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Abstract

In this paper, we propose two new frameworks for joint encryption encoding schemes based on polar codes,

namely efficient and secure joint secret/public key encryption channel coding schemes. The issue of using new

coding structure, i.e. polar codes in McEliece-like and RN-like schemes is addressed. Cryptanalysis methods show

that the proposed schemes have an acceptable level of security with a relatively smaller key size in comparison

with the previous works. The results indicate that both schemes provide an efficient error performance and benefit

from a higher code rate which can approach the channel capacity for large enough polar codes. The most important

property of the proposed schemes is that if we increase the block length of the code, we can have a higher code rate

and higher level of security without significant changes in the key size of the scheme. The resulted characteristics

of the proposed schemes make them suitable for high-speed communications, such as deep space communication

systems.

I. INTRODUCTION

The main challenges of satellite communications are in short security, error performance, energy

efficiency and implementation costs. A solution to the shortcomings rised from these challenges to some

extent is using joint encryption-channel coding scheme appropriately [1]. In 1978, McEliece proposed

a public-key cryptosystem based on algebraic coding theory [2] that revealed to be very secure. The

McEliece cryptosystem is based on the difficulty of decoding a large linear code, which is known to be

an NP-complete problem [3]. This system is two or three orders of magnitude faster than RSA. A variant
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of the McEliece cryptosystem, according to Niederreiter [4], is even faster. The McEliece scheme employs

probabilistic encryption [5]. However, because of the large size of the public key and a low code rate, this

cryptosystem is not used widely. to remove these two imperfections in McEliece cryptosystem, several

modifications were presented [6], [7], and [8]–[10].

In 1984, Rao used the McEliece public-key cryptosystem as a symmetric key cryptosystem [11], Rao and

Nam modified this cryptosystem to reduce the key size and increase the information rate [12]. However,

this cryptosystem is insecure against chosen plaintext attacks [13], [14]. In the last decade, capacity

approaching codes have been widely used. Turbo codes have been employed in two different symmetric-

key secure channel coding schemes in [15], [16]. Some other schemes have been proposed to use Low

Density Parity Check (LDPC) codes in the McEliece-cryptosystem [10], [17]–[19].

Polar codes were introduced by Arikan in 2009 [20]. These are the first low complexity linear block

code which provably achieve the capacity for a fairly wide class of channels. The original paper of Arikan

proved that these codes can achieve the capacity of binary symmetric channels as well as arbitrary discrete

memoryless channels [21]–[23]. Some modifications of the original structure were proposed and it was

shown that these codes are optimal for lossless and lossy source coding [24]–[26].

In this paper, first we slightly modify the secure channel coding scheme proposed in [17] using polar

codes. This scheme is designed to be secure against the previous known attacks. To the best of our

knowledge, the code rate is much more than that of the previous schemes, and the key size is reduced

to 1.6kbits. The proposed scheme avoids the weaknesses of Rao-Nam (RN) scheme. Furthermore, we

introduce a new public-key cryptosystem based on polar codes. This scheme uses the properties of polar

codes, which is more efficient than the previously used LDPC codes. We discuss the security and efficiency

of this scheme and observe that the proposed scheme meets our expectations. The main problem of the

previously proposed public-key schemes is the large public-key size, which makes them impractical. The

proposed scheme solves this problem by adding an additional random row vector to the square generator

matrix of the code, resulting a block diagonal matrix as the public key and consequently needs less

memory space to store it. Moreover, we show that for any choice of the public key, there is a nonsingular

scrambler matrix as a part of the private key of this scheme. On the other hand, the code rate of the

proposed public key scheme is close to the channel capacity, and still we have a reliable communication.

The most important property of the proposed schemes is that if we increase the block length of the code,

we could have a higher code rate and a higher level of security without significant changes in the key
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size of the scheme, These make our cryptosystem much more desirable in satellite communications.

The rest of this paper is organized as follows: In Section 2 we consider the basic polar code construction.

The new symmetric and public-key cryptosystems based on polar codes are addressed in Section 3. Section

4 deals with the security and the efficiency of the proposed schemes. Finally, Section 5 concludes the

paper.

