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Abstract: In this paper we propose a solution to enable an accurate terminal revocation
in the Extended Access Control (EAC). Chaabouni and Vaudenay in [CV09] pointed
out the need for an accurate revocation procedure, but failed to provide a complete
solution description. We aim at filling this gap. Our solution relies on augmenting
terminal authentication with a t-out-of-` threshold signature provided by neighboring
terminals. These terminals will be in charge of checking the revocation status of the
requested terminal. As Terminals have a real clock embedded and more computational
power than Machine Readable Travel Documents (MRTDs), they are better suited for
checking revocation status.

1 Introduction

In response to the initial weak standard for Machine Readable Travel Documents (MRTDs),
produced by the International Civil Aviation Organization (ICAO), the European Union
has mandated the Federal Office for Information Security (BSI) to provide and main-
tain a stronger standard for MRTDs. In that regard, the BSI has issued the Extended
Access Control (EAC) which provides a stronger privacy protection for MRTDs. Its
first initial release [BfSidI12a] was made in 2006, while the last version [BfSidI12b,
BfSidI12c, BfSidI12d] was published in 2012. It was believed that with the introduc-
tion of EACv2 in 2009, the majority of threats were solved. Unfortunately, Chaabouni and
Vaudenay [CV09] pointed out several remaining flaws and threats. The major flaw pointed
out was the absence of a good terminal revocation. The other issues are now considered
marginal as they are or will be gradually solved with the evolution of previous standards
(notably the one from the ICAO [ICAO08, ICAO13]). However, no progress has been
made regarding terminal revocation nor terminal authentication. Chaabouni and Vaudenay
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suggested a solution for terminal revocation but they omitted to give a detailed description.
We aim at filling this gap by providing an efficient and secure solution.

Our concern in this paper targets two types of threats. We are first concerned by the threat
of a stolen integrated terminal device. These are considered to be Portable Computing
Devices (PCD) in the Technical Guideline TR-03110 [BfSidI12b, BfSidI12c, BfSidI12d],
when terminal key pairs are explained. An integrated terminal as explained in [BfSidI09],
consists of a single reader with integrated hardware security module and proximity cou-
pling device. Moreover a stolen integrated terminal could still be used to read MRTD, as
long as its certificate is not expired. This threat even applies with an expired certificate
if the date approximated in the MRTD is outdated. Hence there is no real revocation sys-
tem present for terminals. This is a known problem for the BSI and is even mentioned
in [BfSidI09], section 1.2.1:

The disadvantage of this architecture is, that a stolen reader can be used to
perform Terminal Authentication at least as long as the current CV certificate
is valid.

Secondly, we have to keep in mind that threats come often from an inside attack. This
pushes us to study the threat of a compromised terminal that is remained in place, acting
maliciously. With the actual standard, a stolen or compromised terminal could be used
to target a group of person (e.g. by nationality), or a specific person (e.g. important
politicians).

The implications of these threats are threefolds. They introduce an obvious privacy breach
in the sense that any compromised integrated terminal will have an illegitimate access to
all MRTDs data including biometrics. From there, an attacker can filter and target specific
individuals or even groups with specific attributes e.g. a specific nationality. Moreover,
the terminal can be used to acquire all information from all MRTDs that come nearby in
order to build an illegitimate database of biometrics. With this kind of database, attackers
can train themselves and select the closest match for a cloned ID.

Furthermore, we need to take into account efficiency. In [Fri], it is mentioned that more
than 56 millions passengers traveled through Frankfurt airport in 2011. As around half of
them are only transfer passengers, and thus do not necessarily need a passport control, we
can see that big hubs need to process more than 2 millions passport checks per month.

1.1 Prior and Related Work

Terminal revocation has received little amount of interest as the BSI community is con-
vinced that the Password Authenticated Connection Establishment (PACE) protocol miti-
gate this threat, as explained in [BDFK12]. Indeed, when executing EACv2, PACE is the
initial phase before Terminal Authentication. After its successful completion, the MRTD
is ensured that the terminal has knowledge of a shared password, and can proceed with Ter-
minal Authentication. Moreover, the ISO/IEC JTC1 SC17 WG3 mentioned in [ICAO13]
that:



At present the fact that BAC MUST always be present on the eMRTD ensures
that inspection systems that do not support PACE (yet) will still be able to ac-
cess the MRTD’s chip. To access eMRTDs supporting only PACE, inspection
systems MUST support PACE. In its meeting on 19-21 February 2013 the
NTWG concluded that as of the date 01 January 2018 eMRTDs supporting
only PACE will be considered to be ICAO compliant. The chosen date should
provide enough time for inspection system owners and vendors to implement
the necessary modifications to their systems.

