHOTON [11], SPONGENT [3] for hash
functions. Notably, PRESENT block cipher is now part of an ISO standard [16]. All these different proposals greatly
improved our knowledge in lightweight designs and many already achieve close to optimal performance for certain
metrics such as area consumption.

In practice, the constrained devices will be either communicating with other constrained devices or more probably
with a server. In the latter case, the server is likely to have to handle an important number of devices, and while cryp-
tography might be used in a protocol to secure the communications, other applications operations have to be performed
by the server. Therefore, it is crucial that the server does not spend too much time performing cryptographic operations,
even when communicating with many clients, and thus software performance does matter for lightweight cryptography.

At CHES 2012, Matsuda and Moriai [18] have studied the application of bitslice implementations to PRESENT and
Piccolo block ciphers, concluding that current lightweight ciphers can be surprisingly competitive for cloud applica-
tions. Bitslice implementations allow impressive speed results and are also valuable for their inherent protection against
various side-channel cryptanalysis. However, we argue that they might not really fit all the lightweight cryptography
use cases, where a server has to communicate with many devices. Indeed, constrained devices usually encipher a very

? Supported by the Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

small amount of data at a time. For example, in its smallest form, an Electronic Product Code (EPC), which is thought
to be a replacement for bar codes using low-cost passive RFID-tags, uses 64, 96 or 125 bits as a unique identifier for any
physical item. Small data enciphering makes the cost of data transformation into bitsliced form and key schedule process
very expensive (these costs are usually omitted by assuming that a rather large number of blocks will be enciphered).

Therefore, it is interesting to explore the software efficiency profile of lightweight ciphers not only for cloud appli-
cations but also for classical lightweight applications and, surprisingly, apart from embedded 8-bit architectures, they
are not really meant to perform well in software on mid-range or high-end processors. For example, the currently best
non-bitslice AES implementations reaches about 14 cycles per byte (c/B) on a 32-bit Pentium III CPU [19], while the
currently best non-bitslice PRESENT implementations only runs in 130 c/B on the same processor (the implementation
in [20] reports a performance of 16.2 cycles per bit). Therefore, we believe a gap exists in this area, even if very recent
proposals such as TWINE do report good non-bitsliced software performances.

Our contributions. In this article, we provide three main contributions for lightweight ciphers software implementa-
tions on x86 architectures, with a special focus on LED, PRESENT and Piccolo. First, in Section 2, we argue that
table-based implementations are still valuable in particular situations (some servers with “legacy” CPUs, pre Core2,
might lack the necessary SSE instructions set that is used in optimized bitslice or vperm implementations) and we
propose new interesting trade-offs, with a theoretical cache modeling to better predict which trade-off will be suitable
depending on the target processor. Our model is backed up by our experiments and we obtain the best known table-based
implementations for the studied lightweight ciphers.

Then, in Section 3, we further push software implementations of lightweight ciphers by exploring the vperm im-
plementation trick for 4-bit Sboxes that has already proven to be interesting for AES [13] or TWINE [23], and which
provides cache-timing attack resistance. We propose a strategy for our portfolio of lightweight ciphers, and we conclude
that the linear layer, usually not the part contributing a lot in the amount of computations, can have a significant impact
on the performances for this type of implementation. We note that these implementations are interesting because they
apply to almost all lightweight ciphers and they produce very efficient code.

Thirdly, in Section 4, we explore bitslice implementations for lightweight ciphers and we show that for some common
use cases they are less interesting than for cloud applications [18]. In fact, bitslice implementations can be slower than
table-based of vperm in some situations, for example when only a low number of blocks is enciphered per device.
Moreover, previous bitslice analysis usually neglects the key schedule part, so we provide bitsliced versions of the
key schedules. However, even in a bitsliced version, the key schedule can have a significant impact on the overall
performance. We therefore revisit this type of implementation by taking in account various factors that are important in
practice, such as the amount of distinct keys, the amount of blocks to be enciphered, etc. We note that we provide the
first bitslice implementation of LED, greatly improving over the best known software performance of this cipher.

For all three primitives LED, PRESENT and Piccolo, we have coded all three versions of implementation with
various tradeoffs. Then, for various crucial use cases presented in Section 5, we compare the different implementation
strategies and we discuss our results in Section 6. For the readers not familiar with them, we quickly explain in Ap-
pendix A the three lightweight ciphers that we take as example for our implementations and refer to the specification
documents [12,4,22] for a complete description. As many other lightweight ciphers, LED, PRESENT and Piccolo are
64-bit ciphers based on the repetition of a round function built upon a 4-bit Sbox and a linear diffusion layer, while the
key schedule is very simple if not inexistent. All these design choices are justified by the reduction of the area consump-
tion and while smaller Sboxes are possible, 4 bits is a sensitive choice which can provide very small area in hardware as
well as ease of implementation in software.

The full source codes of the implementations presented in this paper are online at https://github.com/rb-anssi/
lightweight-crypto-lib.

2 Table-based implementations

2.1 Core ideas

State of the art. Tabulating operations for efficiency purposes is an old method well known by programmers. When
applied to block ciphers, the goal is to tabulate as much as possible the different operations composing one round, such
that its computation consists in:

• selecting slices of the internal state by shift and mask operations;
• performing several table lookups to achieve the round transformation;
• aggregating lookup table outputs to get the updated internal state;

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

https://github.com/rb-anssi/lightweight-crypto-lib
https://github.com/rb-anssi/lightweight-crypto-lib
https://github.com/rb-anssi/lightweight-crypto-lib
https://github.com/rb-anssi/lightweight-crypto-lib

• performing the key addition layer.

Such an approach has for instance been proposed by Daemen and Rijmen in [9] to perform efficiently AES operations
on 32-bit processors. Thus, an AES round can be computed with 16 table lookups, using 4 tables of 8-bit inputs and 32-bit
outputs (each table having a size of about 1 KByte).

Table size tradeoffs. Many lightweight ciphers have in common 64-bit block and 4-bit Sbox, which allows a lot of
tradeoffs when implemented on 32 or 64-bit processors with a table-based approach. It can be tedious to implement all
these tradeoffs and check which one provides the best results. Thus, in the following, we propose a model to directly find
the most efficient implementation strategy. We emphasize that such a modeling method can be applied on all 32 or 64-bit
architectures, but here we focus specifically on Intel x86 ones. If one considers a generic Substitution and Permutation
Network (SPN) based lightweight cipher (like LED or PRESENT), the round function can be performed, following the
table-based approach, as follows (the internal state being divided into 64/m slices of m bits each, T0, T1, . . . being tables
with m-bit input and 64-bit output, and MASKm being a mask with m consecutive least significant bits at 1):
// Computation of a generic SPN lightweight cipher round
// Input: 64-bit state --- Output: updated 64-bit state
t0 = T0[state & MASKm];
t1 = T1[(state >> m) & MASKm];
t2 = T2[(state >> 2m) & MASKm];
...
state = t0 ^ t1 ^ t2 ^ ...;

Note that the choice of 64-bit output tables exactly fits with the size of the cipher internal state, and thus one can directly
include the linear layer when doing the table lookup. One round will then roughly be computed with shift, mask, table
lookup and XOR operations, whose amount will depend on the size of the tables (each table T will have a size S T = 2m×8
bytes). The main issue will be to choose the best tradeoff for m. Indeed, the bigger are the tables, the smaller is the amount
of operations to compute during the round function, but the bigger are the latencies of the table lookups. Furthermore,
depending on m, the Intel x86 instruction set allows some tricks (like mask-and-move instructions) reducing the number
of operations. We then focus on the assembly pseudo-code corresponding to one line (for m = 4, 12, 16) or two lines (for
m = 8) of the previous generic SPN round functions on m (the assembly is Intel syntax):

// m=4 or 12 (1 round)
shr state, m
mov tmp, state
and tmp, MASKm
(mov/xor) accumulator, [T+8*tmp]
...

// m=8 (2 rounds)
shr state, 16
movzbl tmp1, state
movzbh tmp2, state
(mov/xor) accumulator, [T+8*tmp1]
(mov/xor) accumulator, [T+8*tmp2]
...

// m=16 (1 round)
// The state is in rax
shr rax, 16
mov tmp, ax
(mov/xor) accumulator, [T+8*tmp]
...

It is to be noted that these pseudo-codes are for x86 64-bit architectures (on 32-bit ones, more mov and xor are required
due to the fact that table lookups only get 32-bit words – refer to footenote6 for more details about this –).

Cache latency model. To perform efficiently memory accesses, modern processors have different cache memory levels
(L1, L2 and sometimes L3). According to cache policy rules, the most used data will be stored in L1, then in L2, etc ...
When considering a table T of size |T |, the probability PL1 that an element of T is in L1 (cache of size |L1|) is PL1 =

|L1|
|T |

if |T | > |L1| and PL1 = 1 otherwise. Furthermore, the probability PL2 that an element of T is in L2 and not in L1
(considering that the element is either in L1 or in L23, i.e. |T | ≤ |L1| + |L2|) is PL2 = 1 − PL1. Thus, one can simply
deduce the average latency lT to load an element of T during a random access (which is the case for block ciphers):

lT = lL1 × PL1 + lL2 × PL2 = lL1 × PL1 + lL2 × (1 − PL1) (1)

with lL1 and lL2 denoting the latencies of L1 and L2 caches respectively. Since in this work we focus on x86 architectures,
and more precisely on Intel ones, we now have to consider the size and the latency of their different cache memories.
These numbers for several microarchitectures are given in the table below.

microarchitecture L1 size (KBytes) L1 latency (cycles) L2 size (KBytes) L2 latency (cycles)

Intel P6 16 or 32 3 512 8
Intel Core 32 3 1500 15

Intel Nehalem / Westmere4 32 4 256 10
Intel Sandy / Ivy Bridge4 32 55 256 12

3 For the sake of simplicity, we consider an exclusive cache model. Considering inclusive or hybrid models would not change the
equation much.