II. INTRODUCTION TO POLAR CODES

In [27] Shannon proved the achievability part of noisy channel coding theorem using random-coding. He

showed the existence of a code that achieves capacity. Polar codes are an explicit construction that achieve

channel capacity with low complexity of encoding and decoding [20]. This section gives an overview of

channel polarization and polar coding.

A. Channel Polarization

The process of channel polarization is a transformation in which one synthesizes a set of N channels

W
(i)
N : 1 ≤ i ≤ N from N independent copies of a given binary discrete memoryless channel (B-DMC)

W , such that, as N becomes larger, for all but a vanishing subset of indices i, the symmetric capacity

terms I(W (i)
N ) tend towards 0 or 1 [28]. This process consists of two dependent steps: Channel combining

phase and channel splitting phase.

Channel Combining: In this phase we combine N copies of DMC W recursively to produce a vector

channel WN : XN → Y N , where N = 2n. Figure 1 shows how to construct channel W2 with the

probability of

W2(y1, y2|u1, u2) = W (y1|u1 ⊕ u2).W (y2|u2) (1)

Fig. 1. The Channel W2

Figure 2 shows the general form of channel combining, where two copies of WN
2

are combined to

produce channel WN . Block RN is a permutation operator, known as the reverse shuffle operation, which
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converts its inputs sN1 to vN1 = (s1, s3, ..., sN−1, s2, s4, ..., sN). In fact, polar code is similar to Reed-Muller

(RM) code which is a class of linear codes [29], [30].

Fig. 2. Recursive construction of WN from two copies of WN/2

Channel Splitting: Here, we want to split channel WN to construct N channels W (i)
N : X → Y N×X i−1,

defined by the following transition probability

W
(i)
N (yN1 , u

i−1
1 |ui) ,

∑
uNi+1∈XN−i

1

2N−1
WN(y

N
1 |uN1 ) (2)

Now, we convey two remarkable theorems on channel polarization.

Theorem 1. [20] For any B-DMC W, channels W (i)
N are polarized in the sense that, for any fixed δ ∈

(0, 1), as N goes to infinity through powers of two, the fraction of indices i ∈ 1, 2, ..., N for which

I(W
(i)
N ) ∈ (1− δ, 1] goes to I(W ) and the fraction for which I(W (i)

N ) ∈ [0, δ) goes to 1− I(W ).
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Theorem 2. [20] For any B-DMC W with I(W ) > 0, and any fixed R < I(W ), there exists a sequence

of sets AN ⊂ 1, ..., N , N ∈ 1, 2, ..., 2n, ..., such that |AN | ≥ NR and Z(W (i)
N ) ≤ O(N−5/4) for i ∈ AN .

where Z(W (i)
N ) denotes the Bhattacharyya parameter of channel W (i)

N .

B. Polar Coding

We use the channel polarization to construct polar codes that achieve channel capacity based on the

idea that we only send data through those channels W (i)
N for which Z(W

(i)
N ) is near 0 and equivalently

I(W
(i)
N ) is near 1.

GN -Coset Codes: This set is a class of block codes, with the following encoding process:

xN1 = uN1 GN = uAGN(A) + uAcGN(A
c) (3)

where GN is the generator matrix and A is a K-element subset of {1, 2, ..., N}. By fixing the index set A,

pointing the information set, and uAc(frozen bits), the GN -Coset Code is determined by (N,K,A, uAc),

where K is the code dimension. Polar codes suggest a particular rule for choosing the index set A.

A Successive Cancellation (SC) Decoder: For a GN -coset code, the decoder decides on yN1 and estimates

ûN1 as the transmitted data. A block error is occurred if ûN1 6= uN1 . SC decision functions are similar to ML

decision functions, but these functions consider the frozen bits as random variables instead of the fixed

bits. However, the loss of performance due to this suboptimum decoding is negligible and the symmetric

capacity is still achievable. Notice that ML decoding is an efficient decoding algorithm for short length

codes of polar codes but its complexity is large [20], [31]. The SC decoder generates ûN1 by computing

