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Abstract. White-box cryptography aims to protect the secret key of a
cipher in an environment in which an adversary has full access to the
implementation of the cipher and its execution environment. In 2002,
Chow, Eisen, Johnson and van Oorschot proposed a white-box imple-
mentation of AES. In 2004, Billet, Gilbert and Ech-Chatbi presented an
efficient attack (referred to as the BGE attack) on this implementation,
extracting its embedded AES key with a work factor of 230. In 2012, Tol-
huizen presented an improvement of the most time-consuming phase of
the BGE attack. This paper presents several improvements to the other
phases of the BGE attack. The paper shows that the overall work factor
of the BGE attack is reduced to 222 when all improvements are imple-
mented. In 2010, Karroumi presented a white-box AES implementation
that is designed to withstand the BGE attack. This paper shows that
the implementations of Karroumi and Chow et al. are the same. As a
result, Karroumi’s white-box AES implementation is vulnerable to the
attack it was designed to resist.
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1 Introduction

In 2002, Chow et al. introduced the concept of white-box cryptography by pre-
senting a white-box implementation of AES [5]. White-box cryptography aims
to protect the confidentiality of the secret key of a cipher in a white-box environ-
ment. In a white-box environment, an adversary is assumed to have full access
to the implementation of the cipher and its execution environment. For example,
in a white-box environment the adversary can use tools such as decompilers and
debuggers to reverse engineer the implementation of the cipher, and to read and
alter values of intermediate results of the cipher during its execution. A typical
example of an application in which a cipher is implemented in a white-box en-
vironment is a content protection system in which a client is executed on the
main processor of a PC, a tablet, a mobile device, or a set-top box.



In 2004, Billet et al. [3] presented an attack on the white-box AES implemen-
tation of Chow et al. with a work factor of 230. In 2012, Tolhuizen [10] proposed
an improvement to the most time-consuming phase of the BGE attack, reducing
the work factor of this phase to 219. If the improvement of Tolhuizen is imple-
mented, then the work factor of the BGE attack is dominated by the other phases
of the BGE attack, and equals 229. This paper presents several improvements to
the other phases of the BGE attack, and shows that the work factor of the BGE
attack is reduced to 222 when Tolhuizen’s improvement and the improvements
presented in this paper are implemented.

The BGE attack triggered the design of new white-box AES implementations,
such as the ones proposed by Xiao and Lai in 2009 [11] and by Karroumi in
2010 [6]. In [9], De Mulder et al. presented a cryptanalysis of Xiao and Lai’s
white-box AES implementation, showing that this implementation is insecure.

In [6], Karroumi uses the concept of dual ciphers [1,2,4] and the white-box
techniques of Chow et al. to design a new white-box AES implementation. In [6],
Karroumi argues that the additional secrecy introduced by the dual cipher in-
creases the work factor of the BGE attack to 293. This paper shows that the
white-box AES implementations of Chow et al. and Karroumi are the same. As
a consequence, Karroumi’s white-box AES implementation is vulnerable to the
attack it was designed to resist.

Organization of this paper. Section 2 describes aspects of AES, the white-
box AES implementation of Chow et al., and the BGE attack that are relevant
to this paper. The improvements of the BGE attack and their work factor are
presenteded in Sect. 3. The cryptanalysis of Karroumi’s white-box AES imple-
mentation is presented in Sect. 4, and Sect. 5 contains the conclusions.

2 Preliminaries

2.1 AES

AES [7] is a key-iterated block cipher operating on 16-byte blocks. This paper
assumes throughout and without loss of generality that the AES variant in [7]
with a 128-bit key is used. AES consists of 10 rounds and has 11 round keys which
are derived from the secret AES key using the AES key scheduling algorithm.
Each AES round and the operations within a round update a 16-byte state; the
initial and final state are the AES plaintext and ciphertext, respectively. AES
can be described elegantly by interpreting the bytes of the state as elements of
the finite field F256, and by defining AES operations as mappings over this field
(see also [7]). As the final round is not relevant for the discussion in this paper,
only the first 9 rounds are considered in the following text. Each round r with
1 ≤ r ≤ 9 comprises four operations:

ShiftRows: a permutation on the indices of the 16 bytes of the state;

AddRoundKey: a byte-wise addition of 16 round key bytes k
(r,j)
i (0 ≤ i, j ≤ 3)

and the 16-byte state;
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SubBytes: applies the AES S-box, denoted by S, to every byte of the 16-byte
state;

MixColumns: a linear operation on F16
256. The MixColumns operation is repre-

sented by a 4×4 matrix MC over F256; the linear operation applies 4 instances
of this matrix in parallel to the 16-byte state. The 16 coefficients of MC are
denoted by mcij for 0 ≤ i, j ≤ 3.

In literature, the boundaries between rounds are defined in different ways. In
this paper, ShiftRows and MixColumns are the first and final operations within
a round, respectively. That is, the order of the operations within a round is
identical to the order used to describe the operations above. For details about
AES, refer to [7].

AES subrounds. The mappings in the following definition will be used to
describe the white-box AES implementations and the attacks on the implemen-
tations. In the following text, the finite field representation as defined in [7]
is referred to as the AES polynomial representation, and ⊕ and ⊗ denote the
addition and multiplication operations in this representation, respectively.

