
Another Nail in the Coffin of White-Box AES
Implementations

Tancrède Lepoint1,2 and Matthieu Rivain1

1 CryptoExperts, France
{tancrede.lepoint, matthieu.rivain}@cryptoexperts.com

2 École Normale Supérieure, France

Abstract. The goal of white-box cryptography is to design implementations of common
cryptographic algorithm (e.g. AES) that remain secure against an attacker with full con-
trol of the implementation and execution environment. This concept was put forward a
decade ago by Chow et al. (SAC 2002) who proposed the first white-box implementation of
AES. Since then, several works have been dedicated to the design of new implementations
and/or the breaking of existing ones.

In this paper, we describe a new attack against the original implementation of Chow
et al. (SAC 2002), which efficiently recovers the AES secret key as well as the private
external encodings in complexity 222. Compared to the previous attack due to Billet et
al. (SAC 2004) of complexity 230, our attack is not only more efficient but also simpler to
implement. Then, we show that the last candidate white-box AES implementation due to
Karroumi (ICISC 2010) can be broken by a direct application of either Billet et al. attack
or ours. Specifically, we show that for any given secret key, the overall implementation
has the exact same distribution as the implementation of Chow et al. making them both
vulnerable to the same attacks.

By improving the state of the art of white-box cryptanalysis and putting forward new
attack techniques, we believe our work brings new insights on the failure of existing white-
box implementations, which could be useful for the design of future solutions.

Key words: White-Box Implementations, Advanced Encryption Standard (AES), Crypt-
analysis.

1 Introduction

White-box cryptography was introduced in 2002 by Chow, Eisen, Johnson and van
Oorschot [6,7] by proposing a new attack context in which an adversary has a complete
access to the implementation of algorithms and the execution environment; thus the
dynamic execution and the internal details of the algorithms can both be viewed and
altered at will. This attack context is motivated by applications such as Digital Rights
Management (DRM): to protect a digital content, the client can be implemented in
software and executed on an untrusted end-point such as a PC, a smartphone, or a
set-top box. The content provider then wants to avoid any unauthorized distribution of
the secret key used for content decryption in the software. The main goal of white-box
cryptography is therefore to protect a secret key in a white-box environment.

In [6,7], Chow et al. proposed a generic strategy to produce white-box implemen-
tations of (symmetric) cryptographic algorithms, and for which key extraction is sup-
posedly hard. From this strategy, they derive two candidate white-box implementations

of DES and AES. The followed approach is that look-up tables might be the ideal
primitives to hide information, since they allow to implement any given function. They
proposed to express the algorithm into a network of look-up tables which, combined
all together, yield the complete cryptographic algorithm. To avoid information leakage
(and thus key leakage), the basic idea is to compose each table, on input and on output,
with random bijections that annihilate one with another when composed.

At SAC 2004, Billet, Gilbert and Ech-Chatbi presented a cryptanalysis of complex-
ity 230 of the white-box AES implementation [3]. Further attacks were subsequently
published against white-box DES implementations [11,9,17] and against more general
cipher structures implemented with similar strategies [12]. These attacks challenged the
research of new white-box implementations. Bringer, Chabanne and Dottax [5] proposed
an implementation using an AES with perturbations, which was subsequently broken
by De Mulder, Wyseur and Preneel [14]. Two variants of the scheme of Chow et al.
were also designed by Xiao and Lai [18] based only on (larger) linear encodings, and
by Karroumi [10] using AES dual ciphers. The scheme of Xiao and Lai was successfully
cryptanalyzed at SAC 2012 [13] by De Mulder, Roelse and Preneel who showed how to
extract the AES key with a work factor of about 232. On the other hand, the scheme of
Karroumi has not been publicly broken so far.

In this paper, we present a new attack against the white-box implementation of
AES of Chow et al. The key idea is to exploit collisions in output of the first round
in order to construct sparse linear systems. Solving these systems then reveals the
input encoding and secret key byte(s) involved in some target look-up table. Applied
to the original scheme, we get an attack of complexity 222, conceptually simpler than
all previous attacks [3,12]. We further show that the last supposedly secure white-
box implementation of AES due to Karroumi [10], is actually vulnerable to a direct
application of both our attack and that of Billet et al. [3]. This comes from the fact that
the overall distribution of the look-up tables in [10] is exactly the same as in the initial
scheme [7], and therefore does not provide any additional security.

Paper Organization. In Section 2 we recall the design principles and the original
white-box AES implementation of Chow et al. [7]. Next, in Section 3 we present our
attack against this scheme. Finally, in Section 4 we explain why the scheme of [10] is
vulnerable to both our attack and the attack of Billet et al.

2 Original White-Box Implementation of AES

We assume the reader to be familiar with the AES block cipher. A comprehensive
description can be found in the AES standard [1], and further information about the
design and its security are given in [8]. This section briefly recalls the white-box AES
implementation proposed by Chow et al. in [7].

2

2.1 Design Principles

The strategy adopted by Chow et al. for their candidate white-box implementations of
DES and AES [6,7] was to transform the given block-cipher into a randomized, key-
dependent network of look-up tables. This is performed by three main steps:

1. Partial Evaluation. Embed the key in an operation (e.g., by transforming the AES
S-box S into key-dependent look-up tables Ti = S(x⊕ ki)).

2. Tabularizing. Transforming all the components of the block cipher (even the linear
transformations) into look-up tables.