However no guarantees are provided in the obtention of this password. If the shared pass-
word has been obtained by social engineering, or read directly by eavesdropping on the
MRTD, then a successful terminal authentication will allow the stolen terminal to access
all sensitive data contained in the MRTD. This issue has been raised by Belguechi et al.
in [BLR12]. Unfortunately they concentrate on the protection of biometric data and do not
provide a solution for terminal revocation. Li et al. in [LZJX10] also mention the threat of
terminal revocation. However they concentrate on presenting the Singapore solution that
implicates Authorized Smartcard with Identity Based Cryptography. Hence to solve the
terminal revocation issue they require heavy hardware modifications.

1.2 Contribution

In our new method, we make use of threshold cryptography in order to verify the revoca-
tion status of terminals. We assume that Document Verifiers (DVs) in the EAC standard
are trusted participants. In our general case, several terminals are present. If the number of
terminals is considered too low, our scheme can easily be modified to provide equivalent
properties. Moreover the required modifications to enable this method are solely software
upgrades and the existence assumption of a communication channel between terminals.
Hence no hardware modification is needed in MRTDs.

1.3 Organization

In section 2 we recall the general structure of the EAC [BfSidI12b, BfSidI12c, BfSidI12d]
which includes how terminal authentication and revocation are achieved. In section 3 we
recall Shamir’s secret sharing [Sha79], Non-Interactive Zero-Knowledge (NIZK) Proofs
and see how it can be applied to achieve threshold signatures with the example of threshold
RSA [Sho00, DF94, Kin00]. Section 4 will be devoted to our new solution. We will precise
our security assumptions, explain how terminal authentication should be augmented to
achieve a realistic terminal revocation and finish with some discussions on the security
outcomes, potential efficiency tuning and some remarks.



2 EAC

The BSI TR-03110 Technical Guideline [BfSidI12b, BfSidI12c, BfSidI12d] defines the
EAC. It is a specification for mutual authentication between terminal readers and MRTD,
such as biometric passports. As it is an evolving standard (11 versions since its public
release in 2006, with one major enhancement in 2008), we will focus only on the latest
2.10 version. We refer readers to [CV09] for an analysis and survey of EACv2.01 and
EACv1. Regarding terminal authentication and terminal revocation, no progress was made
between version 2.01 and version 2.10 of the EAC standard.

The aim of EAC, with its mutual authentication, is threefolds. It allows first to verify that
a MRTD is genuine. Secondly, it allows authenticated terminals to access sensitive data
contained in the MRTD, such as fingerprints. And at last, it provides a secure channel
between the MRTD and the terminal. This authentication process relies on an interna-
tional Public Key Infrastructure (PKI) composed by three entity types : Country Verifying
Certificate Authorities (CVCAs), Document Verifiers (DVs) and Terminals. The descrip-
tion of EAC PKI can be found in [BfSidI12d]. Each participating country will possess
a national CVCA that will act as a national root authority. The national CVCA will be
in charge of issuing national MRTDs and DVs certificates (especially foreign DVs certifi-
cates). DVs are organizational units in charge of managing a group of terminals, notably
by issuing their certificate. Within a same organizational unit, if terminals are supposed to
access sensitive data contained in foreign MRTD, the DV in charge has to request for a DV
certificate from all foreign CVCAs corresponding to the MRTD countries that terminals
would encounter.

