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ABSTRACT
Most computational soundness theorems deal with a lim-
ited number of primitives, thereby limiting their applica-
bility. The notion of deduction soundness of Cortier and
Warinschi (CCS’11) aims to facilitate soundness theorems
for richer frameworks via composition results: deduction
soundness extends, generically, with asymmetric encryption
and public data structures. Unfortunately, that paper also
hints at rather serious limitations regarding further compo-
sition results: composability with digital signatures seems
to be precluded.

In this paper we provide techniques for bypassing the per-
ceived limitations of deduction soundness and demonstrate
that it enjoys vastly improved composition properties. More
precisely, we show that a deduction sound implementation
can be modularly extended with all of the basic crypto-
graphic primitives (symmetric/asymmetric encryption, mes-
sage authentication codes, digital signatures, and hash func-
tions). We thus obtain the first soundness framework that
allows for the joint use of multiple instances of all of the
basic primitives.

In addition, we show how to overcome an important re-
striction of the bare deduction soundness framework which
forbids sending encrypted secret keys. In turn, this prevents
its use for the analysis of a large class of interesting proto-
cols (e.g. key exchange protocols). We allow for more liberal
uses of keys as long as they are hidden in a sense that we
also define. All primitives typically used to send secret data
(symmetric/asymmetric encryption) satisfy our requirement
which we also show to be preserved under composition.

1. INTRODUCTION
Two main approaches have been developed for the anal-

ysis of security protocols. Symbolic models abstract away
the cryptographic primitives, allowing to reason at a logical
level, often in an automated way. Security proofs are there-
fore easier and often conducted by tools. In contrast, cryp-
tographic models offer higher security guarantees, down to
the bitstring level. Security proofs are usually done by hand
and proceed by reduction, down to the security assumptions
(such as the computational hardness of computing a discrete
log).

Starting with the seminal work of Abadi and Rogaway [1],
many results study under which assumptions it is possible
to show that symbolic models are actually sound w.r.t. to
cryptographic models. For example, the symbolic represen-
tation of symmetric encryption consists simply of two fol-

lowing deduction rules.
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An attacker can encrypt or decrypt only if he has the cor-
responding key. Given an encryption scheme, does it hold
that all attacker’s computations are reflected by these rules?
Surprisingly, the answer is yes, provided that the encryption
scheme satisfies some standard security requirements [2, 6]
(here IND-CCA). Such soundness theorems have been estab-
lished for active attackers for basically all standard crypto-
graphic primitives: symmetric encryption [2, 6], asymmet-
ric encryption [3, 9, 11], signatures [3, 14, 9], MACs [4],
hashes [14, 7, 13] (consult [8] for a more comprehensive list).

However, these past results usually consider the primitives
in isolation or, in the best case, treat at most two primitives
at a time. Soundness proofs are complex, and including mul-
tiple primitives in the analysis easily leads to unmanageable
proofs. A way to bring the complexity under control is to de-
velop soundness results that are compositional. A first step
in this direction is the work of Cortier and Warinschi [10].
They propose a notion of soundness which can be extended,
in a generic way in several ways, most notably with asym-
metric encryption: if a deduction system is sound for some
primitive (in the sense that they define) then extending the
deduction system with the usual deduction rules for asym-
metric encryption is a sound abstraction for combined uses
of the primitive and asymmetric encryption. Below, we refer
to this notion as deduction soundness.

The central idea that allows for composability is that de-
duction soundness considers the use of the primitives in the
presence of functions chosen adversarially from the class of
transparent functions. These are publicly computable and
efficiently invertible functions. Typical functions that are
transparent are the constructors of public data structures
like concatenation, lists, etc. It is then obvious that de-
duction soundness in this sense implies soundness for the
use of primitive in the presence of other constructs that are
naturally transparent (e.g. public data structures). Less ob-
vious is that deduction soundness for a primitive also implies
soundness when the primitive is used together with asym-
metric encryption. In addition to this result (which is the
main technical contribution of [10]) that paper also shows
that deduction soundness implies that security of proto-
cols in symbolic models yields security in the computational
models, for a wide class of protocols.

Compositionality for the notion introduced in [10] is how-
ever limited, and the authors present rather compelling ev-



idence that the notion may not compose primitives other
than encryption. The problem is that deduction soundness
does not seem to preclude implementations that leak partial
information about their inputs. In turn, this leak of infor-
mation may impact the security of other primitives that one
may want to include later.

More concretely, assume that one has established sound-
ness of a deduction system that covers hash, but for an
implementation of the hash function that reveals half of
its input: h(m1‖m2) = m1‖g(m2) where g is a standard
hash function. If g is a “good” hash function then so is
h. Now consider a signature scheme which duplicates sig-
natures: sign(sk ,m) = sign′(sk ,m)‖sign′(sk ,m) where sign′

is some standard signature scheme. It is easy to see that if
sign′(sk ,m) is a secure signature scheme, then so is sign(sk ,m).
Yet, given h(sign(sk ,m)) an adversary can easily compute
sign(sk ,m) without breaking the signature scheme nor the
hash: the hash function leaks sufficient information to be
able to recover the underlying signature.

Our contributions. In this paper we provide new insights
into the notion of deduction soundness. Despite the intu-
ition outlined above, we prove that the compositionality
properties of deduction soundness [10] reach further than
previously understood. For example, we prove that to any
deduction sound implementation of a set of primitives, one
can add signatures, as long as the implementation for the
signature satisfies a standard notion of security. This theo-
rem refutes the counterexample above and provides evidence
that deduction soundness is a more powerful (and demand-
ing) security notion than previously understood. In particu-
lar, a corollary of the theorem is that there are no deduction
sound abstractions for implementations that are “too leaky”
(as the hash function from the counterexample).

The new level of understanding facilitates further compo-
sitionality proofs for deduction soundness: to any deduction
sound system one can add any of the (remaining) standard
cryptographic primitives: symmetric encryption, message
authentication codes, and hash functions while preserving
deduction soundness. The theorems hold under standard
security assumptions for the implementation of encryption
and MACs and require random oracles for adding hash func-
tions. As a consequence, we obtain the first soundness result
that encompasses all standard primitives: symmetric and
asymmetric encryption, signatures, MACs, and hashes. In
addition, our composition results allow for a settings where
multiple schemes (that implement the same primitive) are
used simultaneously, provided that each implementation ful-
fills our assumptions. Moreover, composition provides a
stronger result: whenever deduction soundness is shown for
some particular primitive, our result ensures that all stan-
dard primitives can be added for free, without any further
proof.

The importance of composition cannot be overempha-
sized: obtaining such general results without being able to
study each primitive separately would be unmanageable.

Our compositionality results hold under several restric-
tions most of which are quite common in soundness proofs,
e.g. adversaries can corrupt keys only statically. Less stan-
dard is that we demand for secret keys to be used only for
the cryptographic task for which they are intended. Quite
reasonable most of the time, the restriction does not allow,
for example, for the adversary to see encryptions of sym-

metric keys under public keys. The restriction is related
to the signature-hash counterexample. If f is a primitive
with a deduction sound system that leaks some information
about its input and Enc is a secure encryption scheme it is
not clear that (f(k), Enck(m)) hides m. Unfortunately, the
technique that we used to bypass the signature-hash coun-
terexample does not seem to apply here. At a high level, the
difficulty is that in a potential reduction to the security of
the encryption scheme, we are not be able to simulate f(k)
consistently.

One way to relax the restriction is to employ encryption
schemes that are secure even when some (or even most) of
the encryption key leaks [12, 15]. Current instantiations for
such schemes are highly inefficient and we prefer the follow-
ing alternative solution which, essentially, allows for other
uses of symmetric keys, as long as these uses do not reveal
information about the keys. In a bit more detail, we say
that a function is forgetful for some argument if the func-
tion hides (computationally) all of the information about
that input. The notion is a generalization for the secu-
rity of encryption schemes: these can be regarded as for-
getful with respect to their plaintext. We then show that a
forgetful deduction sound implementation can be extended
with symmetric encryption under more relaxed restrictions:
soundness is preserved if encryption keys are used for en-
cryption, or appear only in forgetful positions of other func-
tions from the implementation we are extending. Finally,
we show that, in addition to soundness, forgetfulness is pre-
served as well. Hence we can flexibly and add several layers
of asymmetric/symmetric key encryption such that the keys
of each layer may appear in any forgetful position of under-
lying layers. We feel that this allows us to capture almost
every hierarchical encryption mechanism in practical proto-
cols.

2. PRELIMINARIES
Throughout this paper, η denotes the security parame-

ter. A function f : N → R is negligible if it vanishes faster
than the inverse of any polynomial (i.e., if ∀c ∈ R ∃n0 ∈ N
s.t. ∀n ∈ N |f(n)| < 1/nc). For a finite set R, we denote by
r ← R the process of sampling r uniformly from R.

3. THE SYMBOLIC MODEL
Our abstract models for the symbolic world—called sym-

bolic models—consist of term algebras defined on a typed
first-order signature.

Specifically we have a set of data types T with a subtype
relation (≤) which we require to be a preorder. We assume
that T always contains a base type > such that every other
type τ ∈ T is a subtype of > (τ ≤ >).

The signature Σ is a set of function symbols together with
arities of the form ar(f) = τ1 × . . . × τn → τ , n ≥ 0 for
τi, τ ∈ T . We refer to τ as the type of f and require τ 6=
> for all f except for garbage of basetype g>. Function
symbols with n = 0 arguments are called constants. We
distinguish deterministic function symbols, e.g., for pairs,
and randomized function symbols, e.g., for encryption.

For all symbolic models we fix an infinite set of typed vari-
ables {x, y . . .} and an infinite set of labels labels = labelsH∪
labelsA for infinite, disjoint sets of honest labels (labelsH)
and adversarial labels (labelsA). Since labels are used to
specify randomness, distinguishing honest and adversarial



labels (randomness) is important.
The set of terms of type τ is defined inductively by

t ::= term of type τ
| x variable x of type τ
| f(t1, . . . , tn) application of deterministic f ∈ Σ
| f l(t1, . . . , tn) application of randomized f ∈ Σ

where for the last two cases, we further require that each ti is
a term of some type τ ′i with τ ′i ≤ τi for ar(f) = τ1×. . .×τn →
τ and for the last case that l ∈ labels. The set of terms is
denoted by Terms(Σ, T ,≤) and is the union over all sets of
terms of type τ for all τ ∈ T . For ease of notation we often
write Terms(Σ) for the same set of terms, and refer to general
terms as t = f l(t1, . . . , tn) even if f could be a deterministic
function symbol which doesn’t carry a label.

Intuitively, for nonces, we use randomized constants. For
example, assume that n ∈ Σ is a constant. Then usual
nonces can be represented by nr1 , nr2 , . . . where r1, r2 ∈
labels are labels. Labels in labelsH will be used when the
function has been applied by an honest agent (thus the
randomness has been honestly generated) whereas labels in
labelsA will be used when the randomness has been gener-
ated by the adversary. Often when the label for a function
symbol is clear from the context (e.g. when there is only one
label that suits a particular function symbol) we may omit
this label.

We require Σ to contain randomized constants gτ of type
τ for any τ ∈ T that will be used for representing garbage
of type τ . Garbage will typically be the terms associated
to bit-strings produced by the adversary which cannot be
parsed as a meaningful term (yet). If garbage can at some
point be parsed as the application of a deterministic function
symbol, the label is dropped.

Substitutions are written σ = {x1 = t1, . . . , xn = tn} with
domain dom(σ) = {x1, . . . , xn}. We only consider well-typed
substitutions, that is substitutions σ = {x1 = t1, . . . , xn =
tn} for which ti is of a subtype of xi. The application of a
substitution σ to a term t is written σ(t) = tσ.

Function symbols in Σ are intended to model crypto-
graphic primitives, including generation of random data like
e.g. nonces or keys. Identities will typically be represented
by constants (deterministic function symbols without argu-
ments). The symbolic model is equipped with a deduction
relation `⊆ 2Terms×Terms that models the information avail-
able to a symbolic adversary. T ` t means that a formal
adversary can build t out of T , where t is a term and T a
set of terms. We say that t is deducible from T . Deduction
relations are typically defined through deduction systems.

Definition 1. A deduction system D is a set of rules
t1 ··· tn

t
such that t1, . . . , tn, t ∈ Terms(Σ, T ,≤). The de-

duction relation `D⊆ 2Terms × Terms associated to D is the
smallest relation satisfying:

• T `D t for any t ∈ T ⊆ Terms(Σ, T ,≤)

• If T `D t1σ, . . .T `D tnσ for some substitution σ and
t1 ··· tn

t
∈ D then T `D tσ.

We may omit the subscript D in `D when it is clear from
the context. For all deduction systems D in this paper we
require

glτ
for all garbage symbols gτ ∈ Σ and l ∈ labelsA.

Let σ be a substitution. We say that t1σ ··· tnσ
tσ

is an

instantiation of a rule t1 ··· tn
t

∈ D. Since we require the

deduction relations in this paper to be efficiently decidable,
we can, if we have T ` t, w.l.o.g. always find a sequence

π = T
α1→ T1

α2→ · · · αn→ Tn such that for all i ∈ {1, . . . , n}:
(i) αi = t1 ··· tn

t′ is an instantiation of rules from D, (ii)
t1, . . . , tn ∈ Ti−1, (iii) t′ 6∈ Ti−1, (iv) t′ ∈ Ti and (v) t ∈ Tn.
We call π a deduction proof for T ` t.

From now on we denote a symbolic model M as a tuple
(T ,≤,Σ,D) where T is the set of data types, ≤ the subtype
relation, Σ signature and D the deduction system. For all
symbolic models defined in this paper we omit the garbage
symbols and the corresponding reduction rules for the sake
of brevity.

4. IMPLEMENTATION
An implementation I of a symbolic model is a family of

tuples (Mη, [[·]]η, lenη, openη, validη)η for η ∈ N. We usually

omit the security parameter and just write (M, [[·]], len, open,
valid) for an implementation.
M is a Turing Machine which provides concrete algorithms

working on bit-strings for the function symbols in the signa-
ture. [[·]] : T → 2{0,1}

∗
is a function that maps each type to

a set of bitstrings. len : Terms→ N computes the length of a
term if interpreted as a bitstring. With open the implemen-
tation provides an algorithm to interpret bitstrings as terms.
valid is a predicate which states whether a concrete use of
the implementation is valid. For example, a correct use of an
implementation might exclude the creation of key cycles or
dynamic corruption of keys from the valid use cases. More
precisely we require the following from an implementation:

We assume a non-empty set of bitstrings [[τ ]] ⊆ {0, 1}η for
each type τ ∈ T . For the base type >, we assume [[>]] =
{0, 1}∗ and for any pair of types τ, τ ′ ∈ T with τ ≤ τ ′

we require [[τ ]] ( [[τ ′]] and [[τ ]] ∩ [[τ ′]] = ∅ otherwise (i.e., if
τ 6≤ τ ′). We write [[T ]] for ∪τ∈T \{>}[[τ ]]. Later, we often
make use of a function 〈c1, . . . , cn, τ〉 that takes a list of
bitstrings c1, . . . , cn and a type τ and encodes c1, . . . , cn as a
bitstring c′ ∈ [[τ ]]. We assume that this encoding is bijective,
i.e., we can uniquely parse c′ as 〈c1, . . . , cn, τ〉 again.

We require the Turing Machine M itself to be determinis-
tic. However, each time it is run, it is provided with a ran-
dom tape R. More specifically, we require for each f ∈ Σ
with ar(f) = τ1 × . . . × τn → τ that is not a garbage sym-
bol that for input f M calculates a function (M f) with
domain [[τ1]] × · · · × [[τn]] × {0, 1}∗ and range [[τ ]]. The run-
time of M and (M f) has to be polynomial in the length
of its input. Intuitively, to generate a bitstring for a term
t = f l(t1, . . . , tn) we apply (M f) to the bitstrings gen-
erated for the arguments ti and some randomness (which
might not be used for deterministic function symbols). We
call the resulting bitstring concrete interpretation of t. The
randomness is provided by the generate function introduced
in Section 4.2.

4.1 Interpretations
In cryptographic applications functions are often random-

ized and the same random coins may occur in different places
within the same term. This is the case for instance when
the same nonce occurs twice in the same term. We use
a (partially defined) mapping L : {0, 1}∗ → HTerm from
bit-strings to hybrid terms to record this information. A
hybrid term is either a garbage term or f l(c1, . . . , cn) where
f ∈ Σ is a function symbol of arity n applied to bit-strings



generateM,R(t, L):
if for some c ∈ dom(L) we have L[[c]] = t then

return c
else

for i ∈ {1, . . . , n} let (ci, L) := generateM,R(ti, L)
let r := R(t)
let c := (M f)(c1, . . . , cn; r)
let L(c) := f l(c1, . . . , cn)) (l ∈ labelsH)
return (c, L)

Figure 1: The generate function (t is of the form
f l(t1, . . . , tn) (with possibly n = 0 and no label l for
deterministic function symbols f)).

ci ∈ {0, 1}∗. By dom(L) ⊆ 2{0,1}
∗

we denote the domain
of L, i.e. the set of bit-strings for which L is defined. The
mapping L induces an interpretation of bit-strings as terms.
We define the interpretation of bitstring c ∈ dom(L) with
respect to a mapping L as L[[c]] := f l(L[[c1]], . . . , L[[cn]]) if
L(c) = f l(c1, . . . , cn) and L[[c]] := L(c) if L(c) is a garbage
term. We say that a mapping L is complete, if for all
(c, f l(c1, . . . , cn)) ∈ L c1, . . . , cn ∈ dom(L). Note that L[[c]]
is only defined if L is complete.

4.2 Generating function
Given a mapping L we define a generating function that

associates a concrete semantics for terms (given the terms
already interpreted in L).

The generation function uses a random tape R as a source
of randomness for M when generating the concrete interpre-
tation of terms. We assume that there is an algorithm R(t)
which maps a term t to a bitstring r ∈ {0, 1}η that should
be used as the randomness when t is generated. Even chang-
ing only one label in t leads to a changed term t′ for which
different randomness will be used. Figure 1 defines the gen-
erate function given a closed term t = f l(t1, . . . , tn) and a
mapping L.