3. Randomization and Delinearization. The main idea is as follows. Consider a chain
of three look-up tables L3 ◦ L2 ◦ L1, where L2 contains some information on the
key (e.g., L2(x) = x⊕ k). Since the implementation is known to the attacker in the
white-box model, he may recover this information. This is prevented by inserting
random bijections f1, f2 into the look-up tables

L1 → L′1 = f1 ◦ L1

L2 → L′2 = f2 ◦ L2 ◦ f−11

L3 → L′3 = L3 ◦ f−12

.

Thus the chain L′3◦L′2◦L′1 is functionally equivalent to the chain L3◦L2◦L1, but L′2
no longer leaks key information, and the attacker needs to analyze more components
in order to gain information. Injecting such bijections needs to be unpredictable, and
difficult (ideally impossible) to be removed by an adversary.

2.2 Table-Network Representation of AES

We first describe an implementation of AES which consists in a network of look-up
tables (Steps 1 and 2). The white-box implementation presented in Section 2.3 is an en-
coded version of this implementation in which look-up tables are composed with random
permutations (Step 3).

An AES round takes as input a state x = (x0, x1, . . . , x15) and a round key k =
(k0, k1, . . . , k15) and compute a new state y = (y0, y1, . . . , y15). The new state is com-
puted by groups of 4 bytes through the following transformation:

(y0, y1, y2, y3) = f(x0, x5, x10, x15)

with

f : (x0, x5, x10, x15) 7→

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⊗

S(x0 ⊕ k0)
S(x5 ⊕ k5)
S(x10 ⊕ k10)
S(x15 ⊕ k15)

 (1)

where ⊗ denotes the matrix-vector product over F28 and S denotes the AES S-box. The
other 4-byte groups (y4, y5, y6, y7), (y8, y9, y10, y11), and (y12, y13, y14, y15) are computed
from different coordinates xi (and corresponding subkeys ki) according to the ShiftRows

3

permutation. For the sake of simplicity, we will only focus on the first 4-byte group (i.e.
the first column) in the following.

The above transformation can be computed thanks to four 8× 32 look-up tables:

T0(w) = S(w ⊕ k0)× (02 01 01 03)T

T5(w) = S(w ⊕ k5)× (03 02 01 01)T

T10(w) = S(w ⊕ k10)× (01 03 02 01)T

T15(w) = S(w ⊕ k15)× (01 01 03 02)T

as we then have

(y0, y1, y2, y3) = T0(x0)⊕ T5(x5)⊕ T10(x10)⊕ T15(x15) .

A fully tabulated implementation can be obtained by performing each 32-bit XOR
in the above equation nibble by nibble (storing a table 32×32 being out of reach), with
eight calls to a 8× 4 XOR table:

XOR(w0‖w1) = w0 ⊕ w1 .

2.3 White-Box Implementation

The white-box implementation of Chow et al. [7] consists in deriving an encoded version
of the table network described in the previous section. The basic idea is to encode the
output of a table by composing it with a random permutation, called output encoding.
In order to keep the correctness of the implementation, the next look-up table must be
composed in input with the corresponding inverse permutation, called input decoding.
Since each of the eight nibbles in output of a Ti table enters a different XOR table, these
encodings can only be applied to each nibble separately. In order to add more confusion
to the implementation, Chow et al. then suggest to further use mixing bijections which
are random linear transformations.

For the sake of clarity, we first describe the implementation obtained by introducing
the mixing bijections to the previous table network. The white-box implementation is
then obtained by adding external encoding in input and output of the overall cipher,
and composing all the tables with random nibble encodings/decodings.3

3 As discussed below, the implementation actually computes the function AES′k = G◦AESk ◦F , where
AESk denotes the AES-128 decryption under the key k and F,G are external encodings. The first
reason (see [7] and [16, Section 3.2.3]) is that it will therefore be harder to separate the white-box
implementation from its containing applications, especially when F−1 and G−1 are performed on a
platform independent of the white-box implementation platform; this constraint can indeed make
sense for DRM applications, that is the first proposed applications of white-box cryptography, since
AES modes of operations might be of no use. The second reason is that it is likely to augment
the security of the white-box implementation [16, Section 3.2.3]. Indeed, the lookup tables at the
beginning of the network would only be protected by means of output nibble encodings, and hence
could potentially be more vulnerable to cryptanalysis.

4

Table network with mixing bijections. Mixing bijections are introduced on each
byte of the state as well as on each Ti table output. At the beginning of each round,
the state is linearly encoded as (L0(x0), L1(x1), . . . , L15(x15)) where the Li are random
F8
2-linear bijections.