ûi =

 ui for i ∈ Ac

hi(y
N
1 , û

i−1
1 ) for i ∈ A

(4)

where

hi(y
N
1 , û

i−1
1 ) =


0, if W

(i)
N (yN1 ,û

i−1
1 |0)

W
(i)
N (yN1 ,û

i−1
1 |1)

≥ 1

1, otherwise
(5)

Code Performance: It can be shown that for any B-DMC W and any choices of (N,K,A) code the

probability of block error for this code under SC decoding, Pe(N,K,A, uAc) is bounded as follows:

Pe(N,K,A, uAc) ≤
∑
i∈A

Z(W i
N) (6)
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This suggests that we should choose A from all K-element subsets of {1, ..., N} such that it minimizes

the right hand side of Equation 6.

Polar Codes: In polar codes the subset A is chosen such that Z(W i
N) ≤ Z(W j

N) for all i ∈ A, j ∈ Ac.

The main coding result is given below.

Theorem 3. [20] for any given B-DMC W and fixed R < I(W ), the block error probability for polar

coding under successive cancellation decoding satisfies:

Pe(N,R) = O(N−
1
4 ) (7)

Furthermore, it can be shown that the encoding and decoding (SC) complexities of polar codes are

both of order O(NlogN). Therefore, the general complexity of the system (both encoder and decoder)

for polar codes is less than that of LDPC codes (the best capacity approaching code before the birth of

polar codes) and this makes the polar codes much more of practical interests.

III. NEW SCHEMES BASED ON POLAR CODES

In this section, we first introduce our proposed secure channel coding scheme and then, we modify the

design to obtain the proposed public key scheme.

A. Secure Channel Coding Scheme

As the fundamental component of our scheme, we construct a polar code as described in section II

according to the parameters used for the channel. For this purpose, we construct the generator matrix

of length N for encoding purpose. Then we select the indices of bad channels and choose the frozen

bits randomly. As another component of the scheme, we choose a random quasi cyclic block diagonal

permutation matrix P , constructed by submatrix πl×l as below [17]:
πl×l 0 . . . 0

0 πl×l . . . 0

...
... . . . ...

0 0 . . . πl×l


(8)

It is obvious that this method reduces the key size which we are going to discuss in Section IV-A. As

it was mentioned in section II the code parameters depend on the channel parameters. So, we randomly
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select the values of both frozen bits and the input of some other bad channels, namely vs, according to

the coding rate, and keep them secret. Even though by this construction, we distance from the channel

capacity to some extent, we obtain a more reliable communication as it will be discussed in section IV-A.

1) Encryption-Encoding: For our secure channel coding scheme, the sender computes

u = (mG+ es)P, (9)

where m is the plaintext message, es is the perturbation vector, and G is the generator matrix of the polar

code.

2) Decryption-Decoding : The legal receiver receives the following vector

c′ = (mG+ es)P + ech (10)

Using secret key {P, es, uAc , vs} he can decrypt c′ according to the following algorithm:

1. Multiply Equation 1 by P−1 and obtain

c′′ = c′P−1 = mG+ es + echP
−1 (11)

2. Subtract the error vector from Equation (11) and obtain mG+ echP
−1.

3. Decode using uAc and vs to recover m.

Notice that echP−1 has the same Hamming weight as that of ech. This is because P−1 = P T is a

permutation matrix and does not change the Hamming weight of the vector.

Thus far, we have developed a secure channel coding scheme which can be interpreted as a joint

symmetric encryption-encoding cryptosystem. In the ensuing part we are going to introduce a public key

scheme based on polar codes using a similar framework.

B. Public key Scheme

In satellite communication, there is a ground station that chooses public and private keys for secure

communication. In our scheme, the ground station chooses a random matrix K(N+1)×N as its public key,

constructed by a random submatrix κl×l and a random row vector κ′1×N as below
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

κl×l 0 . . . 0

0 κl×l . . . 0

...
... . . . ...