4 Westmere is the 32nm die shrink of the Nehalem microarchitecture, and Ivy Bridge is the 22nm die shrink of Sandy Bridge.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

Results. From the generic SPN round pseudo-code given above (and its assembly decomposition), one can compute
the number of instructions required for such a round according to the value m of a block slice and the microarchitecture
cache memory characteristics. We can weight each instruction by its latency. We assume that a register to register shift,
move and XOR have a latency of one cycle, whereas a table lookup has an average latency lT defined in equation (1).
An average theoretical latency of one round, for different microarchitectures, is given in the table below (for each
architecture, the average latency is obtained by summing all the operations latencies).

theoretical number of instructions for one round (for different table input sizes m)
instruction type m = 4 bits m = 8 bits m = 12 bits m = 16 bits

shift 15 3 5 3
move/xor 15 8 5 3

mask 16 0 5 0
table lookup6 16 (32) 8 (16) 6 (12) 4 (8)

theoretical average round latency (for different table input sizes m)
microarchitecture m = 4 bits m = 8 bits m = 12 bits m = 16 bits

Intel P6 142 59 99 93
Intel Core 94 35 91 264

Intel Nehalem / Westmere 110 43 68 186
Intel Sandy / Ivy Bridge 126 51 79 114

Note that for m = 16 bits, we might have to also consider the L3 or RAM latency depending on the L2 size, and natu-
rally extend the equation (1). We verified experimentally these values by implementing and running such a generic SPN
round for the different m values considered. We could confirm the results on each of the considered microarchitectures.
Note however that the experimental results do not exactly match the theoretical ones due to the superscalar property
of the Intel architectures7. Nevertheless, we emphasize the fact that this model is sufficient for our purpose: one can
deduce that 8-bit slices seem to be the best tradeoff from an efficiency point-of-view, whatever the microarchitecture,
and we will apply this tradeoff on each of the three lightweight ciphers from our portfolio. One can also notice that
some theoretical counter-intuitive results are experimentally verified: for instance, 16-bits input tables outperform 4-bit
input tables on some microarchitectures though a lot of data are outside L1 and L2 (this is due to the reduced number of
shift/move/mask operations compensating the bad average table access latency). Even though this is not the core subject
of our paper, this theoretical model can be used for performance comparisons of table based implementations on other
architectures such as ARM, SPARC or PowerPC.

Finally, table-based implementations specificities for each cipher are described in the following sections.

2.2 LED

We build eight tables, each one taking as input two row-wise adjacent 4-bit Sbox words (thus 8-bit input), and providing
64-bit output words. We give as example the description of the first table T0, that takes as input the two least signifi-
cant 4-bit words of the internal state (we denote a0 and a1 these two words, while S B represents the Sbox and ⊗ the
multiplication in GF(24)):

T0(a0, a1) =

4 ⊗ S B[a0] 4 ⊗ S B[a1] 0 0
8 ⊗ S B[a0] 8 ⊗ S B[a1] 0 0
B ⊗ S B[a0] B ⊗ S B[a1] 0 0
2 ⊗ S B[a0] 2 ⊗ S B[a1] 0 0

Note that the 4-bit input words row-wise packing and the 64-bit output words allow to include the ShiftRows oper-

ation directly inside the table, by carefully placing the meaningful output bits at their correct position. Thus, the three
round operations SubCells, ShiftRows and MixColumnsSerial are performed with 7 shifts and 8 masks (to select the eight

5 Sandy and Ivy Bridge data L1 cache latency can drop to 4 cycles when the offset from the base address is less than 2048 bytes
(see [15] for more details). However, rounding this to a fixed 5 cycles gives a reasonable first-order approximation for our model.

6 The number in brackets denotes the cost for 32-bit architectures, where two table lookups need to be performed in order to obtain
an entire 64-bit output. This however holds if we only consider general purpose registers loads: only one table lookup is needed
when using SIMD registers, at the expense of additional loads to save back the state from SSE to general purpose registers. For the
sake of simplicity, we only focus on general purpose registers code latency in this section.

7 One should consider the throughput of the instructions instead of their latencies for accurate performance estimates.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

8-bit slices of the internal state), 8 table lookups (to perform the three round operations) and 7 XORs to agglomerate the
eight table outputs.

Furthermore one extra table of 31 or 48 64-bit words (respectively in the case of LED-64 and LED-128) allows to
perform the AddConstants operation with only one table lookup and one XOR (again, we manipulate 64-bit words in
order to directly place the 4-bit constants at their correct position).

To summarize, one round of LED with 64-bit keys (resp. 128-bit keys) can be implemented with 7 shifts, 8 masks, 8
XORs8 and 9 table lookups, and with memory requirements of 16640 bytes (resp. 16768 bytes). The tables are therefore
small enough to fit mostly or even entirely in the L1 cache of the processor. We provide the pseudo-code for the ith round
computation (T_cst being the table computing the AddConstants operation, and T0, T1, T2, T3, T4, T5, T6 and T7
being the eight tables performing the SubCells, ShiftRows and MixColumnsSerial operations):

// Computation of the LED round i
// Input: 64-bit state St, round number i --- Output: updated 64-bit state St
St ^= T_cst[i];
t0 = T0[St & 0xff]; t1 = T1[(St >> 8) & 0xff]; t2 = T2[(St >> 16) & 0xff]; t3 = T3[(St >> 24) & 0xff];
t4 = T4[(St >> 32) & 0xff]; t5 = T5[(St >> 40) & 0xff]; t6 = T6[(St >> 48) & 0xff]; t7 = T7[(St >> 56) & 0xff];
St = t0 ^ t1 ^ t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7;

2.3 PRESENT

Encryption. Having a very similar structure to LED, we use the same implementation strategy for PRESENT. Eight
tables are built, each one taking as input two adjacent Sbox 4-bit words (8-bit inputs), and providing 64-bit output words,
such that the tables also take into account the permutation layer. The round computation pseudo-code is exactly the same
as for LED, except that there is no constant addition in the round function. Therefore, one PRESENT round is performed
with 7 shifts, 8 masks, 8 table lookups and 7 XORs8 and requires eight tables of 2048 bytes each, thus 16384 bytes in
total. The tables are therefore small enough to fit mostly or even entirely in L1 cache. An example of how to build the
tables is provided in Appendix C.1.

Key schedule. The PRESENT key schedule is quite costly in software, due to the 61-bit rotation over the full size
of the master key (especially for the 80-bit key version, which does not fit exactly within a multiple of a x86 general
purpose register size). Using two small tables Trctr and Tsboxks of 31 and 16 64-bit words, one can compute the
round counter addition and the key schedule Sbox lookup with only a single table lookup and a XOR (the 128-bit key
version performs two adjacent Sbox calls in the key schedule, thus the second table will contain 256 elements in the case
of PRESENT 128). We provide the pseudo-code of the 80-bit version in Appendix C.1.

2.4 Piccolo

Encryption. The table-based implementation of Piccolo is slightly different from that of LED or PRESENT since
Piccolo has a Feistel network structure. In order to tabulate as much as possible the internal function F, we divide it
in two parts. The first one packs the first Sbox layer of F and also the subsequent diffusion layer. It yields two tables of
8-bit input and 32-bit output (two Sbox inputs are handled at a time), which can be used to perform the first part of F
in both branches of the Feistel. The second part computes the second Sbox layer only. It is therefore implemented using
four tables of 8-bit input and 64-bit output (two tables per branch), allowing again to place the 16-bit branches at their
correct positions before the byte permutation at the end of the round. We explain in Appendix C.2 how to build these
tables, and the total amount of memory required is 10240 bytes, which is small enough to fit entirely in the L1 cache of
the processor. The final byte permutation of a Piccolo round can then be computed efficiently with two masks, two
16-bit rotations and one XOR. We provide the pseudo-code for the ith round computation of Piccolo in Appendix C.2.

Key schedule. The 80-bit and 128-bit versions of the Piccolo key schedule are slightly different, nevertheless they
have a similar core which consists in selecting 16-bit slices of the master key and XORing them with constant values.
Hence, we build one extra small table made of 25 64-bit words (or 31 words for Piccolo 128) corresponding to the
constant values. Then, we prepare several 16-bit slices of the master key in 64-bit words, and one can perform the key
schedule with only a single table lookup and one XOR operation. Note that the permutation used in the 128-bit version
of the key schedule can be efficiently implemented with two masks, two 16-bit rotations and one XOR.

8 These figures correspond to high level pseudo-code, but are slightly changed in assembly as reflected in the cache model results
thanks to mask-and-move instructions.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

3 Implementations using vperm technique

3.1 Introducing the vperm technique

Vector Permute, abbreviated vperm, is a technique that uses vector permutation instructions in order to implement table
lookups by taking advantage of the SIMD engine present inside modern CPUs. The main advantages of the vperm
technique are parallel table lookups and timing attacks side-channel resistance. This technique, applied to block cipher
implementations, comes originally from [13]. It has also proven to be efficient for multivariate cryptography [7].

The main idea behind the vperm technique is to use shuffling instructions for looking into small size tables. Though
this technique can be used in different architectures where SIMD shuffling instructions are present (for instance AltiVec
on PowerPC, or NEON on ARM), we will exclusively focus on their x86 flavor, namely the pshufb instruction. This
instruction has been introduced with the SSSE3 extension that came with the Intel Core microarchitecture.

Regarding the lightweight block ciphers, the vperm technique has already been applied to TWINE [23], yielding
in very competitive results on the x86 platform (6.87 c/B for a 2-message encryption). However, there are no results
available for other lightweight block ciphers. In the following subsections, we study how the vperm technique fits for
LED, Piccolo and PRESENT. We will show that, though the confusion layer is quite straightforward to implement
using vperm, the linear diffusion layer can be challenging.

3.2 Core ideas for vperm applied to lightweight block ciphers

In this section, we briefly describe the main implementation ideas that are common to LED, PRESENT and Piccolo
(as well as to many lightweight block ciphers).

The pshufb instruction. pshufb is a byte shuffling instruction that takes two 128-bit operands as input, e.g. xmm0
and xmm1 registers (see Figure 1). The destination operand xmm0 bytes are shuffled according to the source operand:
xmm1 is used as a permutation mask selecting bytes inside xmm0. Only the low nibbles of bytes in xmm1 are used, and if
the MSB is set the resulting byte is nullified. The result of the shuffling is stored inside xmm0. The second operand can be
a memory reference. There is an AVX variant vpshufb of pshufb that takes three operands as input, the first operand
being the destination. This saves a movdqa operation that is normally required to avoid overwritting the destination,
thus saving some CPU cycles.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 255 10 15 4 9 14 3 8 13 2 7 12 1 6 11

0
00

10 15 4 9 14 3 8 13 2 7 12 1 6 11

xmm0

xmm1

xmm0

ze
ro

Fig. 1. Result of “pshufb xmm0, xmm1”: bytes in xmm0 are shuffled according to the content of xmm1. Only the low nibble of
bytes in xmm1 are used as index: index 0x10=16 in the example translates to 0. When the byte index inside xmm1 ≥ 128 (i.e. the
high bit of the byte is set, 255 on the example), the destination byte is zeroed.