The EACv2 general authentication procedure is composed by four steps in the following
order: Password Authenticated Connection Establishment (PACE), Terminal Authentica-
tion, Passive Authentication, and Chip Authentication. PACE is also a mutual authentica-
tion procedure, but it is solely based on a shared password. This password is either known
by the MRTD bearer or is directly printed on the MRTD. Nevertheless, PACE provides a
secure authenticated key agreement as proven by Bender, Fischlin and Kügler in [BFK09].
Once PACE has succeeded, the MRTD is ensured that the terminal has knowledge of the
shared password and thus provides access to its less-sensitive data. Terminal Authenti-
cation is then preformed. We will detail it in section 2.1. After the terminal has been
authenticated, Passive Authentication enables terminals to confirm that a MRTD has not
been altered. This step does not protect against cloning attacks. In order to achieve cloning
protection, Chip Authentication is performed at last. This last step insures that the MRTD
is genuine.

It is interesting to note that the Data Group 2 (DG2) of the ePassport Application, which
corresponds to the facial image, and the Document Security Object (SOD) are still con-
sidered as less-sensitive data. As such, they are provided to terminals before terminal
authentication. The threats implications of their classification under less-sensitive data are
described in [MVV07, CV09]. We do not intent to provide a solution in this paper for this
issue as we focus solely on terminal revocation.



2.1 Terminal Authentication

We refer to section 3.4 of [BfSidI12c] for the terminal authentication complete descrip-
tion. It is essentially composed by three major phases. First, the terminal sends a certifi-
cate chain starting from the CVCA certificate corresponding to the MRTD country. The
chain ends with the terminal own certificate. In the second phase, the MRTD checks the
certificates contained in the certificate chain with a Certificate Validation process (section
2.5 of [BfSidI12d]). The third phase consists of setting up an authenticated ephemeral
Diffie-Hellman key pair for the terminal. The resulting ephemeral public key will then be
used to secure messages for the terminal.

If the terminal authentication succeeds, the MRTD will grant access rights to its sensitive
data according to the terminal effective authorization. The terminal effective authoriza-
tion is derived from the certificate chain as the smallest authorization set present in all
certificates of the certificate chain.

2.2 Terminal Revocation

The terminal revocation status is checked during the terminal Certificate Validation (sec-
tion 2.5 of [BfSidI12d]). Surprisingly enough, the revocation process is achieved only with
the expiration date contained in the certificate and with a “Current Date” approximation
stored in the MRTD. The major problem, as expressed in [CV09], is that MRTDs do not
have a reliable clock. This is why they try to approximate the current date. Unfortunately,
due to the requirements on this approximation, the “Current Date” could be outdated by
an entire month. Indeed, this update is done solely with the date of certificate creation
contained in a certificate issued by the same country as the MRTD. Notice that there is
no passport control within the Schengen zone. For departure from the Schengen zone, an
identity control will be required only at the last Schengen airport before a non-Schengen
country. More information can be found in [EP06]. As it is quite rare for a MRTD to
encounter a terminal of its own country, the update will be done with the date of certificate
creation contained in foreign DV certificates. These are issued by the same country as the
MRTD one.

Hence, a stolen terminal can still be used for a long period of time, even if his expiration
date has passed. This is an important threat that must not be neglected. Without a proper
terminal revocation scheme, a stolen terminal could be set up to use solely EACv1 without
PACE and thus be used to detect and target individuals or a specific group of persons, while
the attacker is absent of the crime scene. Even in the case where EACv2 with PACE has
to be used, if the shared password is compromised then all sensitive data will be accessed
after completion of the terminal authentication.



3 Preliminaries

Threshold cryptosystems are an important building block for our new solution. We are go-
ing to focus on the case of threshold RSA signatures as it provides a good balance between
security and efficiency considering our protocol participants. Indeed, we need to keep in
mind that the computational power of MRTDs is much more limited compared to the one
of terminals. Nevertheless, to understand threshold signatures and its related security, we
first need to explain secret sharing and Non-Interactive Zero-Knowledge proofs.