0 0 . . . κl×l

κ′1×N


(12)

where l is a divisor of N . The other components of the proposed scheme consist of a random permutation

matrix P similar to the previous scheme and a random nonsingular matrix S(N+1)×(N+1). Thus, the ground

station chooses private and public keys according to the following algorithm:

1. Randomly select submatrices κl2×l2 and πl2×l2 .

2. Add a random row vector gs to the generator matrix of the polar code G′N×N and construct G(N+1)×N

as follows:

G =

G′
gs

 (13)

3. Select one of the solutions of the equation

K(N+1)×N = S(N+1)×(N+1)G(N+1)×NPN×N (14)

and compute a nonsingular matrix S as scrambler matrix, which is described subsequently. Now, the

ground station releases K(N+1)×N as its public key and keeps S, P and gs as its private keys. In the

following we give a method to compute S.

1) Computation of Scrambler matrix S: Here, we propose a method based on linear algebra for

computing the nonsingular matrix S. The problem is to find (N + 1) × (N + 1) unknown elements

of matrix S in (N + 1)×N equations obtained from Equation (14). We have:

KP−1 = SG⇐⇒ (KP−1)T = GTST . (15)

In this relation, the number of unknown variables is more than the number of equations. Since G is full

rank, Equation (15) does not have a unique solution. therefore we choose matrix S as follows,

S =
(
S ′|eTN+1

)
(16)
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where eN+1 = (0, ..., 0, 1)1×N+1 and from Equation (15) we obtain

(
G′T | gTs

) S ′T

eN+1

 = (KP−1)T , K ′T (17)

Equation 17 implies

G′TS ′T + gTs eN+1 = K ′T , (18)

then

S ′T = (G′T )−1(K ′T − gTs eN+1) (19)

Matrix S has to be nonsingular. The following statement gives the nonsingularity condition for S.

Proposition 1: Matrix S is nonsingular if and only if the submatrix κl2×l2 is nonsingular.

Proof : Let S be defined as follows:

S =

S ′′N×N 0N×1

s1×N 1

 (20)

Form this and Equation (18) we have:

G′T
(
S ′′T | sT

)
= K ′T − gTs eN+1 (21)

Where gTs eN+1 is a matrix whose (N+1)th column is equal to gTs and the remaining entries are zero. By

taking a look at the first N columns of both sides of Equation (21), we have

G′TS ′T = (K ′T )N1 ⇐⇒ S ′′T = (G′T )−1(K ′T )N1 , (22)

where (K ′T )N1 denotes the first N columns of K ′T . Consequently, for nonsingularity of S ′′, both matrices

(G′T )−1 and (K ′T )N1 must be nonsingular. Nonsingularity of G′ is obvious due to the definition of the

polar code. In order for (K ′T )N1 to be nonsingular, the first N rows of K ′ must be linearly independent.

In addition, we have

K ′ = KP−1 = KP T (23)

From Equation 23 it is obvious that the first N rows of matrix K must be nonsingular, for P is a

permutation matrix. From Equation 12, we conclude that the submatrix κl2×l2 ought to be nonsingular.

Thus far, we have obtained K ′ as the public key and {S, P, gs} as the private keys. Below, we explain
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the encryption and decryption method of our proposed scheme.

2) Encryption : For data encryption, the sender first pads message m by one bit as follows,

m′ = (m1,m2, ...,mN) = (m, 1) (24)

So the length of the code is N +1. Note that, in the encoding phase, the sender sets all frozen bits to be

zero and computes

c = m′K + z (25)

where K is the public key and z is an error vector with Hamming weight less than the error correction

capability of polar codes for this channel. Then he sends c through the channel.

3) Decryption: The legal receiver receives c = m′K + z = m′SGP + z and computes m in the

following steps:

1. Multiply both sides of Equation (25) by P−1 and obtain c′ = cP−1 = m′SG+ zP−1

2. Add gs to c′ and compute c′′ as follows:

c′′ = c′ + gs (26)

3. Decode c′′ using frozen bits and the fixed bits and recover m̃ = mS ′′ + s .

4. Add s to m̃ and obtain mS ′′ .

5. Multiply mS ′′ by (S ′′)−1 to obtain m.

Corectness: In the following, we show how the decryption algorithm works. In step 1, we have

c′ = cP−1 = m′SG+ zP−1 = (mN×1, 1)