Definition 1. Let xi, yi ∈ F256 for 0 ≤ i ≤ 3 be represented using the AES
polynomial representation. The mapping AES(r,j) : F4

256 → F4
256 for 1 ≤ r ≤

9 and 0 ≤ j ≤ 3, called an AES subround, is defined by (y0, y1, y2, y3) =
AES(r,j)(x0, x1, x2, x3) with

yi = mci0 ⊗ S
(
x0 ⊕ k(r,j)

0

)
⊕mci1 ⊗ S

(
x1 ⊕ k(r,j)

1

)
⊕

mci2 ⊗ S
(
x2 ⊕ k(r,j)

2

)
⊕mci3 ⊗ S

(
x3 ⊕ k(r,j)

3

)
,

for 0 ≤ i ≤ 3.

Observe that an AES subround consists of the key additions, the S-box op-
erations and the MixColumns operations in an AES round that are associated
with a single MixColumns matrix operation, and that one AES round comprises
four AES subrounds. The subrounds are indexed by j in Def. 1, and this paper
assumes throughout that the four subrounds in a round are numbered left to

right. The bytes k
(r,j)
i for 0 ≤ i, j ≤ 3 are the 16 bytes of the AES round key of

round r.

2.2 Chow et al.’s White-Box AES Implementation and the BGE
Attack

This section describes aspects of Chow et al.’s white-box AES implementation [5]
and the BGE attack [3] that are relevant to this paper. For an in-depth tutorial
on how Chow et al.’s white-box AES implementation is constructed, refer to [8].
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Encoded AES subrounds. In the following text, P
(r,j)
i and Q

(r,j)
i for 0 ≤

i ≤ 3 denote bijective mappings on the vector space F8
2, referred to as en-

codings in white-box cryptography. The encodings are generated randomly and
are kept secret in a white-box implementation (for details about encodings, re-

fer to [5,8]). A vector of four mappings, such as
(
P

(r,j)
0 , P

(r,j)
1 , P

(r,j)
2 , P

(r,j)
3

)
or(

Q
(r,j)
0 , Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3

)
, denotes the mapping defined by applying the i-th

element of the vector to its i-th input byte for 0 ≤ i ≤ 3. For a ∈ Fn2 the mapping
⊕a : Fn2 → Fn2 denotes the addition with a. With slight abuse of notation, an
input to AES(r,j) is considered to be an element of F4

256 using the AES poly-
nomial representation in the following definition, and an output of AES(r,j) is
considered to be an element of (F8

2)4. Further, in the following definition the

permutations Π
(r,j)
i : (F8

2)4 → (F8
2)4 (i = 1, 2) for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3

permute the order of the input bytes and output bytes of an AES subround,
respectively, and π(r) : {0, 1, 2, 3} → {0, 1, 2, 3} for 1 ≤ r ≤ 9 permutes the
order of the four AES subrounds within an AES round. These permutations are
randomly chosen and kept secret in a white-box implementation.

Definition 2. The mapping AES
(r,j)
enc : (F8

2)4 → (F8
2)4 for 1 ≤ r ≤ 9 and

0 ≤ j ≤ 3, called an encoded AES subround, is defined by

AES(r,j)
enc = (Q

(r,j)
0 , Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3 ) ◦

AES
(r,j) ◦ (P

(r,j)
0 , P

(r,j)
1 , P

(r,j)
2 , P

(r,j)
3 ) ,

where the mapping AES
(r,j)

is defined by

Π
(r,j)
2 ◦AES(r,π(r)(j)) ◦Π(r,j)

1 = MC(r,j) ◦ (S, S, S, S) ◦ ⊕
[k̄

(r,j)
i ]0≤i≤3

,

with [k̄
(r,j)
i ]0≤i≤3 = (Π

(r,j)
1 )−1

(
[k

(r,π(r)(j))
i ]0≤i≤3

)
and MC(r,j) = Π

(r,j)
2 ◦ MC ◦Π(r,j)

1 .

In [3], Billet et al. showed in their cryptanalysis of Chow et al.’s white-box
AES implementation [5] that for rounds 1 ≤ r ≤ 9, it is possible to compose
certain white-box tables in such a way that an adversary has access to the
encoded AES subrounds of each round.

Although the permutations in Def. 2 are not explicitly specified in [5], they are
implicitly included in the 32-bit and 128-bit wide F2-linear encodings (referred
to as mixing bijections in [5]); in other words, in a practical white-box AES
implementation each wide mixing bijection in [5] is cancelled up to an unknown
permutation on the indices of the involved bytes. This assumption was also made
in the BGE attack [3].

In Chow et al.’s white-box AES implementation, the output encodingsQ
(r−1,j)
i

and input encodings P
(r,j)
i for 0 ≤ i, j ≤ 3 of successive AES rounds are pairwise

annihilating to maintain the functionality of AES. The data-flow of the white-
box implementation between successive AES rounds r− 1 and r determines the
16 pairs of output/input encodings which are pairwise annihilating.
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BGE attack. As indicated above, the adversary has access to the encoded

AES subrounds AES
(r,j)
enc for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3. Next, the BGE attack [3]

comprises the following three phases: Phases 1 and 2 retrieve the bytes of the
AES round key associated with round r for some r with 2 ≤ r ≤ 9, and Phase 3
determines the correct order of the round key bytes and extracts the AES key.