3.1 Secret Sharing

This notion has been introduce by Shamir in [Sha79]. It aims at dividing the knowledge
of a secret among ` servers. The motivation behind it was to protect a secret against the
corruption of some servers. To achieve secret sharing, Shamir used Lagrange interpolation
to divide the secret into multiple shares. The main idea is that any polynomial function f
of degree t can be reconstructed from t + 1 distinct points. f(0) is considered to be the
secret s to be shared. If given t or less points, the function cannot be reconstructed. Hence
every participant will be given a point of the function as a secret share. Mathematically
speaking, we define f as follows:

f(x) =

t∑
i=0

ai · xi. (3.1)

As mentioned, the secret is s = f(0) = a0. Every participant i > 0 will be provided the
secret share si = f(i). Given a set of participants Ψ with |Ψ| = t+ 1, we can reconstruct
f as follows:

f(x) =
∑
j∈Ψ

sj · λΨ
x,j , (3.2)

where λΨ
x,j are the Lagrange coefficients defined by λΨ

x,j =
∏
i∈Ψ\j(i−x) · (i− j)−1, and

with x 6∈ Ψ. Moreover, note that due to the inversion present in the Lagrange coefficients,
we need to work in a field. This restriction can be relaxed with an efficiency cost, e.g.
instead of computing f(x) we could compute imax! · f(x) where imax is larger or equal
than the largest index among participants.

3.2 Non-Interactive Zero-Knowledge Proofs

NIZK proofs are also an important and basic cryptographic building block. A NIZK proof
allows a prover to convince a verifier on the veracity of a statement, by sending him a sin-
gle message (non-interactive), without leaking any other information than the veracity of
the statement proven (zero-knowledge). NIZK proofs are often constructed directly in the
Common Reference String (CRS) model or by converting an interactive equivalent proof



using the Fiat-Shamir [FS86] transformation in the random oracle model. The random or-
acle model makes the assumption that hash functions, and more generally pseudo-random
functions, are replaced by truly random oracles. The drawback of this method is that
proofs in this model are weaker than in the standard model. However they achieve a much
higher efficiency. We will limit ourselves to the random oracle model as the EAC also uses
hash functions, and thus falls in the random oracle model too.

Let us see the example of the Chaum-Pedersen [CP92] NIZK proof of discrete logarithm
equality. We assume that a prover knows the discrete logarithm d = logGX , where G is a
group generator of order q. The public parameters are (G, q,X). The goal of the prover is
to convince a verifier that, given two group elements (R,S), the following statement holds:
logGX = logR S. To do so, the prover picks a random a ∈R Zq and computes A = Ga,
B = Ra, c = H(R,S,A,B), and z = a+ cd. Notice thatH is a hash function that maps
four group elements into Zq . The NIZK proof will thus consist of (c, z). Indeed, any

verifier can be convinced of the statement by checking if c ?
= H(R,S,GzX−c, RzS−c).

However, this proof would lose soundness if the prover is free to choose X . More details
can be found in section 3 of [BPW12]. In our solution X is fixed by the verifier and then
given to the prover.

3.3 Threshold Cryptosystems

When secret sharing is used, the participant or authority in charge of reconstructing the
secret will obviously learn the secret. This is of course not a desirable property and to be
instantiated in practice, secret sharing needs some modifications. Ideally we would like
the secret to be shared (i.e. divided) among ` servers, with the constraint that servers could
perform computations based on the secret without reconstructing it. One such application
is threshold cryptography. Here we have the additional constraint that to be able to use
the secret, t + 1 servers need to collaborate. Using the secret is achieved without being
able to reconstruct it. Furthermore, no t or less servers could use the secret. In this paper
we will focus on the example of threshold signatures rather than threshold decryption.
Nevertheless, the latter could still be used at a higher efficiency cost.

Threshold Signatures. Participants to a threshold signature scheme consist of ` signers,
a trusted dealer and an adversary. The scheme itself is composed by a set of five algo-
rithms: (KG,Σi, Σv, Σc, Vσ).
KG(1k, t, `) −→ (pk, {sk1, ..., sk`}, {vk1, ..., vk`}, vk). The key generation algorithm
takes as input the security parameter k, the threshold parameter t and the number of par-
ticipants `. It outputs the public key pk of the system, ` secret keys ski together with their
corresponding verification keys vki and the general verification key vk of the system.
Σi(M,pk, vk, ski, vki) −→ (σi, πi). The partial signature algorithm takes as input a
message M , the general public key pk, the general verification key vk and the secret share
ski with its verification key vki. It outputs a partial signature σi with a verification proof
πi on the validity of σi.