In order to keep the encryption correctness, one must compose each table Ti with
L−1i in input. A 32-bit mixing bijection is further applied in output of the Ti tables.
Namely, each table Ti is replaced by the table T ′i satisfying

T ′i (x) = M ◦ Ti ◦ L−1i , (2)

where M is a random F32
2 -linear bijection.4 One can then obtain a linear encoding of

the yi from the Li(xi) as we have

M(y0, y1, y2, y3) = T ′0(L0(x0))⊕ T ′5(L5(x5))⊕ T ′10(L10(x10))⊕ T ′15(L15(x15)) . (3)

In order to complete the AES round computation, one must translate the above
32-bit linear encoding into a byte-wise linear encoding (L′0(y0), L

′
1(y1), L

′
2(y2), L

′
3(y3))

for the next round. Namely, one must apply the linear mapping

H = (L′0‖L′1‖L′2‖L′3) ◦M−1 (4)

to M(y0, y1, y2, y3). This is done by applying the tables

H0(x) = (L′0‖L′1‖L′2‖L′3) ◦M−1(x, 0, 0, 0)

H1(x) = (L′0‖L′1‖L′2‖L′3) ◦M−1(0, x, 0, 0)

H2(x) = (L′0‖L′1‖L′2‖L′3) ◦M−1(0, 0, x, 0)

H3(x) = (L′0‖L′1‖L′2‖L′3) ◦M−1(0, 0, 0, x)

to each byte of M(y0, y1, y2, y3) and then XORing the outputs. That is, one computes

(L′0(y0), L
′
1(y1), L

′
2(y2), L

′
3(y3)) = H0(m0)⊕H1(m1)⊕H2(m2)⊕H3(m3) ,

where (m0,m1,m2,m3) = M(y0, y1, y2, y3).

Nibble encodings and XOR tables. The overall white-box implementation is finally
obtained by introducing random bijections to encode every nibble. That is, each byte
of the state is represented as (P0,i‖P1,i)◦Li(xi) for random bijections Pi,0 and Pi,1. The
input decoding (P−10,i ‖P

−1
1,i) is then applied to the corresponding T ′i table, as well as an

output encoding (Q0,i, Q1,i, . . . , Q7,i) for random bijections Qj,i. Then the outputs of the
T ′i tables are added thanks to encoded XOR tables. These tables are applied nibble-wise
to remove the Qj,i encodings, XOR the nibbles, and encode the output nibble with a
new random bijection. Eight such tables are first applied to add the outputs of T ′0 and
T ′5, then to add the outputs of T ′10 and T ′15, and eventually to add both results. One
proceeds similarly to encode the Hi tables and to XOR their outputs.

4 Note that a different mixing bijection is involved for each group of four Ti tables.

5

External encodings. Eventually, in order to encode the input plaintext (and to de-
code the output ciphertext) without revealing the initial byte-encodings (and their final
byte-decoding counterparts), one adds so-called external encodings. In other words, the
implementation computes the function

AES′k = G ◦AESk ◦ F−1 ,

where AESk denotes the AES-128 decryption under the key k.
As suggested in [7], the external encodings can be defined as the composition of

128× 128 mixing bijections and nibble permutations. We let the interested reader refer
to [7] for further details. Note that the attack presented in this paper would work with
arbitrary external encodings.

Byte Shuffling. Also not explicitly mentioned in Chow et al. ’s paper, one could
use a random shuffling of the byte of the AES state in order to add confusion to the
implementation. Indeed, while the designer must ensure that the output of a look-up
table well enters in the corresponding look-up table, the order in which these look-ups
are done may be randomized. Equivalently, an attacker may not a priori know which
look-up table corresponds to which byte of the state. Of course he can always group the
bytes four-by-four (i.e. by columns) since the four bytes of the same column enter the
same layer of encoded XOR tables after the T ′i tables. However, the four columns may
be treated in a random order and the four bytes within a column may also be treated in
a random order. Since such a byte shuffling may be used in the code without changing
the definition of the look-up tables of Chow et al. ’s implementation, we show that our
attack can be easily extended to deal with this context in Appendix A. Note that the
attack by Billet et al. also works assuming such a random byte shuffling.

3 Our Attack

We denote Ei = (Pi,0‖Pi,1) ◦ Li and E′i = (P ′i,0‖P ′i,1) ◦ L′i the byte-encodings of the
state in input and in output of the first round respectively. According to the previous
section, applying a set of successive tables (T ′i , H

′
i and XOR tables), one can compute

the function
f ′ = (E′0‖E′1‖E′2‖E′3) ◦ f ◦ (E−10 ‖E

−1
5 ‖E

−1
10 ‖E

−1
15) (5)

where f is the function defined in (1). Let us denote by f ′i the coordinate functions of
f ′ such that f ′ = (f ′0, f

′
1, f
′
2, f
′
3). Let us further denote by Sj the function defined as

Sj(·) = S(kj ⊕ E−1j (·)) . (6)

3.1 Recovering the Sj Functions

Our attack consists in finding collisions in output of the coordinate functions f ′i in order
to recover functions S0, S5, S10 and S15 and associated key bytes. We start with the
recovery of S0 and S5 by looking for collision of the form

f ′0(α, 0, 0, 0) = f ′0(0, β, 0, 0) . (7)

6

The above equation can be rewritten as

E′0
(
02 · S0(α)⊕ 03 · S5(0)⊕ c

)
= E′0

(
02 · S0(0)⊕ 03 · S5(β)⊕ c

)
where c = S10(0)⊕ S15(0), implying

02 · S0(α)⊕ 03 · S5(0) = 02 · S0(0)⊕ 03 · S5(β) . (8)

Collecting several such equations, we can construct a linear system to recover S0
and S5. Let u0, u1, . . . , u255 and v0, v1, . . . , v255 denote the unknowns associated to
the outputs of S0 and S5 (i.e. ui = S0(i) and vi = S5(i)). Then (8) can be rewritten as

02 · (u0 ⊕ uα)⊕ 03 · (v0 ⊕ vβ) = 0 . (9)