Phase 1 retrieves the encodings Q
(r,j)
i (0 ≤ i ≤ 3) up to an affine part for each

encoded AES subround j (0 ≤ j ≤ 3). Because of the pairwise annihilating

property of the encodings between successive rounds, the encodings P
(r,j)
i (0 ≤

i, j ≤ 3) can be retrieved up to an affine part by applying the same technique to
the encoded AES subrounds of the previous round.

Phase 2 assumes that all encodings of an encoded AES round are affine mappings
(as the other parts have been retrieved in Phase 1). Phase 2 first retrieves the

affine encodings Q
(r,j)
i (0 ≤ i ≤ 3) for each encoded AES subround j (0 ≤ j ≤ 3).

During this process, the key-dependent affine mappings P̃
(r,j)
i (x) = P

(r,j)
i (x) ⊕

k̄
(r,j)
i (0 ≤ i, j ≤ 3) are obtained as well. As in Phase 1, the affine encodings

P
(r,j)
i (0 ≤ i, j ≤ 3) are retrieved by applying the same technique to the encoded

AES subrounds of the previous round. This enables the adversary to compute

the round key bytes k̄
(r,j)
i = P̃

(r,j)
i (0)⊕ P (r,j)

i (0) for 0 ≤ i, j ≤ 3.

Phase 3 retrieves the round key bytes of round r+1 as discussed above in Phases
1 and 2, and uses the fact that the round key bytes of rounds r and r + 1 are
related to each other via both the data-flow of the white-box implementation
and the AES key scheduling algorithm to retrieve the AES round key. Finally,
assuming that the AES variant with a 128-bit key is used, the adversary can
use the property of the AES key scheduling algorithm that the AES key can be
computed if one of the round keys is known.

Work factor of the BGE attack. In [3], the authors claim that the work factor
associated with the three phases of the BGE attack is around 230. As a re-
sult, the white-box AES implementation of Chow et al. is insecure. For detailed
information about the BGE attack, refer to [3].

3 Reducing the Work Factor of the BGE Attack

In 2012, Tolhuizen [10] presented an improvement of the first phase of the BGE
attack. If the improvement of Tolhuizen is implemented, then the work factor
of the BGE attack is dominated by the second phase. In this section we present
several improvements to the other phases of the BGE attack:

1. A method to reduce the expected work factor of Phase 2 of the BGE attack;
2. An efficient method to retrieve the round key bytes of round r+ 1 after the

round key bytes of round r are extracted;
3. An efficient method to determine the correct order of the round key bytes,

given the round key bytes of two consecutive rounds.

5



As the work factors of Phases 1 and 2 of the BGE attack are reduced by Tol-
huizen’s improvement and the first improvement above, respectively, it is now
important to have an efficient method for Phase 3 of the BGE attack as well, as
otherwise the work factor of this phase could dominate the overall work factor.
The second and third improvements above comprise such a method for Phase 3.
It will be shown that Tolhuizen’s improvement to Phase 1 of the BGE attack and
the above improvements to the other phases reduce the work factor of the BGE
attack to 222. The improved BGE attack comprises the following four (instead
of three) phases:

Phases 1 and 2: retrieve the round key bytes k̄
(r,j)
i (0 ≤ i, j ≤ 3)

associated with round r (2 ≤ r ≤ 8).

The first two phases are the ones of the BGE attack [3] using Tolhuizen’s im-

provement, and retrieve the round key bytes k̄
(r,j)
i for 0 ≤ i, j ≤ 3 associated

with round r for some r with 2 ≤ r ≤ 8.

Work factor of Phase 1. Tolhuizen’s improvement [10] reduces the work factor
of Phase 1 to around 2 · 4 · 4 · (35 · 28) < 219. The first three factors (i.e., 2 · 4 · 4)
denote the number of encodings involved in Phase 1, i.e., four encodings for each
of the four subrounds for each of the two consecutive rounds. The fourth factor
(i.e., 35 · 28) denotes the work factor required to retrieve one encoding up to an
affine part using Tolhuizen’s method.

Work factor of Phase 2. The expected work factor F of the second phase as
described in [3] equals approximately 2 · 4 · 4 · 215 · 28 = 228, and is measured in
the number of evaluations of mappings on F8

2. The evaluations are required to
determine if a mapping on F8

2 is affine. The mappings f that need to be tested
for being affine are listed in [3, Proposition 3]. Each f is associated with a secret

encoding P
(r,j)
i (0 ≤ i, j ≤ 3) of a round r. As Phase 2 needs to be applied to two

consecutive rounds, this involves a total of 2 · 4 · 4 mappings (which corresponds
to the first three factors in F ). The mappings f are permutations on F8

2 and
have the structure

f = S−1 ◦Q−1
(c,d) ◦Q ◦ S ◦ ⊕k ◦ P , (1)

where S denotes the AES S-box mapping (viewed as a permutation on F8
2), k

denotes a key byte, P and Q denote bijective affine mappings on F8
2, and Q−1

(c,d)

denotes a bijective affine mapping on F8
2 for each pair (c, d) ∈ F2

256. Furthermore,
Q−1

(c,d) = Q−1 for one specific pair (c, d) ∈ F2
256. An affine-test is performed for

each possible pair (c, d) ∈ F2
256 until the corresponding mapping f is affine. The

expected number of pairs for which the test is performed equals approximately
215, which is the fourth factor in F . The fifth factor in F , i.e., 28, is associated
with the test used in [3].