Σv(M,pk, vk, σi, πi, vki) −→ {0, 1}. The partial signature verification algorithm takes
as input a message M , the general public key pk, the general verification key vk, the par-
tial signature σi, its corresponding verification proof πi and verification key vki. It checks
the validity of σi and outputs the result. The verification of σi with πi is used to achieve
robustness.
Σc(M,pk, {σi}Ψ) −→ σ. The combining share algorithm takes as input a message M ,
the public key pk and a set Ψ of size t + 1 of valid partial signatures σi. It outputs the
signature σ of m.
Vσ(M,σ, pk) −→ {0, 1}. The signature verification algorithm takes as input a message
M , its signature σ and the public key pk. It checks the validity of σ and outputs the result.

Threshold Signature Security Requirements. The security requirements for threshold
signatures are robustness, threshold security, unforgeability, and optionally proactive se-
curity.
Robustness states that if all partial signatures used to create a signature σ on message M
are valid then the signature σ is a valid signature of m.
The threshold security requirement states that no subset of t signers can produce a valid
threshold signature on m. Moreover, any subset of t + 1 or more signers can produce a
valid threshold signature.
A threshold signature scheme is said to be unforgeable if a computationally bounded ad-
versary is enable to forge a valid signature on a chosen message. In this case, the adversary
is allowed to corrupt up to t signers.
Proactive security states that an update mechanism exists for signers to update their se-
cret key share, without modifying the general public key of the system (nor the general
verification key).

Threshold RSA Signatures. Let us remind briefly the RSA signature scheme [RSA78].
Let p and q be two large primes such that n = pq. Let ed mod φ(n) = 1, where φ is the
Euler’s Totient function. Hence φ(n) = (p − 1)(q − 1). The public key of this system is
(n, e). Let H̄ be a one-way mapping from the message space to Z∗n. To obtain a signature
σ on a message M , the signer computes σ = md mod n, where m = H̄(M). Hence d is
part of the signer’s private key. To verify the signature, it suffices to check the following:
H̄(M)

?
= σe mod n.

To obtain the threshold version of the RSA signature scheme, the secret d needs to be
shared among ` servers. We assume the presence of a trusted party in charge of the key
generation algorithm. In our case, this trusted party will be the DV. To share d, secret shar-
ing will be used. However this cannot be done directly as revealing φ(n) to the signers
would allow them to factorize n and thus compute d from e. Hence a single signer would
be able to sign on behalf of the entire group. Extensive research has been done regard-
ing Threshold RSA signatures and we will present here the solution proposed by Shoup
in [Sho00]. However, depending on actual values for t and `, solutions from King [Kin00]
and Desmedt-Frankel [DF94] should also be considered.

Shoup [Sho00] suggested to use safe primes for the RSA modulus. Hence n = pq =



(2p′ + 1)(2q′ + 1) such that p, p′, q and q′ are primes. Let m = p′q′. The value of m
will not be revealed and should be kept secret from all parties. If no proactive security
is needed, then m can be safely erased after the key generation phase. The public expo-
nent e will be chosen as a prime with e > `. d will be picked such that ed ≡ 1 mod m
and shared using Shamir’s secret sharing. Hence the secret share of signer i will be of
the form di = f(i) mod m, where f is defined as in equation 3.1 with ai ∈R Zm. Let
Qn be the subgroup of squares in Z∗n. The general verification key will be randomly
chosen in Qn. The verification key of signer i will be set as vki = vkdi ∈ Qn. To
compute the Lagrange coefficients we use the trick explained at the end of section 3.1
with ∆ = `!. To generate a partial signature on message M , signer i will first com-
pute x = H̄(M) and then σi = x2∆di . The validity proof πi consists of proving the
statement logvk vki = logx4∆ σ2

i . As we are working in a group of unknown order,
computation is a bit more difficult. To solve this issue, it is enough to work with suf-
ficiently large numbers. Hence the random a in Chaum-Pedersen [CP92] NIZK proof
will be picked in a ∈R Z2log2 n+2L1 , where L1 is a secondary security parameter (Shoup
suggests L1 = 128). The hash function H will thus output a L1 bit integer such that
c = H(vk, x4∆, vki, σ