Note that generateM,R(t, L) not only returns a bit-string c
associated to t but also updates L (to remember, for exam-
ple, the value associated to t). Note also that generateM,R
depends on M and the random tape R. When needed, we
explicitly show this dependency, but in general we avoid
it for readability. If a mapping L is complete, then for
(c, L′) := generate(t, L), L′ is complete. Furthermore, the
generate function requires that, for given inputs t, L, the
following holds: For all t′ := f l(t1, . . . , tn) ∈ st(t) where
l ∈ labelsA we find a c ∈ dom(L) s.t. L[[c]] = t′ and t doesn’t
contain garbage symbols carrying honest labels. This guar-
antees that all bitstrings introduced by the generate function
correspond to the application of non-garbage function sym-
bols carrying honest labels.

4.3 Parsing function
Conversely, we require the implementation to define a

function parse to convert bit-string into terms. The function
takes a bit-string c and a mapping L as input and returns a
term t and an extended mapping L.

For parsing functions we require the concrete structure in
Figure 2 (where open : {0, 1}∗ × libs → {0, 1}∗ × HTerm a
function that on call open(c, L) parses the bitstring c in pres-
ence of the library L and returns its hybrid interpretation).

parse(c, L):
if c ∈ dom(L) then

return (L[[c]], L)
else

let Lh := {(c, f l(. . . )) ∈ L : l ∈ labelsH}
let L :=

(⋃
(c,·)∈L open(c, Lh)

)
let G :=

{
(c, g

l(c)
> )

}
(l(c) ∈ labelsA)

do

let L := (L \G) ∪
(⋃

(c,·)∈G open(c, Lh)
)

let G :=
{

(c, g
l(c)
> ) : (c′, f(. . . , c, . . .)) ∈ L and c 6∈ dom(L)

}
while G 6= ∅
return (L[[c]], L)

Figure 2: The parsing function.

The exact definition of parse is left unspecified, as it de-
pends on the particular behavior of open which is provided
by a concrete implementation. We require this structure for
the parsing function to provide a concrete context in which
the open function of different implementations can be com-
posed. Note that the open function is only allowed to use
honestly generated bitstrings when dealing with a term. We
will furthermore only use open functions later that ignore
“foreign” bitstrings in the given library, i.e., bitstrings that
are of a data type that is not part of the implementation
open belongs to. Due to these properties the composition
of open functions is commutative. This is important for our
composition theorems later. Furthermore, we think that it
meets the intuition that the composition of different imple-
mentations should be commutative.

4.4 Good implementation
Until now we have not restricted the behavior of imple-

mentations in any way. However, there are some properties
we will need to hold for every implementation. We describe
these properties in this section and say that a good imple-
mentation is one that satisfies all of them.

We stipulate that a good implementation is length regu-
lar, i.e., len(f l(t1, . . . , tn)) := |(M f)(c1, . . . , cn; r)| depends
only on the length of the arguments ci (which are the compu-
tational interpretations of the symbolic arguments ti). Hav-
ing such a length function is equivalent to having a set of
length functions lenf : Nn → N for each function symbol
f ∈ Σ with n arguments. We need this to generically com-
pose length functions of different implementations in Sec-
tion 6.

We now explain what it means for an implementation
to be collision free. A collision occurs if during a call of
generateM,R(t, L) an execution of M yields a bitstring c that
is already in the domain of L. Since the library L has to be
well-defined, we can either overwrite the old value L(c) with
the new one or discard the new value. Both variants are
problematic:

Overwriting changes the behavior of parse (i.e., bitstrings
may now be parsed differently). This might have severe
consequences. Imagine that the overwritten bitstring was an
honestly signed message. Now this signature looks like the
signature of a different message symbolically; possibly like a
forgery. Note that this would not be a weakness of signatures



generate′M,R(t, L):
if for some c ∈ dom(L) we have L[[c]] = t then

return c
else

for i ∈ {1, n} let (ci, L) := generate′M,R(ti, L)
let r := R(t)
let c := (M f)(c1, . . . , cn; r)
if c ∈ dom(L) then

exit game with return value 1 (collision)
let L(c) := f l(c1, . . . , cn)) (l ∈ labelsH)
return (c, L)

Figure 3: A collision-aware generate function.

but of the fact that collisions can be found for bitstrings
corresponding to the signed terms. Discarding means that
a bitstring c generated for a term t might not be parsed as
t later which might wrongfully prevent the adversary from
winning the soundness game.

Since we also need transparent implementations to be col-
lision free we and still want the notion of collision freeness
to be composable later, we need to fix a set of functions
that reflect the capability of the adversary to pick arbitrary
bitstrings for arguments of >.

Definition 2 (Supplementary transparent functions).
For a set of bitstrings B ⊆ {0, 1}∗ we call define the trans-
parent model Mtran

supp(B) as follows:

• T tran
supp := {>, τ transupp}. τ transupp is a subtype of >.

• Σtran
supp := {fc : c ∈ B} (all function symbols are deter-

ministic)

• Dtran
supp := {

fc()
: c ∈ B}

and an implementation Itransupp(B) as follows:

• [[τ transupp]] := B

• (M tran
supp fc)() returns c

• (M tran
supp func)(c) returns fc if c ∈ B, ⊥ otherwise

Now we can define what collision freeness means.

Definition 3 (Collision-free implementation). Let
DS′M,I,A(η) be the deduction soundness game from Fig-
ure 7 where we replace the generate function by the function
generate′ from Figure 3. We say that an implementation I
is collision-free if for all p.p.t. adversaries A

P
[
DSM∪Mtran

supp([[T ]]),I∪Itransupp([[T ]]),A(η) = 1
]

−P
[
DS′M∪Mtran

supp([[T ]]),I∪Itransupp([[T ]]),A(η) = 1
]

is negligible.

When we compose implementations later we will need that
their open functions do not interfere. Intuitively, each open
function should stick to opening the bitstrings it is respon-
sible for (i.e., that are of types belonging to the same imple-
mentation the open function belongs to). This is reflected
in the following definition.

Definition 4 (type-safe implementation). We say
that an implementation I of a symbolic model M is type
safe if

(i) open(c, L) = (c, gl>) for l ∈ labelsA if c 6∈ [[T ]]. (“open
must not deal with foreign bitstrings.”)

(ii) open(c, L) = open(c, L|[[T ]]) where L|[[T ]] := {(c, h) ∈
L : ∃τ ∈ T \ {>} : c ∈ [[τ ]]}. (“The behavior of
open must not be affected by foreign bitstrings in the
library.”)

Since we need to simulate parsing later, we require parse(c, L)
(based on open) to run in polynomial time in the size of the
library.

Usually, to have computational soundness, we have to re-
strict the use of the implementation. For example we may
only allow static corruption of keys. The purpose of the
valid function is exactly this. It gets a trace of queries and
outputs a boolean value which states whether the trace is
valid or not. To be able to compose the valid functions of
different implementations in a meaningful way we require
valid to meet the following requirements

A trace T is a list of queries q. A query is either “init T,H”
where T,H are lists of terms, “sgenerate t”, or “generate t”
where t is a term.

(i) If valid(T+q) = true, then valid(T+q̂) = true where q̂ is
a variation of q: If q =“generate t”, then q̂ =“generate
t̂” (analogously for “sgenerate t”). Here, t̂ is a vari-
ation of t according to the following rule: Any sub-
term f l(t1, . . . , tn) of t where f 6∈ Σ is a foreign func-

tion symbol may be replaced by f̂ l̂(t̂1, . . . , t̂m) where

f̂ 6∈ Σ is a foreign function symbol and t̂i = tj for some
j ∈ {1, . . . , n} (where each tj may only be used once) or
t̂i does not contain function symbols from Σ. As a spe-
cial case we may also replace f l(t1, . . . , tn) with a term

t̂1 (i.e., f̂ is “empty”). If q = ‘“init T,H” then q̂ =“init

T̂ , Ĥ” where T = (t1, . . . , tn) and T̂ = (t̂1, . . . , t̂n) and

t̂i is a variation of ti (Ĥ analogously).

(ii) If valid(T + q) = true and t is a term occurring in q,
then valid(T+“sgenerate t′“) = true for any subterm t′

of t.

(iii) valid(T) can be evaluated in polynomial time (in the
length of the trace T).

Why are these restrictions necessary?

(i) This allows us to replace function symbols with trans-
parent functions and even add or drop arguments dur-
ing the simulation of a primitive using transparent
functions. Intuitively, this requirement is justified since
we don’t know the semantics of foreign function sym-
bols valid should not: (a) look at the concrete symbols
(i.e., function symbols may be replaced), (b) look at
the order of arguments (since it doesn’t know what the
foreign function does, valid shouldn’t make decisions
based on the order of arguments; also, if the reader
accepts (a) a function symbol could be replaced by a
semantically equivalent function symbol which just ac-
cepts arguments in a different order), (c) depend on
the existence of own terms: since the foreign function



might just ignore an argument it wouldn’t be mean-
ingful to require its existence, (d) the existence of ad-
ditional arguments for a foreign function (those could
also be hardcoded).

(ii) If a term is valid in general, then any subterm should be
valid at least if the adversary doesn’t learn it. We need
this when we add something to an implementation that
features arguments that are hidden from the adversary
(i.e., encryptions under honest keys). We cannot sim-
ulate those arguments with transparent functions and
therefore need to generate them at some point.

(iii) This is needed to efficiently compute valid(T) during
simulations.

5. TRANSPARENT FUNCTIONS
Typical primitives that are usually considered in sound-

ness results include encryption, signatures, hash functions,
etc.. Intuitively, such functions are efficiently invertible, and
the type of their output can be efficiently determined. An
example for such functions are data structures (i.e., pairs,
lists, XML documents, etc.). We define and study sound-
ness of such primitives when they are used together with a
class of functions which we call transparent functions.

Towards this goal we define transparent symbolic models
and the corresponding transparent implementation and show
how to extend symbolic models and their implementations
with transparent functions in a generic way.

A transparent symbolic model Mtran = (Ttran, ≤tran, Σtran,
Dtran) is a symbolic model where the deduction system is de-
fined as follows (the label is omitted for deterministic func-
tion symbols):

Dtran =


t1 ··· tn

fl(tn,...,tn)
l ∈ labelsA, f ∈ Σtran

fl(t1,...,tn)
ti

1 ≤ i ≤ n, l ∈ labels, f ∈ Σtran


Formally, a transparent implementation of a transparent

symbolic model M = (T ,≤,Σ,D) is an implementation
(and thus adhering to the requirements from Section 4.4)
Itran = (Mtran, [[·]], len, opentran, validtran) where opentran and
validtran are defined explicitly below. We require two ad-
ditional modes of operation, func and proj, for the Tur-
ing Machine Mtran such that for all f ∈ Σ with ar(f) =
τ1 × . . .× τn → τ

(Mtran func) : {0, 1}∗ → Σ ∪ {⊥}
(Mtran proj f i) : {0, 1}∗ → {0, 1}∗ ∪ {⊥}

and we have for any ci ∈ [[τi]], 1 ≤ i ≤ n, r ∈ {0, 1}η

(Mtran func)((Mtran f)(c1, . . . , cn; r)) = f
(Mtran proj f i)((Mtran f)(c1, . . . , cn; r)) = ci

Furthermore, we require (Mtran func)(c) = ⊥ for all c 6∈ [[T ]].
As expected, Mtran is required to run in polynomial time in
η for this modes of operation as well.

For transparent implementations we explicitly define the
open function opentran as in Figure 4. Note that a transpar-
ent implementation is automatically type safe according to
Definition 4: Property (i) is required above and property (ii)
holds since L is not used by opentran.

We define validtran(T) = true for all traces T, i.e., the use
of transparent functions is not restricted in any way.

opentran(c, L):
if c ∈ [[T ]] ∩ dom(L) then

return (c, L(c))
else if (Mtran func)(c) = ⊥ then

find unique τ ∈ T s.t. c ∈ [[τ ]] and
c 6∈ [[τ ′]] for all τ ′ ∈ T with [[τ ′]] ( [[τ ]]

return (c, g
l(c)
τ ) (l(c) ∈ labelsA)

else
let f := (Mtran func)(c) (ar(f) = τ1 × · · · × τn → τ)
if (Mtran proj f i)(c) = ⊥ for some i ∈ {1, . . . , n} then

return (c, g
l(c)
τ ) (l(c) ∈ labelsA)

else
for i ∈ {1, . . . , n} do

let c̃i := (Mtran proj f i)(c̃)

return (c, f l(c)(c1, . . . , cn)) (l(c) ∈ labelsA)

Figure 4: Parsing algorithm for a transparent im-
plementation.

6. COMPOSITION
We next explain how to generically compose two symbolic

models and their corresponding implementations.
Let M1 = (T1,≤1,Σ1,D1) and M2 = (T2,≤2,Σ2,D2) be

symbolic models and I1 = (M1, [[·]]1, len1, open1, valid1) and
I2 = (M2, [[·]]2, len2, open2, valid2) implementations of M1

and M2 respectively.
We say that that (M1, I1) and (M2, I2) are compatible

if M1 and M2 as well as I1 and I2 meet the requirements
for compositions of symbolic models and implementations
stated below respectively.

We define the composition ofM′ =M1 ∪M2 ofM1 and
M2 if

(i) Σ1 ∩ Σ2 = {g>}

(ii) T1 ∩ T2 = {>}

and then have T ′ := T1 ∪ T2, ≤′:=≤1 ∪ ≤2, Σ′ := Σ1 ∪ Σ2

and D′ := D1 ∪ D2.
The corresponding implementations I1 = (M1, [[·]]1, len1,

open1, valid1) and I2 = (M2, [[·]]2, len2, open2, valid2) can
be composed if the following requirements are met:

(i) For all types τ1 ∈ T1 \ {>}, τ2 ∈ T2 \ {>} we have
[[τ1]] ∩ [[τ2]] = ∅.

(ii) The composition of I1 and I2 (as defined below) is a
collision-free implementation of M′ (Definition 3).

We then define the composition I′ = I1 ∪ I2 as follows:
The Turing machine (M ′ f) returns (M1 f) for f ∈ Σ1

and (M2 f) if f ∈ Σ2. This is non-ambiguous due to i.1

Similarly, for all τ ∈ T1 we set [[τ ]]′ := [[τ ]]1 and analo-
gously for τ ∈ T2. Note that [[>]] = [[>]]1 = [[>]]2 = {0, 1}∗.
Since implementations are required to be length regular we
can also compose the length functions len1 and len2 in a
straightforward way to get len ′.

To compose the open functions we define

1Here we assume that the membership problem is efficiently
decidable (sinceM ′ has to run in polynomial time). This can
be achieve w.l.o.g. with a suitable encoding for the function
symbols.



(open1 ◦ open2)(c, L):
let (c, t) := open1(c, L)
if t = gl> for some l ∈ labelsA then

return open2(c, L)
else

return (c, t)

and consequently open′ := open1◦open2. Furthermore we set
valid′(T) := valid1(T)∧ valid2(T) where ∧ is the conjunction.

Finally, we have to show that the composed implementa-
tion I′ is a good implementation of the composed symbolic
modelM′ by checking the requirements from Section 4: Re-
quirements for types hold since they hold on T1 and T2 and
by requirement ii for the composition of symbolic models.
The latter furthermore implies [[T1]] ∩ [[T2]] = ∅. Due to this
and since I1 and I2 are type safe, open′ = open1 ◦ open2 =
open2 ◦ open1. Furthermore, I′ is type safe since I1 and I2
are. The requirements for valid carry over obviously as well
as the length regularity.

Unfortunately, it is not always straightforward to check
requirement ii for the composition of implementations. How-
ever, we are going to show that ii is satisfied if, additionally
to the other requirements some additional requirement for
the valid functions of I1 and I2 hold. This is reflected in
the following Lemma 1. We note that the valid predicates
of the primitives we introduce later (public key encryption,
signatures, secret key encryption, macs and hashes) all meet
the additional requirements of Lemma 1. Hence we do not
need to proof collision freeness separately when composing
those.

Lemma 1. Let M1, M2 be symbolic models with imple-
mentations I1 and I2 respectively. If in addition to require-
ments i, ii and i the following requirements for valid′(T) :=
valid1(T) ∧ valid2(T) hold:

1. Let T̂ be T with all silent generate queries “sgenerate
t” replaced with normal generate queries “generate t”.
Then valid′(T)⇒ valid(T̂).

2. Let x ∈ {1, 2}. If validx(“init T,H”), then for each
t ∈ T ∪H all function symbols in t are from Σx or no
function symbol in t is from Σx.

3. Let x ∈ {1, 2}. Let T̂ be an expansion of T = q1 +
· · ·+ qn in the following sense: A qi =“generate t” for
i ∈ {1, . . . , n} is be replaced with q1i + · · · + qmi where
qji =“generate tj”, tj ∈ st(t) and tj does not contain
function symbols from Σx for j ∈ {1, . . . ,m}. Then

validx(T)⇒ validx(T̂).

then (M1, I1) and (M2, I2) are compatible

Proof. Note that I1 and I2 are collision free since we
are only dealing with good implementations. We prove the
lemma with a sequence of games:

Game 0.
In Game 0 A plays DS′M′∪Mtran

supp([[T ′]]),I′∪Itransupp([[T ′]]),A
(η)

from Definition 3.

Game 1.
In Game 1 A plays Game 0 where the generate functions

aborts only for collisions of bitstrings from [[T1]], i.e., we use
a function generate′ similar to that from Figure 3 with:

if c ∈ dom(L) ∩ [[T1]] then
exit game with return value 1 (collision)

Claim: Game 1 and Game 0 are indistinguishable.
Since the only difference between the games is the changed

exit condition, it suffices to look at the probability of a 1-
output: We show for any adversary A that wins Game 0
but not Game 1 with non-negligible probability that it can
be used to break the collision-freeness of I2. Concretely, we
provide a simulator B that plays

DS′M2∪Mtran
supp([[T2]]),I2∪Itransupp([[T2]]),A(η)

and simulates Game 0 for A.
Setup. B maintains a couple of global states: S := ∅ to

keep track of the terms generated for A, L := ∅ to simulate
the library for I1, Λ := ∅ is a partially defined mapping from
transparent functions fc (c ∈ [[T1]]) to terms, R← {0, 1}∗ is
the random tape of and T the trace of queries received from
A.