Sbox implementation. Most lightweight block ciphers use Sboxes on GF(24), meaning that the Sbox is a table of
16 possible output values selected by the input. It is straightforward to implement such an operation on 16 nibbles, in
parallel, using the pshufb instruction (see Figure 1). The piece of code in Figure 2 performs 16 parallel Sbox lookups
on the 16 low nibbles of the r register (the high nibbles of each byte ri are supposed to be zero). The same technique
can be used for any function from GF(24) to itself (including multiplications over the field), or even any function from
GF(24) to GF(28) without any loss of parallelism since one xmm register is 16-byte long. Hence, the MixColumns-like
multiplications can be stored inside 16-byte tables. More specifically, we can store the composition of the Sbox and the
multiplication inside a single 16-element table, as explained in Section 2.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0 s
r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0 r

sr15 sr14 sr13 sr12 sr11 sr10 sr9 sr8 sr7 sr6 sr5 sr4 sr3 sr2 sr1 sr0 t

// Input: r as input, s as the sbox,
// e.g sbox={0x0c, 0x05, ..., 0x02}
// for PRESENT and LED
// Output: t
movdqa t, s
pshufb t, r

Fig. 2. Using pshufb for 16 parallel Sbox lookups (high nibbles of bytes ri are supposed to be zero).

Extending to bigger tables. pshufb can be utilized in order to compute a 4-bit to 8-bit function and it is possible to
use the same technique for lookups inside tables with even bigger output size (but multiple of 8 bits). As presented on
Figure 8 in Appendix D.1, if we consider, for instance, a 16-bit output table, we can pack this table inside two 128-bit
xmm registers s0 and s1. Then, the ith entry of the table (0 ≤ i ≤ 15) is represented by the 16-bit value formed by s0

i and
s1

i . Therefore, one can perform 16 parallel table lookups (with 16 output bits) by using two pshufb in a row, the first
one getting the first half of the word in t0, and the second one getting the second half in t1.

Message packing and unpacking. Lightweight block ciphers states are 64-bit long, which means that two of them
can be stored inside a 128-bit xmm register. However, the natural packing concatenating the two states side by side
inside a register is not optimal. This is due to the fact that the algorithms we focus on use nibble-based permutations as
part of their linear diffusion layer. Implementing such permutations by using shift or rotation operations can be costly.
However, if the two states are packed by interleaving their nibbles as presented in Figure 3, it is possible to realize any
nibble permutation by using pshufb, since they are now mapped to a byte permutation. The packing and unpacking
are easily implemented using some shift and pshufb operations. Their cost, around ten cycles, is marginal compared
to the encryption process. Using this packing, one can apply 32 Sbox lookups on the two states by using two pshufb,
two pand masks and one 4-bit left shift psrlw to isolate low and high nibbles, and one pxor to merge the two results.
As we will explain, this packing will be applied to Piccolo and PRESENT, but not to LED.

2 blocks of 64-bit words

128-bit XMM register
4-bit

Fig. 3. Packing for the 2-parallel vperm implementation of PRESENT and Piccolo. Each rectangle represents a 4-bit nibble.

Using AVX extensions. On the two last Intel CPU generations (Sandy and Ivy Bridge), a new instruction set has been
added to extend Westmere’s SSE 4.2. The 128-bit xmm registers have also been extended to 256-bit ymm registers, most
of the instructions do however not operate on the full ymm registers, but only on their low 128-bit part. The full AVX
extensions operating on ymm will be introduced on the forthcoming Haswell architecture with AVX2. All the presented
encryption algorithms and their key schedules can still benefit from AVX on Sandy and Ivy Bridge by using the three
operands form of the instructions, which saves registers backup. For instance, table lookups can be performed with one
instruction “vpshufb t, s, r” instead of the two instuctions “movdqa t, s; pshufb t, r”9.

3.3 LED

The LED block cipher does not have a key schedule per se and since the decryption process is not more complex than the
encryption one (the coefficents for the inverse diffusion matrix are the same as for the original matrix), we will only focus
on the latter case. As explained previously, the 4-bit Sbox layer can be implemented in a few cycles by using pshufb,
masks and shifts. The ShiftRows is also immediate with a pshufb by using the interleaved nibbles packing described

9 The expected throughput improvement would however vary accross the considered microarchitecures (mainly depending on the
pipeline stage where register-to-register moves are performed, as well as the front end instruction decoder throughput).

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

above. However, the MixColumnsSerial step uses field multiplications with 11 different constants (4, 2, B . . .). Using
as many as 11 lookup tables as multiplicative constants would be too costly as they would not leave room for the state
and other operations inside the xmm registers. We could also use the fact that LED’s MDS matrix is a power of a simpler
sparse matrix, using less constants: the drawback is that raising to the power 4 would mean that the all operations would
have to be applied four times.

We found out that there is a better implementation strategy for LED: we can use the table-based tricks to store the
Sbox and MixColumnsSerial layers inside xmm register-based tables. Each column can be stored inside a 24 × 2 = 32
bytes table (thus 2 xmm registers). Hence, 4 pairs of xmm registers will store the 4 tables needed to perform a round of
LED, and lookups inside each table will be performed in a vectorized way for each nibble of the state using two pshufb
as described in Section 3.2. The drawback is that the output words will be on different xmm registers, but the repacking
of this step can be combined with the ShiftRows layer that shuffles the columns. We also use por masking to force the
MSB of bytes that are not concerned with a lookup in a specific table. For each LED round, 8 pshufb instructions are
used for the lookups, and 6 pshufb for the shifting layer (ShiftRows and repacking). This implementation strategy does
not use the specific state packing from Figure 3 since shuffling for the ShiftRows and table repacking can be expressed
using pshufb. However, one should notice that there is a small message packing cost for LED due to its row oriented
message loading in the state: the input message is packed in a column wise fashion, and the ciphertext is packed back to
row wise.

3.4 PRESENT

PRESENT can benefit from the vperm technique in both encryption and key schedule, since the latter uses Sbox lookups
for subkeys computations.

Encryption. As explained in [20] and on Figure 4, PRESENT’s pLayer permutation can be seen as the composition of
two permutations: one acting on bits inside groups of 16 bits, and one shuffling the nibbles inside the 64-bit state. As
for the table-based implementations of LED, it would be possible to compute a PRESENT round by using 4-bit to 16-bit
tables that merge the Sbox and the first permutation of the pLayer acting on 16-bit groups. Nevertheless, we have found
that this permutation can be implemented in a more efficient way by moving groups of bits (see the code on Figure 4 for
more details). The second permutation, mapped to a byte permutation thanks to the message packing from Figure 3, can
be expressed as one pshufb.

cc
S 0S 1S 2S 3S 4S 5S 6S 7S 8S 9S 10S 11S 12S 13S 14S 15

AAAAAAA

@@@@@@@

QQQQQQQQQ

�������

AAAAAAA

@@@@@@@

�������

�������

AAAAAAA

���������

�������

�������

AAAAAAA

@@@@@@@

QQQQQQQQQ

�������

AAAAAAA

@@@@@@@

�������

�������

AAAAAAA

���������

�������

�������

AAAAAAA

@@@@@@@

QQQQQQQQQ

�������

AAAAAAA

@@@@@@@

�������

�������

AAAAAAA

���������

�������

�������

AAAAAAA

@@@@@@@

QQQQQQQQQ

�������

AAAAAAA

@@@@@@@

�������

�������

AAAAAAA

���������

�������

�������

S 0S 4S 8S 12S 1S 5S 9S 13S 2S 6S 10S 14S 3S 7S 11S 15

PlayerMask1 = {0xaa, 0x00, 0xaa, 0x00, 0xaa, 0x00, 0xaa, 0x00, 0xaa, 0x00, 0xaa, 0x00, 0xaa, 0x00, 0xaa, 0x00};
PlayerMask2 = {0xcc, 0xcc, 0x00, 0x00, 0xcc, 0xcc, 0x00, 0x00, 0xcc, 0xcc, 0x00, 0x00, 0xcc, 0xcc, 0x00, 0x00};
PlayerShuf = {0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15};

bit_permute(in, out, mask, shift, tmp) PRESENT_pLayer(state)
movdqa tmp, in /* Permutation inside 16-bit groups */
psrldw tmp, shift /* (32-bit because of message packing) */
pxor tmp, in bit_permute(state, tmp1, PLayerMask1, 7, tmp2);
pand tmp, mask bit_permute(tmp1, state, PLayerMask2, 14, tmp2);
movdqa out, tmp /* Byte shuffling to complete the pLayer step */
pslldw out, shift pshufb state, PLayerShuf
pxor tmp, in
pxor out, tmp Fig. 4. PRESENT’s pLayer representation as two permutations.

Key schedule. A straightforward method for implementing PRESENT’s keys schedules for 80-bit and 128-bit keys
would be to store the master key inside one xmm register and compute all the subkeys by using rotations on the register
(80-bit or 128-bit rotations depending on the key size), and extract the high part to get each subkey. However, the SSE
instruction set lacks a rotation instruction. One could implement the rotation with two shifts and one XOR (and one
AND for the 80-bit key case), but the shift instructions ps(r/l)ldq that operate on the entire 128-bit xmm register
can only handle shift values that are multiples of 8 bits. Since PRESENT’s key schedules use a 61-bit rotation, using
such instructions is therefore too costly. Instead, we split the high and low key parts in two xmm register halves, which
allows us to perform the 61-bit rotation with the quadword shift instructions ps(r/l)lq. It is possible to vectorize the

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

key schedule on two keys by using this trick, since the high parts of the two xmm registers can be used to store high and
low keys of the second master key: keylow2 keylow1

keyhigh2 keyhigh1

xmm0
xmm1

.

One should notice that since the PRESENT vperm encryption part uses packed messages, the scheduled keys that
will be XORed to the cipher state must be packed in the same way. However, the 61-bit rotation is not compatible with
the nibble interleaving packing from Figure 3, which means that the key schedule cannot be easily performed with this
data packing. This implies that all the subkeys are to be packed after they have been generated and this explains the high
key schedule packing cost reported in Appendix B.

3.5 Piccolo

Encryption. Piccolo’s F function uses a circulant MixColumns matrix over GF(24), which allows using three 16
bytes tables, namely the Sbox, the Sbox composed with the multiplication by 2 in the field, and the Sbox composed
with the multiplication by 3. Two states of Piccolo are stored in one xmm register with the nibbles interleaved as in
Figure 3. It is then possible to implement one Piccolo round with two F functions in parallel inside the xmm register,
by using three pshufb for the three multiplications lookups (by 1, 2, and 3). Three more pshufb on the results and
three pxor are necessary in order to perform the columns mixing according to the circulant nature of the MixColumns
matrix. The second layer of Sbox lookups in F can be performed with only one pshufb. Finally, Piccolo’s Round
Permutation is realized with a unique pshufb, since it is a byte permutation. The piece of code given in Appendix D.2
illustrates these steps (it is suited for the low nibbles of the state, almost the same code is used for the high nibbles).