Instead of the test used in [3], which requires 2n evaluations to determine if
f : Fn2 → Fn2 is affine, we use the following algorithm to reduce the expected
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number of evaluations. If ei (1 ≤ i ≤ n) denotes the i-th unit vector in Fn2 , then
the algorithm first verifies if the equation

f(e1 ⊕ e2) = f(0)⊕ f(e1)⊕ f(e2) (2)

holds true. If this equation does not hold true, then the algorithm terminates
with “f is not affine”. Observe that the algorithm requires 4 evaluations of f in
this case. If Eq. 2 holds true, then the algorithm applies the method used in [3]
to determine if f is affine (with the only difference that f is not re-evaluated for
the four input values 0, e1, e2 and e1 ⊕ e2). In this case 2n evaluations of f are
required.

To show the correctness of this algorithm, it is sufficient to show that an
affine mapping always satisfies Eq. 2. If f is affine, then f(x) = A(x) ⊕ b for
some A ∈ Fn×n2 and some b ∈ Fn2 . It follows that f(0) ⊕ f(e1) ⊕ f(e2) =
b⊕A(e1)⊕ b⊕A(e2)⊕ b = A(e1 ⊕ e2)⊕ b = f(e1 ⊕ e2).

Lemma 1. If f is a random permutation on Fn2 and if E(n) denotes the ex-
pected number of evaluations of f required by the algorithm described above, then
E(n) < 5.

Proof. Let p(n) denote the probability that Eq. 2 holds true for a random per-
mutation. To determine p(n), note that f(0), f(e1), f(e2) and f(e1 ⊕ e2) are
four distinct elements of Fn2 if f is a permutation. From this it follows that
f(0)⊕f(e1)⊕f(e2) and f(e1⊕e2) are both elements of Fn2 \{f(0), f(e1), f(e2)}.
Further, as f is a random permutation, f(e1⊕e2) is a random element of this set.
Hence, p(n) = 1/(2n−3) and E(n) = 4(1−p)+2np = 4+(2n−4)/(2n−3) < 5.

Under the assumption that f in Eq. 1 behaves as a random permutation on
F8

2 for every incorrect guess for (c, d), the expected work factor of the affine-test
is reduced from 28 to approximately 5 evaluations if f is not affine and the work
factor is 28 if f is affine. This implies that the fifth factor in F is reduced to
approximately 5. That is, the expected work factor of Phase 2 of the BGE attack
is now approximately 2 · 4 · 4 · 215 · 5 ≈ 222.

Phase 3: retrieve the round key bytes k̄
(r+1,j)
i (0 ≤ i, j ≤ 3)

associated with round r + 1.

As mentioned in the description of the BGE attack in Sect. 2.2, [3] obtains the
round key bytes of round r + 1 by applying Phases 1 and 2 to round r + 1 as
well. Here, we present a more efficient method based on the affine-test described
above. The method comprises the following three steps for each encoded AES
subround j (0 ≤ j ≤ 3) associated with round r + 1 to retrieve the round key

bytes k̄
(r+1,j)
i (0 ≤ i, j ≤ 3):

Step 1 applies Phase 1 (using Tolhuizen’s improvement) to round r+ 1 in order

to retrieve the encodings Q
(r+1,j)
i (0 ≤ i ≤ 3) up to an affine part.
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Step 2 first removes the non-affine part of the output encodings as recovered
in Step 1 from the encoded AES subround. Next, Step 2 removes the input

encodings P
(r+1,j)
i (0 ≤ i ≤ 3) from the encoded AES subround (observe that

the inverses of these input encodings were obtained in Phases 1 and 2). The
resulting mapping f (r+1,j) : (F8

2)4 → (F8
2)4 is given by

f (r+1,j) =
(
Q̂

(r+1,j)
0 , Q̂

(r+1,j)
1 , Q̂

(r+1,j)
2 , Q̂

(r+1,j)
3

)
◦AES(r+1,j)

,

where Q̂
(r+1,j)
i (0 ≤ i ≤ 3) are affine output encodings.

Step 3 retrieves the round key bytes k̄
(r+1,j)
i (0 ≤ i ≤ 3). To find a key byte, say

k̄
(r+1,j)
0 , fix the other three input bytes to f (r+1,j) (e.g., to zero), search over all

possible 28 values of the key byte k and verify if

gk(x) = f (r+1,j)
(
k ⊕ S−1(x), 0, 0, 0

)
is affine using the test described above. In case gk(x) is affine, then k̄

(r+1,j)
0 = k.

Repeat this for k̄
(r+1,j)
i (i = 1, 2, 3).

The correctness of Step 3 uses the fact that the mapping S
(
c ⊕ S−1(x)

)
is

non-affine for all non-zero values of c. This has already been proven in [3, proof
of Proposition 3].