Queries. Using the two helper functions generateB and
parseB, which will be defined below, B deals with the queries
of A as follows (note that A doesn’t send parameters in the
collision game according to def Definition 3):

• “init T,H”: B adds “init T,H” to T and returns 0
if valid′(T) = false. Otherwise, it computes C :=
{generateB(t) : t ∈ T} and generateB(t) for all t ∈ H
and sends C to A.

• “generate t”: B adds “generate t” to T and returns 0 if
valid′(T) = false. Otherwise, it adds t to S and sends
generateB(t) to A.

• “sgenerate t”: B returns 0 if valid′(T+“sgenerate t”) =
false. Otherwise, it computes generateB(t) (but does
not send the result to A).

• “parse c”: B computes t := parseB(c). If S `′ t, it sends
t to A. Otherwise it returns 1.

The generateB function. While B can compute I1 itself,
it has only access to I2 via the game it is playing. Con-
cretely, it can generate bitstrings for function symbols from
Σ1 directly (using the given machine M1), while it has to
query bitstrings for function symbols from the complement

Σ1 := Σ′ \ Σ1 = Σ2 ∪ {fc : c ∈ [[T ′]]}

This procedure is reflected in the function generateB from
Figure 5. generateB updates the states L and Λ of B and
makes use of the random tape R. We write t ∈ Σ if the term
t contains only function symbols f ∈ Σ.

The parseB function. Analogously, B needs to distin-
guish bitstrings from the domain of I1 from bitstrings that
have to be parsed by the game played by B. It uses the
function parseB from Figure 6 to handle parsing requests.

Indistinguishability. Finally, we argue that the simu-
lation perfectly simulates Game 1 and that it can only be
distinguished from Game 0 by an adversary that breaks the
collision-freeness of I2. More concretely, we show

(i) B provides a perfect simulation for the output send to
A.

(ii) If the trace TA of A’s queries is valid (i.e., valid′(TA) =
true), then the trace TB of B’s queries is valid (i.e.,
valid2(TB) = true).



generateB(t):
if t ∈ Σ1 then

let (c, L) := generate′M1,R(t, L)
return c

else if t ∈ Σ1 then
return “generate t”

else
if f ∈ Σ1 then

for i ∈ {1, . . . , n} do
let ci := generateB(ti)

if L(c) = f l(c1, . . . , cn) for some c then
return c

else
let r := R(f l(t1, . . . , tn))
let c := (M1 f)(c1, . . . , cn; r)
if c ∈ dom(L) then

exit game with return value 1 (collision)
else

let L(c) := f l(c1, . . . , cn)
return c

else (i.e., f ∈ Σ1)
for i ∈ {1, . . . , n} do

if ti ∈ Σ1 then
t̃i := ti

else
let ci := generateB(ti)
let Λ(fci) := ti
t̃i := fci

return“generate f l(t̃1, . . . , t̃n)”

Figure 5: generate function used by the simulator B.
t = f l(t1, . . . , tn) for a label l ∈ labelsH. generate′ is the
collision-aware generate function from Figure 3.

parseB(c):
if c ∈ [[T1]] then

if c ∈ dom(L) then
let f l(c1, . . . , cn) := L(c)

else
let Lh := {(c, f l(. . . )) ∈ L : l ∈ labelsH
let (c, f l(c1, . . . , cn)) := open1(c, Lh)
let L(c) := f l(c1, . . . , cn)

for i ∈ {1, . . . , n} do
let ti := parseB(ci)

return f l(t1, . . . , tn)
else

let t :=“parse c”
let T := {fĉ : fĉ ∈ st(t)}
let σ := ∅
for each fĉ ∈ T ∩ dom(Λ) do

let σ(fĉ) := Λ(fĉ)
for each bitstring ĉ s.t. fĉ ∈ T \ dom(Λ) do

let t̂ := parseB(ĉ)
let σ(fĉ) := t̂

return tσ (replace each fĉ with σ(fĉ))

Figure 6: parse function used by the simulator B.

(iii) If a query “parse c” of A results in a non-DY term, A
wins in the real game and in the simulation.

(iv) If a collision occurs, the simulation and Game 0 behave
equivalently or the simulator B wins its game.

• Proof of (i): We observe that the calls to TMs M1 and
M2 in Game 0 and in Game 1 coincide. Hence we find a
bijection between the used random coins. For parsing
we basically decompose the library from Game 0 into
the part belonging to I1 and the part belonging to I2.
Since the open functions are type safe applying them
to the corresponding parts will yield the same behavior
in both games.

• Proof of (ii): For the “init T,H” query, the simulator
B cannot use generateB yet. However, due to require-
ment 2 for valid in this lemma, B can split the query
into two disjoint parts for I1 and I2. Furthermore, we
check that the additional requirements for valid cap-
ture the additional queries introduced by generateB:
Since generateB has to learn the bitstrings for terms
from M2, it cannot use silent generate queries. The
trace remains valid due to requirement 1. Addition-
ally requirement 3 allows generateB to query the bit-
strings for subterms that do not contain function sym-
bols from Σ1.

• Proof of (iii): This holds since (i) holds and the DY-
ness check in the simulation (Game 1) is identical to
the one in the real game (Game 0).

• Proof of (iv): First, note that all function symbols
that (M1 f)(c1, . . . , cn; r) 6= (M2 f

′)(c′1, . . . , c
′
m; r′) for

all function symbols f ∈ Σ1, g ∈ Σ2 and all bitstrings
c1, . . . , cn, r, c

′
1, . . . , c

′
m, r

′ of proper types. This holds
since f and g cannot be of basetype (due to our require-
ments for symbolic models) and requirement i for com-
posable implementation guarantees that the domains
of non-basetype types are disjoint. Analogously, colli-
sions with the supplementary functions cannot occur.
Hence every collision is either a collision in the domain
[[T1]] of I1 or in the domain [[T2]] of I2. In the first
case, the simulation behaves like the real game. In the
second case the simulation wins the collision freeness
game for I2 (which may only happen with negligible
probability since I2 is collision free).

This concludes the proof of our claim that Game 0 and
Game 1 are indistinguishable.

Game 2.
Analogously to the previous step, we additionally abort

only for collisions of bitstrings from [[T2]], i.e., we replace

if c ∈ dom(L) ∩ [[T1]] then
exit game with return value 1 (collision)

with

if c ∈ dom(L) ∩ [[T1]] ∩ [[T2]] then
exit game with return value 1 (collision)

in the generate function. Note that [[T1]] ∩ [[T2]] = ∅ by re-
quirement ii for the composition of symbolic models and re-
quirement i for the composition of implementations. Hence



this game will never abort due to collisions and is equivalent
to DSM′∪Mtran

supp([[T ′]]),I′∪Itransupp([[T ′]]),A(η).

The proof that Game 2 and Game 1 are indistinguishable
works exactly like the proof of the indistinguishability of
Game 1 and Game 0.

Since Game 2 and Game 0 are indistinguishable, I′ is
collision-free.

7. DEDUCTION SOUNDNESS
In this section we recall the notion of deduction soundness

of an implementation with respect to a symbolic model [10].
Informally, the definition considers an adversary that plays
the following game against a challenger. The challenger
maintains a mapping L between bitstrings and hybrid terms,
as defined in Section 4. Recall that the such mappings are
used to both generate bitstring interpretations for terms,
and also to parse bitstrings as terms (Figures 1,2). Roughly,
the adversary is allowed to request to see the interpretation
of arbitrary terms, and also to see the result of the parsing
function applied to arbitrary bitstrings. Throughout the ex-
ecution the queries that the adversary makes need to satisfy
a predicate valid (which is a parameter of the implementa-
tion). The goal of the adversary is to issue a parse request
such that the result is a term, that is not deducible from
the terms that he had queried in his generate requests: this
illustrates the idea that the adversary, although operating
with bitstrings, is restricting to only performing Dolev-Yao
operations on the bit-strings that it receives.

The details of the game are in Figure 7. Our definition
departs from the one of [10] in a few technical aspects. First,
we introduce a query init which is used to “initialize” the
execution by, for example, generating (and corrupting) keys.
The introduction of this query allows for a clearer separation
between the phases where keys are created and where they
are used, and allows to simplify and clarify what are valid
interactions between the adversary and the game.

Secondly, we also allow the adversary to issue sgenerate re-
quests: these are generate requests except that the resulting
bitstring is not returned to the adversary. These requests
are a technical necessity that help in later simulations, and
only strengthen the adversary.

Deduction soundness of an implementation I with respect
to a symbolic model M for an implementation is defined
by considering an adversary who plays the game sketched
above against an implementation that mixes I with trans-
parent functions provided by the adversary. To ensure uni-
form behavior on behalf of the adversary (e.g. ensure that
the adversary does not provide a different set of transpar-
ent functions for each different security parameter), and also
to satisfy other technical requirements like defining polyno-
mial running time for mixed implementations, we introduce
a notion of parametrized transparent functions/models.

Parametrization.
A parametrized transparent symbolic model Mtran(ν) maps

a bitstring ν (the parameter) to a transparent symbolic
model. Analogously, a parametrized transparent implemen-
tation Itran(ν) of Mtran maps a bitstring ν (the parameters)
to a transparent implementation ν where the length of ν is
polynomial in the security parameter. We say that a pa-
rameter ν is good if I(ν) is a transparent implementation of
Mtran(ν) and meets the requirements of a good implemen-

DSM(ν),I(ν),A(η):
let S := ∅ (set of requested terms)
let L := ∅ (library)
let T := ∅ (trace of queries)
R← {0, 1}∗ (random tape)

Receive parameter ν from A

on request “init T,H” do
add “init T” to T
if valid(T) then

let S := S ∪ T
let C := ∅ (list of replies)
for each t ∈ T do

let (c, L) := generateM,R(t, L)
let C := C ∪ {c}

for each t ∈ H do
let (c, L) := generateM,R(t, L)

send C to A
else

return 0 (A is invalid)

on request “sgenerate t” do
if valid(T+“sgenerate t”) then

let (c, L) := generateM,R(t, L)

on request “generate t” do
add “generate t” to T
if valid(T) then

let S := S ∪ {t}
let (c, L) := generateM,R(t, L)
send c to A

else
return 0 (A is invalid)

on request “parse c” do
let (t, L) := parse(c, L)
if S `D t then

send t to A
else

return 1 (A produced non-Dolev-Yao term)

Figure 7: Game defining deduction soundness.
Whenever generateM,R(t, L) is called, the require-
ments for t are checked (i.e., all subterms of t with
adversarial labels must already be in L and t does
not contain garbage symbols with honest labels) and
0 is returned if the check fails (i.e., the A is consid-
ered to be invalid).

tation (i.e., type-safe, randomness-safe, . . . ) from Section 4.

Definition 5 (Deduction soundness). Let M be a
symbolic model and I be an implementation of M. We say
that I is a deduction sound implementation of M if for
all parametrized transparent symbolic models Mtran(ν) and
for all parametrized transparent implementations Itran(ν) of
Mtran that are composable with M and I (see requirements
from Section 6) we have that

P
[
DSM∪Mtran(ν),I∪Itran(ν),A(η) = 1

]
is negligible for all probabilistic polynomial time (p.p.t.) ad-



versaries A sending only good parameters ν where DS is the
deduction soundness game defined in Figure 7. Note that
M∪Mtran(ν) can be generically composed to a parametrized
symbolic modelM′(ν) and parametrized implementation I(ν)
respectively.

Collisions.
The deduction soundness game from Figure 7 doesn’t pre-

vent collisions. I.e., a query leading to calls of the generate
function could produce bitstrings that are already in the li-
brary and therefore overwrite a value L(c) with a new one.
Note that “parse c” requests can never lead to collisions due
to the structure of the parse function (see Figure 2). Fortu-
nately, we can use a collision-free variant of the deduction
soundness game.

Lemma 2. Let DS′M(ν),I(ν),A(η) be the deduction sound-
ness game where we replace the generate function by the
collision aware generate function from Figure 3. Then no
p.p.t. adversary A can distinguish DSM(ν),I(ν),A(η) from
DS′M(ν),I(ν),A(η) with non-negligible probability. (Note that
the transparent functions are already included in M(ν) and
I(ν) here.)

Proof. The only difference between DS and DS′, and
hence the only way to distinguish them, is to produce a
collision. However, if collisions could be found with non-
negligible probability, this would break the collision free-
ness of I(ν) (we require that I(ν) is a good implementation
for all parameters ν in the definition of deduction sound-
ness Definition 5). More specifically, we can use any adver-
sary A that sends a parameter ν and can later distinguish
DS′M(ν),I(ν),A(η) from DSM(ν),I(ν),A(η) to construct an ad-
versary B that wins the collision freeness game for I(ν) (ac-
cording to Definition 3) whenever A can distinguish: All
queries by A are forwarded by B to its own game. If A finds
a collision, B wins. Otherwise A cannot distinguish.

8. COMPOSITION THEOREMS
Our notion of deduction soundness enjoys the nice prop-

erty of being easily extendable: if an implementation is de-
duction sound for a given symbolic model, it is possible to
add other primitives, one by one, without having to prove
deduction soundness, from scratch for the resulting set of
primitives.

8.1 Public datastructures
An immediate observation with interesting implications

is the following. Consider some symbolic model M with a
deduction sound implementation I. Now, extend M by a
transparent symbolic model Mtran and I by a transparent
implementation Itran of Mtran. Then, the resulting imple-
mentation is a deduction sound of M∪Mtran.

The intuition behind this result is simple: if I is sound
in presence of arbitrary transparent functions with an im-
plementation selected by the adversary, adding transparent
functions with some fixed transparent implementation pre-
serves soundness. This idea is formalized by the following
theorem.

Theorem 1. Let M be a symbolic model and I a deduc-
tion sound implementation ofM. Furthermore, letMtran be

a transparent symbolic model and Itran a transparent imple-
mentation of Mtran. If M and I are composable with Mtran

and Itran (see Section 6), then I ∪ Itran is a deduction sound
implementation of M∪Mtran.

Proof. Let A be a ppt adversary that breaks the de-
duction soundness of I ∪ Itran, i.e., by Definition 5 there
is a transparent symbolic model MAtran with a transparent
implementation IAtran such that

P
[
DS(M∪Mtran)∪MAtran,(I∪Itran)∪IAtran,A

(η) = 1
]

is non-negligible. Then clearly for the transparent symbolic
model Mtran ∪ MAtran and the transparent implementation
Itran ∪ IAtran this adversary also breaks the deduction sound-
ness of I, i.e.,

P
[
DSM∪(Mtran∪MAtran),I∪(Itran∪IAtran),A

(η) = 1
]

is non-negligible. Since I is a deduction sound implementa-
tion by requirement this concludes our proof.

8.2 Public key encryption
In this section we define a symbolic modelMPKE for pub-

lic key encryption and a corresponding implementation IPKE
based on a public key encryption scheme (PKE.KeyGen,
PKE.Enc, PKE.Dec). We show that composition of MPKE

and IPKE with any symbolic model M comprising a deduc-
tion sound implementation I preserves this property for the
resulting implementation, i.e., I ∪IPKE is a deduction sound
implementation ofM∪MPKE. This result was already stated
in [10]. However, since the definition of deduction soundness
as well as other parts of the framework (e.g., parse function)
were updated, we present an updated proof here.

8.2.1 Computational preliminaries

Definition 6 (public key encryption scheme). A
public key encryption scheme (PKE scheme) is a triple of
p.p.t. algorithms (PKE.KeyGen, PKE.Enc, PKE.Dec).

The key generation algorithm PKE.KeyGen takes an en-
coding of the security parameter and some randomness as
inputs and generates a pair (ek , dk) containing the encryp-
tion key ek and the decryption key dk.

The encryption algorithm PKE.Enc takes three arguments:
an encryption key ek, the message m ∈ {0, 1}∗, and some
randomness r ∈ {0, 1}η. If computes a ciphertext c :=
PKE.Enc(ek ,m, r).2

The decryption algorithm PKE.Dec takes a decryption key
and a ciphertext as inputs and returns a value from {0, 1}∗∪
{⊥}. We require perfect correctness, i.e.,

PKE.Dec(dk ,PKE.Enc(ek ,m, r′)) = m

for all r, r′ ← {0, 1},m ∈ {0, 1}∗ and (ek , dk) :=
PKE.KeyGen(1η, r).

Definition 7 (IND-CCA security of PKE schemes).
A PKE scheme (PKE.KeyGen, PKE.Enc, PKE.Dec) is IND-
CCA secure if for all p.p.t. adversaries A the probability

P
[
IND-CCA

(PKE.KeyGen,PKE.Enc,PKE.Dec)
A (η) = 1

]
is negligible for the IND-CCA game from Figure 8.

2Since the message m is of basetype in symbolic model given
below, we require a scheme with message space {0, 1}∗.



IND-CCA
(PKE.KeyGen,PKE.Enc,PKE.Dec)
A (η):

b← {0, 1}
oracles := ∅

on request “new oracle” do
let r ← {0, 1}η
let (ek , dk) := PKE.KeyGen(1η, r)
add ek to oracles
let ciphersek := ∅
send ek to A

on request “Oenc
ek (m)” do

if ek 6∈ oracles then
send ⊥ to A

else
let r ← {0, 1}η
if b = 0 then

let c := PKE.Enc(ek , 0|m|, r)
add (c,m) to ciphersek

else
send PKE.Enc(ek ,m, r) to A

on request “Odec
ek (c)” do

if ek 6∈ oracles then
send ⊥ to A

else
if b = 0 then

if (c,m) ∈ ciphersek for some m then
send m to A

else
send ⊥ to A

else
let dk be the decryption key for ek
send PKE.Dec(dk , c) to A

on request “guess b′” do
if b = b′ then return 1 else return 0

Figure 8: The IND-CCA game for a public key en-
cryption scheme (PKE.KeyGen, PKE.Enc, PKE.Dec).