S ′′N×N 0N×1

s1×N 1

G′N×N
gs

+ zP−1

= (mS ′′ + s, 1)

G′N×N
gs

+ zP−1 = (mS ′′ + s)G′ + gs + zP−1

(27)

In step 2, we have

c′′ = c′ + gs = (mS ′′ + s)G′ + gs + zP−1 + gs = (mS ′′ + s)G′ + zP−1 (28)

In step 3 it is obvious that by decoding c′′ we can recover m̃ = mS ′′ + s . From step 4 we have

m̃+ s = mS ′′ + s+ s = mS ′′ (29)
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In step 5 we have

mS ′′(S ′′)−1 = m (30)

IV. EFFICIENCY AND SECURITY

In this section, we evaluate the efficiency and the security of the proposed schemes, where we choose

N = 2048.

A. Efficiency

The efficiency of the proposed schemes is discussed from the viewpoints of complexity, bit error rate,

code rate and key size.

1) complexity: Here, we discuss the implementation complexity of the two proposed schemes. Since

for satellite communications we use codes with large block lengths [32], we should give evidence for

applicability of our schemes in low complexity.

Symmetric scheme: In the symmetric case, there is no precomputation phase, and in the computation

phase, the complexity of the scheme corresponds only to the encoding and decoding processes. According

to Section II, both encoding and decoding complexities have the same order O(NlogN). We observe that

the complexity of the proposed scheme is low, which is indeed more desirable for satellite communications.

Asymmetric scheme: In the case of public key scheme, the precomputation phase includes three parts:

Construction of the generator matrix, computation of nonsingular matrix S and computing the inverse

of matrix S ′′. As it was stated, constructing the generator matrix for polar codes has the complexity

order of O(NlogN), where N is the block length. The computational load of obtaining matrix S from

Equation 19 is inefficient, because it imposes the computation of G′−1, where G′ is the generator matrix

of the polar code. Note that the computation of matrix S is done offline in the ground station and it is

not changed as long as the secret key (K) is not changed. Also, nonsingularity of matrix S should be

confirmed. However from Proposition (1), the nonsingularity of submatrix κl2×l2 implies that of the matrix

S. Therefore, submatrix κl2×l2 must be chosen in such a way to make sure that it is nonsingular. For

example, it can be chosen as an upper or lower triangular matrix, then it is not necessary to check the

nonsingularity of matrix S. Finally, computing the inverse of nonsingular matrix S ′′ is also done offline

in the ground station.

In the computation phase, the complexity consists of two parts: Encryption and decryption. As it is

mentioned before, the order of Complexity for both parts is O(NlogN). Notice that, in the decryption
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phase of section (III-B), the fifth step is just a matrix multiplication and does not contain the complexity

of computing the matrix inversion, because the inverse of S ′′ is computed just once and stored.

2) Error Performance: As it is mentioned in section II, polar codes provably achieve the capacity of the

channel. In [33] Arikan and Telatar showed that for any rate R < I(W ) and any β < 1
2

, the block error

probability is upper bounded by 2−N
β for large enough N . Another problem is to determine the trade-off

between the rate and the block length for a given error probability when we use successive cancellation

decoder. In our schemes, because of the finite length of the blocks, we cannot use a rate equal to the

channel capacity. For example, if the error probability of the BEC is 0.01 , the channel capacity is 0.99

[34], Thus, from [20] we know that the number of frozen bits is approximately equal to 21 bits, but in

this rate, we do not have reliable communications. Thus, the rate should be reduced to obtain reliability.

In [35], [36] authors showed that for any BEC, W , with capacity I(W ), reliable communication requires

the rates that satisfy the following inequality:

R < I(W )−N−
1
µ (31)

where N is the block length and µ ≈ 3.627. In other words, if we want to have reliable communications,

then the block length should be lower bounded by the following inequality:

N > (
1

I(W )−R
)µ (32)

In the proposed schemes, to make a comparison with the results obtained in other publications, the

block length is considered to be 2048. Therefore from Equation (31), if the coding rate is lower than

0.86, a reliable communication is achieved. From this we can conclude that the number of fixed bits is

approximately equal to ((I(W )−R)×N) ≈ 245. Figure 3 shows the rate vs. reliability trade off for W

using polar codes with N = 2048.