Work factor of Phase 3. The work factor of Step 3 equals 4 ·4 ·27 ·5 ≈ 213, where
4 · 4 denotes the number of round key bytes, 27 denotes the expected number
of key values for which the affine-test is performed and 5 denotes the expected
number of evaluations of the affine-test if gk is not affine. The work factor of
Step 1 is 4 · 4 · (35 · 28) < 218, where the first two factors denote the number of
output encodings involved in Step 1. As a result, the work factor of Phase 3 is
dominated by Step 1 and is less than 218.

Phase 4: determine the correct order of the round key bytes and
extract the secret AES key.

After Phases 1 - 3, the values of the round key bytes of two consecutive rounds r
and r+ 1 are known. However, for each round, the order of the round key bytes
of each subround and the order of the four subrounds are still unknown. Notice
that there are still (4!)5 ≈ 223 possibilities for the round key if only the bytes
of that round key are considered. In [3], it is indicated how the correct order
can be determined given the “shuffled” round key bytes of rounds r and r + 1.
However, [3] does not contain an explicit description of such a method. As the
work factor of the first three phases equals 222, it is desirable to have a method
to determine the correct order of the round key bytes with a work factor that is
less than 222. Below we present such a method, comprising the following three
steps:

Step 1 retrieves MC(r,j) associated with each subround j (0 ≤ j ≤ 3) of round r.

Recall that the encodings P
(r,j)
i and Q

(r,j)
i (0 ≤ i, j ≤ 3) were obtained in Phases
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1 and 2. Together with the knowledge of the round key bytes k̄
(r,j)
i (0 ≤ i, j ≤ 3),

compute

MC(r,j) =
(
Q

(r,j)
0 , Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3

)−1 ◦AES(r,j)
enc ◦(

P
(r,j)
0 , P

(r,j)
1 , P

(r,j)
2 , P

(r,j)
3

)−1 ◦ ⊕
[k̄

(r,j)
i ]0≤i≤3

◦ (S, S, S, S)−1 ,

for j = 0, 1, 2, 3.

Step 2 : for each MC(r,j) (0 ≤ j ≤ 3), compute permutations Π1, Π2 : (F8
2)4 →

(F8
2)4 such that

MC(r,j) = Π2 ◦ MC ◦Π1 . (3)

Let (Π(1), Π(2)) denote the pairs of permutations for which MC remains invariant,
i.e., MC = Π(2) ◦ MC ◦ Π(1). It is easily verified that there are exactly four such
pairs. The four permutations Π(1) are the four different circular shifts on the
indices of a 4-byte vector, and Π(2) = (Π(1))−1 for each of these pairs. This
implies that there are also exactly four different pairs of permutations satisfying
Eq. 3, given by (

Π(1) ◦Π1 , Π2 ◦Π(2)
)
. (4)

As a consequence, finding one pair of permutation matrices satisfying Eq. 3
suffices to find the remaining three as well. Notice that exactly one of these four

pairs of permutations equals the pair (Π
(r,j)
1 , Π

(r,j)
2 ) of the encoded subround

(see also Def. 2); in other words, one of these pairs is the correct pair.
After this, the order of the round key bytes associated with each subround

is known up to an uncertainty of four possibilities (circular shifts). Observe that
the order of the four subrounds is still unknown.

Step 3 determines the correct order of the round key bytes. For each of the
possible orderings of the four AES subrounds of round r and the round key
bytes within these subrounds (as determined in Step 2), obtain a candidate
for the (r + 1)th round key using the following two methods: (i) the AES key
scheduling algorithm and (ii) the data-flow of the white-box AES implementation
between the encoded subrounds of rounds r and r+1. Notice that once an order
of the round key bytes of round r is selected, the order of the round key bytes
of round r + 1 can be determined using the corresponding pair of permutations
of each of the subrounds of round r (see also Eq. 4) and the data-flow of the
white-box implementation. With overwhelming probability, only one ordering of
round key bytes of round r results in the same (r+ 1)th round key; this ordering
corresponds to the correct round key of round r. Finally, use the property of the
AES key scheduling algorithm that the AES key can be computed if one of the
round keys is known.

Work factor of Phase 4. A naive approach yields an expected work factor of
(4!)2 ≈ 29 for Step 2 by searching over all possible pairs of permutations. Step 2
reduces the number of possible orderings of the round key bytes from 223 to
44 · 4! < 213 (where the first and second factor denote the possible orderings of
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round key bytes within each subround and of the four subrounds, respectively),
which equals the work factor of Step 3. As a result, the overall work factor of
Phase 4 is dominated by the work factor of Step 3 and hence is less than 213.

Conclusion

The work factor of the improved BGE attack is dominated by the work factor
of the second phase and equals 222.

Note that the uncertainty in the order of the round key bytes results in
the need to retrieve key bytes of two consecutive rounds. This affects the work
factor of the original BGE attack. In the improved BGE attack this is no longer
the case, as the work factors of the phases that determine the correct order
(i.e. Phases 3 and 4) are negligible compared to the work factor of Phase 2. A
consequence of Tolhuizen’s improvement is that the use of non-affine white-box
encodings has a negligible impact on the overall work factor of the improved
BGE attack.

4 Karroumi’s White-Box AES Implementation

Karroumi’s method to generate a white-box AES implementation [6] can be
divided into two phases; Phase 1 generates a dual AES cipher from a key-
instantiated AES cipher, and Phase 2 applies the white-box techniques presented
by Chow et al. to the dual AES cipher. Below, aspects of these phases that are
relevant to this paper are described.