8.2.2 Symbolic model
We first define the symbolic model (TPKE,≤PKE,ΣPKE,DPKE)

for public key encryption. The signature ΣPKE features the
following function symbols

dkx : τ dkxPKE

ekx : τ dkxPKE → τ ekxPKE

encx : τ ekxPKE ×> → τ ciphertextPKE

for x ∈ {h, c}. The randomized function dkh of arity τ
dkh
PKE re-

turns an honest decryption key. The deterministic function
ekh of arity τ

dkh
PKE → τ

ekh
PKE derives an honest encryption key

from an honest decryption key. Analogously for corrupted
decryption keys (dkh) and corrupted encryption keys (ekc).
The randomized function ench for honest encryptions has
arity τ

ekh
PKE × > → τ ciphertextPKE (encc analogously). As above

we sometimes write ekx, dkx, encx for x ∈ {h, c} to refer-
ence the honest and the corrupted variants of the functions
comprehensively. By abuse of notation, we will often write
ek lx() instead of ekx(dk lx()) where l ∈ labelsH. To complete

the formal definition we set

TPKE := {>, τ dkxPKE, τ
ekx
PKE, τ

ciphertext
PKE }

All introduced types are direct subtypes of the base type
> (this defines ≤PKE). The deduction system captures the
security of public key encryption

DPKE :=


eklx() m

enc
la
x (eklx(),m)

,

enc
la
h

(eklh(),m)

m
,

encl̂c(ek
l
c(),m)

m


These rules are valid for arbitrary labels l, l̂ ∈ labels and
adversarial labels la ∈ labelsA. Read from top left to bottom
right the following intuitions back up the rules:

• The adversary can use any honestly generated key to
encrypt some term m.

• The adversary knows the message contained in any
adversarial encryption.

• The adversary knows the message contained in any
encryption under a corrupted key.

Since we only allow for static corruption we do not need a

rule
encl̂h(ek

l
h(),m)

ekl
h
()

although we are going to attach the en-

cryption key to the ciphertext in the implementation (all
encryption keys are going to be part of the response to the
“init T,H” query by the adversary).

8.2.3 Implementation
We now give a concrete implementation IPKE for pub-

lic key encryption. The implementation uses some IND-
CCA secure public key encryption scheme (PKE.KeyGen,
PKE.Enc, PKE.Dec). To prevent collisions of ciphertexts, we
require that we have PKE.Enc(ek ,m, r) = PKE.Enc(ek ,m′, r′)
only with negligible probability for bitstrings m,m′, r given
by the adversary and r′ uniformly chosen honest random-
ness . Many PKE schemes meet this requirement directly,
e.g., all committing schemes . Furthermore, it is always
possible to extend the output of PKE.Enc with a nonce to
prevent these collisions. The computable interpretations of,
dkx, ekx, encx (for x ∈ {h, c}) are as follows:

• (MPKE dkx)(r): Let (ek , dk) := PKE.KeyGen(1η, r).

Return 〈ek , dk , τ dkxPKE〉.

• (MPKE ekx)(d̂k): Parse d̂k as 〈ek , dk , τ dkxPKE〉. Return

〈ek , τ ekxPKE〉.

• (MPKE encx)(êk ,m; r): Parse êk as 〈ek , τ ekxPKE〉. Let c :=

PKE.Enc(ek ,m, r) and return 〈c, ek , τ ciphertextPKE 〉.

The validPKE predicate.
The predicate validPKE guarantees, that all keys that may

be used by the adversary later are generated during initial-
ization (i.e., with the init query). We only allow static cor-
ruption of keys, i.e., the adversary has to decide which keys
are honest and which are corrupted at this stage. Keys may
only be used for encryption and decryption. This implicitly
prevents key cycles. More formally, based on the current
trace T of all parse and generate requests of the adversary,
the predicate validPKE returns true only if the following con-
ditions hold:



openPKE(c, L)
if c ∈ [[TPKE]] ∩ dom(L) then

return (c, L(c))

else if c = 〈dk , τ dkxPKE〉 then

return (c, g
l(c)

τ
dkx
PKE

)

else if c = 〈ek , τ ekxPKE〉 then

if d̂k ∈ dom(L) s.t. d̂k = 〈ek , dk , τ dkxPKE〉 then

return (c, ekx(d̂k))
else

return (c, g
l(c)

τ
ekx
PKE

)

else if c = 〈c′, ek , τ ciphertextPKE 〉 and (〈ek , τ ekxPKE〉, ek lx(d̂k) ∈ L then

parse d̂k as 〈ek , dk , τ dkxPKE〉
let m := PKE.Dec(dk , c′)
if m = ⊥ then

return (c, g
l(c)

τ
ciphertext
PKE

)

else

return (c, enc
l(c)
x (ek ,m))

else

return (c, g
l(c)
> )

Figure 9: Open function for public key encryption.

1. The trace starts with a query “init T,H” (T resp. H
may be the empty list). There are no further init
queries.

2. The adversary may only generate keys in the init query.
Concretely, this is guaranteed by the following rules:

(a) For the query “init T,H”, the function symbols
ekx and dkx may only occur in a term t ∈ T (i.e.,
not as subterms of other terms) of one of the two
following types (for l ∈ labelsH):

• t = ekh(dk lh()) (to generate an honest en-
cryption key)

• t = dk lc() (to generate a corrupted encryption
key)

Any label l for dk lx() must be unique in T .

(b) Any occurrence of ek lx() or dk lx() in a generate
query must have occurred in the init query. dk lx()
may only occur as argument for ekx. ek lx() may
only occur as first argument for encx.

3. The adversary must not use the function symbols for
encryption (ench, encc) in the init query.

Checking the implementation.
We first observe that IPKE is collision-free (Definition 3):

Basically, collisions for keys can only occur with negligi-
ble probability since they break the security of the scheme
(which is IND-CCA secure). We prevent collisions of ci-
phertexts by the requirements stated above. Furthermore,
it is easy to see that openPKE meets the requirements of Def-
inition 4 and that validPKE meets the requirements for valid
functions.

8.2.4 PKE composability

Theorem 2. Let M be a symbolic model and I a de-
duction sound implementation of M. If (MPKE, IPKE) and
(M,I) are compatible (see requirements in Section 6) and
the PKE scheme (PKE.KeyGen,PKE.Enc,PKE.Dec) is IND-
CCA secure, then I ∪ IPKE is a deduction sound implemen-
tation of M∪MPKE.

Proof. Let A be a p.p.t. adversary and Mtran(ν) a
parametrized transparent symbolic model with a correspond-
ing parametrized implementation Itran(ν) such thatMtran(ν)
and Itran(ν) are composable with M∪MPKE and I ∪ IPKE
(see requirements in Section 6) for ν send by A. We have
to show that A can win the deduction soundness game
DS(M∪MPKE)∪Mtran(ν),(I∪IPKE)∪Itran(ν)(η) only with negligible
probability.

We first explain the basic idea behind this proof. To win
the deduction soundness game, A has to provide a bitstring
corresponding to a term t that it does not “know” symbol-
ically, i.e., A cannot deduce t from the terms it generated
previously. Intuitively, by adding public key encryption, ex-
actly one additional opportunity to learn something about
such a term is created: A can retrieve honestly generated
encryptions of t under honest encryption keys. In all other
encryption scenarios, A knows the message by the rules of
DPKE. The strategy of this proof consists of two steps: First,
we replace honestly generated encryptions of terms by en-
cryptions of 0-bitstrings (using the IND-CCA security of
the encryption scheme). Hence the adversary cannot learn
anything about the corresponding clear texts (except their
length) which eliminates the additionally opportunity for A.
Second, we show that encryption can be simulated by trans-
parent functions. Thus, any other way for A to come up
with non-DY terms leads to a non-DY request in the de-
duction soundness game for M and I. Since I is deduction
sound by assumption, this concludes our proof.

Concretely, we proof this with a sequence of games.

Game 0.
In Game 0 A plays the original deduction soundness game

DS(M∪MPKE)∪Mtran(ν),(I∪IPKE)∪Itran(ν)(η).

Game 1.
In Game 1 we replace the generate function by the collision-

aware generate function from Figure 3. Since (I ∪ IPKE) ∪
Itran(ν) is a collision-free implementation Game 0 and Game 1
are indistinguishable by Lemma 2.

Claim: Game 0 and Game 1 are indistinguishable.

Game 2.
In Game 2 we deprive the adversary of any option to learn

something from ciphertexts or about honest decryption keys.
We replace the honest decryption keys in the library by ran-

dom bitstrings and add the rule
ekx(dk

l
x())

dklx()
to the deduction

system. Intuitively, A doesn’t notice the difference since
the PKE scheme is IND-CCA secure. More concretely, in-
stead of calling (MPKE ekh)(r), we pick r ← {0, 1}η, compute
(ek , dk) := PKE.KeyGen(1η, r), pick r′ ← {0, 1}|dk|, remem-
ber dk as the decryption key corresponding to ek and use
d̂k := 〈ek , r′, τ dkxPKE〉 as bitstring for dk lh(). Additionally, we
change the parsing function such that it now uses the remem-



bered corresponding keys for decryption instead of those in
the library. Furthermore, to replace the ciphertexts created
under honest keys by encryptions of 0, we replace the line

let c := (M f)(c1, . . . , cn; r)

in the generate function with

if t = enc l̂h(ek lh(),m) then

let c := (M ench)(c1, 0
|c2|; r)

else
let c := (M f)(c1, . . . , cn; r)

Note that c1 and c2 resemble the bitstrings corresponding
to the encryption key and the message respectively. Thus,
the generation of bitstrings works exactly as in Game 1 if
t is not an encryption under an honest key. Otherwise we
generate all subterms as usual but replace the message by a
bitstring of zeros of appropriate length.

Claim: Game 1 and Game 2 are indistinguishable.
Let A be an adversary that can distinguish between play-

ing Game 1 and Game 2. Then we can construct an adver-
sary B that will win the oracle-based IND-CCA game for
PKE scheme (PKE.KeyGen,PKE.Enc,PKE.Dec) from Fig-
ure 8.

Generating bitstrings. For each query“generate ekh(dk lh())”,
instead of calling the generate function, B does the following:
It requests a new oracle from the IND-CCA game and re-
ceives an encryption key ek as well as access to a correspond-
ing encryption oracle, denoted Oenc

ek , (which either encrypts
the given messages or 0-bitstrings of the same lengths) and
to a corresponding decryption oracle, denoted Odec

ek . B now

picks a random bitstring dk such that d̂k := 〈ek , dk , τ
dkh
PKE〉 ∈

[[τ
dkh
PKE]] and adds (d̂k , dk lh()) and (〈ek , τ

ekh
PKE〉, ekh(d̂k)) to L.

Note that by requirement 2 A will never learn the value
of dk . All other types of generate requests are handled by
calling the generate function.

To use the provided oracles to generate honest encryp-
tions, B furthermore uses a modified generate function. Con-
cretely, it replaces the line

let c := (M f)(c1, . . . , cn; r)

with

if t = enc l̂h(ek lh(),m) then

let c := 〈Oenc
c1 (c2), c1, τ

ciphertext
PKE 〉

else
let c := (M f)(c1, . . . , cn; r)

Again, c1 and c2 resemble the bitstrings corresponding to
the encryption key and the message respectively. Note that
this function produces encryptions like the generate function
in Game 1 if the oracle encrypts the given message and like
the generate function in Game 2 otherwise, i.e., if the oracle
encrypts a 0-bitstring.

Parsing bitstrings. B also has to modify the parsing
function to deal with adversarial ciphertexts created with
honest keys. More specifically, it removes the lines

parse d̂k as 〈ek , dk , τ dkxPKE〉
let m := PKE.Dec(dk , c′)

in the openPKE function from Figure 9 and adds

if (〈ek , τ
ekh
PKE〉, ek lh()) ∈ L (honest key) then

let m := Odec
ek (c′)

else

parse d̂k as 〈ek , dk , τ dkcPKE〉
let m := PKE.Dec(dk , c′)

For an IND-CCA secure public key encryption scheme this
function decrypts like the original openPKE function. B just
uses the decryption oracle instead of the decryption key
during the simulation. Additionally, if openPKE is called

for a bitstring c ∈ [[τ
dkh
PKE]], B parses c as 〈ek , dk , τ

dkh
PKE〉. B

then picks a random message m ← {0, 1}η and computes
PKE.Dec(dk ,Oenc

ek (m)) = x. If x 6= ⊥ and x = m, B sends
“guess 1” to the IND-CCA game and wins with overwhelm-
ing probability.

Analysis. If the oracle produces real encryptions, B sim-
ulates Game 1 for A. The only difference are the random
values for honest decryption keys in the library. Those val-
ues are only used when parsing bitstrings. The difference
can be detected by A if it guesses one of the random bit-
strings (which can only happen with negligible probability)
or if it parses a bitstring belonging to a honest decryption
key in Game 1. However, in the latter case, B wins the
IND-CCA game as described above. Hence the simulation
is indistinguishable for A if the oracles produce real encryp-
tions.

If the oracles produces encryptions of zero, B perfectly
simulates Game 2 for A. Hence, every correct guess of A on
which game he is playing leads to a correct guess of B in the
IND-CCA game. Therefore, A cannot distinguish Game 1
and Game 2.

Game 3.
In Game 3 A interacts with an adversary B that plays

the deduction soundness game for M and I and intuitively
simulates Game 2 for A. Basically, B uses transparent func-
tions to add public key encryption to M. We construct B
as follows:

Transparent symbolic model for public key en-
cryption. We first describe the parametrized transparent
symbolic modelMtran

PKE(ν) and the corresponding parametrized
implementation ItranPKE(ν) B will use to simulate IPKE. We
use the data types and subtype relation from MPKE. ν is
expected to be an encoding of a list of label-triple pairs
(l, (ek , dk , dk ′)) (l ∈ labels) where the triple consist of a key-
pair ek , dk and an additional value dk ′ (used to represent
honest decryption keys in the library). The signature Σtran

PKE

is the following:

• deterministic fdklx() with ar(fdklx()) = τ dkxPKE for all labels
l ∈ ν

• deterministic feklx() with ar(feklx()) = τ ekxPKE for all labels
l ∈ ν

• randomized fench(eklh(),0`)
with ar(fench(eklh(),0`)

) =

τ ciphertextPKE for all ` ∈ N, l ∈ ν

• randomized fench(eklh(),·)
with ar(fench(eklh(),·)

) = > →
τ ciphertextPKE for all l ∈ ν

• randomized fencc((eklc(),· with ar(fencc((eklc(),·) = > →
τ ciphertextPKE for all l ∈ ν



We specify a parametrized implementation ItranPKE(ν) for
Mtran

PKE and for each (l, (ek , dk , dk ′)) ∈ ν as follows:

• (M tran
PKE fdklx())() returns 〈ek , dk ′, τ dkxPKE〉.

• (M tran
PKE feklx())() returns 〈ek , τ ekxPKE〉.

• (M tran
PKE fench(eklh(),0`)

)(r) returns (MPKE ench)(〈ek , τ ekxPKE〉, 0
`; r).

• (M tran
PKE fench(eklh(),·)

)(m; r) returns (MPKE ench)(〈ek , τ ekxPKE〉,m; r).

• (M tran
PKE fencc((eklc(),·)(m; r) returns (MPKE encc)(〈ek , τ ekxPKE〉,m; r).

(M tran
PKE func)(b):

if b = 〈ek , dk ′, τ dkxPKE〉 for some (l, (ek , dk , dk ′)) ∈ ν then
return fdklx()

else if b = 〈ek , τ ekxPKE〉 for some (l, (ek , dk , dk ′)) ∈ ν then
return feklx()

else if b ∈ [[τ ciphertextPKE ]] then

parse b as 〈c, ek , τ ciphertextPKE 〉
if there is (l, (ek , dk , r′)) ∈ ν for some l, dk then

let m := PKE.Dec(dk , c)
if m 6= ⊥ then

if l belongs to an honest key then
return fench(eklh(),·)

else
return fencc((eklc(),·

return ⊥

For b with (M tran
PKE func)(b) = fench(eklh(),·)

we have

(l, (ek , dk , dk ′)) ∈ ν with PKE.Dec(dk , c) =: m 6= ⊥ for

b = 〈c, ek , τ ciphertextPKE 〉 and define (M tran
PKE fench(eklh(),·)

1)(b) :=

m. Analogously for (M tran
PKE func)(b) = fencc((eklc(),·.

Convert terms. Adversary A uses the function symbols
of the original symbolic model MPKE. Hence B needs to
map these symbols to the corresponding transparent func-
tions. Towards this goal we introduce the function convert
as follows (the first matching rule is applied):

• convert(f l(t1, . . . , tn)) = f l(convert(t1), . . . , convert(tn))
for all f 6∈ ΣPKE.

• convert(ekx(dk lx())) = feklx()

• convert(dk lx()) = fdklx()

• convert(enc l̂h(ek lh(),m)) = f
l̂(m)

ench(ek
l
h
(),0`)

() if l̂ ∈ labelsH

• convert(enc l̂h(ek lh(),m)) = f l̂
ench(ek

l
h
(),·)(convert(m)) if

l̂ ∈ labelsA

• convert(enc l̂c(ek lc(),m)) = f l̂encc((eklc(),·
(convert(m))

For a list of terms T we define convert(T ) := {convert(t) :
t ∈ T}.
B simulates Game 2 for A while playing

DSM∪(Mtran
PKE

(ν)∪Mtran(ν′)),I(∪ItranPKE
(ν)∪Itran(ν′))(η)

Note that we can generically compose Mtran
PKE(ν) ∪Mtran(ν

′)
to one parametrized transparent model M′tran(ν||ν′) since ν
and ν′ must be good (analogously for the implementation).
However, for the sake of clarity, we keep them apart to dis-
tinguish the transparent functions (and parameter) provided

by A from the additional transparent functions introduced
by B. Next we describe how B deals with the queries re-
ceived from A.

init query. B receives a lists of terms T,H from A. Ini-
tially, B sets ν := ∅. For each occurrence of dk lx() ∈ T
B then picks a nonce r ← {0, 1}η and generates a key-
pair (ek , dk) := PKE.KeyGen(1η, r). If x = h, B picks

dk ′ ← {0, 1}|dk|. Otherwise B sets dk ′ = dk . (dk ′ rep-
resents the decryption key in the library and should be a
fresh random value for honest decryption keys.) B then
adds (l, (ek , dk , dk ′)) to ν. Finally, B sends ν′||ν to its game
and subsequently queries “init convert(T ), convert(H)”. Af-
terwards, B queries “sgenerate dk lh()” for each dk lh() ∈ T .

generate queries. For each request “generate t” B adds
“generate t” to T. Then B sends “generate convert(t)” to its
game and relays the response to A. For each subterm t′ ∈
st(t) that is an honest encryption, i.e., t′ = enc l̂h(ek lh(),m) B
additionally sends “sgenerate convert(m)” to its game. Anal-
ogously for “sgenerate t”.

parse queries. For each request “parse c” B sends “parse
c” to its game and receives a term t. B sends convert−1(t)
to A.