A comparison between the code rates of different RN-like secret key schemes with their recommended

code parameters are given in Table I.

3) Key Size: Using a specific structure, we are able to reduce the key size to a reasonable level. Here,

we discuss the key size of the proposed schemes. Then we compare the results with the previous ones.

Symmetric Scheme In the proposed symmetric scheme, secret key consists of three components: The

frozen bits, the error vector and the permutation submatrix πl×l. As it was mentioned in sections II and

IV-A2, the number of frozen bits depends on the channel capacity which, in our scheme is, (|uAc |+|vs|) =
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Fig. 3. Rate vs. reliability for polar coding and SC decoding at block-lengths N = 211

TABLE I
CODE RATE OF THE NEW SCHEME COMPARED WITH OTHER RN-LIKE SCHEMES

scheme code rate

Rao [11] C(1024, 524) 0.51
Rao-Nam [12] C(72,64) 0.89

Struik-Tillburg [37] C(72,64) 0.89
Barbero-Ytrehus [38] C(30,20) over GF(28) 0.66

SobliAfshar-Eghlidos [17] C(2044,1024) 0.5
Baldi-Chiarluce [19] C(8000, 6000, 40) 0.75

Proposed Scheme C(2048, 1781) 0.86

21+245 = 266bits, where uAc and vs indicate the frozen bits and the fixed bits respectively. To reduce the

key size of this scheme, we use a certain procedure to store the permutation submatrix πl×l. The number

of such permutation matrices is l!. Here, we use an efficient representation of this matrix which was first

introduced by Barbero and Ytrehus [38]. By choosing l = 64, the permutation matrix P will consists of

32 submatrices π64×64(2048 = 32× 64). To store the matrix π64×64 we need 380 bits [38].

As another component of the secret key, the error vector es has 2048 entries. This vector is generated

using Feedback Shift Registers (FSRs); the seed to generate such pseudorandom vector must be at least

1024 bits. These yield the total secret key size of 1670bits ≈ 1.6Kbits to be exchanged. A comparison

between the key sizes of various RN-like schemes and the proposed one is given in Table II. It is observed
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that we are able to achieve a short key size. As we discuss in section IV-B, we observe that our scheme

enjoys a high security level.

TABLE II
KEY SIZE OF THE NEW SCHEME COMPARED WITH OTHER RN-LIKE SCHEMES

Scheme Code Key Size
Rao [11] C(1024, 524) 2Mbits

Rao-Nam [12] C(72,64) 18Kbits
Struik-Tillburg [37] C(72,64) 18Kbits

Barbero-Ytrehus [38] C(30,20) over GF(28) 4.9Kbits
SobliAfshar-Eghlidos [17] C(2044,1024) 2.5Kbits

Proposed Scheme C(2048, 1781) 1.6Kbits

Public Key Scheme As mentioned in Section III-B, in the proposed public key scheme, the public

key K(N+1)×N is constructed by the submatrix κl2×l2 and a random row vector κ′1×N . Therefore, it is

enough to store these two arrays as the public key. For example, if we choose l2 = 128 , we need

128× 128 + 2048 = 18432 bits = 2304 bytes to store the public key of the proposed scheme. Note that

we could choose l2 = 64 or l2 = 32 to have shorter keys and still have secure scheme. The security of

the scheme is discussed in Section IV-B. It is known that the main weakness of the McEliece public-key

scheme is the large size of the public-key. A comparison between the key sizes of the proposed scheme

and the previous McEliece-like cryptosystems is given in Table III. The results show that the key sizes

of the proposed schemes are reduced to a more reasonable value.