Then we can easily obtain a system involving all the ui and all the vi. Indeed, the
functions α 7→ f ′0(α, 0, 0, 0) and β 7→ f ′0(0, β, 0, 0) are bijections, so we get exactly 256
collisions between f ′0(α, 0, 0, 0) and f ′0(0, β, 0, 0) while α and β vary over F28 . Discarding
the irrelevant collision for (α, β) = (0, 0), we get 255 pairs (α, β) satisfying f ′0(α, 0, 0, 0) =
f ′0(0, β, 0, 0) and providing an equation of the form of (9). Moreover, every unknown uα
and vβ appears once for α, β > 0 and the unknowns u0 and v0 appear in each equation.
We proceed similarly for coordinates f ′i with i ∈ {1, 2, 3}, for which the collisions give rise
to similar equations but with different pairs of coefficients in {01, 02, 03}. For instance
a collision f ′1(α, 0, 0, 0) = f ′1(0, 0, β, 0) yields an equation

01 · (u0 ⊕ uα)⊕ 02 · (v0 ⊕ vβ) = 0 .

We hence get 4×255 linear equations involving all the 512 unknowns. However, this
system is not of full rank. Consider the 2× 255 unknowns u′i = u0⊕ ui and v′i = v0⊕ vi
for i ∈ {1, 2, . . . , 255}. Every equation of the form of (9) can be rewritten as

02 · u′α ⊕ 03 · v′β = 0 .

This shows that the system can be rewritten in terms of 510 unknowns and is hence
of rank at most 510. But the system has still at least one degree of freedom left, since
more than one solution is still possible. For instance, the system is solved by u′i = 0
and v′i = 0 for every i, and it is also solved by the solution we are looking for (i.e.
u′i = S0(0) ⊕ S0(i) and v′i = S5(0) ⊕ S5(i)), which is such that u′i 6= 0 and v′i 6= 0 by
bijectivity of S0 and S5. The obtained system is hence of rank at most 509.

In all our experiments, the 4×255 available linear equations always yielded a system
of rank 509. From such a system, all the unknowns can be expressed in function of one
unknown, say u′1. And since all the unknowns are linearly linked, there exist coefficients
ai and bi such that u′i = ai ·u′1 and v′i = bi ·u′1. These coefficients can be easily recovered
by solving the system for u′1 = 1. We then get

ui = ai · (u0 ⊕ u1)⊕ u0 , (10)

and
vi = bi · (u0 ⊕ u1)⊕ v0 . (11)

7

From the ai coefficients and from Equation (10), we can recover the overall function
S0 by exhaustive search on the pair (u0, u1). In order to determine the good solution,
we use the particular structure of the function S0. Specifically, we use the relation

S−1 ◦ S0(·) = E−10 (·)⊕ k0 .

By definition of E0, the above function has algebraic degree at most 4. We then use the
following lemma.

Lemma 1. Let g be a function from {0, 1}8 to itself with algebraic degree at most 4.
The map

ϕ : x 7→
15⊕
α=0

g(x⊕ α) ,

is the null function x 7→ 0.

Proof. The map ϕ defined in Lemma 1 is a 4th-order derivative of the function g (specif-
ically ϕ = D1D2D4D8(g)) and since g has algebraic degree at most 4, all its 4th-order
derivatives are null. ut

Remark 1. For a wrong pair (u0, u1), the candidate function Ŝ0 obtained from (10) is
affine equivalent to S0. Namely there exist a and b such that Ŝ0(·) = a · S0(·)⊕ b, with
a 6= 0 and (a, b) 6= (0, 1). The function S−1 ◦ Ŝ0 then satisfies

S−1 ◦ Ŝ0(·) = S−1
(
a · S(k0 ⊕ E−10 (·))⊕ b

)
,

and it has an algebraic degree greater than 4 with overwhelming probability.5

According to Lemma 1 and the above remark, we can easily determine the good pair
(u0, u1) by computing the 4th-order derivative ϕ̂ of the associated function ĝ = S−1◦Ŝ0,
which satisfies

ϕ̂(x) =
15⊕
α=0

S−1(ax⊕α · (u0 ⊕ u1)⊕ u0) .

For the sake of efficiency, we first compute ϕ̂(0) and check whether it equals 0 or not. If
we get ϕ̂(0) = 0, we step forwards and compute ϕ̂(x) for another x. Note that we only
need to compute ϕ̂ for 16 inputs at most since for every x we have ϕ̂(x) = ϕ̂(x⊕ 01) =
· · · = ϕ̂(x⊕ 15). Getting ϕ̂(x) = 0 for a wrong pair (u0, u1) should roughly occur with
probability 1/256, so wrong guesses are quickly discarded.

Once S0 has been recovered, we can recover S5 from (11) by exhaustive search
on v0. Here again, the good solution is determined using Lemma 1 and the above
approach. The remaining functions S10 and S15 are recovered similarly by solving
the linear systems arising from collisions of the form f ′i(α, 0, 0, 0) = f ′i(0, 0, β, 0) and
f ′i(α, 0, 0, 0) = f ′i(0, 0, 0, β). Since S0 is already known, we get the same situation as for
the recovery of S5. Namely, all the elements of S10 (resp. S15) can be expressed as affine

5 We ran a few million tests and never obtained a function with algebraic degree 4 or less.

8

functions of S10(0) (resp. S15(0)), and we can recover the overall function by exhaustive
search on this value and with the selection criterion of Lemma 1.