Claim: Game 2 and Game 3 are indistinguishable.
We show that B, while playing the game

DSM∪(Mtran
PKE

(ν)∪Mtran(ν′)),I(∪ItranPKE
(ν)∪Itran(ν′))(η),

perfectly simulates Game 2 for A. First, we show that any
valid trace produced byA in Game 2 leads to a valid trace by
B (we say that these traces correspond). Then we show that
every pair of valid corresponding traces leads to the same
output for A by proving that a suitable invariant holds for
the relation between the libraries in both settings.

Valid A leads to valid B. First, we observe that any
trace TA produced by A in Game 2 that is valid leads to
a valid trace TB produced by B: The application of convert
to terms leads to variations the sense of requirement i for
valid predicates. The additional sgenerate queries by B are
valid by requirement ii. Furthermore, if a term t meets the
requirement for the generate function in Game 2, convert(t)
meets the requirements in the game B is playing.

Invariant. We still have to show that the output of the
simulation matches the output of Game 2. First we observe
that there is a bijection between the random coins used in
Game 2 and the simulation. B uses the same amount of
randomness to generate the keypairs as Game 2 does. All
further uses of random coins coincide. Therefore, we can
w.l.o.g. assume that the same random coins are used in
Game 2 and the simulation. We show that the following
invariants holds for all valid traces produced by A and the
corresponding trace produced by B:

1. dom(Lext) = dom(Lsmall)

2. ∀c ∈ dom(Lsmall) : convert−1(Lsmall [[c]]) = Lext [[c]]

where Lext is the library in Game 2 and Lsmall the library in
the game B is playing (which we call the small game from
now on).

Initially, we have Lext = Lsmall = ∅ and the invariant
holds obviously.

init T,H. According to requirements 2, 3 for public key
encryption we can distinguish the following three types of
terms t ∈ T ∪H.



• t = ekh(dk lh()), i.e., convert(t) = fekl
h
().

• t = dk lc(), i.e., convert(t) = fdklc().

• t doesn’t contain function symbols from ΣPKE and
convert(t) = t:

We observe that each initial term t that is a key generation
in the extended game, B adds the corresponding converted
term convert(t) to its init request. This corresponds to the
key generation done in the extended game while the keys in
the small game are hard coded in the transparent functions.
After this step we have dom(Lext\{(c, dk lh()) : c ∈ [[τ

dkh
PKE]], l ∈

labelsH}) = dom(Lsmall) since the generated keys coincide
but we do not add the honest decryption keys to the library
in the simulation. This is gap is closed by the additional
silent generate queries by B. Then the invariants hold.

generate t. Assume that our invariants 1 and 2 hold for
libraries Lext and Lsmall . Then, they still hold after a valid
query “generate t” by A has been processed. In the extended
game we have (cext , L

′
ext) := generateMext ,R(t, Lext). In the

simulation, B sends “generate convert(t)” to the small game
and we have (csmall , L

′
small) := generateMsmall ,R(convert(t), Lsmall)

(and maybe additional calls to generateMsmall ,R if t contains
honestly generated encryptions using honest keys). We ob-
serve the following (where Mext and Msmall are the Turing
Machines in the extended and in the small game respec-
tively):

• By requirement 2, Mext is never called for ekx, dkx.
Analogously for Msmall and the transparent transla-
tions of keys.

• For an honest encryption subterm t = enc l̂h(ek lh(),m),
we have a call (cext , L

′
ext) := generateMext ,R(t, Lext) in

the extended game and calls (csmall , L
′
small) :=

generateMsmall ,R(f l̂
ench(ek

l
h
(),0`)

(m)(ek lh()), Lsmall) and

(c′small , L
′′
small) := generateMsmall ,R(m,L′small) in the

small game (since B sends an additional query
“sgenerate m” to the small game). It is easy to see
that the newly generated bitstrings coincide.

• For all other terms convert(t) only removes keys from
t which are already part of the library. The rest of the
term remains intact and hence the newly generated
bitstrings coincide.

Our invariant hold for L′ext and L′small . Note that this implies
cext = csmall which is the response sent to A in both settings.
Analogously for queries “sgenerate t”.

parse c. Assume that our invariants 1 and 2 hold for
libraries Lext and Lsmall . Then, they still hold after a valid
query “parse c” by A has been processed. If c ∈ dom(Lext),
nothing changes and due to invariant 2 the response to A
is the same in Game 2 and Game 3. Otherwise, since the
implementations in both games are type-safe (Definition 4)
we can focus our analysis on opening bitstrings from [[TPKE]].
For those it is easy to check that the open function for opens
them structurally the same way (modulo conversion) the
function openPKE does.

Claim: If A wins, then B wins Game 3 .
Due to the invariants 1 and 2 from above, we know that

whenever a bitstring c sent by A is parsed as a term t in

Game 3, it is parsed as convert(t) in the small game. By
checking the deduction systems of both games we see that
if t is non-DY in Game 3, then convert(t) is non-DY in the
small game. Since I is a deduction sound implementation
of M A can win Game 3 only with negligible probability
which concludes our proof.

8.3 Signatures
In this section we show that any deduction sound imple-

mentation can be extended by a signature scheme. More
precisely, composition works if we require a strong EUF-
CMA secure signature scheme and enforce static corruption.
The result is again a deduction sound implementation.

8.3.1 Symbolic model
We first define the symbolic model (TSIG,≤SIG,ΣSIG,DSIG)

for signatures. The signature ΣSIG features the following
function symbols:

sk : τ skSIG

vk : τ skSIG → τ vkSIG

sig : τ skSIG ×> → τ sigSIG

The randomized function sk of arity τ skSIG returns a signing
key. The deterministic function vk of arity τ skSIG → τ vkSIG de-
rives a verification key from a signing key. The randomized
signing function sig has arity τ skSIG × > → τ sigSIG and, given a
signing key and a message of type >, represents a signature
of that message. To complete the formal definition we set
the types

TSIG := {>, τ skSIG, τ vkSIG, τ sigSIG}

All introduced types are direct subtypes of the base type
> (this defines ≤SIG). The deduction system captures the
security of signatures

DSIG :=


skl()

vk(skl())
,

sig l̂(skl(),m)
m

, skl() m

sigla (skl(),m)


These rules are valid for arbitrary labels l, l̂ ∈ labels and
adversarial labels la ∈ labelsA. Read from top left to bottom
right the following intuitions back up the rules:

• The adversary can derive verification keys from signing
keys.

• Signatures reveal the message that was signed.

• The adversary can use known signing keys to deduce
signatures under those keys.

Although the verification key is going to be part of the com-
putational implementation of a signatures, we don’t need

a rule sig l̂(skl(),m)

vk(skl)
since we enforce static corruption where

adversary knows all verification keys.

8.3.2 Implementation
We now give a concrete implementation ISIG for signa-

tures. The implementation uses some strong EUF-CMA
secure signature scheme (SIG.KeyGen,SIG.Sig,SIG.Vfy). As
usual, here SIG.KeyGen is a generation algorithm for key
pairs, SIG.Sig is an signing algorithm and SIG.Vfy is a ver-
ification algorithm. Note that SIG.Sig is an algorithm that



openSIG(c, L)
if c ∈ [[TSIG]] ∩ dom(L) then

return (c, L(c))
else if c = 〈sk , τ skSIG〉 then

return (c, g
l(c)

τ sk
SIG

)

else if c = 〈vk , τ vkSIG〉 then

if ŝk ∈ dom(L) s.t. ŝk = 〈vk , sk , τ skSIG〉 then

return (c, vk(ŝk))
else

return (c, g
l(c)

τvk
SIG

)

else if c = 〈σ,m, vk , τ sigSIG〉 then

if (〈vk , τ vkSIG〉, vk(ŝk)) ∈ L
and SIG.Vfy(vk , σ,m) = true then

return (c, sig l(c)(ŝk ,m))
else

return (c, g
l(c)

τ
sig
SIG

)

else

return (c, g
l(c)
> )

Figure 10: Open function for signatures.

takes three inputs: the signing key, the message to be signed
and the randomness that is used for signing.3 The com-
putable interpretations of sk , vk , sig are as follows:

• (MSIG sk)(r): Let (vk , sk) := SIG.KeyGen(1η, r). Re-
turn 〈vk , sk , τ skSIG〉.

• (MSIG vk)(ŝk : Parse ŝk as 〈vk , sk , τ skSIG〉. Return 〈vk , τ vkSIG〉.

• (MSIG sig)(ŝk ,m; r): Parse ŝk as 〈vk , sk , τ skSIG〉. Let σ :=

SIG.Sig(sk ,m, r) and return 〈σ,m, vk , τ sigSIG〉.

The validSIG predicate.
Intuitively, we require static corruption of signing keys and

that verification and signing keys are only used for signing
and verification. Formally, based on the current trace T of all
parse and generate requests of the adversary, the predicate
validSIG returns true only if the following conditions hold:

1. The trace starts with a query “init T,H” (T,H may be
the empty list respectively). There are no further init
queries.

2. The adversary may only generate keys in the init query.
Concretely, this is guaranteed by the following rules:

(a) For the query “init T,H”, the function symbols
sk and vk may only occur in a term t ∈ T (i.e.,
not as subterms of other terms) of one of the two
following types (for l ∈ labelsH):

• t = vk(sk l()) (to generate an honest signing
key)

• t = sk l() (to generate a corrupted signing
key)

Any label l for sk l() must be unique in T .

3Since the message m is of basetype, we require a scheme
with message space {0, 1}∗.

(b) Any occurrence of vk(sk l()) or sk l() in a generate
query must have occurred in the init query.

3. The adversary must not use the function symbol sig
in the init query.

4. The term sk l() may only occur as the first argument
of sig .

Checking the implementation.
We first observe that ISKE is collision-free (Definition 3):

Basically, collisions for keys can only occur with negligi-
ble probability since they break the security of the scheme
(which is strong EUF-CMA secure). Collisions of signa-
tures can only occur with negligible probability as well due
to the EUF-CMA security. Furthermore, it is easy to see
that openSIG meets the requirements of Definition 4 and that
validSIG meets the requirements for valid functions.

Theorem 3. LetM be a symbolic model and I be deduc-
tion sound implementation ofM. If (MSIG,ISIG) and (M,I)
are compatible (see requirements in Section 6), then I ∪ISIG
is a deduction sound implementation of M∪MSIG for any
ISIG constructed from a strong EUF-CMA secure signature
scheme.

Proof. First, we briefly describe the intuition behind
the proof: Let A be an adversary playing the deduction
soundness game. Assume that A queries “parse c” and c
is parsed as a non-DY term t that contains a signature

sig := sig l̂(sk l(),m) and S 6` sig (where S is the list of terms
generated for A in the deduction soundness game). We dis-
tinguish two possible ways the adversary could potentially
have learned sig :

If sig was previously generated for A (i.e., sig ∈ st(S)

and l̂ ∈ labelsH), we say that A reconstructed sig . Since
signatures and transparent functions do not introduce func-
tion symbols that allow for signatures as input such that
the signature is not derivable from the constructed term, A
must have broken the deduction soundness of I in this case.
Hence, using A, we can construct an successful adversary
B on the deduction soundness of I. B simulates signatures
using transparent functions.

If sig was not previously generated for A (i.e., l̂ ∈ labelsA),
we say that A forged sig . In this case A can be used to break
the strong EUF-CMA security of the signature scheme.

Since reconstructions and forgeries can only occur with
negligible probability the composed implementation I ∪ISIG
is a deduction sound implementation of M∪MSIG.

Game 0.
In Game 0 A plays the original deduction soundness game

DS(M∪MSIG)∪Mtran(ν),(I∪ISIG)∪Itran(ν)(η).

Game 1.
In Game 1 we replace the generate function by the collision-

aware generate function from Figure 3. Since (I ∪ ISIG) ∪
Itran(ν) is a collision-free implementation Game 0 and Game 1
are indistinguishable by Lemma 2.

Game 2.
Game 2 is Game 1 with a changed winning condition for

the adversary. First we introduce the set of reconstruction



rules as follows: Dr := { t

sigĥ(skh(),m)
: t is a term from

(M∪MSIG)∪Mtran(ν), ĥ, h ∈ labelsH and sig ĥ(skh(),m) is
a subterm of t}.

Let `1 denote the deduction relation of the previous game
based on the rules from D ∪ DSIG ∪ Dtran. In this game
we use the deduction relation `2 based on the rules from
D ∪ DSIG ∪ Dtran ∪ Dr, i.e., the adversary may now use any
honestly generated signature to deduce new terms. In other
words, the adversary cannot win (produce a non-DY term)
any longer by using a signature that has been generated for
it.

Claim: Game 1 and Game 2 are indistinguishable.
The only difference between Game 1 and Game 2 is the

handling of parse requests. Since `2 potentially allows to
deduce more terms from a given set of terms S than `1, the
adversary might produce a non-DY term in Game 1 that is
DY in Game 2. We now show that the adversary breaks the
deduction soundness of I in that case. This part of the proof
is very similar to the proof of indistinguishability between
Games 2 and 3 in Theorem 2.

The simulator. We use A to construct an adversary B
on the deduction soundness of I. Towards this goal B, in ad-
dition to the transparent symbolic model Mtran(ν

′) used by
A, uses a transparent symbolic model to simulate signatures
in the deduction soundness game for I.

Transparent symbolic model for signatures. We
first describe the parametrized transparent symbolic model
Mtran

SIG (ν) and the corresponding parametrized implementa-
tion ItranSIG (ν) B will use to simulate ISIG. We use the data
types and subtype relation from MSIG. ν is expected to
be an encoding of a list of label-triple pairs (l, (ek , dk , sk ′))
(l ∈ labels) where the triple consist of a keypair vk , sk and an
additional value sk ′ (used to represent honest signing keys
in the library). The signature Σtran

SIG is the following:

• deterministic fhsk with ar(fhsk ) = τ skSIG for all labels l ∈ ν

• deterministic fhvk with ar(fhvk ) = τ vkSIG for all labels l ∈ ν

• randomized fsig(skh(),·) with ar(fsig(skh(),·)) = > → τ sigSIG

for all labels l ∈ ν
We specify a parametrized implementation ItranSIG (ν) forMtran

SIG

as follows for each (l, (vk , sk , sk ′)) ∈ ν:

• (M tran
SIG fhsk )() returns 〈vk , sk ′, τ skSIG〉

• (M tran
SIG fhvk )() returns 〈vk , τ vkSIG〉

• (M tran
SIG fsig(skh(),·))(m; r) returns (MSIG sig)(〈sk , τ skSIG〉,m; r)

Furthermore, we have to define the transparent modes of
operation for M tran

SIG . (M tran
SIG proj fsig(skh(),·) 1)(sig) parses

sig as 〈σ,m, vk , τ sigSIG〉 and returns m if parsing succeeds

and ⊥ otherwise. (M tran
SIG func)(b) returns fhsk if for some

(l, (vk , sk , sk ′)) ∈ ν b can be parsed as 〈vk , sk ′, τ skSIG〉 and fhvk
if b can be parsed as 〈vk , τ vkSIG〉. If b ∈ [[τ sigSIG]], (M tran

SIG func) tries

to parse b as 〈σ,m, vk , τ sigSIG〉. If parsing succeeds,
SIG.Vfy(vk , σ,m) = true and there is a (l, (vk , sk , sk ′)) ∈ ν,
then (M tran

SIG func) returns fsig(skh(),·), ⊥ otherwise.
Convert terms. Adversary A uses the function sym-

bols of the original symbolic modelMSIG. Hence B needs to
map these symbols to the corresponding transparent func-
tions. Towards this goal we introduce the function convert
as follows (the first matching rule is applied):

• convert(f l(t1, . . . , tn)) = f l(convert(t1), . . . , convert(tn))
for all f 6∈ ΣSIG

• convert(skh()) = fhsk ()

• convert(vk(skh())) = fhvk ()

• convert(sig ĥ(skh(),m) = f ĥsig(skh(),·)(convert(m))

For a list of terms T we define convert(T ) := {convert(t) :
t ∈ T}.
B simulates Game 1 for A while playing

DSM∪(Mtran
SIG

(ν)∪Mtran(ν′)),I(∪ItranSIG
(ν)∪Itran(ν′))(η)

Note that we can generically compose Mtran
SIG (ν) ∪Mtran(ν

′)
to one parametrized transparent model M′tran(ν||ν′) since ν
and ν′ must be good (analogously for the implementation).
However, for the sake of clarity, we keep them apart to dis-
tinguish the transparent functions (and parameter) provided
by A from the additional transparent functions introduced
by B. Next we describe how B deals with the queries re-
ceived from A.
init query. B receives a lists of terms T,H from A. Ini-

tially, B sets ν := ∅. For each occurrence of sk l() ∈ T
B then picks a nonce r ← {0, 1}η and generates a keypair
(vk , sk) := SIG.KeyGen(1η, r). B sets sk ′ = sk . (dk ′ rep-
resents the signing key in the library and will be a fresh
random value for honest signing keys in a later simulation.)
B then adds (l, (vk , sk , sk ′)) to ν. Finally, B sends ν′||ν to its
game and subsequently queries “init convert(T ), convert(H)”.
Afterwards, B queries “sgenerate sk l()” for each sk l() ∈ T .

The other queries are handled exactly as in the simulation
using transparent functions in Theorem 2. Likewise, the
proof that the simulation - apart from the winning condition
- perfectly simulates Game 1 (and thus Game 2) is analogous
to the corresponding proof in Theorem 2.

The changed winning condition. Let us now assume
that A sends a “parse c” such that c is parsed as a non-DY
term t in Game 1 while t is DY in Game 2. Concretely, we
have S 6`1 t and S `2 t where S is the set of the terms previ-
ously generated forA. We have to show that convert(S) 6`sim
convert(t) where convert(S) := {convert(t) : t ∈ S}, i.e., that
A breaks the small library in this case. Since the simulation
is perfect, c is actually parsed as convert(t) in the simulation.