TABLE III
KEY SIZE OF THE NEW SCHEME COMPARED WITH OTHER MCELIECE-LIKE SCHEMES

Scheme Code Key Size (Bytes)
McEliece [2] C(1024,524) 67072

Niederreiter [4] C(1024, 524) 32750
Baldi (1) [39] C(16384, 12288) 6144
Baldi (2) [39] C(24576, 16384) 6144
Baldi (3) [39] C(49152, 32768) 12288

Proposed Scheme (1) C(2048, 1781), l2 = 128 2304
Proposed Scheme (2) C(2048, 1781), l2 = 64 768
Proposed Scheme (1) C(2048, 1781), l2 = 32 384

It is noteworthy that increasing the code length N , not only the key size of the proposed schemes

remains constant, but also the security of the scheme increases. Thus, from Equation 31, one concludes

that by increasing the code length, the code rate is increased without any change in the key size. As stated
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previously, this property is much more desirable in satellite communications.

B. Security

In this section, we discuss the security of the proposed schemes including the attacks already applied

to the previous RN-like and McEliece-like cryptosystems.

1) Symmetric Key Scheme: Here, we discuss the security of the proposed symmetric key scheme against

brute force attack, RN attack and Struik-Tilburg attack.

Brute Force Attack: In this kind of attack, the adversary aims to enumerate the code set, i.e. the set of

equivalent codes; to determine the error vector and the permutation matrix. As mentioned in Section II,

decoding algorithm of polar codes is based on successive cancellation. Hence, the attacker must find all

of the frozen bits and the fixed bits. In our scheme, the number of components of these vectors is at least

266 bits. Therefore, the number of such vectors is at least 2266, which denotes an impractical amount of

preliminary work.

For the pseudorandom error vector es of length N , there is a large number of non-zero vectors (i.e.

2N/2 − 1), because of the large code parameters.

The number of permutations P in a block diagonal form is l!, where l is the number of rows of the

permutation submatrix πl×l and l is a divisor of the code length N . It is recommended that l should be

chosen such that the number of all possible permutations leads to a large amount of preliminary work

with regard to the design parameters of the code. For instance, l = 32, l = 64, or l = 128 yields l! ≥ 2117,

l! ≥ 2295, and l! ≥ 2716, respectively. Thus, choosing each of these values for l makes the computation

impractical. Therefore, one can choose l = 32, to reduce the key size.

RN attack: The symmetric key scheme proposed by Rao [11] uses error vectors of weight t ≤ bd−1
2
c,

where d is the minimum distance of the (n, k) code. Rao and Nam showed that this cryptosystem is

vulnerable to a majority voting attack [12]. However, a chosen-plaintext attack can only succeed when t
n

is small enough. In our scheme, the generated error vectors have a Hamming weight of at most N and

N
2

on average. This makes our scheme resistant against this attack.

Struik-Tilburg Attack: One of the drawbacks of the McEliece scheme is the low code rate. The RN

scheme was introduced to remove this defect. Rao and Nam used the error-correcting properties of the

code to determine predefined error patterns [12]. The error patterns used in the RN scheme have an

average Hamming weight equal to half of the code length. Rao and Nam claimed that determining the

encryption matrix of their scheme in a chosen-plaintext attack has a work factor of at least O(N2k) for
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the (N, k) code [12]. However, Struik and Tilburg proposed a chosen-plaintext attack that showed the RN

scheme is insecure [37]. All of these attacks were practical because of the small code parameters used

by Rao. However, the size of the polar code used in our scheme is large enough, so that such an attack

is not practical.

2) Public Key Scheme: Now, we discuss the security of the proposed public key scheme. Because of

the special features of this scheme, none of the previously known attacks can be directly applied to it.

In the following, we are going to apply some modified versions of these attacks to the proposed scheme

and evaluate its security.

Brute Force Attack: The private key of the proposed scheme consists of three parts: A row vector , a

permutation matrix and a scrambler matrix S(N+1)×(N+1). To compute each part, the attacker faces the

following computational complexities:

1. The row vector gs has N entries. Thus, there are 2N such vectors. Because of the large code length,

this indicates an impractical preliminary work for an attacker.

2. The number of block diagonal permutation matrices PN×N for l2 = 128, l2 = 64, and l2 = 32 is

factorially large which makes the computation of such matrix infeasible.

3. The number of nonsingular scrambling matrices S(N+1)×(N+1), NS , as Equation 20, is given below

[12]

NS =
N−1∏
i=0

(2N − 2i) + 2N > (2N − 1)(2N − 2)...(2N − 2N−1)

> (2N−1).(2N−1)....(2N−1) = 2(N−1)N = 2N
2−N

(33)

In our scheme, the number of nonsingular scrambling matrices with N = 2048 is huge, which indicates

that finding the scrambling matrix is infeasible in practice.