2
i , vk

a, x4∆a). Thus πi = (c, z) with z = cdi + a. The corre-

sponding verification will be c ?
= H(vk, x4∆, vki, σ

2
i , vk

zvk−ci , x4∆zσ−2c
i ). Suppose we

have t + 1 valid partial signatures σj , combining them means computing the signature

σ = (
∏
j∈Ψ σ

2∆λΨ
0,j

j )αxβ mod n, where α and β are obtained by solving the Euclidian
algorithm α · 4∆2 + β · e = 1. Notice that α and β can be precomputed by the trusted
authority. Finally, the verification of σ is the same as the standard RSA signature scheme.
We refer readers to [Sho00] for more details as well as for the security proof.

4 New Solution

Let us now look out how we can go from threshold signatures to terminal revocation.
The main idea is that we introduce terminal collaboration in order to achieve terminal
authentication. Terminal revocation will thus be achieved with the help of neighboring
terminals. Let us first specify our security assumptions. Then we will explain how we
extend terminal authentication in order to achieve a better terminal revocation.

4.1 Security Assumptions

We assume the same structure of participants than the EAC model. However we make
some precisions. Each DV is responsible for ` terminals (` differs from one DV to the
other). DVs play the role of trusted authority amongst their terminals. We assume the
existence of secure and authenticated channels between all ` terminals. This is easily
achieved with public key encryption as it is the same DV, i.e. a trusted party, that issued
every terminal key pairs. When a terminal is stolen, its certificate will be revoked. This
revocation will disable its use. Moreover, the lack of online connectivity should affect



only CVCAs and DVs as they are Public Key Generators. As such they should be turned
offline once their keys setup generation has been achieved ( [Sha84]). This is not the case
for terminals.
Furthermore, we assume attackers to be computationally bounded. We will focus on
threats targeting terminals, as they are somehow neglected in the current EAC. Neverthe-
less, we assume CVCAs and DVs to be honest. We consider a threshold security assump-
tion, i.e. cases where the adversary can corrupt up to t terminals among ` > 2t + 1. We
will expect adversaries to be either passive adversaries, where attackers corrupt targets by
reading their contents and secrets, or active adversaries, where attackers will additionally
change the behavior of corrupted terminals. Lastly we restrict ourselves to static adver-
saries, meaning that the adversary will select which terminals to corrupt before the start
of the protocol. Moreover, the adversary is free to corrupt them when he wants to. When
a terminal is corrupted, all his communications will be revealed to the adversary. We set
aside cases of dynamic adversaries as the corresponding solutions will induce a high loss
in efficiency.

4.2 Augmented Terminal Authentication

Figure 1 gives a sketch of the general structure of our additional part to the current terminal
authentication protocol. Our Setup phase is very similar to the original EAC one. DVs
have to contact CVCAs from every other country, in order to obtain their DV certificate.
The main difference is that now, certificates will contain an additional public key PKDV

corresponding to a secret key SKDV only known by the DV and that will be shared among
terminals. Moreover, certificates will contain additional information regarding how many
terminals are required to collaborate in order to authenticate themselves (parameters t and
`). When a DV will set up his terminals, he will additionally give them a share di of his
secret such that every terminal authentication will require the collaboration of at least t+1
of them. Hence our scheme tolerates up to t corrupted terminals. As long as t+ 1 honest
terminals are available, terminal authentication will be able to proceed. Once the Setup
phase has been completed, only terminals and MRTDs are present in the interactions.
Hence the DV can be used offline as described in the EAC standard.

DVs are in charge of the setup phase. They will run the key generation algorithm and
distribute to each terminal its corresponding secret key, the public key pk of the system
and the verification keys of all participants. After this step, DVs can be turned offline.