Key schedule. Piccolo’s key schedules for 80 and 128-bit keys do not really benefit from the vperm technique,
since no Sbox lookup nor field multiplication over GF(24) is performed. The same implementation tricks as presented
in Section 2.4 are used in order to minimize the number of operations extracting the master key subparts. The main
difference with the table-based implementations key schedule is that in the case of vperm, the process is performed
inside xmm registers with SSE instructions: the main benefit being that one can vectorize the key schedule for two
master keys, performing all the operations with the nibbles interleaved packing format from Figure 3. This results in an
optimized key schedule for two keys that requires almost the same number of cycles than the table-based implementation
on one key (see results in Appendix B).

4 Bitslice implementations

Bitslice implementations often lead to impressive performance results, as shown for example in [18] for PRESENT and
Piccolo. However, we would like to also take into account the key schedule cost that might not be negligible in several
typical lightweight cryptography use cases, such as short data or independent keys for different data blocks (see 5.2 for
specific examples). As a consequence, exploring the bitslice possibilities for the various key schedules is of interest. In
particular, many distinct keys might be used for the encryption and non-bitsliced key schedules might kill the parallelism
gain if one does the packing for each round key (packing/unpacking takes comparable cycles as for encryption in most
of the cases). This bitsliced key scheduling has never been studied for lightweight block ciphers to our knowledge,
and we provide some results for the three ciphers in this section. One of our conclusions is that some key schedules can
significantly slow down performances depending on the use case, which somehow moderates the results exposed in [18].

4.1 The packing/unpacking

The choice of an appropriate packing inside the xmm registers is important for a bitslice implementation. For the LED
bitsliced version with 16 parallel blocks, we use the packing described in Figure 9 in Appendix E.4. The packing for 32
parallel blocks is identical (see Figure 11). It is to be noted that the packing used for PRESENT is the same as for LED
(such a packing can be obtained with a little more than one hundred of instructions). The (un)packing for Piccolo
with 16-parallel blocks depicted in Figure 10 is very similar and requires a few more instructions. The reader can refer
to [18] for details and code about this.

4.2 The encryption

An important part of the encryption cost are the Sboxes, but the bitslice representation allows to compute many of them
in parallel within a few clock cycles. We recall the logical instructions sequences proposed by [18] in Appendix E.1 for
the LED and PRESENT Sbox, and in Appendix E.2 for the Piccolo Sbox.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

The second part of an encryption round is the linear diffusion layer. For LED, the ShiftRows is simply performed
with a few pshufb operations and the MixColumnsSerial are handled with the same method as in [17] for AES or
in [18] for Piccolo diffusion matrices. In the case of LED, one also has to consider the XORing of round dependent
constants during the AddConstants function, but this can be done easily by preparing in advance the constants in bit-
sliced form. For PRESENT, the bit permutation function pLayer can be performed by just reorganizing the positions
of the 16-bit (or 32-bit) words in the xmm registers in bitsliced form. This can be executed efficiently [18] using a few
pshufd, punpck(h/l)dq and punpck(h/l)qdq instructions (see the pseudo-code in Appendix E.3 for 8-parallel
data blocks). For Piccolo, the nibble position permutation (performed with a few pshufd instructions) and the matrix
multiplication are similar to the ones in [18].

4.3 The key schedule

As previously explained, the key schedule cost can be prohibitive in certain use cases when it comes to bitslicing. Thus,
it seems reasonable to design bitsliced versions of the key schedule: this would leverage possible parallelism when
many keys are processed, and this will prepare these keys in their packed format so that XORing them with the bitsliced
state is straightforward. As a matter of consequence, the bitslice format for the key must be the same as for the data, or at
least very similar so that the repacking cost is small. To minimize the key schedule cost, the packing is only performed
once for the original keys, from which the subkeys are produced by shift and masking operations.

LED. No key schedule is defined for LED. Only the original secret key has to be packed in the data bitsliced format
(one 64-bit key for LED-64 and two 64-bit keys for LED-128, other sizes use a sliding window requiring some additional
shifts and masks).

Piccolo. The key schedule is very light: it basically consists in selecting 16-bit chunks from the original secret key and
XORing them with round constants. Similarly to LED, our implementation first prepares the 16-bit chunks in bitsliced
format once and for all. Thanks to the adapted packing, the two 16-bit key words appear in the same registers. For
instance, when parallelism is of 16 blocks, 8 xmm registers are required to store the data and each round key, however,
4 are required only for storing one round-key in our case, because the other 4 contain only 0s, which can be discarded.
This saves storage, and also key-addition operations by half. Another important observation is that even-number indexed
chunks appear only in the left part of the round keys, and odd-number indexed chunks appear only in their right parts.
Hence, we can pre-position these chunks only once, and the key schedule would involve only XORing the appropriate
two chunks and the constants. To reduce the number of packing operations, we first pack all the original secret keys
without re-positioning, and then do the pre-positioning for subkeys. These arrangements minimize the overall operations
required by the key schedule.

PRESENT. The key schedule of PRESENT is not well suited for software, and even less suited when the key data has
to be in bitsliced format. We divide the keys in two chunks (64 and 16 bits for PRESENT-80 and two 64-bit chunks for
PRESENT-128) and prepare them in bitsliced format using the same packing as the data (each first chunks of the keys
are packed together and each second chunks of the keys are packed together). The subkey to be XORed every round
to the cipher internal state is located in the first chunk. The constants addition of the key schedule update function is
simply handled by pre-formatting the constants in the bitsliced format and XORing them to the chunks (in fact only
one chunk will be impacted if one does this step before the rotation). Then, the Sbox layer is performed by using the
same Sbox function as for the internal cipher, just making sure with a mask that only a single Sbox is applied. Finally,
the 61-bit rotation is separated in two parts, since only rotations of a multiple of 4 bits are easy to handle in bitslice
packing. First, a 60-bit rotation is applied using several pshufb instructions (together with masking and XORs). Then,
a single bit rotation is computed by changing the ordering of the xmm registers (the xmm registers containing the third
Sbox bits will now contain the second Sbox bits, etc.). An adjustment is eventually required as some bits will go beyond
the register limit and should switch to another one (this can be done with more shifts, masks and XORs). We provide the
pseudo-code for the bitsliced key schedule implementation of PRESENT-80 in Appendix E.5.

4.4 Discussions

To have a fair view on the workload of the key schedules, we minimized the number of packing operations in each
implementation. The Table below, deduced from Table 2, shows the ratio of the key schedule (including the packing of
the keys and subkeys generations) over one data block encryption (including plaintext packing, encryption, ciphertext
unpacking) for 16 blocks parallelism. In other words, it represents the workload increase when taking key schedule into
account. LED is affected only slightly, Piccolo by a quarter and PRESENT by more than half.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

LED-64 LED-128 Piccolo-80 Piccolo-128 PRESENT-80 PRESENT-128
Key schedule ratio 3.3% 4.1% 20.2% 26.7% 55.2% 59.9%

5 Analyzing the performance

5.1 Framework for performance evaluation

In order to compare various implementation techniques, we will consider that a server is communicating with D devices,
each using a distinct key. For each device, the server has to encipher/decipher B 64-bit blocks of data. Moreover, we
distinguish between the cases where the enciphered data comes from a parallel operating mode (like CTR) or a serial
one (like CBC).

Now, we would like to take in account the fact that some implementations can be faster when some parallelism is
possible (like bitslice technique). Let tE be the time required by the implementation to perform the encryption process
(without the key schedule and without the packing/unpacking of the input/output data). Let PE denote the number of
blocks that the implementation enciphers at a time in an encryption process (i.e. the number of blocks the implementation
was intended to be used with). Similarly, let tKS be the time required by the implementation to perform the key schedule
process (without the packing of the key data) and we naturally extend the notation to PKS .

We remark that ciphering a lower number of blocks than PE (resp. PKS) will still require time tE (resp. tKS). However,
contrary to the encryption or key schedule process, the packing/unpacking time of the input/output data will strongly
depend on the number of blocks involved. Therefore, if we denote by tpack the time required to pack one block of data,
we get that packing x blocks simply requires x · tpack. Similarly, we denote tunpack the time required to unpack one block
of data and unpacking x blocks simply requires x · tunpack. For the key schedule, tpackKS denotes the time to pack the key
data, and packing x keys requires x · tpackKS (there is no need to unpack the key).

Finally, depending on D and B, the average time per block required to encrypt all D · B data blocks with a parallel
operating mode is given by:

sparallel(D, B) =
total encryption time

number of data blocks enciphered
=

⌈
D·B
PE

⌉
· tE +

⌈
D

PKS

⌉
· tKS + D · B · (tpack + tunpack) + D · tpackKS

D · B

=

⌈
D·B
PE

⌉
· tE +

⌈
D

PKS

⌉
· tKS

D · B
+ tpack + tunpack +

tpackKS

B
.

However, when using a serial operating mode, the average time per block required to encrypt all D · B data blocks is
given by:

sserial(D, B) =
total encryption time

number of data blocks enciphered
=

⌈
D

PE

⌉
· B · tE +

⌈
D

PKS

⌉
· tKS + D · B · (tpack + tunpack) + D · tpackKS

D · B

=

⌈
D

PE

⌉
· tE

D
+

⌈
D

PKS

⌉
· tKS

D · B
+ tpack + tunpack +

tpackKS

B
.

Since table-based implementations are usually not faster when offered the possibility to encipher several blocks at
a time, we have that PE = PKS = 1 and tpack = tunpack = tpackKS = 0. Therefore, we conclude that for table-based
implementations we have s(D, B) = tE + tKS /B. On the opposite, for bitslice implementations, many data blocks will be
enciphered in parallel. Note that vperm implementations will stand in between table-based and bitsliced versions, since
a slight parallelism might increase the speed.

For previous bitslice implementations, since many blocks are assumed to be enciphered, the key schedule cost is
usually omitted. However, in this article, we are interested in use cases where for example B can be a small value, like a
single block. When B is small, one can see that the relative cost of the key schedule has to be taken in account.