The other functions Sj involved in the other 4-byte transformations can be recovered
in the exact same way (only the indices change).

3.2 Recovering the Secret Key

Once the Sj functions have been recovered, one can easily recover the byte-encodings
E′i in output of the first round. For instance evaluating f ′0(α, 0, 0, 0) one gets the value
E′0
(
ψ(α)

)
where

ψ : α 7→ 02 · S0(α)⊕ 03 · S5(0)⊕ S10(0)⊕ S15(0)

is a bijective function. We hence get E′0(·) = f ′0(ψ
−1(·), 0, 0, 0) which enables to fully

retrieve E′0 by looping on the 256 input values. Each output byte-encoding E′i can be
recovered in a similar way.

Since the output byte-encodings of the first round are the inverse of the input byte-
decodings of the second round, we now show how to retrieve the key bytes in the second
round from that knowledge. This is equivalent to retrieving the key bytes involved in
the function f ′ defined in (5) from the Ej , so we keep these notations to describe this
stage.

For the recovery of k0, we use the following distinguisher. Consider the function g
associated to k0 and defined as:

g = f ′0(E0(S
−1(·)⊕ k0), 0, 0, 0) .

This function satisfies

g(x) = E′0(02 · x⊕ c) where c = 03 · S5(0)⊕ S10(0)⊕ S15(0) ,

and it has algebraic degree at most 4 by definition of E′0 (since multiplying and adding
constant coefficients are linear). Therefore, according to Lemma 1, the 4th-order deriva-
tive ϕ : x 7→

⊕15
α=0 g(x ⊕ α) equals the null function. On the other hand, consider the

function ĝ associated to a wrong guess k̂0 6= k0, that is

ĝ(x) = f ′0(E0(S
−1(x)⊕ k̂0), 0, 0, 0) = E′0(02 · S(S−1(x)⊕ k̂0 ⊕ k0)⊕ c) .

This function has algebraic degree greater than 4 with overwhelming probability.6 This
way, we can easily recover k0 by exhaustive search while testing for every candidate
whether the function ĝ is of algebraic degree 4 or not. Namely, for every guess k̂0, we
test whether the function

ϕ̂(x) =

15⊕
α=0

f ′0(E0(S
−1(x)⊕ k̂0), 0, 0, 0)

6 Here again, we ran a few million tests and never obtained a function with algebraic degree 4 or less.

9

equals the null function x 7→ 0, or not. As for the previous recovery of the Sj functions,
this is done at most for 16 different values of x since we have ϕ̂(x) = ϕ̂(x⊕ 01) = · · · =
ϕ̂(x ⊕ 15). Moreover, as for the recovery of the Sj , we only need to compute ϕ̂ for 16
inputs at most since for every x we have ϕ̂(x) = ϕ̂(x⊕ 01) = · · · = ϕ̂(x⊕ 15). Moreover
getting ϕ̂(x) = 0 for a wrong guess k̂0 roughly occur with probability 1/256, so wrong
guesses are quickly discarded.

The key bytes k5, k10 and k15 can be retrieved similarly; only the definition of the
function g shall change. For instance, g is defined as f ′0(0, E5(S

−1(·)⊕ k5), 0, 0) for k5,
and so on for k10 and k15. And the other key bytes kj involved in the other 4-byte
transformations can be recovered in the exact same way (only the indices change).
Eventually, from the second round key, one can easily recover the full AES secret key
by inverting the key schedule process.

3.3 Recovering the External Encodings

From the Sj functions involved in the first round, and the secret key (which is also the
first round key), we directly obtain the byte-encodings Ej in input of the first round
by the relation Ej(·) = S−1j ◦ S(·) ⊕ kj . Then we can cancel these byte-encodings out

in output of the initial external encoding in order to recover F−1 (under the form of a
table-network).

As shown in Section 3.2, one can easily recover the output byte-encodings of a
round from the input byte-decodings and the round key bytes. Since we know the byte-
decodings in input of the second round, we can thus recover the corresponding output
byte-encodings. And since the output byte-encodings of the second round are the inverse
input byte-decodings of the third round, we can reiterate such recovery for the fourth
round and so on. We can hence sequentially recover the byte-encodings in input/output
of each round.7 Once the output byte-encodings of the last round have been recovered,
we can cancel them out in input of the final external encoding in order to recover G
(under the form of a table-network).

3.4 Attack Complexity

The bottleneck of our attack is the exhaustive search to recover the function S0 (resp.
S1, S2 and S3 for the three other columns). Indeed, the previous system to solve for
the recovery of the ai and bi coefficients is very sparse and it can hence be solved
with Gaussian elimination in linear complexity (i.e. in 512 times a few operations). To
recover S0, one loops on the 216 candidate values for (u0, u1), and for each value test
whether ϕ̂(x) = 0 (which is a XOR over 16 elements) for at most 16 values x. We use
laziness, namely we test whether ϕ̂(0) = 0 first, if false we stop and if true we step
forwards to the next x, and so on and so forth. Now getting ϕ̂(x) = 0 for a wrong pair

7 Note that the recovery of the output byte-encodings of the last round slightly differs from that for
the other rounds (the last round being slightly different). Nevertheless we can still apply the same
principle for the recovery of the output byte-encoddings; only the mapping ψ shall change (but it is
still computable by the attacker).