Phase 1: Dual AES cipher

In this section we give a description of the set of dual AES ciphers used by
Karroumi in [6]. First, we define a dual AES subround. The following notation
is used: mα : F256 → F256 with α ∈ F∗256 is defined by mα(x) = α ⊗ x, and

ft : F256 → F256 defined by ft(x) = x2t

for 0 ≤ t ≤ 7 are the automorphisms of
F256 over F2. Further, Rl : F256 → F256 are the isomorphisms mapping elements
in the AES polynomial representation to field elements in one of the polynomial
representations of F256. There are 30 irreducible polynomials of degree 8 over F2,
each one resulting in a unique polynomial representation of F256 (one of these
representations being the AES polynomial representation), hence in total there
are 30 distinct isomorphisms Rl (1 ≤ l ≤ 30). The addition and multiplication
operations in the polynomial representation associated with Rl are denoted by
⊕l and ⊗l, respectively (⊕l and ⊗l being equal to ⊕ and ⊗ for exactly one value
of l with 1 ≤ l ≤ 30). Finally, the definition of a dual AES subround uses a set
of mappings, denoted by T , and defined by

T = {Rl ◦mα ◦ ft | 1 ≤ l ≤ 30, α ∈ F∗256 and 0 ≤ t ≤ 7} .

Observe that an element of T maps elements in the AES polynomial represen-
tation to elements in one of the 30 polynomial representations of F256.
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Definition 3. Let ∆r,j ∈ T with ∆r,j = Rl ◦ mα ◦ ft for some triple (l, α, t)
with 1 ≤ l ≤ 30, α ∈ F∗256 and 0 ≤ t ≤ 7, and let δr,j = Rl ◦ ft. Further, let
vi, wi ∈ F256 for 0 ≤ i ≤ 3 be represented using the polynomial representation
associated with Rl. The mapping AES(r,j,∆r,j) : F4

256 → F4
256 for 1 ≤ r ≤ 9

and 0 ≤ j ≤ 3, called a dual AES subround, is defined by (w0, w1, w2, w3) =
AES(r,j,∆r,j)(v0, v1, v2, v3) with

wi = δr,j(mci0)⊗l ∆r,j ◦ S ◦∆−1
r,j

(
v0 ⊕l ∆r,j(k

(r,j)
0 )

)
⊕l δr,j(mci1)⊗l ∆r,j ◦ S ◦∆−1

r,j

(
v1 ⊕l ∆r,j(k

(r,j)
1 )

)
⊕l δr,j(mci2)⊗l ∆r,j ◦ S ◦∆−1

r,j

(
v2 ⊕l ∆r,j(k

(r,j)
2 )

)
⊕l δr,j(mci3)⊗l ∆r,j ◦ S ◦∆−1

r,j

(
v3 ⊕l ∆r,j(k

(r,j)
3 )

)
,

for 0 ≤ i ≤ 3.

The following lemma presents a property that is required to show that a dual
AES cipher maintains the functionality of AES. As the lemma is also used in
the cryptanalysis in this paper, and as a formal proof of this property is omitted
in [4] and [6], we include a proof as well.

Lemma 2. If ∆r,j ∈ T , then

AES(r,j,∆r,j) ◦ (∆r,j , ∆r,j , ∆r,j , ∆r,j) = (∆r,j , ∆r,j , ∆r,j , ∆r,j) ◦AES(r,j) ,

for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3.

Proof. Let xi for 0 ≤ i ≤ 3 be elements of F256 using the AES polynomial
representation, let wi for 0 ≤ i ≤ 3 be elements of F256 using the polynomial
representation associated with Rl (assuming that ∆r,j = Rl ◦mα ◦ ft), and let

(w0, w1, w2, w3) = AES(r,j,∆r,j) ◦ (∆r,j , ∆r,j , ∆r,j , ∆r,j)(x0, x1, x2, x3) .

Substituting vi = ∆r,j(xi) for 0 ≤ i ≤ 3 in the equation in Def. 3 yields

wi =

3⊕
l

z=0

δr,j(mciz)⊗l ∆r,j ◦ S ◦∆−1
r,j

(
∆r,j(xz)⊕l ∆r,j(k

(r,j)
z )

)
,

for 0 ≤ i ≤ 3. Next, observe that ∆r,j(a)⊕l∆r,j(b) = Rl ◦mα ◦ft(a)⊕lRl ◦mα ◦
ft(b) = Rl(mα◦ft(a)⊕mα◦ft(b)) = Rl(mα(ft(a)⊕ft(b)) = Rl(mα(ft(a⊕b))) =
∆r,j(a ⊕ b) for all a, b ∈ F256 and all α ∈ F∗256; the second equality holds true
since Rl is an isomorphism, the third equality holds true as α(a⊕b) = α(a)⊕α(b)
for all a, b ∈ F256 and the fourth equality holds true since ft is an automorphism.
It follows that

wi =

3⊕
l

z=0

δr,j(mciz)⊗l ∆r,j ◦ S
(
xz ⊕ k(r,j)

z

)
,
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for 0 ≤ i ≤ 3. Next, note that δr,j(a)⊗l∆r,j(b) = Rl ◦ ft(a)⊗l Rl ◦mα ◦ ft(b) =
Rl(ft(a) ⊗ mα ◦ ft(b)) = Rl(mα(ft(a ⊗ b))) = ∆r,j(a ⊗ b) for all a, b ∈ F256;
the second equality holds true since Rl is an isomorphism and the third equality
uses the fact that a2t ⊗ αb2t