5.2 The use cases

In order to have a clearer picture of the various scenarios that might be encountered in practice, we chose to study six
distinct and meaningful use cases, depending on the value of D, B and the type of encryption operating mode. The
six situations are given in Table 1 together with some examples. One might argue that the first use case is not really
interesting since with only few blocks and few devices the server would not be overloaded by the encryption/decryption
work. However, latency can be an important criterion for many applications, and thus this use case checks the ability of
the server to perform the cryptographic operation rapidly in software.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

Table 1. Six device/server use cases for lightweight encryption. For the practical measurements given in Table 2 in Appendix B, the
notation “big/small” refers to more/less than 10 on average. For the experimentations in Table 2 we used 1000 and 1.

D B op.
mode

example LED PRESENT Piccolo

1 small small - authentication / access control / secure traceability
(industrial assembly line)

table/vperm table/vperm table/vperm

2 small big parallel secure streaming communication (medical device
sending continuously sensitive data to a server,

tracking data, etc.)

bitslice bitslice bitslice

3 small big serial secure serial communication table/vperm table/vperm table/vperm

4 big small - multi-user authentication / secure traceability
(parallel industrial assembly lines)

bitslice bitslice bitslice

5 big big parallel multi-user secure streaming communication /

cloud computing / smart meters server / sensors
network / Internet of Things

bitslice bitslice bitslice

6 big big serial multi-user secure serial communication bitslice bitslice bitslice

6 Results and discussions

6.1 Implementation results

We have performed measurements of our three types of implementations for our three lightweight candidates. For more
precision, the encryption times have been measured with a differential method, checking the consistency by verifying
that the sum of the subparts is indeed equal to the entire encryption. Moreover, the measurements have been performed
with the Turbo-Boost option disabled, in order to avoid any dynamic upscale of the processor’s clock rate (this technol-
ogy was implemented in certain processor versions since Intel Nehalem CPU generation). We observe that our bitslice
implementations timings for Piccolo and PRESENT are consistent with the ones provided in [18]. Moreover, we
greatly improve over the previously best known LED software implementations (about 57 c/B on Core i7-720QM [12]),
since our bitsliced version can reach speeds up to 12 c/B.

We give in Table 2 in Appendix B all the implementation results on Core i3-2367M (Sandy Bridge microarchitec-
ture), XEON X5650 (Westmere microarchitecture) and Core 2 Duo P8600 (Core microarchitecture) processors. Using
the measurements for tE , tKS , tpack, tunpack, tpackKS in our framework from Section 5, we can infer the performances for
the 6 use cases.

6.2 Comparing the implementations types and the ciphers

We can extract general tendencies from our measurements (see Table 1) and one can remark that bitslice implementations
will perform better than table-based or vperm ones except for use cases 1 and 3 , where only few devices are involved
and data blocks can only be handled one at a time (bitslice implementations are naturally not fit for low latency and
single block). More surprisingly, even for the use cases 4 and 6 , the gain of bitslice over table-based or vperm
implementations is only clear for more than 10 devices.

For bitslice implementations, the cost of bitsliced form transposition on the server can be removed if the device
also enciphers in bitsliced format. However, depending on the type of constrained device, the bitsliced algorithm might
perform very poorly and the communication cost would increase if a serial mode is used or if a small amount of data is
enciphered. Moreover, this solution would reduce the compatibility if other participants have to decipher in non-bitsliced
form. The same compatibility issue is true for the keys in the server database, if one directly stores the keys or subkeys
in bitsliced form. Finally, it is to be noted that bitsliced versions of the key schedule are especially interesting when all
the keys are changed at the same time (i.e. fixed message length, messages synchronized in time).

We can see that from a software implementation perspective, all three ciphers perform reasonably well and are in
the same speed range. Their internal round function is quite fit for x86 architectures. Table-based implementations
are helped by the small 64-bit internal state size. The vperm implementations are fast thanks to the use of small 4-bit
Sboxes, even though the linear diffusion layer can significantly impact the performance (which is the reason why TWINE
has very good vperm implementation performances). For PRESENT the bit permutation layer is not really suited for

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

software, the LED diffusion matrix has complex coefficients when not in its serial form, and the Piccolo F function
with two layers of Sboxes reduces the possibilities of improvements. Concerning the key schedule, having a byte oriented
or no key schedule is an advantage and bitwise rotation as in PRESENT is clearly difficult to handle in software.

Lots of research has been conducted on block cipher constructions and building a good cryptographic permutation
is now well understood by the community. However, this is not the case of the key schedule and, usually, block ciphers
designers try to build a key schedule very different from the round function, in a hope to avoid any unpredicted relation
that might arise between the two components. However, we remark that this is in contradiction with efficient parallel
implementations (like bitslice), since the packing of the key and the block cipher internal state must be (almost) the same
(otherwise the repacking cost for every generated subkey would be prohibitive).

It is also to be noted that when analyzing ciphers software performances on the server side, it is more likely that
decryption will have to be performed instead of encryption. We emphasize that the decryption process would have the
same performances as our encryption implementations in the case of PRESENT. For LED and Piccolo, the inverse
matrix for the diffusion layer will have more complex coefficients than the encryption one (only the non-serialized matrix
for LED), but this shall not impact table-based implementations. However, we remark that this might have an impact on
our best performing implementations for Piccolo and their decryption counterpart are likely to be somewhat slower
than encryption mode.

6.3 Future implementations

The forthcoming Haswell architecture will introduce the new AVX2 instruction set. As discussed in Section 3.2, this
extension will permit most of the existing SSE instructions to operate on the full 256-bit ymm registers. Apart from the
three operands improvement already utilized in our vperm versions (Section 3.2), the three types of implementations
studied in this paper will probably gain from AVX2.

• Table-based implementations: with the new vgatherqq instruction, it is possible to perform 4 parallel table
lookups by using 4 indexes inside the ymm quadwords. The resulting quadwords, after the lookups, are stored inside
the ymm source register. Such a technique has been applied to the Grøstl hash function in [14]. When applied
to lightweight block ciphers, 4 internal states can be stored inside a single ymm register. One can isolate the 8-bit
indexes (if we use 8-bit tables) by using the vpshufb instruction, perform the 4 lookups in parallel, and merge
the results by XORing it within an accumulator. As we can see, this will result in a 4-way vectorized block cipher.
According to [15], vgatherqq will have a latency of 16 cycles and a throughput of 10 cycles when data is in L1.
A very rough estimation of the results on Haswell CPU is thus a 1.5 to 2 times improvement over the table-based
implementations results provided in Appendix B (since the mov instruction has a latency of 4 cycles in L1).

• vperm based implementations: extending the vperm technique to 256-bit ymm registers is straightforward, since
one would store 4 states instead of 2 in one register. As for table-based, vperm implementations will be vectorized
on 4 states providing a 2 times performance improvement for at least 4 parallel message blocks.

• Bitslice implementations: as for the vperm technique, bitslicing can naturally take advantage of the AVX2 exten-
sion to 256-bit registers by performing in the high 128-bit parts of ymm the exact same operations as on the low parts
(if N message blocks are to be packed, N/2 are packed as previously presented in the low part of ymm, and N/2 are
packed in the high part). This would roughly give a 2 times improvement for the performance (however requiring,
as for vperm, twice more parallel message blocks).

7 Conclusion and future works

In this article, we have studied the software implementation of lightweight block ciphers on x86 architectures, with
special focus on LED, Piccolo and PRESENT. We provided table-based, vperm and bitslice implementations and
compared these three methods according to different common lightweight block ciphers use cases. We believe our work
helps to get a more complete picture on lightweight block ciphers and we identified several possible future researches.

First, we remark that our cache latency model for table-based implementations predicts that new and future proces-
sors with an important amount of L2 cache might enable new fast primitives that utilize 16-bit Sboxes (which could
then be implemented using big table lookups). Moreover, this remark might also improve current ciphers such as LED
or PRESENT, by imagining a “Super-Sbox” type of implementation: two rounds can be seen as only composed of the
applications of four parallel 16-bit Sboxes, and thus can be perfomed with only 4 table lookups.

Secondly, in the future, it would be interesting to use this kind of modeling to compare different implementation
tradeoffs without tedious implementation for all of them (this would be also true for hardware implementations). Table-
based is a simple case we leave as open problem if more complex implementations can be studied the same way.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

Finally, another future work is to study other recently proposed block cipher designs such as PRINCE [5] or
Zorro [10], and the lightweight SPN-based hash functions such as PHOTON [11] or SPONGENT [3]. The analysis
of hash functions would be quite different since their internal state sizes (which vary with the intended output size) is
bigger than 64 bits. Therefore, the amount of memory required to store the tables for table-based implementations is
likely to be bigger, and vperm or bitslice implementations would be impacted as well since the packing would be more
complex and would use more xmm registers.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments.

References
1. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-Plasencia. Quark: A Lightweight Hash. In Stefan Mangard

and François-Xavier Standaert, editors, CHES, volume 6225 of LNCS, pages 1–15. Springer, 2010.
2. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak specifications. Submission to NIST, 2008.

http://keccak.noekeon.org/Keccak-specifications.pdf.
3. Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici, and Ingrid Verbauwhede. spongent: A

Lightweight Hash Function. In Preneel and Takagi [21], pages 312–325.
4. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw, Yannick Seurin,

and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, CHES,
volume 4727 of LNCS, pages 450–466. Springer, 2007.

5. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav
Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A Low-Latency
Block Cipher for Pervasive Computing Applications - Extended Abstract. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT, volume 7658 of LNCS, pages 208–225. Springer, 2012.

6. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and KTANTAN - A Family of Small and Efficient
Hardware-Oriented Block Ciphers. In Clavier and Gaj [8], pages 272–288.

7. Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng, Jintai Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang
Lee, and Bo-Yin Yang. SSE Implementation of Multivariate PKCs on Modern x86 CPUs. In Clavier and Gaj [8], pages 33–48.

8. Christophe Clavier and Kris Gaj, editors. Cryptographic Hardware and Embedded Systems - CHES 2009, 11th International
Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, volume 5747 of LNCS. Springer, 2009.

9. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, 2002.
10. Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier Standaert. Block Ciphers that are Easier to Mask:

How Far Can we Go? Cryptology ePrint Archive, Report 2013/369, 2013. http://eprint.iacr.org/.
11. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family of Lightweight Hash Functions. In Phillip Rogaway,

editor, CRYPTO, volume 6841 of LNCS, pages 222–239. Springer, 2011.
12. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED Block Cipher. In Preneel and Takagi [21],

pages 326–341.
13. Mike Hamburg. Accelerating AES with Vector Permute Instructions. In Clavier and Gaj [8], pages 18–32.
14. Severin Holzer-Graf, Thomas Krinninger, Martin Andreas Pernull, Martin Schläffer, Peter Schwabe, David Seywald, and Wolf-

gang Wieser. Efficient Vector Implementations of AES-based Designs: A Case Study and New Implementations for Grøstl. In
Ed Dawson, editor, CT-RSA, volume 7779 of LNCS, pages 145 – 161, 2013.

15. Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2013.
16. International Organization for Standardization. ISO/IEC 29192-2:2012, Information technology – Security techniques –

Lightweight cryptography – Part 2: Block ciphers, 2012.
17. Emilia Käsper and Peter Schwabe. Faster and Timing-Attack Resistant AES-GCM. In Clavier and Gaj [8], pages 1–17.
18. Seiichi Matsuda and Shiho Moriai. Lightweight Cryptography for the Cloud: Exploit the Power of Bitslice Implementation. In

Emmanuel Prouff and Patrick Schaumont, editors, CHES, volume 7428 of LNCS, pages 408–425. Springer, 2012.
19. Dag Arne Osvik. Fast assembler implementations of the AES, 2003.
20. Axel Poschmann. Lightweight Cryptography - Cryptographic Engineering for a Pervasive World. Cryptology ePrint Archive,

Report 2009/516, 2009. http://eprint.iacr.org/.
21. Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th International

Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings, volume 6917 of LNCS. Springer, 2011.
22. Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita, and Taizo Shirai. Piccolo: An Ultra-

Lightweight Blockcipher. In Preneel and Takagi [21], pages 342–357.
23. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi. TWINE: A Lightweight Block Cipher for Mul-

tiple Platforms. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in Cryptography, volume 7707 of LNCS, pages
339–354. Springer, 2012.

24. U.S. Department of Commerce, National Institute of Standards and Technology. Secure Hash Standard (SHS) (Federal Informa-
tion Processing Standards Publication 180-4), 2012. http://csrc.nist.gov/publications/fips/fips180-4/
fips-180-4.pdf.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

http://keccak.noekeon.org/Keccak-specifications.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

A LED, PRESENT and Piccolo

A.1 LED

LED is a 64-bit block cipher that applies 32 rounds for the 64-bit key version and 48 rounds for bigger key sizes (up
to 128 bits). The internal state is conceptually arranged in a (4 × 4) grid where each nibble represents an element from
GF(24) with the underlying polynomial for field multiplication given by X4 + X + 1. A step is composed of 4 rounds and
the key is XORed to the internal state before each step and also after the last step (there is no key schedule so if the key
K is larger than 64 bits, the subkey material that is XORed every step is selected from K by a 64-bit sliding window).

AddConstants

4 cells

4 cells

4 bits

SubCells

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

ShiftRows MixColumnsSerial

Fig. 5. An overview of a single round of LED.

One round is composed of four steps: AddConstants, SubCells, ShiftRows and MixColumnsSerial as illustrated in
Figure 5. The first function XORs a fixed constant to the first column and a round-dependent constant to the second
column of the internal state. The SubCells function applies the 4-bit Sbox to every nibble of the state, the Sbox being
the same as in PRESENT and given in Appendix E.1. The ShiftRows function just shifts left by i position all the nibbles
located in row i. Finally, the linear function MixColumnsSerial applies a MDS diffusion matrix M to every column of
the state independently, where

M =

4 1 2 2

8 6 5 6

B E A 9

2 2 F B

=

0 1 0 0

0 0 1 0

0 0 0 1

4 1 2 2

4

A.2 PRESENT

PRESENT is a 64-bit block cipher that applies 31 rounds for both its 80 and 128-bit key versions. One round is composed
of three steps: addRoundKey, sBoxLayer and pLayer as illustrated in Figure 6. The first function just XORs the incoming
subkey to the internal state and the sBoxLayer applies the 4-bit Sbox (given in Appendix E.1) to all nibbles. The pLayer
function is a bit permutation where a bit located at position i is moved to position j = i · 16 mod 63 when i ∈ {0, . . . , 62}
and j = i if i = 63. After the last round, a last addRoundKey layer is performed.

cc
SSSSSSSSSSSSSSSS

aa

`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`

hhh

����������������������������

HHH

`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀

hh

����������������������������

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

XXX

hh

�������������������������������������

@@@@@@@@@@@@@@@@@@@@@@@@@@@@

XXX

hhh

���

AAAAAAAAAAAAAAAAAAAAAAAAAAAA

PP

hhh

!!

aa

`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀`

��

����������������������������

HHH

`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀̀̀̀̀`̀̀̀̀̀

���

����������������������������

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

XXX

���

�������������������������������������

@@@@@@@@@@@@@@@@@@@@@@@@@@@@

XXX

���

AAAAAAAAAAAAAAAAAAAAAAAAAAAA

PP

!!

aa

(((

��

����������������������������

HHH

(((

���

����������������������������

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

((

���

�������������������������������������

@@@@@@@@@@@@@@@@@@@@@@@@@@@@

((

���

AAAAAAAAAAAAAAAAAAAAAAAAAAAA

(((

!!

Fig. 6. An overview of a single round of PRESENT.

The key schedule generating the subkeys is composed of four steps. Firstly, the subkey is obtained from the key state
by extracting the 64 leftmost bits. Then, the key state is rotated to the left by 61 bit positions and the Sbox is applied to
the leftmost nibble (the Sbox is also applied to the second-leftmost nibble for the 128-bit key version). Finally, a 5-bit
round counter is XORed from bit positions 15 to 19 of the key state (from bit positions 62 to 66 for the 128-bit key
version).

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

A.3 Piccolo

Piccolo is a 64-bit block cipher that applies respectively 25 and 31 rounds for the 80 and 128-bit key versions. The
round function is a 4-line type-II generalized Feistel network variant, so one can view the internal state as four 16-bit
branches. The three steps in one round are illustrated in Figure 7. The first function applies a transformation F to the
first branch (resp. third branch) and XORs the result to the second branch (resp. fourth branch). Then two incoming 16-
bit subkeys are XORed to the second and fourth branches respectively. Finally, a permutation on the nibble position is
performed, where a nibble at position i is moved to position T [i] with T = [4, 5, 14, 15, 8, 9, 2, 3, 12, 13, 6, 7, 0, 1, 10, 11].
The 16-bit function F itself applies a 4-bit Sbox (given in Appendix E.2) to every nibble, then multiplies the current
vector by an MDS diffusion matrix M, and applies again the 4-bit Sbox to every nibble. The matrix M is

M =

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

where each nibble represents an element from GF(24) with the underlying polynomial for field multiplication given by
X4+X+1. Finally, two 16-bit whitening keys are incorporated to the first and third branches respectively, at the beginning
and at the end of the ciphering process.

S S
S S
S S
S S

M

F

subkey

S S
S S
S S
S S

M

F

subkey

Fig. 7. An overview of a single round of Piccolo.

The key schedule generating the subkeys simply selects two 16-bit chunks from the original key and XORs them
with some round-dependent constants.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

B Results tables

Table 2. Implementation results for LED, PRESENT and Piccolo on various x86 architectures.

Implementation results for LED, PRESENT and Piccolo on Core i3-2367M @ 1.4GHz

cipher implementation tE tKS PE PKS
tpack tunpack tpackKS use cases speed (cycles/byte)

type (cycles) (cycles) (cycles) (cycles) (cycles) 1 2 3 4 5 6

LED-64

table 608 0 1 1 0.0 0.0 0.0 76.0 76.0 76.0 76.0 76.0 76.0
vperm 560 0 2 2 4.0 4.0 4.0 71.5 36.0 71.0 36.5 36.0 36.0
bitslice 2443 0 16 16 5.1 6.3 5.4 307.5 20.7 306.8 21.3 20.5 20.7
bitslice 2604 0 32 32 5.7 8.4 5.8 328.0 12.2 327.3 12.9 11.9 12.2

LED-128

table 906 0 1 1 0.0 0.0 0.0 113.3 113.3 113.3 113.3 113.3 113.3
vperm 858 0 2 2 4.0 4.0 9.0 109.4 54.6 108.3 55.8 54.6 54.6
bitslice 3671 0 16 16 5.1 6.6 9.9 461.6 30.4 460.3 31.6 30.1 30.4
bitslice 3967 0 32 32 5.8 8.4 11.9 499.1 17.6 497.7 19.1 17.3 17.6

Piccolo-80
table 671 38 1 1 0.0 0.0 0.0 88.6 83.9 83.9 88.6 83.9 83.9
vperm 512 55 2 2 6.0 4.5 7.5 73.1 33.3 65.3 37.7 33.3 33.3
bitslice 977 0 16 16 5.4 6.9 14.8 125.5 9.2 123.7 11.1 9.2 9.2

Piccolo-128
table 829 57 1 1 0.0 0.0 0.0 110.8 103.6 103.6 110.8 103.6 103.6
vperm 644 55 2 2 9.0 2.0 6.5 89.6 41.6 81.9 45.9 41.6 41.6
bitslice 1196 0 16 16 5.2 6.7 23.1 153.9 10.9 151.0 13.8 10.8 10.9

PRESENT-80
table 580 408 1 1 0.0 0.0 0.0 123.5 72.6 72.6 123.5 72.6 72.6
vperm 540 350 2 2 6.5 3.5 87.5 123.4 35.1 68.8 67.8 35.0 35.0
bitslice 1333 706 8 8 9.0 8.3 15.8 259.0 23.1 168.9 36.0 23.0 23.0
bitslice 2038 1100 16 16 5.1 5.6 7.4 394.5 17.5 256.2 27.0 17.3 17.4

PRESENT-128
table 580 334 1 1 0.0 0.0 0.0 114.3 72.5 72.5 114.3 72.5 72.5
vperm 540 296 2 2 6.5 3.5 103.0 118.6 35.0 68.8 66.4 35.0 35.0
bitslice 1313 738 8 8 9.4 8.5 15.8 260.6 22.8 166.5 36.3 22.8 22.8
bitslice 2221 1286 16 16 5.3 5.8 9.4 440.9 19.0 279.2 30.2 18.7 18.9

Implementation results for LED, PRESENT and Piccolo on XEON X5650 @ 2.67GHz

LED-64

table 567 0 1 1 0.0 0.0 0.0 70.9 70.9 70.9 70.9 70.9 70.9
vperm 749 0 2 2 5.0 5.0 10.0 96.1 48.1 94.9 49.3 48.1 48.1
bitslice 2445 0 16 16 5.0 6.3 5.1 307.7 20.7 307.0 21.3 20.5 20.7
bitslice 2846 0 32 32 5.8 8.2 6.0 358.2 13.1 357.5 13.9 12.9 13.1