From `2 to `1. By Lemma 4 there is an S′ with S `2
S′ such that S′ 6`1 t and S′ ∪ {sig ĥ(skh,m)} `1 t where

sig ĥ(skh,m) ∈ st(S′) (i.e., derivable by a rule from Dr).
From `sim to `1. In this paragraph we show that if

convert(t) was deducible in the simulation, t would be de-
ducible in Game 1. Therefor we assume convert(S′) `sim
convert(t) towards contradiction. Concretely, we show that
it implies S′ `1 t contradicting S′ 6`1 t which we have due
to the previous paragraph.

Let π be a proof for convert(S′) `sim convert(t). Then
there is a proof π′ for convert(S′) `sim convert(t) such
that for every αi = m

fl
sig(skh(),·)

(m)
we have f lsig(skh(),·)(m) ∈

st(convert(t)).
Assume we had an αi = m

fl
sig(skh(),·)

(m)
in π such that

f lsig(skh(),·)(m) 6∈ st(convert(t)). Furthermore, and w.l.o.g.,

we assume that f lsig(skh(),·)(m) 6∈ st(convert(S′)) (a justifica-

tion for this follows in the next paragraph). We define the
substitution θ on terms as θ(f l(t1, . . . , tn)) = f l(θ(t1), . . . , θ(tn))



for all function symbols f ! = fsig(skh(),·) and θ(f lsig(skh(),·)(m)) =

m (we could pick any term from Si−1 here). convert(S′) =:

S0
α1→ · · ·

αi−1→ Si−1
θαi+1→ θ(Si+1) · · · θαn→ θ(Sn) is a new

proof π̃ for convert(S′) `sim convert(t) since

• Sn 3 convert(t) → θ(Sn) 3 θ(convert(t)) = convert(t)
since f lsig(skh(),·)(m) 6∈ st(convert(t))

• θ(Sj) = Sj and θ(αj) = αj for j ∈ {1, . . . , i− 1} since
f lsig(skh(),·)(m) 6∈ st(convert(S′))

• θ(αj) is still an instantiation of the same rule as αj for
j ∈ {i+1, . . . , n} since the only available rule that uses

the structure of f lsig(skh(),·)(m) is
fl
sig(skh(),·)

(x)

x
. How-

ever, none of the αj can be an instantiation of this rule
since m ∈ Sj−1 for j ∈ {i+ 1, . . . , n} (and we are only
considering proofs where already known terms must
not be derived again).

Why can we assume f lsig(skh(),·)(m) 6∈ st(convert(S′)) w.l.o.g.?

f lsig(skh(),·)(m) ∈ st(convert(S′)) implies sig l(skh(),m) ∈
st(S′). Furthermore, the setting in Game 1 satisfies the
requirements for Lemma 3 and t′ = sig l(skh(),m): Instanti-
ations of rules from D∪Dtran use signature terms in a black-
box way and hence satisfy property (i). Instantiations of
rules from DSIG satisfy either (i) or (ii). Thus, by Lemma 3
we have S′ `1 sig l(skh(),m). Converting this proof leads
to a proof convert(S′) `sim f lsig(skh(),·)(m) that does not use

a rule of the type x

fl
sig(skh(),·)

(x)
. Hence we can always find

a proof where instantiations m

fl
sig(skh(),·)

(m)
are only used for

f lsig(skh(),·)(m) 6∈ st(convert(S′)).

In conclusion, if we find a proof π for convert(S′) `sim
convert(t), then we find a proof π′ that does not contain
any αi of type m

fl
sig(skh(),·)

(m)
. We then apply convert−1 to

this proof and get a proof for S′ `1 t which is a contra-
diction to our requirements for S′. Hence we cannot have
convert(S′) `sim convert(t) and thus “parse c” lets the sim-
ulator win the deduction soundness game for I where sig-
natures are replaced by transparent functions. This proves
our claim that Game 1 and Game 2 are indistinguishable.

Game 3.
We define the set Df := { vk(x)

x
}. Let `2 denote the deduc-

tion relation of the previous game based on the rules from
D∪DSIG ∪Dtran ∪Dr. In this game we use the deduction re-
lation `3 based on the rules from D∪DSIG ∪Dtran ∪Dr ∪Df ,
i.e., the adversary is allowed to derive the signing key for
any verification key in use. This also means that the adver-
sary can no longer win by producing a forgery. Furthermore
we replace the honest signing keys in the library by random
bistrings analogously to Game 2 in Theorem 2.

Claim: Game 2 and Game 3 are indistinguishable..
Let A be an adversary for Game 2. To prove our claim we

show how an adversary B for the strong EUF-CMA security
game can be constructed usingA. WheneverA wins Game 2
by having a bitstring c parsed as a term t that is non-DY
in Game 2 but is DY in Game 3, B will win its game. Since
our signature scheme is strongly EUF-CMA secure, such a
“distinguishing”c can only be produced by an adversary with

negligible probability. We first describe the adversary B in
detail.

init request. By requirement (1) A starts with a request
“init T,H”. Furthermore, by requirement (2), we can distin-
guish three types of terms t in T . They are handled by the
simulator as follows:

• t = vk(sk l()) (A requests an honest signing key): B re-
quest a verification key vk with a corresponding sign-
ing oracle from the strong EUF-CMA game. Then, it
picks a random value sk ′ and sets ŝk := 〈vk , sk ′, τ skSIG〉.
We refer to the signing oracle corresponding to vk with
Osig

ŝk
(·). B sets L := L∪{(ŝk , sk l()), (〈vk , τ vkSIG〉, vk(ŝk))}

and adds v̂k to the list of bistrings that will be returned
to A.

• otherwise we have t = skh() (A requests a corrupted
signing key) or t does not contain function symbols
from ΣSIG (note that t must not contain signatures by
3). In this case B uses the normal generate function
and computes (c, L) := generate(t, L). It then adds c
to the list of bitstrings that will be returned to A.

After the init request, B changes the generate function
to use the oracles for signatures under honest signing keys.
Concretely, it replaces the line

let c := (M f)(c1, . . . , cn; r)

with

if t = sig ĥ(skh(),m) then

let c := 〈Osig
c1 (c2), c2, vk , τ sigSIG〉

else
let c := (M f)(c1, . . . , cn; r)

Note that the bitstrings c1 and c2 correspond to the signing
key and the message to be signed respectively. Using the up-
dated generate function, B simulates the rest of Game 2 ac-
cording to the normal deduction soundness game from Fig-
ure 7. The simulation is indistinguishable:

• There is a bijection between the randomness used in
an execution of Game 2 and the randomness used in
the simulation: The randomness used for key genera-
tion and for generating signatures under honest keys
is used by the strong EUF-CMA game in the simula-
tion (and this is the only difference between Game 2
and the simulation as far as the use of randomness is
concerned).

• The fact that the library contains randomized hon-
est signing keys cannot be detected by the adversary
for the same reason the randomized honest encryption
keys cannot be detected by the adversary in Game 2
in Theorem 2: According to validSIG (requirement (4))
signing keys may only occur as the first argument to
sig . If the adversary parses a bitstring that can be
used as a signing key, B wins the EUF-CMA game.

Extracting a forgery. Let “parse c” be a request sent
by A such that t := L[[c]] and S 6`2 t but S `3 t.

We claim that t contains either an honest signing key skh()
or a forgery under an honest signing key sig l(skh(),m) 6∈
st(S). To prove our claim we assume towards contradiction
that t contains neither and let π be a proof for S `3 t. Then,



analogously to above, we can first remove all instantiations

of the rule skh() x

sigl(skh(),x)
for honest signing keys skh() from π

yielding a proof π′. Next we remove all instantiations of

the rule vk(skh())

skh()
from π′ following the same principle and

get a proof π′′. However, π′′ is a proof for S `2 t which
contradicts our initial assumption. Hence t contains either
an honest signing key or a forgery.

Since B could parse the bitstring c, the library L contains
a bitstring corresponding to every subterm of t. If t contains
the term for an honest signing key, A must have guessed the
randomized bitstring sk ′ for this key in the library which
was never used to compute any bitstring sent to A. This
can only happen with negligible probability. Hence, c con-
tains a forgery with overwhelming probability and B can use
this forgery to win the strong EUF-CMA game it is playing
(note that we need strong EUF-CMA security here since the
forgery could be a re-randomization of a signature that was
generated for the adversary and we wouldn’t break EUF-
CMA security in this case).

A cannot win Game 3 with non-negligible probability.
To conclude the proof we observe that an adversaryA that

wins Game 3 with non-negligible probability also wins the
deduction soundness game for I with non-negligible proba-
bility: Analogously to the proof for the indistinguishability
of Game 0 and Game 2 we can construct an adversary B
that attacks the deduction soundness of I and simulates
signatures using transparent functions. The simulation is
perfect and if A wins, B wins since the deduction rules in
Game 3 are effectively a superset of the deduction rules in
the simulation.

Hence A cannot win Game 3 with non-negligible proba-
bility and I ∪ ISIG is a deduction sound implementation of
M∪MSIG.

Lemma 3. Let M = (T ,≤,Σ,D) be a symbolic model
and I an implementation of M. For the set of terms gen-
erated for the adversary S during the deduction soundness
game DSM,I,A(η) holds, that for any term t′ ∈ st(S) with
adversarial label we have S ` t′ if for all instantiations
α = t1 ... tn

t
of rules from D with t′ ∈ st(t) meet at least

one of the following properties:

(i) t′ ∈ st(ti) for some i ∈ {1, . . . , n}

(ii) for any S̃
α→ S̃′ we have S̃′ ` t′

Proof. Since generate does not introduce adversarial la-
bels, every subterm with adversarial label of any term in S
must have been introduced by a previous parse request. Let
“parse c” be the first parse request that returns a term t such
that t′ is a subterm of t. Since the adversary didn’t win with
that request, t must be a DY term with respect to S′ ⊆ S
where S′ denote the terms generated for the adversary until
that parse request. Concretely, we have S′ ` t and thus a

proof S′ =: S0
α1→ S1

α2→ · · · αn→ Sn such that t ∈ Sn. Let
i ∈ {1, . . . , n} be the smallest index such that t′ ∈ st(Si)
(i 6= 0 since t′ ∈ st(S′)). αi cannot meet property (i) since
t′ 6∈ st(Si−1) (i is minimal). Hence we have Si ` t′ by (ii)
and S′ ` t′ since S′ ` Si and S ` t′ since S′ ⊆ S.

Lemma 4. LetM = (T ,≤,Σ,D) be a symbolic model and
let D′ ⊇ D′ be a set of deduction rules for M. ` and `′
denote the deduction relations corresponding to D and D′

respectively. Let S be a set of terms and t be a term such
that S 6` t and S `′ t. Then there is a set of terms S′ and a
term t′ such that

• S `′ S′

• S′ 6` t

• S′ ∪ {t′} ` t

• S′ `′ t′

Proof. S `′ t implies that there is a deduction proof

S =: S0
α1→ S1

α2→ · · · αn→ Sn. For αi = u1 ... um
u

and

Si−1
αi→ Si we require ui ∈ Si−1 and w.l.o.g. u 6∈ Si−1.

Let j ∈ {1, . . . , n} be the biggest index such that αj is an
instantiation of a rule from D′ \ D and Sj 6` t. (There must
be such a rule since we would have S ` t otherwise.) Then
we set S′ := Sj−1 and t′ to be the one element in Sj \ Sj−1.
We have

• S `′ S′ since S
α1→ S1

α2→ · · ·
αj−1→ Sj−1 = S′

• S′ 6` t by requirements for j

• S′ ∪ {t′} ` t: If there is an instantiation αj′ of a rule
from D′ \D with j′ > j, we have Sj′−1 ` t by require-
ments for j. For the smallest such index j′ we observe
Sj ` Sj′−1 and hence Sj = S′ ∪ {t′} ` t.

• S′ `′ t′ obviously by application of αj

This concludes our proof.

8.4 Secret key encryption
In this section we define a symbolic model MSKE for se-

cret key encryption and a corresponding implementation
ISKE based on a secret key encryption scheme (SKE.KeyGen,
SKE.Enc, SKE.Dec). We show that composition of MSKE

and ISKE with any symbolic model M comprising a deduc-
tion sound implementation I preserves this property for the
resulting implementation, i.e., I ∪ISKE is a deduction sound
implementation of M ∪MSKE if we use IND-CCA secure
authenticated secret key encryption scheme.

8.4.1 Symbolic model
We first define the symbolic model (TSKE,≤SKE,ΣSKE,DSKE)

for secret key encryption. The signature ΣSKE features the
following function symbols

kx : τ kxSKE

Ex : τ kxSKE ×> → τ ciphertextSKE

for x ∈ {h, c}. The randomized functions kh and kc re-
turn honest or corrupted keys respectively. The randomized
function Ex has arity τ kxSKE × > → τ ciphertextSKE and represents
a ciphertext under the given key. To complete the formal
definition we set

TSKE := {>, τ kxSKE, τ
ciphertext
SKE }

All introduced types are direct subtypes of the base type
> (this defines ≤SKE). The deduction system captures the
security of secret key encryption

DSKE :=


klx() m

E
la
x (klx(),m)

,

E
la
h

(klh(),m)

m
,

E l̂c(k
l
c(),m)

m





openSKE(c, L)
if c ∈ [[TSKE]] ∩ dom(L) then

return (c, L(c))

else if c = 〈k, τ kxSKE〉 then

return (c, g
l(c)

τ
kx
SKE

)

else if c = 〈c′, τ ciphertextSKE 〉 then

for each (k̂, khx ()) ∈ L do

parse k̂ as 〈k, τ kxSKE〉
let m := SKE.Dec(k, c′)
if m 6= ⊥ then

return (c,E
l(c)
x (k̂,m))

return (c, g
l(c)

τ
ciphertext
SKE

)

else

return (c, g
l(c)
> )

Figure 11: Open function for secret key encryption.

These rules are valid for arbitrary labels l, l̂ ∈ labels and
adversarial labels la ∈ labelsA. Read from top left to bottom
right the following intuitions back up the rules:

• The adversary can use any honestly generated key to
encrypt some term u.

• The adversary knows the message contained in any
adversarial encryption.

• The adversary knows the message contained in any
encryption under a corrupted key.

8.4.2 Implementation
We now give a concrete implementation ISKE for secret key

encryption. The implementation uses some IND-CCA se-
cure authenticated secret key encryption scheme (SKE.KeyGen,
SKE.Enc, SKE.Dec). As usual, here SKE.KeyGen is a gen-
eration algorithm for key pairs, SKE.Enc is an encryption
algorithm and SKE.Dec is a decryption algorithm. Note
that SKE.Enc is an algorithm that takes three inputs: the
key, the message to be encrypted and the randomness that
is used for encryption.4

The computable interpretations of, kx and Ex (for x ∈
{h, c}) are as follows:

• (MSKE kx)(r): Let k := SKE.KeyGen(1η, r). Return

〈k, τ kxSKE〉

• (MSKE Ex)(k̂,m)(r): Parse k̂ as 〈k, τ kxSKE〉. Let c :=

SKE.Enc(k,m, r) and return 〈c, τ ciphertextSKE 〉

The validSKE predicate.
The predicate validSKE guarantees, that all keys that may

be used by the adversary later are generated during initial-
ization (i.e., with the init query). We only allow static cor-
ruption of keys, i.e., the adversary has to decide which keys
are honest and which are corrupted at this stage. Keys may
only be used for encryption and decryption. This implicitly
prevents key cycles. More formally, based on the current
trace T of all parse and generate requests of the adversary,

4Since the message m is of basetype, we require a scheme
with message space {0, 1}∗.

the predicate validSKE returns true only if the following con-
ditions hold:

1. The trace starts with a query “init T,H” (T resp. H
may be the empty list). There are no further init
queries.

2. The adversary may only generate keys in the init query.
Concretely, this is guaranteed by the following rules:

(a) For the query “init T,H”, the function symbol kc
may only occur in a term k lc() ∈ T . Analogously,
kh may only occur in H. Any label l for k lx() must
be unique in T ∪H.

(b) Any occurrence of k lx() in a generate query must
have occurred in the init query. k lx() may only
occur as the first argument to Ex.

3. The adversary must not use the function symbols for
encryption Ex in the init query.

Checking the implementation.
We first observe that ISKE is collision-free (Definition 3):

Basically, collisions for keys can only occur with negligi-
ble probability since they break the security of the scheme
(which is IND-CCA secure). Collision of ciphertexts can
only occur with negligible probability since we are using au-
thenticated encryption. Furthermore, it is easy to see that
openSKE meets the requirements of Definition 4 and that
validSKE meets the requirements for valid functions.

8.4.3 SKE composability

Theorem 4. Let M be a symbolic model and I a de-
duction sound implementation of M. If (MSKE,ISKE) and
(M,I) are compatible (see requirements in Section 6) and
the SKE scheme (SKE.KeyGen,SKE.Enc, SKE.Dec) is IND-
CCA secure, then I ∪ ISKE is a deduction sound implemen-
tation of M∪MSKE.

Proof. This proof is very similar to that for public key
encryption (Theorem 2). The main difference is that the
adversary cannot create ciphertexts under honest keys (by
DSKE). Therefore we include an additional game hop to
where we add rules of the type m

Eh(k
l
h
(),m)

to the deduction

system. If an adversary notices the difference (i.e., it was
able to produce non-DY terms without these rules), we can
use it to break the authentication of ciphertexts. Hence this
can only happen with negligible probability.

Game 0.
In Game 0 A plays the original deduction soundness game

DS(M∪MSKE)∪Mtran(ν),(I∪ISKE)∪Itran(ν)(η).

Game 1.
In Game 1 we replace the generate function by the collision-

aware generate function from Figure 3. Since (I ∪ ISKE) ∪
Itran(ν) is a collision-free implementation Game 0 and Game 1
are indistinguishable by Lemma 2.

Game 2.
As in Game 2 from Theorem 2 we replace the ciphertexts

created under honest keys by encryptions of 0 and the hon-
est keys in the library by random bitstrings. The simulation



that Game 1 and Game 2 are indistinguishable works anal-
ogously to Theorem 2.

Game 3.
In Game 3 we add rules m

E
la
h

(kl
h
(),m)

for all honest keys

k lh() and labels la ∈ labelsA to the deduction system. This
establishes a deduction system similar to that of public key
encryption. We show that an adversary that can distinguish
Game 2 from Game 3 can be used to break the authentica-
tion of the encryption scheme. Towards this goal we use
the same technique as for the proof of indistinguishability
of Games 2 and 3 in Theorem 35. From A we construct an
adversary B on playing the and simulating Game 2 for A.
If a bitstring c sent by A is parsed as a term t such that
S 6`2 t but S `3 t, we can (using the same arguments as in
Theorem 3) extract a forgery from c.