10

(u0, u1) roughly occurs with probability 1/256, therefore the expected number of tests
is 1 + 1/256 + · · ·+ 1/(25615) ≤ 1.004. The complexity of the recovery of S0 is hence of

216 · 1.004 · 24 ≈ 220 .

Then the recovery of S5 (resp. S10, S15) from S0 only requires an exhaustive search on
v0, which makes a complexity of 28 · 1.004 · 24 ≈ 212. We hence get a complexity of
220 + 3 · 212 ≈ 220 for the recovery of S0, S5, S10 and S15. This computation must be
performed for each column, which makes a total complexity of 4× 220 = 222.

The recovery of the key bytes and of the external encodings has a negligible com-
plexity compared to the recovery of the Sj functions. Indeed, according to the above
analysis, the recovery of one key byte is roughly of 28 · 1.004 · 24 ≈ 212. This must be
done 16 times, yielding a complexity of 16 ·212 � 222. On the other hand, recovering the
external encodings requires recovering the input/output byte-encodings of every round.
A total 10 × 16 encodings must hence be recovered (16 per round) and each recovery
takes 28 times a few operations. This makes a complexity of 160 · 28 < 216 times a few
operations which is negligible compared to 222.

Comparison with Billet et al. attack. The key idea of the attack proposed in [3]
is to fix some values c1, c2, c3, c

′
3 ∈ F28 and to consider the function

f ′0(f
′−1
0 (·, c1, c2, c3), c1, c2, c′3) = E′0(E

′
0
−1

(·)⊕ β) ,

where β is a constant depending on c1, c2, c3, c
′
3 and on the involved secret key bytes.

From this mapping, they first recover the non-linear part of E′0 in time complexity 224.
They do the same for every i, making a total complexity of 16× 224 = 228. Then they
can recover the affine part of the encodings column by column with smaller complexity.
Finally they need to perform such recovery on two successive rounds to be able to
extract the key, which makes a total complexity of 229.

In comparison, our approach works on the first round only by finding collisions
on output of f ′. This allows us to construct a sparse linear system from which, we
can recover the four input encodings Ei and the four key bytes ki involved in f ′ in
complexity 220. In addition to having smaller complexity, our attack is conceptually
simpler and easier to implement than all previous attacks on white-box AES implemen-
tations [3,12,14,13].

4 White-Box Implementation using AES Dual Ciphers

In [10], Karroumi proposed a modification of the Chow et al. AES implementation [7]
making use of dual representations of the AES cipher [2,4,15], and aiming at improving
the resistance of Chow et al. scheme to Billet et al. attack [3] by a factor 263. In this
section, we briefly present the strategy of [10] and explain that the modified scheme re-
mains vulnerable to the raw versions of both Billet et al. attack and our attack presented
in Section 3. We indeed show hereafter that, for any given secret key, the distribution
of the encoded function f ′ (c.f. (5)) remains exactly the same after applying Karroumi’s
countermeasure to the original implementation.

11

Description of the Strategy of [10]. Most of the operations in AES are based on
the field F28 , officially defined as F2[x]/(x8 + x4 + x3 + x + 1). In 2002, Barkan and
Biham [2] showed that by changing the polynomial used to define the field, the ciphers
produced are dual version of AES. That is, for any such representation AES, there exists
an isomorphism ∆ of the field F28 such that

∆(AESk(w)) = AES∆(k)(∆(w)) , ∀ w, k ∈ (F28)16 ,

where ∆ = (∆||∆|| · · · ||∆) (i.e. ∆ is the bytewise application of ∆).
In [4], Biryukov et al. show that there are at least 61, 200 dual versions of AES.

The approach followed by Karroumi in [10] is to make extensive use of these dual
representations to further randomize each lookup table in Chow et al. implementation.
Specifically, a different dual representation is used for each column of the state in each
round, which is randomly chosen. The aim of this technique was to modify at each
round and for each column the AES S-box and the AES MixColumns matrix (due to
the chosen representation), supposedly forcing the attacker to guess the representations
and therefore adding a factor 612004 ≈ 263 to the attack.

Let us explain the countermeasure of [10] in more detail. As in Section 2.3 we focus
on the group of 4-bytes (x0, x5, x10, x15), i.e. the first column. Assume temporarily that
the xi’s follow the classic AES representation, and assume that we want to work with
the representation ∆ on this round and this column. First, one transforms the Ti tables
into tables T∆i as detailed below for T0:

T0(w) = S(w ⊕ k0)× (02 01 01 03)T

is transformed into

T∆0 (w) = S∆(w ⊕∆(k0))× (∆(02) ∆(01) ∆(01) ∆(03))T ,

where S∆ is the AES S-box under the representation ∆, i.e. verifies that

S∆(∆(x)) = ∆(S(x)) .