Information Set Decoding Attack: This attack was proposed by McEliece in his original work [2]. Lee

and Brickell in [40] systemized and generalized it. We begin with presenting the idea of this attack.

Assume we are given a generator matrix G of a linear (N, k)-code and a ciphertext c = mG + e. Let

J ⊂ {1, 2, ..., N} with |J | = k = dimG. We denote k columns of G, c and e by GJ , cJ and eJ ,

respectively. Therefore, the following relationship holds:

cJ = mGJ + eJ (34)
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If GJ is nonsingular and eJ = 0, then

m = cJ(GJ)
−1 (35)

Because of the special form of the generator matrix of our scheme, it can easily be seen that this attack

cannot be applied to it. However, Let I ⊂ {1, 2, ..., N} with |I| = k = NR, where R denotes the code

rate and I is the set of indices of good channels. We assume that the attacker knows the channel and

hence knows the set I . Now, we can choose those rows of matrix K from the index set I as the matrix

G and apply the attack to it. We estimate the work factor of this attack. The number of sets J such that

there are no errors in vector eJ is at least:N − t
k

 =

N − t
NR

 u

2020

1781

� 21000, (36)

where t is the Hamming weight of the error vector. This denotes an impractical work factor.

Finding Low Weight Codeword Attack: Leon [41], Stern [42] and Canteaut [43] developed algorithms for

solving the finding weights problem [44]. These algorithms can be used to break McEliece and Niederreiter

cryptosystems. In the McEliece cryptosystem, by computing the minimum weight of the generator matrix

G′ defined by:

G′ =

G
c

 (37)

where c is the ciphertext, the attacker can find the error vector, e, which leads to finding the message m

in McEliece cryptosystem.

In the proposed scheme, since the rows of the public-key matrix K are linearly dependent, the minimum

weight vector is all zero vector. Hence, using the algorithms [41]–[43] does not lead to the error vector

e. Therefore, this attack can not be applied to the proposed scheme.

V. CONCLUSIONS

In this paper, we have proposed two new schemes based on polar codes: A symmetric-key secure channel

coding scheme and a public-key scheme. The symmetric case utilizes a specific form of permutation matrix,

a random error vector and input bits of bad channels as the secret key. The security and efficiency of

this scheme have been discussed; the proposed scheme is secure against the brute force, RN and Struik-

Tilburg attacks, and it is more efficient than the previous schemes from the view of key size (1.6Kbits),
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implementation complexity (O(NlogN)), code rate (0.86) and error performance (< 10−6) for the codes

with comparable parameters.

The proposed public-key scheme is a McEliece-like scheme which makes use of polar codes by adding

an additional random row vector to the generator matrix of the code as the new generator matrix which is

considered as a part of the private key. By choosing a private permutation matrix P and a matrix key K

as the public key in a block diagonal form, we have obtained the nonsingular scrambler matrix S as the

remaining part of the private key. The new scheme has been proposed in three versions based on the size

of the block diagonal submatrices. Because of the specific structure of this scheme, we have been able to

reduce the size of the public key to 2304, 768 and 384 KBytes, which is the lowest value published so

far. It is observed that our scheme enjoys a high level of security against the brute force and information

set decoding attacks. Moreover, we have shown that Finding Low Weight Codewords attack could not be

applied to our scheme.

It is worthy of mention that by increasing the block length of the code, we have obtain a system with

a higher code rate and level of security without significant changes in the key size of the cryptosystem.

This feature distinguishes our scheme from all the other McEliece-like schemes.

The new schemes employ polar codes based on the following four reasons: (1) Polar codes can achieve

the channel capacity, (2) the performance of the codes become better in large block lengths which is

desirable for satellite communications, (3) the total complexity of encoding and decoding of the codes is

low in comparison to the previously used codes and (4) the specific structure of the generator matrix of

polar codes makes it possible to have a small key size to be exchanged.
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