LED-128

table 847 0 1 1 0.0 0.0 0.0 105.9 105.9 105.9 105.9 105.9 105.9
vperm 1058 0 2 2 5.0 5.0 18.5 135.8 67.4 133.5 69.7 67.4 67.4
bitslice 3674 0 16 16 5.0 6.3 9.7 461.9 30.3 460.7 31.6 30.1 30.3
bitslice 4306 0 32 32 5.9 8.2 12.2 541.5 19.0 540.0 20.5 18.6 19.0

Piccolo-80
table 568 39 1 1 0.0 0.0 0.0 75.9 71.0 71.0 75.9 71.0 71.0
vperm 580 47 2 2 2.5 7.0 13.5 81.3 37.4 73.7 42.1 37.4 37.4
bitslice 1038 0 16 16 5.4 6.7 14.4 133.1 9.7 131.3 11.5 9.6 9.7

Piccolo-128
table 700 62 1 1 0.0 0.0 0.0 95.3 87.5 87.5 95.3 87.5 87.5
vperm 724 77 2 2 10.5 7.0 8.0 103.3 47.4 92.7 53.3 47.4 47.4
bitslice 1400 0 16 16 5.3 6.6 22.8 179.3 12.5 176.5 15.4 12.4 12.5

PRESENT-80
table 525 398 1 1 0.0 0.0 0.0 115.4 65.7 65.7 115.4 65.7 65.7
vperm 650 441 2 2 6.0 5.5 99.5 150.3 42.1 82.8 82.1 42.1 42.1
bitslice 1360 600 8 8 9.5 9.0 15.9 249.3 23.6 172.4 34.9 23.6 23.6
bitslice 2453 1437 16 16 5.0 6.0 8.4 488.7 20.9 308.2 33.1 20.6 20.7

PRESENT-128
table 525 304 1 1 0.0 0.0 0.0 103.6 65.7 65.7 103.6 65.7 65.7
vperm 650 408 2 2 6.0 5.5 152.5 152.8 42.1 82.8 86.6 42.1 42.1
bitslice 1389 674 8 8 8.8 9.0 16.0 262.1 24.0 175.9 36.5 23.9 23.9
bitslice 2882 1888 16 16 5.3 5.9 9.6 598.8 24.3 361.9 40.2 23.9 24.1

Implementation results for LED, PRESENT and Piccolo on Core 2 Duo P8600 @ 2.4GHz

LED-64

table 502 0 1 1 0.0 0.0 0.0 62.8 62.8 62.8 62.8 62.8 62.8
vperm 751 0 2 2 2.0 2.0 4.0 94.9 47.4 94.4 47.9 47.4 47.4
bitslice 2880 0 16 16 6.6 9.4 6.6 362.8 24.7 362.0 25.5 24.5 24.7
bitslice 3029 0 32 32 6.3 10.3 6.7 381.5 14.2 380.7 15.0 13.9 14.2

LED-128

table 748 0 1 1 0.0 0.0 0.0 93.5 93.5 93.5 93.5 93.5 93.5
vperm 1091 0 2 2 2.0 2.0 25.0 140.0 68.7 136.9 71.8 68.7 68.7
bitslice 4219 0 16 16 6.5 9.5 12.8 531.0 35.2 529.4 36.8 35.0 35.2
bitslice 4521 0 32 32 6.5 10.5 13.4 568.9 20.2 567.3 21.9 19.8 20.2

Piccolo-80
table 537 41 1 1 0.0 0.0 0.0 72.3 67.1 67.1 72.3 67.1 67.1
vperm 594 44 2 2 4.0 5.0 15.0 82.8 38.3 75.4 42.9 38.3 38.3
bitslice 1100 0 16 16 7.1 9.4 16.9 141.7 10.7 139.6 12.8 10.7 10.7

Piccolo-128
table 669 65 1 1 0.0 0.0 0.0 91.8 83.6 83.6 91.8 83.6 83.6
vperm 739 73 2 2 4.0 4.0 8.0 103.5 47.2 93.4 52.8 47.2 47.2
bitslice 1400 0 16 16 6.3 9.4 25.6 180.2 13.0 177.0 16.2 12.9 13.0

PRESENT-80
table 476 359 1 1 0.0 0.0 0.0 104.4 59.5 59.5 104.4 59.5 59.5
vperm 651 384 2 2 8.5 4.0 105.5 144.1 42.3 83.0 79.4 42.3 42.3
bitslice 1446 731 8 8 11.0 11.1 17.6 277.1 25.5 183.6 39.0 25.4 25.4
bitslice 2438 1250 16 16 6.3 8.3 10.0 464.1 21.2 306.7 32.1 20.9 21.0

PRESENT-128
table 476 285 1 1 0.0 0.0 0.0 95.1 59.5 59.5 95.1 59.5 59.5
vperm 652 386 2 2 7.0 5.5 124.0 146.8 42.4 83.1 81.9 42.4 42.4
bitslice 1472 812 8 8 10.4 11.5 17.8 290.5 25.8 186.8 40.6 25.7 25.7
bitslice 2830 1631 16 16 6.0 8.1 11.1 560.8 24.3 355.7 38.3 23.9 24.1

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

C Table-based implementations

C.1 PRESENT

We give as example the pseudo-code of the computation of the first table T0 for the PRESENT round computation:
// Computation of table T0 for PRESENT
for(i = 0; i < 256; i++)
{

t = (SB[(i & 0xf0) >> 4] << 4) | SB[i & 0x0f];
T0[i] = ((t >> 0) & 0x01) << 0; T0[i] |= ((t >> 1) & 0x01) << 16;
T0[i] |= ((t >> 2) & 0x01) << 32; T0[i] |= ((t >> 3) & 0x01) << 48;
T0[i] |= ((t >> 4) & 0x01) << 1; T0[i] |= ((t >> 5) & 0x01) << 17;
T0[i] |= ((t >> 6) & 0x01) << 33; T0[i] |= ((t >> 7) & 0x01) << 49;

}

Below is the pseudo-code of the 80-bit version of PRESENT key schedule (keyH being the 64 most significant bits of
the master key and keyL the last 16 bits):
// Computation of the PRESENT 80-bit round key i+1
// Inputs: keyL and keyH two 64-bit words, round number i --- Outputs: updated keyL and keyH (round-key i+1)
keyH ^= Trctr[i]; t = keyH; keyH <<= 61; keyH |= (keyL << 45);
keyH |= (t >> 19); keyL = (t >> 3) & 0xffff; t = keyH >> 60;
keyH &= 0x0fffffffffffffff; t = Tsboxks[t]; keyH |= t;

C.2 Piccolo

We give below the pseudo-code in order to build one of the two tables T0 and T1 performing the first part of the F
function of Piccolo (here T0 takes as input the two least significant 4-bit words of the considered 16-bit branch):
// Computation of table T0 for PICCOLO
for(i = 0; i < 256; i++)
{

T0[i] = (SB[i & 0x0f] ^ SB[(i & 0xf0) >> 4]) << 12;
T0[i] |= (SB[i & 0x0f] ^ xtime[SB[(i & 0xf0) >> 4]] ^ SB[(i & 0xf0) >> 4]) << 8;
T0[i] |= (xtime[SB[i & 0x0f]] ^ SB[(i & 0xf0) >> 4]);
T0[i] |= (xtime[SB[i & 0x0f]] ^ SB[i & 0x0f] ^ xtime[SB[(i & 0xf0) >> 4]]) << 4;

}

Then we give the pseudo-code building one of the four tables T2, T3, T4 and T5 performing the second part of the F
function:
// Computation of table T2 for PICCOLO
for(i = 0; i < 256; i++)

T2[i] = (SB[i & 0x0f] | (SB[(i & 0xf0) >> 4] << 4)) << 16;

Finally, we provide the pseudo-code for the ith round computation of Piccolo (T0 and T1 being the two tables per-
forming the first part of the F function, T2, T3, T4 and T5 being the four tables performing the second part of the F
function, the two last lines performing the byte permutation and roundKey[i] being the ith round key):
// Computation of the PICCOLO round i
// Input: 64-bit state St, round number i --- Output: updated 64-bit state St
t0 = T0[St & 0xff] ^ T1[(St >> 8) & 0xff]; t1 = T0[(St >> 32) & 0xff] ^ T1[(St >> 40) & 0xff];
St ^= T2[t0 & 0xff] ^ T3[(t0 >> 8) & 0xff] ^ T4[t1 & 0xff] ^ T5[(t1 >> 8) & 0xff] ^ roundKey[i];
t0 = St & 0x00ff00ff00ff00ff; t1 = St & 0xff00ff00ff00ff00;
t0 = ((t0) >> 16) ^ ((t0) << (48)); t1 = ((t1) << 16) ^ ((t1) >> (48)); St = t0 ^ t1;

D vperm implementations

D.1 Table lookups inside big tables using the vperm technique

Using multiple pshufb instructions to perform 4-bit input table lookups with outputs bigger than 8-bit.

s0
15 s0

14 s0
13 s0

12 s0
11 s0

10 s0
9 s0

8 s0
7 s0

6 s0
5 s0

4 s0
3 s0

2 s0
1 s0

0 s0

s1
15 s1

14 s1
13 s1

12 s1
11 s1

10 s1
9 s1

8 s1
7 s1

6 s1
5 s1

4 s1
3 s1

2 s1
1 s1

0 s1

r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0 r

t0
r15

t0
r14

t0
r13

t0
r12

t0
r11

t0
r10

t0
r9

t0
r8

t0
r7

t0
r6

t0
r5

t0
r4

t0
r3

t0
r2

t0
r1

t0
r0 t0

t1
r15

t1
r14

t1
r13

t1
r12

t1
r11

t1
r10

t1
r9

t1
r8

t1
r7

t1
r6

t1
r5

t1
r4

t1
r3

t1
r2

t1
r1

t1
r0 t1

word0

// Input: r as input, s0, s1 ... as lookup
tables
// Output: t0, t1 ...
movdqa t0, s0
movdqa t1, s1
...
pshufb t0, r
pshufb t1, r
...

Fig. 8. Lookups in tables of any output size using pshufb.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

D.2 Piccolo main encryption

Piccolo main encryption round on an interleaved state. It is suited for low nibbles (almost the same code is used for
high nibbles).