Now, it is easy to see that, applied to some ∆(w), the table T∆0 yields

T∆0 (∆(w)) = ∆ ◦ T0(w) , (12)

which is the table T0 composed with ∆ for each of its four bytes, thus the desired result.
The scheme of Karroumi consists in replacing the encoded tables T ′i (see (2)) in the

Chow et al. implementation, by dual encoded tables. In addition, each table include
a switching from one dual representation ∆ in input, to another representation ∆′

in output. Namely, the encoded tables T ′i are replaced by the encoded tables T∆,∆
′

i

satisfying:

T∆,∆
′

i = M ◦ T∆i ◦∆′ ◦∆−1 ◦ L−1i = M ◦∆′ ◦ Ti ◦ L−1i ,

where Li and M are the mixing bijections involved in T ′i . The above table is equivalent
to the T ′i table, but it includes a switching of dual representations from ∆ to ∆′. Then to
complete the dual AES round computation, one apply the linear mapping H as defined
in (4) via Hi tables as in the original implementation.

12

Look-up Tables Distribution. Since M is uniformly chosen as a F32
2 linear bijection,

M ◦ ∆′ follows the uniform distribution over the F32
2 linear bijections, and thus the

distribution of Ti
∆,∆′ is exactly the same as the distribution of T ′i . And for the same

reason, the joint distribution of T∆,∆
′

0 , T∆,∆
′

5 , T∆,∆
′

10 and T∆,∆
′

15 is same as the joint
distribution of T ′0, T

′
5, T

′
10 and T ′15. This implies that the distribution of f ′ as defined

in Equation (5) is exactly the same in the scheme of Chow et al. [7] and the scheme of
Karroumi [10]. Therefore both our attack and the attack of Billet et al., which use the
function f ′, directly apply without any modification. In particular, working with dual
ciphers does not change anything against the existing white-box attacks.

Another way to end up to the same conclusion is to realize that the distributions
of every table of the scheme of [10] are exactly the same as the scheme of [7]. Indeed
all the representation isomorphisms ∆ are composed on the left with random linear
transformations `, and therefore the distributions of {` ◦ ∆}` and {`}` are identical.
Since the distributions of the tables does not change between the two implementations,
any attack against [7] applies directly to [10].

References

1. Specification for the Advanced Encryption Standard (AES). Federal Information Processing Stan-
dards Publication 197, 2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

2. Elad Barkan and Eli Biham. In how many ways can you write Rijndael? In Yuliang Zheng, editor,
ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages 160–175. Springer
Berlin Heidelberg, 2002.

3. Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a white box AES implemen-
tation. In SAC 2004, pages 227–240. Springer-Verlag, 2005.

4. Alex Biryukov, Christophe Cannière, An Braeken, and Bart Preneel. A toolbox for cryptanalysis:
Linear and affine equivalence algorithms. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 33–50. Springer Berlin Heidelberg, 2003.

5. Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. White box cryptography: Another
attempt. Cryptology ePrint Archive, Report 2006/468, 2006. http://eprint.iacr.org/.

6. Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. van Oorschot. A white-box DES imple-
mentation for DRM applications. In Joan Feigenbaum, editor, DRM 2002, volume 2696 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2002.

7. Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. van Oorschot. White-box cryptography
and an AES implementation. In SAC 2002, pages 250–270. Springer-Verlag, 2003.

8. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, 2002.

9. Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Cryptanalysis of white box DES
implementations. In Carlisle Adams, Ali Miri, and Michael Wiener, editors, SAC 2007, volume
4876, pages 278–295. Springer Berlin Heidelberg, 2007.

10. Mohamed Karroumi. Protecting white-box aes with dual ciphers. In Proceedings of the 13th interna-
tional conference on Information security and cryptology, ICISC’10, pages 278–291. Springer-Verlag,
2010.

11. Hamilton E. Link and William D. Neumann. Clarifying obfuscation: improving the security of
white-box DES. In ITCC 2005, volume 1, pages 679–684, 2005.

12. Wil Michiels, Paul Gorissen, and Henk D. L. Hollmann. Cryptanalysis of a generic class of white-
box implementations. In SAC 2008, volume 5381 of Lecture Notes in Computer Science, pages
414–428. Springer, 2009.

13

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://eprint.iacr.org/

13. Yoni Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao - Lai white-box AES
implementation. In LarsR. Knudsen and Huapeng Wu, editors, SAC 2012, volume 7707, pages
34–49. Springer Berlin Heidelberg, 2013.

14. Yoni De Mulder, Brecht Wyseur, and Bart Preneel. Cryptanalysis of a perturbated white-box aes
implementation. In Guang Gong and Kishan Chand Gupta, editors, INDOCRYPT 2010, volume
6498, pages 292–310. Springer Berlin Heidelberg, 2010.

15. H̊avard Raddum. More dual Rijndaels. In Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa,
editors, Advanced Encryption Standard AES, volume 3373 of Lecture Notes in Computer Science,
pages 142–147. Springer Berlin Heidelberg, 2005.

16. Brecht Wyseur. White-Box Cryptography. PhD thesis, Katholieke Universiteit Leuven, 2009.
17. Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis of white-box DES

implementations with arbitrary external encodings. In Carlisle Adams, Ali Miri, and Michael
Wiener, editors, SAC 2007, volume 4876, pages 264–277. Springer Berlin Heidelberg, 2007.