Game 4.
In Game 4 A interacts with an adversary B that plays the

deduction soundness game forM and I and intuitively sim-
ulates Game 3 for A. Basically, B uses transparent functions
to add symmetric key encryption to M.

Transparent symbolic model for symmetric key
encryption. We first describe the parametrized transpar-
ent symbolic modelMtran

SKE(ν) and the corresponding parametrized
implementation ItranSKE(ν) B will use to simulate ISKE. Anal-
ogously to Theorem 2, we use the data types and subtype
relation from MSKE. ν is expected to be an encoding of a
list of triples (l, k, k′) (l ∈ labels, k ∈ {0, 1}∗). The signature
Σtran

SKE is the following:

• deterministic fklx() with ar(fklx()) = τ kxSKE for all labels
l ∈ ν

• randomized fEh(klh(),0`)
with ar(fEh(klh(),0`)

) = τ ciphertextSKE

for all ` ∈ N, l ∈ ν

• randomized fEh(klh(),·)
with ar(fEh(klh(),·)

) = > → τ ciphertextSKE

for all l ∈ ν

• randomized fEc(klc(),·) with ar(fEc(klc(),·)) = > → τ ciphertextSKE

for all l ∈ ν

We specify a parametrized implementation ItranSKE(ν) for
Mtran

SKE as follows for (l, k, k′) ∈ ν:

• (M tran
SKE fklx())(r) returns 〈k′, τ kxSKE〉

• (M tran
SKE fEh(klh(),0`)

)(r) returns (MSKE Eh)(〈k, τ kxSKE〉, 0
`; r)

• (M tran
SKE fEh(klh(),·)

)(m; r) returns (MSKE Eh)(〈k, τ kxSKE〉,m; r)

• (M tran
SKE fEc(klc(),·))(m; r) returns (MSKE Ec)(〈k, τ kxSKE〉,m; r)

(M tran
SKE func)(b):

if b = 〈k′, τ kxSKE〉 for some (l, k, k′) ∈ ν then
return fklx()

if b ∈ τ ciphertextSKE then

parse b as 〈c, τ ciphertextSKE 〉
for each (l, k, k′) ∈ ν do

let m := SKE.Dec(k, c)

5There we excluded forged signatures as a way to produce
non-DY terms for the adversary.

if m 6= ⊥ then
if l belongs to an honest key then

return fEh(klh(),·)
else

return fEc(klc(),·)
return ⊥

For b with (M tran
SKE func)(b) = fEh(klh(),·)

we have (l, k) ∈
ν with SKE.Dec(k, c) =: m 6= ⊥ for b = 〈c, τ ciphertextSKE 〉 and
define (M tran

SKE proj fEh(klh(),·)
1)(b) := m. Analogously for

(M tran
SKE func)(b) = fEc(klc(),·).

Convert terms. Adversary A uses the function sym-
bols of the original symbolic model for encryption MSKE.
Hence B needs to map these symbols to the corresponding
transparent functions introduced by B. Towards this goal
we introduce the function convert as follows:

• convert(f l(t1, . . . , tn)) = f l(convert(t1), . . . , convert(tn))
for all f 6∈ ΣSKE.

• convert(k lx()) = fklx()

• convert(E l̂
h(k lh(),m)) = f

l̂(m)

Eh(k
l
h
(),0`)

() if l̂ ∈ labelsH

• convert(E l̂
h(k lh(),m)) = f l̂

Eh(k
l
h
(),·)(convert(m)) if l̂ ∈

labelsA

• convert(E l̂
c(k lc(),m)) = f l̂Ec(klc(),·)

(convert(m))

B simulates the game DS(M∪MSKE)∪Mtran(ν′),(I∪ISKE)∪Itran(ν′)(η)
forA while playing DSM∪(Mtran

SKE
(ν)∪Mtran(ν′)),I(∪ItranSKE

(ν)∪Itran(ν′))(η).

Note that we can generically compose Mtran
SKE(ν) ∪Mtran(ν

′)
to one parametrized transparent model M′tran(ν||ν′) since ν
and ν′ must be good (analogously for the implementation).
However, for the sake of clarity, we keep them apart to dis-
tinguish the transparent functions (and parameter) provided
by A from the additional transparent functions introduced
by B.

The simulation. B receives a parameter ν′ from A. B
initializes the T := ∅ of A’s queries it maintains. Analo-
gously to Theorem 2 B extracts the keys for SKE from T,H
and sets up the parameter ν for ItranSKE(ν) accordingly. It deals
with request exactly as the simulator in Theorem 2.

Claim: Game 3 and Game 4 are indistinguishable.
This part is also completely analogous to the correspond-

ing part in Theorem 2.

Claim: If A wins, then B wins Game 4 .
As well analogous to Theorem 2.

8.5 Macs
In this section we show that any deduction sound imple-

mentation can be extended by a mac scheme. More precisely,
we require a strongly EUF-CMA secure mac scheme.

8.5.1 Symbolic model
We first define the symbolic model (TMAC,≤MAC,ΣMAC,DMAC)

for macs. The signature ΣMAC features the following function
symbols:

k : τ kMAC

mac : τ kMAC ×> → τmac
MAC



openMAC(c, L)
if c ∈ [[TMAC]] ∩ dom(L) then

return (c, L(c))
else if c = 〈k, τ kMAC〉 then

return (c, g
l(c)

τk
MAC

)

else if c = 〈σ,m, τmac
MAC〉 then

for each (k̂, k l) ∈ L do

parse k̂ as 〈k, τ kMAC〉
if MAC.Vfy(k, σ,m) = true then

return (c,macl(c)(k̂,m))

return (c, g
l(c)

τ
sig
SIG

)

else

return (c, g
l(c)
> )

Figure 12: Open function for macs.

for x ∈ {c, h}. The randomized function symbol k of arity
τ kMAC represents keys. The randomized function symbol mac
of arity τ kMAC × > → τmac

MAC represents the mac of a message.
To complete the formal definition we set the types

TMAC := {>, τ kMAC, τ
mac
MAC}

All introduced types are direct subtypes of the base type
> (this defines ≤MAC). The deduction system captures the
security of macs

DMAC :=
{

macl̂(kl(),m)
m

, kl() m

macla (kl(),m)

}
These rules are valid for arbitrary labels l, l̂ ∈ labels and

adversarial labels la ∈ labelsA. The following intuitions back
up the rules:

• Macs reveal the message that was signed.

• The adversary can use known keys to deduce macs
under those keys.

8.5.2 Implementation
We now give a concrete implementation IMAC for macs.

The implementation uses some strongly EUF-CMA secure
mac scheme (MAC.KeyGen, MAC.Mac, MAC.Vfy). As usual,
here MAC.KeyGen is a generation algorithm for key pairs,
MAC.Mac computes a mac and MAC.Vfy is a verification
algorithm. Note that MAC.Mac is an algorithm that takes
three inputs: the key, the message to be authenticated and
the randomness that is used for computing the mac.

The computable interpretations of k and mac are as fol-
lows:

• (MMAC k)(r): Let k := MAC.Mac(1η, r). Return 〈k, τ kMAC〉.

• (MMAC sig)(k̂,m; r): Parse k̂ as 〈k, τ kMAC〉. Let σ :=
MAC.Mac(k,m, r) and return 〈σ,m, τmac

MAC〉.

The validMAC predicate.
Based on the current trace T of all parse and generate

requests of the adversary, the predicate validMAC returns true
only if the following conditions hold:

1. The trace starts with a query “init T,H” (where T and
H may be the empty list respectively). There are no
further init queries.

2. The adversary may only generate keys in the init query.
Concretely, this is guaranteed by the following rules:

(a) For the query “init T,H”, the function symbol k
may only occur in a term kh() ∈ T ∪H (i.e., not
as subterm of other terms) for l ∈ labelsH. Any
label h for kh() must be unique in T ∪H.

(b) Any occurrence of kh() in a generate query must
have occurred in the init query.

3. The adversary must not use the function symbol mac
in the init query.

4. kh() may only occur as the first argument for mac.

8.6 MAC composability

Theorem 5. LetM be a symbolic model and I be deduc-
tion sound implementation ofM. If (MMAC,IMAC) and(M,I)
are compatible (see the conditions in Section 6), then I ∪
IMAC is a deduction sound implementation ofM∪MMAC for
any IMAC constructed from a strong EUF-CMA secure mac
scheme.

Proof. This proof is very similar to Theorem 3.

Game 0.
Game 0 is the original deduction soundness game for I ∪
IMAC.

Game 1.
In Game 1 we abort in case of collisions. Game 0 and

Game 1 are indistinguishable by Lemma 2 and using the
fact that our implementation is collision free.

Game 2.
Analogously to Game 2 from Theorem 3 we change the

deduction system to prevent the adversary from winning us-
ing reconstructed macs in Game 2. Concretely, we add rules
that allow to deduce every honestly generated mac that is
a subterm of a term t from t. Game 1 and Game 2 are
indistinguishable since any A that notices a difference with
non-negligible probability could be used to construct a suc-
cessful adversary against the deduction soundness of I.

Game 3.
In Game 3, analogously to Game 2 from Theorem 3, we

change the deduction system to make arbitrary macs de-
ducible. Furthermore we use random bitstrings to represent
honestly generated mac-keys in the library. An adversary
that can distinguish Game 2 and Game 3 can be used to
break the strong EUF-CMA security of the mac scheme. It
will either produce a forgery or one of the honest keys.

Game 4.
Finally, in Game 4, we simulate Game 3 using transpar-

ent functions for macs while playing the deduction sound-
ness game for I. Any adversary winning this game lets the
simulator break the deduction soundness game of I. By re-
quirement this can only happen with negligible probability
which concludes our proof.



openHASH(c, L)
if c ∈ [[THASH]] ∩ dom(L) then

return (c, L(c))
else if c = 〈h, τHASH〉 then

return (c, g
l(c)
τHASH)

else

return (c, g
l(c)
> )

Figure 13: Open function for hash functions.

8.7 Hash functions
In this section we deal with the composition of deduction

sound implementations of arbitrary primitives with hash
functions. We consider hash functions implemented as ran-
dom oracles [5]: in this setting calls to the hash function are
implemented by calls to a random function which can only
be accessed in a black-box way. We model this idea directly
in our framework. In the symbolic model model we consider
a symbolic function that is randomized and which is imple-
mented by a randomized function. We recover the intuition
that hash functions are deterministic by restricting the calls
that an adversary can make: for each term t, the adversary
can only call the hash function with the honest label l(t).

8.7.1 Symbolic model
The symbolic model for hash functions is rather standard.

It is given by the tuple (THASH,≤HASH,ΣHASH,DHASH) where

THASH := {>, τHASH}

and τHASH ≤HASH >. The signature ΣHASH contains only a
randomized function H : > → τHASH characterized by the
deduction rule:

DHASH :=
{

m
H l(m)

}
where l ∈ labelsH.

8.7.2 Implementation
The implementation IHASH for hash functions is via a ran-

domized function: when called, the function simply returns
a random value, and we will require that it does so consis-
tently; Concretely (MHASH H )(m; r) returns 〈r, τHASH〉.

The open function for hash functions is described in Fig-
ure 13. If the bitstring to be opened was not the result of a
generate call, then it returns garbage of types either τHASH or
>, depending on what c encodes. Otherwise, it will return
the entry in L that corresponds to c: by the requirements
posed by validHASH below this will be H l(t)(m) for some bit-
string m with L[[m]] = t.

A useful observation is that by the description above, the
library L will never contain an entry of the form (c,Hl(m))
for some adversarial label l ∈ labelsA; moreover, if (c,Hl(m))
is in L, then l = l(t) for some t, and L[[m]] = t.

The validHASH predicate.
For simplicity we require that no hash is present in init

requests (our results easily extend to the case where this
restriction is not present). In addition we use the predi-
cate validHASH to enforce deterministic behavior of our hash
implementation. We require that for any term t, all occur-
rences of H(t) in generate and sgenerate requests use the
same label. Concretely, we demand that for any term t, all

generate requests for H l̂(t) are labeled with the honest la-

bel l̂ = l(t). The choice of label is not important: we could
alternatively request that if Hl1(t) and Hl2(t) occur in a
generate requests, then l1 = l2.

Theorem 6. Let I be a deduction sound implementation
of M. If (MHASH, IHASH) and (M, I) are compatible, then
I∪IHASH is a deduction sound implementation ofM∪MHASH

in the random oracle model.

The intuition behind this proof is simple: collisions due
to tagging occur only with probability given by the birthday
bound (so with negligible probability). Given an adversary
that wins the deduction soundness game for the composed
libraries, we construct an adversary that breaks deduction
soundness of (M, I, validI). This latter adversary simulates
the hash function via a randomized transparent function
with no arguments: a generate Hl(t)(t) call will be imple-

mented by a generate call to f l(t)(). Due to validHASH the
knowledge set S does not contain any occurrence of H with a
dishonest label, hence the only ”useful” deduction soundness
rule which allows the adversary to learn/manipulate terms
with dishonest labels are not applicable (we can cut them
out of any deduction).

Proof. Consider an adversary A that breaks deduction
soundness of implementation I ∪ IHASH forM∪MHASH, i.e.

P
[
DS(M∪MHASH)∪Mtran(ν),(I∪IHASH)∪Itran(ν),A(η) = 1

]
is non-negligible for some some choice of Mtran, Itran. We
consider the transparent model/implementation M′tran, I′tran
obtained by adding to the functions inMtran a new (random-
ized) function fH of arity 0; the implementation of the func-
tion is given by MfH defined by: (MfH fH )(r) = 〈r,HASH〉,
i.e. the machine that simply outputs a proper encoding of
its random coins.

We next show that adversary A yields an adversary B that
contradicts the deduction soundness of I with respect toM
when the transparent model/implementation is (M′tran, I′tran)
defined above. Adversary B that we construct translates the
queries ofA into queries for (M∪M′tran, I∪I′tran) by using fH
to implement the hash function. This is accomplished using
a conversion function convert from terms in M∪MHASH ∪
Mtran to terms in M∪M′tran.

• convert(f l(t1, . . . , tn)) = f l(convert(t1), . . . , convert(tn))
for all f 6= H .

• convert(Hl(t)(t)) = f
l(t)
H

The inverse of the convert function is defined in the obvious
way. These conversion of terms will still preserve the validity
of B’s trace for every valid trace of A due to requirement (i)
for valid predicates.

Adversary B processes the queries of A as follows.
init query. B forwards the init request to his game and

forwards the answer to A.
generate queries. For each request “generate t”: for any

t′ such that Hl(t′) ∈ st(t) adversary B issues “sgenerate
convert(t′)” (for convenience, we assume the order of these
requests is in bottom up manner). These queries are valid by
requirement (ii) for valid predicates. It then issues “generate
convert(t)” and returns the answer to this last query to A.
The additional sgenerate queries are necessary to preserve



an invariant on the libraries needed to show the indistin-
guishability of the real game and the simulation (see indis-
tinguishability of Game 2 and Game 3 in Theorem 2).
B proceeds analogously for sgenerate requests (but no an-

swer is returned to A).
parse queries. For each request “parse c” B sends “parse

c” to its game and receives a term t. B sends convert−1(t)
to A.

We conclude by arguing that if A is successful, then so is
B. Let Terms1 = Terms(Σ ∪ ΣHASH ∪ Σtran) and Terms2 =
Terms(Σ ∪ Σ′tran). Let `1 be the deduction system defined
by D ∪ DHASH ∪ Dtran, and let `2 the one defined by D ∪
Dtran. Let R : Terms2 → {0, 1}η be an arbitrary randomness
assignment and rA be arbitrary random coins for A. Then
adversary B simulates for A the game

DS(M∪MHASH)∪Mtran(ν),(I∪IHASH)∪Itran(ν),A

here the coins of adversary A are rA, and the randomness
assignment R1 : Terms1 → {0, 1}η is defined by R1(t) =
R2(convert(t)).

In addition, if L2(R2, rA) is the mapping maintained
in DSM∪M′tran,I∪I′tran,B(η) then (c, t) ∈ L1 if and only if
(c, convert(t)) ∈ L2.

Next we show that if parse(convert(t)) is a Dolev-Yao re-
quest by B, then convert(t) is a Dolev-Yao request by A.
This implies that if A is non Dolev-Yao, then so is B.

Consider an arbitrary parse(c) request by A, and let S be
the set of terms present in all of the generate requests of
A. Per our construction, convert(S) is the set of terms in
the generate requests of B (where convert is extended from
terms to sets of terms in the obvious way). Assume there

exists a proof convert(S) = S′0
α1→ S′1

α2→ S′2 . . .
αn→ S′n with

convert(t) ∈ S′n for convert(S) `2 convert(t). We show we
can construct a proof for S `1 t.

By a previous remark, S and t do not contain any oc-
curence of H l with an adversarial label l. The only way
to introduce instances of fH labeled with an adversarial la-
bel is to use the rule instantiation

flH
. Assume that for

some i ∈ {1, 2, . . . , n} we have S′i−1
αi→ S′i and αi is the

rule
flH

for some adversarial label l. To eliminate the use

of the rule let t be an arbitrary term in S, and consider
the subsitution θ that replaces f lH with convert(t). Then

convert(S) = S′0
α1→ θ(S′1)

α2→ θ(S′2) . . .
αi−1→ θ(Si−1)

αi+1→
θ(Si+1) . . .

αn→ θ(S′n) is a valid derivation for convert(t) which
does not use the rule. Iteratively, we obtain a derivation

convert(S) = S′0
α1→ S′′1 . . . αm→S′′m for convert(t) and if f lH

occurs in any set, then l = l(t) and is an honest label. We
can therefore apply convert−1 to the above proof to obtain
a proof for S `1 t. Hence B wins if A wins.

9. FORGETFULNESS
All the theorems from Section 8 have one important draw-

back: Key material cannot be sent around as the valid predi-
cates forbid keys from being used in non-key positions. This
takes the analysis of a large class of practical protocols (e.g,
many key exchange protocols) outside the scope of our re-
sults. The problem is that deduction soundness does not
guarantee that no information about non-DY terms is leaked
by the computational implementation. E.g., we could think
of a deterministic function symbol f that takes arguments

of type nonce with only the rule nl()

f(nl())
. An implementa-

tion of f could leak half of the bits of its input and still
be sound. However, to send key material around, we need
to rely on the fact that information theoretically nothing is
leaked about the suitable positions for keys.