/* Piccolo Sbox+1 multiplication (high and low nibbles) */
SBoxL={0x0e, 0x04, 0x0b, 0x02, 0x03, 0x08, 0x00, 0x09, 0x01, 0x0a, 0x07, 0x0f, 0x06, 0x0c, 0x05, 0x0d};
/* Piccolo Sbox+2 multiplication (high and low nibbles) */
TwoMulSBoxL[] = {0x0f, 0x08, 0x05, 0x04, 0x06, 0x03, 0x00, 0x01, 0x02, 0x07, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09};
/* Piccolo Sbox+3 multiplication (high and low nibbles) */
ThreeMulSBoxL[] = {0x01, 0x0c, 0x0e, 0x06, 0x05, 0x0b, 0x00, 0x08, 0x03, 0x0d, 0x09, 0x02, 0x0a, 0x07, 0x0f, 0x04};
/* Piccolo’s MixCoumns shuffles */
ThreeShuf = {1, 2, 3, 0, 0xff, 0xff, 0xff, 0xff, 9, 10, 11, 8, 0xff, 0xff, 0xff, 0xff};
OneShufa = {2, 3, 0, 1, 0xff, 0xff, 0xff, 0xff, 10, 11, 8, 9, 0xff, 0xff, 0xff, 0xff};
OneShufb = {3, 0, 1, 2, 0xff, 0xff, 0xff, 0xff, 11, 8, 9, 10, 0xff, 0xff, 0xff, 0xff};
/* Piccolo’s Round Permutation */
RP[] = {4, 5, 14, 15, 8, 9, 2, 3, 12, 13, 6, 7, 0, 1, 10, 11};
/* Mask for selecting high and low nibbles */
AndMaskL={0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f};
AndMaskH[] = {0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0};

/* ------------ */\
/* LOW NIBBLES */\ /* Shuffle for MixColumns */
/* ------------ */\ pshufb tmp2, OneShufa
/* Get the state */\ pshufb tmp3, OneShufb
movdqa tmp1, state pshufb tmp5, ThreeShuf
/* Select the low nibbles */ /* Merge */
pand tmp1, AndMaskL pxor tmp2, tmp3
/* Do the SBox+Multiplications */\ pxor tmp2, tmp4
movdqa tmp2,SBoxL pxor tmp2, tmp5
movdqa tmp4, TwoMulSBoxL /* Second SBox lookup and result in tmp6 */
movdqa tmp5, ThreeMulSBoxL movdqa tmp6, SBoxL
pshufb tmp2, tmp1 pshufb tmp6, tmp2
pshufb tmp4, tmp1 ...
pshufb tmp5, tmp1 /* Apply Round Permutation */\
movdqa tmp3, tmp2 pshufb state, RP

E Bitslice implementations

E.1 LED and PRESENT Sbox

LED and PRESENT use the same 4-bit Sbox, given by the following table in hexadecimal notation:
S[X]={0xC,0x5,0x6, 0xB, 0x9, 0x0, 0xA, 0xD, 0x3, 0xE, 0xF, 0x8, 0x4, 0x7, 0x1, 0x2}.
We remark that the decomposition from [18] contains an error which we correct here. The Sbox can be decomposed into
the following sequence of 20 two-operand instructions (r3 representing the most significant of the four bits):

// Bitslice implementation of LED or PRESENT Sbox
// Input: r3, r2, r1, r0, t --- Output: r3, r2, r1, r0
#define Sbox(r3, r2, r1, r0, t)

r2 = XOR(r2,r1); r3 = XOR(r3,r1); t = r2; r2 = AND(r2,r3);
r1 = XOR(r1,r2); t = XOR(t,r0); r2 = r1; r1 = AND(r1,t);
r1 = XOR(r1,r3); t = XOR(t,r0); t = OR(t,r2); r2 = XOR(r2,r0);
r2 = XOR(r2,r1); t = XOR(t,r3); r2 = ~r2; r0 = XOR(r0,t);
r3 = r2; r2 = AND(r2,r1); r2 = XOR(r2,t); r2 = ~r2;

E.2 Piccolo Sbox

Piccolo uses a 4-bit Sbox that is given by the following table in hexadecimal notation: S[X]={0xE,0x4,0xB,
0x2, 0x3, 0x8, 0x0, 0x9, 0x1, 0xA, 0x7, 0xF, 0x6, 0xC, 0x5, 0xD}.
Using the decomposition from [18], this Sbox can be decomposed into the following sequence of 13 two-operand in-
structions (r3 representing the most significant of the four bits):

// Bitslice implementation of PICCOLO Sbox
// Input: r3, r2, r1, r0, t --- Output: r0, r1, r2, r3
#define Sbox(r3, r2, r1, r0, t)

t = r1; r1 = OR(r1,r2); r3 = ~r3; r0 = XOR(r0,r2);
r1 = XOR(r1,r3); r3 = OR(r3,r2); r0 = XOR(r0,r3); r3 = r1;
r3 = OR(r3,r0); r3 = XOR(r3,t); t = OR(t,r0); r2 = XOR(r2,t);
r3 = ~r3;

Note that the MSB/LSB ordering for the output is swapped, thus one has to adapt the implementation of Piccolo
accordingly.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

E.3 PRESENT pLayer

We provide the pseudo-code for the 8-parallel bitslice implementation of the PRESENT pLayer.

// Bitslice implementation of pLayer for 8-parallel PRESENT
// Input: r3, r2, r1, r0, t --- Output: r3, r2, r1, r0
#define pLayer8(r3, r2, r1, r0, t)

mask = {0x0f, 0x0b, 0x07, 0x03, 0x0e, 0x0a, 0x06, 0x02, 0x0d, 0x09, 0x05, 0x01, 0x0c, 0x08, 0x04, 0x00};
r0 = PSHUFB(r0,mask); r1 = PSHUFB(r1,mask); r2 = PSHUFB(r2,mask); r3 = PSHUFB(r3,mask);
t = PUNPCKHDQ(r2,r3); r2 = PUNPCKLDQ(r2,r3); r3 = PUNPCKHDQ(r0,r1); r0 = PUNPCKLDQ(r0,r1);
r1 = PUNPCKHQDQ(r0,r2); r0 = PUNPCKLQDQ(r0,r2); r2 = PUNPCKLQDQ(r3,t); r3 = PUNPCKHQDQ(r3,t);

E.4 Packing and unpacking
16

bl
oc

ks

64-bit words

128-bit XMM registers

r0
r1
r2
r3

r4
r5
r6
r7

Fig. 9. Packing for the 16-parallel bitslice implementation of LED and PRESENT. Each square represents a bit and the rectangles in
the packed data stand for 16-bit words. White/light gray/dark gray/black cells denote respectively first/second/third/fourth bit of the
Sboxes.

16
bl

oc
ks

64-bit words

128-bit XMM registers

r0
r1
r2
r3

r4
r5
r6
r7

Fig. 10. Packing for the 16-parallel bitslice implementation of Piccolo. Each square represents a bit and the rectangles in the packed
data stand for 16-bit words. White/light gray/dark gray/black cells denote respectively first/second/third/fourth bit of the Sboxes.

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

32
bl

oc
ks

64-bit words

128-bit XMM registers

r0
r1
r2
r3

r4
r5
r6
r7

r8
r9
r10
r11

r12
r13
r14
r15

Fig. 11. Packing for the 32-parallel bitslice implementation of LED. Each square represents a bit and the rectangles in the packed data
stand for 32-bit words. White/light gray/dark gray/black cells denote respectively first/second/third/fourth bit of the Sboxes.

E.5 Bitsliced key schedule for 8-parallel PRESENT

We provide the pseudo-code for the 8-parallel bitslice implementation of PRESENT-80 key schedule.

// Bitslice implementation of the key schedule for 8-parallel PRESENT-80
// Input: k0, k1, k2, k3, k4, k5, k6, k7, t0, t1, t2, t3, t, c0, c1, c2, c3 --- Output: k0, k1, k2, k3, k4, k5, k6, k7

#define KeySchedule_Bitsliced_Step(k0, k1, k2, k3, k4, k5, k6, k7, t0, t1, t2, t3, t, c0, c1, c2, c3)
k0 = XOR(k0, c0); k1 = XOR(k1, c1); k2 = XOR(k2, c2); k3 = XOR(k3, c3);
t1 = PSHIFTR(k1, 1); k1 = PSHUFB(k1,mask_key1); t2 = PSHUFB(k5,mask_key2); k1 = XOR(k1, t2); k5 = t1;
t1 = PSHIFTR(k2, 1); k2 = PSHUFB(k2,mask_key1); t2 = PSHUFB(k6,mask_key2); k2 = XOR(k2, t2); k6 = t1;
t1 = PSHIFTR(k3, 1); k3 = PSHUFB(k3,mask_key1); t2 = PSHUFB(k7,mask_key2); k3 = XOR(k3, t2); k7 = t1;
t1 = k0; k0 = PSHIFTR(k0, 4); t2 = PSHIFTL(k4, 12); k0 = XOR(k0, t2); k4 = t1;

t0 = k0; t1 = k1; t2 = k2; t3 = k3; Sbox(t1, t2, t3, t0, t);

k0 = AND(k0, (0x0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff));
t0 = AND(t0, (0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); k0 = XOR(k0, t0);
k1 = AND(k1, (0x0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff));
t1 = AND(t1, (0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); k1 = XOR(k1, t1);
k2 = AND(k2, (0x0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff));
t2 = AND(t2, (0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); k2 = XOR(k2, t2);
k3 = AND(k3, (0x0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff));
t3 = AND(t3, (0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); k3 = XOR(k3, t3);

t0 = k0; t1 = k4; k0 = k1; k4 = k5; k1 = k2; k5 = k6; k2 = k3; k6 = k7; k3 = t0; k7 = t1;

A shorter abstract to appear in T. Lange, K. Lauter, P. Lisonek (Eds.): SAC 2013, LNCS xxxx, pp. xxx–xxx.
c© Springer-Verlag Berlin Heidelberg 2013

	Implementing Lightweight Block Ciphers on x86 Architectures
	Introduction
	Table-based implementations
	Core ideas
	LED
	PRESENT
	Piccolo

	Implementations using vperm technique
	Introducing the vperm technique
	Core ideas for vperm applied to lightweight block ciphers
	LED
	PRESENT
	Piccolo

	Bitslice implementations
	The packing/unpacking
	The encryption
	The key schedule
	Discussions

	Analyzing the performance
	Framework for performance evaluation
	The use cases

	Results and discussions
	Implementation results
	Comparing the implementations types and the ciphers
	Future implementations

	Conclusion and future works
	LED, PRESENT and Piccolo
	LED
	PRESENT
	Piccolo

	Results tables
	Table-based implementations
	PRESENT
	Piccolo

	vperm implementations
	Table lookups inside big tables using the vperm technique
	Piccolo main encryption

	Bitslice implementations
	LED and PRESENT Sbox
	Piccolo Sbox
	PRESENT pLayer
	Packing and unpacking
	Bitsliced key schedule for 8-parallel PRESENT