= α(ab)2t

for all a, b ∈ F256 and all α ∈ F∗256. It
follows that

wi =

3⊕
l

z=0

∆r,j

(
mciz ⊗ S

(
xz ⊕ k(r,j)

z

))
,

for 0 ≤ i ≤ 3. From this, ∆r,j(a)⊕l∆r,j(b) = ∆r,j(a⊕ b) for all a, b ∈ F256, and
the definition of yi in Def. 1, it follows that wi = ∆r,j(yi) for 0 ≤ i ≤ 3.

Now, Karroumi [6] obtains a dual AES cipher as follows:

Step 1 assigns a randomly chosen ∆r,j ∈ T to each AES subround AES(r,j)

(1 ≤ r ≤ 9 and 0 ≤ j ≤ 3). Based on ∆r,j , the corresponding dual AES subround
AES(r,j,∆r,j) is implemented as specified by Def. 3. The mappings ∆r,j and δr,j
(and the implementation of the dual cipher) are kept secret.

Step 2 ensures that the functionality of AES is maintained by including an ad-
ditional operation (referred to as ChangeDualState) between ShiftRows and
AddRoundKey operations of round r for 1 ≤ r ≤ 9. If the inverse ShiftRows oper-
ation is defined by the mapping sr(i, j) = (j+ i) mod 4 for 0 ≤ i, j ≤ 3, then the

ChangeDualState operation of round r applies the mapping C
(r,j)
i : F256 → F256

to the byte of the state associated with the i-th input byte of AES(r,j,∆r,j) for

0 ≤ i, j ≤ 3, defined by C
(1,j)
i = ∆1,j and C

(r,j)
i = ∆r,j ◦∆−1

r−1,sr(i,j) if 2 ≤ r ≤ 9.

Observe that for 2 ≤ r ≤ 9, C
(r,j)
i maps elements from F256 using the poly-

nomial representation associated with ∆r−1,sr(i,j) to elements of F256 using the
polynomial representation associated with ∆r,j .

Karroumi presents two different but equivalent methods (from a security
point of view) in [6] to perform the ChangeDualState operation, and specifies
the white-box AES implementation using one of these methods. In this paper
we use the specification as in [6]; the cryptanalysis can easily be adapted if the
other method is used.

Phase 2: Apply the techniques of Chow et al.

The following description of Karroumi’s white-box AES implementation is equiv-
alent to the description in [6]:

Step 1 applies the techniques of Chow et al. to write the dual AES cipher (with
a fixed key) obtained in Phase 1 as a series of lookup tables. In particular, the
dual AES key addition operations and the dual S-box operations are merged

into key-dependent bijective mappings T
(r,j,∆r,j)
i for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9.

These mappings are referred to as dual T-boxes and are defined by

T
(r,j,∆r,j)
i = ∆r,j ◦ S ◦∆−1

r,j ◦ ⊕∆r,j(k
(r,j)
i )

◦ C(r,j)
i ,
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where each dual T-box mapping is implemented as a table mapping 8 input bits

to 8 output bits. Recall that C
(r,j)
i are the mappings defining the ChangeDualState

operation. Next, write the other part of the dual AES cipher as a series of lookup
tables as indicated by Chow et al. in [5]. The number and types of tables (includ-
ing the tables representing the dual T-boxes) and the data-flow between tables
are the same as in the lookup table implementation of AES in [5]. The only
difference is that the values of the table entries of the dual AES implementation
are likely to be different from the values of the corresponding entries in the AES
implementation in [5] due to the dual version of the AES operations.

Step 2 applies the white-box encoding techniques of Chow et al. in [5] to this
lookup table implementation of dual AES. As these white-box encoding tech-
niques do not depend on the values of the table entries, the number and types
of white-box tables, and the data-flow of Karroumi’s white-box AES implemen-
tation are the same as in the white-box AES implementation of Chow et al.
in [5].

In [6], Karroumi argues that the secrecy of the mappings ∆r,j , randomly
selected from the set T and used to generate the dual cipher, increases the work
factor of the BGE attack to 293.

4.1 Cryptanalysis

This section shows that Karroumi’s white-box AES implementation [6] is in-
secure. Recall that Karroumi’s white-box AES implementation uses the same
number and types of white-box tables, and that the data-flow of the implemen-
tation is the same as in Chow et al.’s white-box AES implementation in [5]. As a
result, the techniques of Billet et al. can be applied directly to compose lookup
tables in Karroumi’s implementation to obtain access to the encoded dual AES
subrounds (instead of the encoded AES subrounds in case of Chow et al.’s im-

plementation) for rounds 1 ≤ r ≤ 9. In the following definition, A
(r,j)
i and B

(r,j)
i

for 0 ≤ i ≤ 3 denote bijective mappings (or encodings) on the vector space F8
2.

Further, with slight abuse of notation, an output of A
(r,j)
i is considered to be an

element of F256 using the polynomial representation associated with the map-
ping Rl as defined by ∆r−1,sr(i′,j′), and an output of AES(r,j,∆r,j) is considered

to be an element of (F8
2)4. In the following definition, Π

(r,j)
1 , Π

(r,j)
2 and π(r) are

the permutations as used in Def. 2.