To solve this problem, we introduce forgetful symbolic
models and implementations. A forgetful symbolic models
features function symbols with positions that are marked
as being forgetful. The corresponding implementation has
to guarantee, that no information about the arguments at
these positions will be leaked (except their length). We will
formalize this intuition later in Definition 9. We start off
by introducing some necessary extensions of our previous
setting to allow for the concept of forgetfulness.

9.1 Preliminaries
We need to extend some definitions to capture the concept

of forgetfulness.

Changed hybrid terms for function symbols with for-
getful arguments.

To allow the handling of forgetful positions, extend the
definition for hybrid terms with function symbols carrying
an honest label in the library. Let f be a function symbol
of arity ar(f) = τ1 × . . . × τn → τ . Then a hybrid term of
f may be f l(a1, . . . , an) where each ai is either a bitstring
from [[τi]] or a term of type τi for forgetful positions i. For
normal positions ai must be a bitstring from [[τi]] as usual.
The definitions for the completeness of a library L and L[[c]]
are changed accordingly.

New valid requirements.
To allow forgetful arguments to be useful, we have to

change the definition of valid requirements. Concretely, we
allow the behavior of valid to additionally depend on a sig-
nature Σvalid that features forgetful positions, i.e., positions
of function symbols in f ∈ Σvalid may be marked as forgetful.
We then restate the requirements for valid as follows:

(i) If valid(T+q) = true, then valid(T+q̂) = true where q̂ is
a variation of q: If q =“generate t”, then q̂ =“generate
t̂” (analogously for “sgenerate t”). Here, t̂ is a vari-
ation of t according to the following rule: Any sub-
term f l(t1, . . . , tn) of t where f 6∈ Σ ∪ Σvalid is a for-

eign function symbol may be replaced by f̂ l̂(t̂1, . . . , t̂m)

where f̂ 6∈ Σ ∪ Σvalid is a foreign function symbol and
t̂i = tj for some j ∈ {1, . . . , n} (where each tj may
only be used once) or t̂i does not contain function
symbols from Σ ∪ Σvalid. As a special case we may
also replace f l(t1, . . . , tn) with a term t̂1 (i.e., f̂ is

“empty”). If q = ‘“init T,H” then q̂ =“init T̂ , Ĥ” where

T = (t1, . . . , tn) and T̂ = (t̂1, . . . , t̂n) and t̂i is a varia-

tion of ti (Ĥ analogously).

(ii) If valid(T + q) = true and t is a term occurring in q,
then valid(T+“sgenerate t′“) = true for any subterm t′

of t that is not a subterm at a forgetful position.

(iii) valid(T) can be evaluated in polynomial time (in the
length of the trace T).

Basically, valid is now allowed to make statements about
how the own fuction symbols (from Σ) are allowed to be
used in the context of some foreign function symbols (Σvalid)



with forgetful positions. Consequently, we do require that
a trace remains valid if those function symbols are replaced
(see new requirement i). Furthermore, we do not require
valid to allow for silent generation of subterms at forgetful
positions because it might be essential that those subterms
are never generated (see new requirement ii).

9.2 Forgetful symbolic models and implemen-
tations

We say that a symbolic model M is a forgetful symbolic
model if arguments of a function symbol may be marked as
forgetful. In order to formalize forgetful implementations,
the computational counterpart of forgetful positions, we in-
troduce the notion of an oblivious implementation. These
are implementations for symbolic functions which can take
as input natural numbers instead of actual bitstrings of the
appropriate sort.

Definition 8 (oblivious implementation). Let M
be a forgetful symbolic model. I = (M, [[·]], len, open, valid)
is an oblivious implementation of M if I is an implemen-
tation of M with a slightly changed signature: For each
function symbol f ∈ Σ with arity ar(f) = τ1 × . . .× τn → τ
the signature of (M f) is θ(τ1)× · · ·× θ(τn)×{0, 1}η → [[τ ]]
where θ(τi) = N if the ith argument of f is forgetful and [[τi]]
otherwise.

Intuitively, oblivious implementations for all forgetful posi-
tions, take as input natural numbers; these will be the length
of the actual inputs on the forgetful positions.

As indicated above, a forgetful implementation is one
which is indistinguishable from an oblivious implementation.
To formally define the notion we introduce a distinguishing
game FINbM(ν),I(ν),I(ν),A(η) where an adversary A tries to

distinguish between the case when he interacts with the real
implementation, or with an alternative implementation that
is oblivious with respect to all of the forgetful arguments.
We say that an implementation is forgetful, if there exists an
oblivious implementation such that no adversary succeeds
in this task.

Definition 9 (forgetful implementation). We say
that an implementation I = (M, [[·]], len, open, valid) is a for-
getful implementation of a forgetful symbolic model M if
there is an oblivious implementation I = (M, [[·]], len, open,
valid) such that for all for all parametrized transparent sym-
bolic models Mtran(ν) and for all parametrized transparent
implementations Itran(ν) ofMtran(ν) compatible with (M,I)
we have that

Prob[FIN0
M∪Mtran(ν),I∪Itran(ν),I∪Itran(ν),A(η) = 1]

−Prob[FIN1
M∪Mtran(ν),I∪Itran(ν),I∪Itran(ν),A(η) = 1]

is negligible for every p.p.t. adversary A.

Lemma 5. LetM be an forgetful symbolic model, I be an
forgetful implementation of M and I a corresponding obliv-
ious implementation. If I is deduction sound, then I is de-
duction sound with respect to the deduction soundness game
DS′ that uses generateFIN (Figure 14) instead of generate.

Proof. Let A be a p.p.t. adversary that wins the deduc-
tion soundness game for I with non-negligible probability.
We construct an adversary B that plays the game

FINbM∪Mtran(ν),I∪Itran(ν),I∪Itran(ν),A(η)

generateFINM,R(t, L):
if for some c ∈ dom(L) we have L[[c]] = t then

return c
else

for i ∈ {1, n} do
if i is a forgetful argument then

let ci := len(ti)
let ai := ti

else
let (ci, L) := generateM,R(ti, L)
let ai := ci

let r := R(t)
let c := (M f)(c1, . . . , cn; r)
let L(c) := f l(a1, . . . , an)) (l ∈ labelsH)
return (c, L)

Figure 14: The generate function for an oblivious
implementation (t is of the form f l(t1, . . . , tn) (with
possibly n = 0 and no label l for deterministic func-
tion symbols f)). The requirements for the input t
are those of the normal generate function.

and simulates the deduction soundness game for A (by just
relaying the queries of A). Depending on b, this is a perfect
simulation of

P
[
DSM∪Mtran(ν),I∪Itran(ν),A(η) = 1

]
or of the variant of the game for I

P
[
DS′M∪Mtran(ν),I∪Itran(ν),A(η) = 1

]
If A wins the deduction soundness game, B wins its game
as well. Otherwise, i.e., if A is invalid B picks a random
bit b and sends “guess b” to its game. Since I is deduc-
tion sound, A will only win the first game with negligible
probability. If A wins the game for I with non-negligible
probability, B has a non-negligible advantage. This contra-
dicts the assumption that I is an oblivious implementation
corresponding to I.

Let MPKE be the forgetful symbolic model derived from
the symbolic symbolic model MPKE from Section 8.2 by
marking the message m for honest encryptions ench(ek ,m)
as forgetful. Then Lemma 6 capture the intuition that pub-
lic key encryption schemes are forgetful with respect to their
messages.

Lemma 6. IPKE from Section 8.2 is a forgetful implemen-
tation of MPKE.

Proof. We define an oblivious implementation IPKE with
the Turing Machine MPKE that differs only for the function
symbol ench from MPKE. We set (MPKE ench)(ek , `; r) :=
(MPKE ench)(ek , 0`; r). IPKE witnesses that IPKE is a forget-
ful implementation of MPKE.

Let A be a p.p.t. adversary such that the probability from
Definition 9 is non-negligible. We can then use A to con-
struct an efficient adversary B that wins the IND-CCA game
from Figure 8 with non-negligible probability. B simulates

FINbMPKE∪Mtran(ν),IPKE∪Itran(ν),IPKE∪Itran(ν),A
(η)

for A where the bit b corresponds the the bit picked by
the IND-CCA game from Figure 8 (b = 0: produce encryp-
tions of 0, b = 1 produce encryptions of the real messages).



FINbM(ν),I(ν),I(ν),A(η):

let S := ∅ (set of requested terms)
let L := ∅ (library)
let T := ∅ (trace of queries)
R ← {0, 1}∗ (random tape)

if b = 0 then
let generate := generateFIN

M,R
else

let generate := generateM,R

Receive parameter ν from A

on request “init T,H” do
add “init T” to T
if valid(T) then

let S := S ∪ T
let C := ∅ (list of replies)
for each t ∈ T do

let (c, L) := generate(t, L)
let C := C ∪ {c}

for each t ∈ H do
let (c, L) := generate(t, L)

send C to A
else

return 0 (A is invalid)

on request “sgenerate t” do
if valid(T+“sgenerate t”) then

let (c, L) := generate(t, L)

on request “generate t” do
add “generate t” to T
if valid(T) then

let S := S ∪ {t}
let (c, L) := generate(t, L)
send c to A

else
return 0 (A is invalid)

on request “parse c” do
let (t, L) := parse(c, L)
if S `D t then

send t to A
else

return 1 (A produced non-Dolev-Yao term)

on request “guess b′” do
if b = b′ then

return 1 (A wins)
else

return 0 (A looses)

Figure 15: Indistinguishability game for forgetful
implementations.

The simulation works analogously to Game 2 in Theorem 2.
Since B does not know the encryption keys while playing
the IND-CCA game, we need to randomize them in the li-
brary. The arguments from the proof of indistinguishability
of Game 1 and Game 2 in Theorem 2 can be easily translate
to the setting at hand and show that the simulation, al-
though not perfect, is indistinguishable from FIN0 and FIN1

respectively. Hence, B would break the IND-CCA security
of the public key encryption scheme if such an adversary A
would existed.

9.3 Sending keys around
To be able to consider the case when symmetric keys are

sent encrypted we introduce an extension of the model for
symmetric key encryption of Section 8.4. The extension
is that the validSKE predicate can now depend on a signa-
ture Σvalid that contains functions with forgetful positions.
The new predicate allows for standard generation of keys for
symmetric encryption (with the same restrictions as those
in Section 8.4), but in addition it also allows for generate
requests that contain occurrences of symmetric keys under
functions from signature Σvalid, as long as the occurrences
are on forgetful positions.

Concretely, based on ISKE from Section 8.4 we introduce
the implementation ISKE[Σvalid] for a signature Σvalid featur-
ing forgetful positions. We define the validSKE predicate
based on Σvalid and, instead of requirement 2, now require:

1. For the query “init T,H”, the function symbol kc may
only occur in a term k lc() ∈ T . Analogously, kh may
only occur in H. Any label l for k lx() must be unique
in T ∪H.

2. Any occurrence of k lx() in a generate query must have
occurred in the init query. k lx() may only occur as the
first argument to Ex or as a subterm of a forgetful
position for a function symbol f ∈ Σvalid.

We show in Theorem 7, that we can compose our ex-
tended implementation ISKE[Σvalid] (extended in the sense
that its valid predicate allows for more scenarios) with any
deduction sound forgetful implementation and preserve de-
duction soundness. Since the implementation for public key
encryption IPKE from Section 8.2 is a forgetful implementa-
tion for the forgetful symbolic model MPKE by Lemma 6,

queries like “generate enc l̂h(ek lh(), k l̃h())” are now possible.
Intuitively, this corresponds to sending around symmetric
keys encrypted under asymmetric keys in a protocol.

Furthermore, we show that, in the case of secret key en-
cryption, forgetfulness is preserved as well (Theorem 8).
This even holds for the obvious forgetful symbolic model of
secret key encryption where the message position for hon-
est encryptions under honest keys is a forgetful one. I.e.,
we could add several layers of secret key encryption to allow
for the encryption of symmetric keys under other symmetric
keys.

The last aspect shows why we need to fix the set of func-
tion symbols Σvalid at the time of composition: We cannot
allow to encrypt keys under forgetful positions in general
since it would be impossible for validSKE to detect key cy-
cles. E.g., assume that Σvalid contains a function symbol f

with a forgetful second position. Do the terms f l̂(t′, k lh())

and E l̃
h(k lh(), t′) contain a key cycle? We cannot tell without

knowing the implementation of f and t′. Therefore we have



to require that the valid predicate of the implementation we
are composing ISKE with does rely on the forgetfulness of
function symbols from ΣSKE in Theorem 7.

Theorem 7. Let M be a forgetful symbolic model and
I be a forgetful deduction sound implementation of M.
ISKE denotes ISKE[Σ] where Σ is the signature from M. If
(MSKE, ISKE) and (M, I) are compatible (see requirements
in Section 6) and the valid predicate of I does not depend
on function symbols from ΣSKE, then I ∪ISKE is a deduction
sound implementation of M∪MSKE.

Proof. This proof is very similar to that for Theorem 4.
Basically, we just introduce an additional game hop where
we replace I by an oblivious implementation I. This guar-
antees that, even if the adversary requests to generate a
term t with honest keys at forgetful positions, the bitstring
interpretation of those keys are not used to compute the bit-
string corresponding to t. We can then follow the strategy
from the proof for Theorem 4 and replace honest keys in the
library with random bitstrings.

Game 0.
In Game 0 A plays the original deduction soundness game

DS(M∪MSKE)∪Mtran(ν),(I∪ISKE)∪Itran(ν)(η).

Game 1.
In Game 1 we replace the implementation I with a cor-

responding oblivious implementation I (which exists since
I is a forgetful implementation according to Definition 9).
Note that I must be composable with ISKE since I is com-
posable with ISKE. For this to work we also have to replace
the generate function by generateFIN from Figure 14.

Claim: Game 0 and Game 1 are indistinguishable.
Basically, this indistinguishability holds due to the fact

that I is a forgetful implementation. Let A be a distin-
guisher between Game 0 and Game 1. Then we construct
an adversary B that plays the game

FINbM∪M′tran(ν′),I∪I′tran(ν′),I∪I′tran(ν′),B
(η)

and simulates Game 0 or Game 1 for A (depending on the
value of b). B simulates ISKE using transparent functions
(as a part of M′tran(ν′) together with Mtran(ν

′). B checks
the DY-ness of A’s requests with respect to Game 1. Note
that the simulation is perfect since B can know all gener-
ate all the keys and does not need to hide any arguments
when simulating ISKE with transparent functions. If A can
distinguish Game 0 from Game 1, B can break the indis-
tinguishability of the oblivious implementation according to
Definition 9. This can only happen with negligible proba-
bility.

Game 2.
In Game 2 we replace the generateFIN function with a

collision-aware variant (similar to Figure 3. The indistin-
guishability is guaranteed analogously to Theorem 4.

Game 3.
Game 3 is analogous to Game 2 from Theorem 4: We re-

place honest encryptions under honest keys by encryptions
of 0 and replace honest encryption keys in the library by
random bitstrings. Note that we need that fact that we

replaced I by I here: The oblivious implementation guar-
antees that the bitstrings representing honest keys are not
used for the generation of other terms (in particular this is
interesting when honest keys appear at forgetful positions).
Hence we can replace them with random bitstrings and still
have an indistinguishable game. The rest of the indistin-
guishability argument is based on the IND-CCA security of
the SKE scheme and analogous to Theorem 4.

Game 4.
In Game 4, analogously to Game 3 from Theorem 4, we

show that the adversary cannot win by producing encryp-
tions under honest keys. To show the indistinguishability of
Game 4 and Game 3 we use the same arguments for “recon-
structions” and “forgeries” as in Theorem 3. Note that we
simulate ISKE using transparent functions within this pro-
cess. Here, we need the requirement that valid predicate of
I does not depend on function symbols from ΣSKE. With-
out this, we couldn’t replace the function symbols from ΣSKE

with their transparent counterparts and still expect to have
a valid trace when we are playing the deduction soundness
game for I in the simulation.

Game 5.
Finally, analogously to Game 4 from Theorem 4, the simu-

lator B plays the variation of the deduction soundness game
for I which it cannot win with non-negligible probability by
Lemma 5.

LetMSKE be the forgetful symbolic model based onMSKE

when we mark the message m for honestly generated encryp-

tions under honest keys E l̂
h(k lh(),m as a forgetful position

and pick ISKE[Σ] as an implementation of MSKE. Then the
following holds:

Theorem 8. Let M be a forgetful symbolic model and
I be a forgetful deduction sound implementation of M.
ISKE denotes ISKE[Σ] where Σ is the signature from M. If
(MSKE, ISKE) and (M, I) are compatible (see requirements
in Section 6), then I ∪ ISKE is a forgetful implementation of
M∪MSKE

Proof. We pick the obvious oblivious implementation
ISKE for ISKE and set (MSKE Eh)(k, ell; r) := (MSKE Eh)(k, 0`; r)
and proof the theorem with a sequence of games:

Game 0.
Game 0 is the game

FIN1
(M∪MSKE)∪Mtran(ν),(I∪ISKE)∪Itran(ν),(I∪ISKE)∪Itran(ν),A

(η)

Game 1.
In Game 1 we replace the implementation I with a cor-

responding oblivious implementation I (which exists since
I is a forgetful implementation according to Definition 9).
We can do this analogously to Game 1 from Theorem 7 and
the indistinguishability of Game 0 and Game 1 holds for the
same reasons. Game 1 is

FIN0
(M∪MSKE)∪Mtran(ν),(I∪ISKE)∪Itran(ν),(I∪ISKE)∪Itran(ν),A

(η)

Game 2.
In Game 2 we replace ISKE by ISKE and the honest keys in

the library by random values. We have indistinguishability



of Game 1 and Game 2 by the IND-CCA security of the
SKE scheme. Game 2 is indistinguishable6 from

FIN0
(M∪MSKE)∪Mtran(ν),(I∪ISKE)∪Itran(ν),(I∪ISKE)∪Itran(ν),A

(η)

In conclusion, Game 0 and Game 2 are indistinguish-
able. Hence I ∪ ISKE is a forgetful implementation of M∪
MSKE.
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