18. Yaying Xiao and Xuejia Lai. A secure implementation of white-box AES. In CSA 2009, pages 1–6,
2009.

A Dealing with Byte Shuffling

As mentioned above and although not explicit in Chow et al. ’s paper, one could use a
random shuffling of the byte of the AES state. In such a case the attacker could only
group the bytes by column, without knowing the index of each column and the byte
indices within a column. In such a case, the attacker has to deal with a function f ′ as
defined in (5) but the four inputs xi and the four coordinate functions f ′i have a random
order. It results that for the recovery of the Sj functions, the MixColumn coefficients may
not be the ones expected in the original attack. Specifically, each coordinate function
of the attacked function f ′ is such that

f ′i(xσ(0), xσ(5), xσ(10), xσ(15))

= E′i(c0 · S0(x0)⊕ c5 · S5(x5)⊕ c10 · S10(x10)⊕ c15 · S15(x15)) (13)

where σ is an unknown permutation of {0, 5, 10, 15} and where c0, c5, c10, c15 are un-
known coefficients from {01, 02, 03} (two of them being 01). Here, a collision of the form
f ′0(α, 0, 0, 0) = f ′0(0, β, 0, 0) gives rise to an equation

ck · (u0 ⊕ uα)⊕ c` · (v0 ⊕ vβ) = 0

where k = σ(0), ` = σ(5), ui = Sk(i) and vi = S`(i) for every i. Let us define u′i = u0⊕ui
and v′i = c`

ck
(v0 ⊕ vi), the above equation can be rewritten as

u′i ⊕ v′i = 0 . (14)

Now a collision for another coordinate function, say f ′1(α, 0, 0, 0) = f ′1(0, β, 0, 0), gives
rise to an equation

dk · (u0 ⊕ uα)⊕ d` · (v0 ⊕ vβ) = 0 ,

where dk and d` are further unknown coefficients from {01, 02, 03}. The above equation
can be rewritten as

u′i ⊕
d`ck
dkc`

v′i = 0 . (15)

Then we exhaustively guess the coefficient fraction d`ck
dkc`

among the set of 14 possible
candidates (resulting from the MixColumns definition):{

02, 03, 04, 06,
03

02
,
01

02
,
09

02
,
01

03
,
02

03
,
04

03
,
01

06
,
01

09
,
02

09

}
.

For each guess on the coefficient fraction we try to solve the system arising from
the 2 × 255 equations of the form (14) and (15), with the additional equation u′1 = 1
as in the original attack. If the guess is wrong, we get an unsolvable system. For the
good guess we get one or more solutions depending on the system rank. If more than
one solutions are possible, this means that the system rank is lower than 510, and
we need more equations. In that case, we use collisions from an additional coordinate
function, say f ′2, which yield equations with a new unknown coefficient fraction. Here
again, the fraction is exhaustively guessed in the above set, and the good candidate
yields a solvable system.8 Once the system solved, we obtained the ai and bi coefficients
such that

ui = ai · (u0 ⊕ u1)⊕ u0 ,
and

vi = bi ·
ck
c`

(u0 ⊕ u1)⊕ v0 .

Then we proceed as for the original attack by exhaustively guessing (u0, u1) with the
test of Lemma 1 to recover Sσ(0). For the recovery of Sσ(5) we must then guess v0 as
well as the coefficient fraction ck/c` (among at most 7 possible candidates). As in the
original attack, the remaining functions Sσ10 and Sσ(15) are then recovered by exploiting
collisions of the form f ′i(α, 0, 0, 0) = f ′i(0, 0, β, 0) and f ′i(α, 0, 0, 0) = f ′i(0, 0, 0, β).

The recovered coefficient fractions yield the unknown coefficients in the f ′i coordinate
functions. From these coefficients and the Sσ(j) functions, one can recover the output
byte-encodings as described in Section 3.2. Then the recovery of the second round-key
bytes works as in the original attack (in particular the coefficients in the f ′ function are
not required). Following the same approach, we can recover the key bytes of the third
round.

Eventually, it remains to identify the good ordering for the key bytes. As explained
in Section 2.3, we can easily group the bytes of each round key four-by-four i.e. by
column (each group being involved in a different f ′ function). Then, the key schedule
of AES makes it simple to recover the good ordering by checking the correspondence
between the first and fourth columns of a round key and the first column of the next
one. Speciffically, we have:

wi+1,1 = SubWord(RotWord(wi,4))⊕ wi,1 ⊕ Rconi

where wi,j denotes the jth column of the ith round key and Rconi is some constant
value (see [1]). From the recovered shuffled key columns we have 4× 3 = 12 possibilities

8 In our experiments most systems of 2 × 255(+1) equations arising from the collisions in output of
two different coordinate functions are of full rank. However, some underdetermined system occur.
In that case, adding the equations arising from the collisions of a third coordinate function always
makes the system full rank.

for the pair of columns (w2,1, w2,4). Then we have 4! = 24 possibilities for the order
of bytes within each column, making a total of 12 × 242 < 213 possibilities. When one
of these possibilities yields four bytes corresponding to one group of third round key,
we have identified the involved columns with high probability. Then we apply the same
principle with the next column following the equation:

wi+1,j = wi,j ⊕ wi+1,j−1 ,

holing for j ∈ {2, 3, 4}. It might occur (still with low probability) that several candidates
satisfy one of the above equations. In that case we continue with each candidate until
a inconsistency is found.

As a final note, the above attack has the same bottleneck as the original attack,
that is the exhaustive search on u0 and u1 for the recovery of the first Sj function (here
Sσ(0)) in each of the four f ′ functions of first round. Therefore, although slightly more
complicated, the complexity of this extended attack is also of 222.

	Another Nail in the Coffin of White-Box AES Implementations
	Tancrède Lepoint and Matthieu Rivain