Definition 4. The mapping AES
(r,j,∆r,j)
enc : (F8

2)4 → (F8
2)4 for 1 ≤ r ≤ 9 and

0 ≤ j ≤ 3, called an encoded dual AES subround, is defined by

AES(r,j,∆r,j)
enc = (B

(r,j)
0 , B

(r,j)
1 , B

(r,j)
2 , B

(r,j)
3 ) ◦AES(r,j,∆r,j) ◦

(A
(r,j)
0 , A

(r,j)
1 , A

(r,j)
2 , A

(r,j)
3 ) , (5)

where the mapping AES
(r,j,∆r,j)

is defined by

Π
(r,j)
2 ◦AES(r,j′,∆r,j′ ) ◦ (C

(r,j′)
0 , C

(r,j′)
1 , C

(r,j′)
2 , C

(r,j′)
3 ) ◦Π(r,j)

1 , (6)
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with j′ = π(r)(j).

The next lemma shows that an encoded dual AES subround can be repre-
sented by an encoded AES subround using the same key bytes:

Lemma 3. An encoded dual AES subround AES
(r,j,∆r,j)
enc is an encoded AES

subround AES
(r,j)
enc as in Def. 2 with

P
(1,j)
i = A

(1,j)
i and P

(r,j)
i = ∆−1

r−1,sr(i′,j′) ◦A
(r,j)
i if 2 ≤ r ≤ 9 ,

and
Q

(r,j)
i = B

(r,j)
i ◦∆r,j′ ,

for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9, with i′ = (π
(r,j)
1 )−1(i) and j′ = π(r)(j) where

(π
(r,j)
1 )−1 denotes the permutation on the indices of a 4-byte vector as a result

of the application of
(
Π

(r,j)
1

)−1
.

Proof. The proof is given for the case 2 ≤ r ≤ 9; similar reasoning applies to the
case r = 1. From the definition of the ChangeDualState operation (see Step 2
of Phase 1 of Karroumi’s implementation) it follows that

(C
(r,j′)
0 , C

(r,j′)
1 , C

(r,j′)
2 , C

(r,j′)
3 ) = (∆r,j′ , ∆r,j′ , ∆r,j′ , ∆r,j′) ◦

(∆−1
r−1,sr(0,j′), ∆

−1
r−1,sr(1,j′), ∆

−1
r−1,sr(2,j′), ∆

−1
r−1,sr(3,j′)) if 2 ≤ r ≤ 9 ,

for 0 ≤ j ≤ 3. Substituting the above expression for the ChangeDualState

operation in Eq. 6 and applying Lemma 2 gives

AES
(r,j,∆r,j)

= Π
(r,j)
2 ◦ (∆r,j′ , ∆r,j′ , ∆r,j′ , ∆r,j′) ◦AES(r,j′) ◦

(∆−1
r−1,sr(0,j′), ∆

−1
r−1,sr(1,j′), ∆

−1
r−1,sr(2,j′), ∆

−1
r−1,sr(3,j′)) ◦Π

(r,j)
1 .

Observe that Π
(r,j)
2 and (∆r,j′ , ∆r,j′ , ∆r,j′ , ∆r,j′) commute and thus can be

swapped. By applying the equation

(∆−1
r−1,sr(0,j′), ∆

−1
r−1,sr(1,j′), ∆

−1
r−1,sr(2,j′), ∆

−1
r−1,sr(3,j′)) ◦Π

(r,j)
1 =

Π
(r,j)
1 ◦ (∆−1

r−1,sr(0′,j′), ∆
−1
r−1,sr(1′,j′), ∆

−1
r−1,sr(2′,j′), ∆

−1
r−1,sr(3′,j′)) ,

where i′ = (π
(r,j)
1 )−1(i) for i = 0, 1, 2, 3 where (π

(r,j)
1 )−1 denotes the permutation

on the indices of a 4-byte vector as a result of the application of
(
Π

(r,j)
1

)−1
, one

gets the result of Lemma 3.

From the discussion above it follows that Karroumi’s white-box AES imple-
mentation and the white-box AES implementation of Chow et al. are the same.
As a consequence, Karroumi’s white-box AES implementation is vulnerable to
the attack it was designed to resist.
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5 Conclusion

The BGE attack on the white-box AES implementation of Chow et al. extracts
the AES key from such an implementation with a work factor of 230. Taking
Tolhuizen’s improvement to the most time-consuming phase of the BGE attack
as the starting point, Sect. 3 presented several improvements to the other phases
of the BGE attack. It was shown that the overall work factor of the BGE attack
is reduced to 222 when all improvements are implemented. Unlike the original
BGE attack, the use of non-affine white-box encodings and the randomization
in the order of the bytes of the intermediate results in AES have a negligible
contribution to the overall work factor of the improved BGE attack.

Karroumi’s white-box AES implementation was designed to withstand the
BGE attack. Section 4 showed that the white-box AES implementations of Chow
et al. and Karroumi are the same. As a result, the BGE attack can be applied
directly to extract the key from Karroumi’s white-box AES implementation,
implying that this implementation is insecure.
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