During the terminal authentication and just after the Certificate Chain Validation process,
a MRTD will first select a random challenge M in the message space M. He will then
challenge the terminal with (M ||d̃ate) where || denotes concatenation and d̃ate is the
approximation of the current date stored in the MRTD. Moreover M must be independent
from the MRTD identity, otherwise a tracking privacy threat would rise. Indeed, in this
case the signature will prove that a given identity was at a given specific location and
time. In order to sign the challenge, the terminal will have to collaborate with at least
t other terminals. The revocation process takes place during the terminal collaboration.
It will be the role of other terminals to determine whether the requesting terminal Tr is



revoked or not. As terminals have real clocks and better computation capabilities than
MRTDs, they will be able to check this revocation status much more efficiently. Any
standard strong revocation mechanism can then be used here. The basic solution is to
apply Certificate Validation as described in section 2.5 of [BfSidI12d], but with a real
clock. More complex solution can also be used such as Certificate Revocation Lists (CRL)
or with an Online Certificate Status Protocol (OCSP) if an OCSP responder is set up for
terminals. If the requesting terminal is revoked, then his request can be simply ignored.
If Tr status is not revoked, then a partial signature σi can be computed and sent to him,
possibly with a verification proof πi. At this stage, the requesting terminal will collect all
valid t partial signatures and combine them with his own to create a global signature on
the MRTD challenge. The latter will be sent to the MRTD as a proof of authenticity and
non-revocation.

Once the MRTD receives the global threshold signature, he will have to verify it with the
global public key of the DV. If the check is successful, he can be ensured that either the
terminal knows the DV secret or that he has gone through a threshold signature involving
some revocation checks. As we assume the DV to have correctly achieved the initial setup,
the MRTD is ensured on the non-revocation status of the terminal.

MRTD Tr Ti6=r

M ∈RM
(M ||d̃ate) // σr = Σdr

i=r(M ||d̃ate)
(M ||d̃ate) // Check revocation status

Check Σv(σi, πi) (σi, πi) = Σdi
i (M ||d̃ate)

σi,πioo

Check
Vσ(M ||d̃ate) σ = Σc({σi}Ψ)

σoo

Figure 1: Terminal Authentication with Revocation

At this point, any efficient and secure threshold signature scheme can be used. In that re-
gard, we suggest to use Shoup’s threshold RSA signature [Sho00]. In this case, the MRTD
computation will be dominated by one single exponentiation. The terminal communicat-
ing directly with the MRTD and in charge of combining the partial signatures, will have a
computational complexity dominated by (5t + 4) exponentiations. However this compu-
tational cost can be reduced to (t+ 5) exponentiations as explained in section 4.4. For the
collaborating terminals, the computational cost is dominated by 3 exponentiations.



4.3 Security Outcome

We can distinguish two types of terminals: a requesting terminal and collaborating ter-
minals. The requesting terminal communicates directly with the MRTD. Collaborating
terminals have the responsibility of verifying the requesting terminal revocation status and
they also have to participate in the creation of the threshold signature in case of a non-
revoked requesting terminal. Terminals are either corrupted or honnest, and either revoked
or non-revoked. The cases of revoked terminals is easy as no honnest terminals will inter-
act with them.

As our augmented terminal authentication is enforced with threshold signatures, the secu-
rity achieved is highly dependent on the security of the threshold signature scheme used.
We assume a threshold signature scheme that is robust, unforgeable and threshold secure,
as the one from [Sho00]. Hence any computationally bounded adversary corrupting at
most t terminals will not be able to learn the master secret of the threshold signature
scheme (sk = d0 = f(0)). Moreover adversaries will not be able to forge valid signatures
on chosen messages.

Our augmented terminal authentication is complete in the sense that if all parties are hon-
est, the MRTD will obtain a valid threshold signature on his challenge, with the additional
guarantee that the requesting terminal to which it is communicating is non-revoked and
authenticated.

In the case where the requesting terminal is non-revoked and compromised, the adversary
could gain access to sensitive data from the MRTDs that it encounters. However to do so,
the requesting terminal will have to collaborate honestly with the other terminals. This
adversarial behavior can be mitigated by monitoring the network and making sure that
terminals only communicate with other known terminals.

When the requesting terminal is honnest and some collaborating terminals are corrupted
and non-revoked, these terminals will be easily identified if they fail to provide valid veri-
fication proofs on their partial signatures. Moreover, the adversary will only learn contents
of challenges without being able to link them to the MRTD that generated them.

Proactive security can be achieved by frequently renewing the global secret of the thresh-
old signature scheme. This can be done efficiently by resharing the same secret with the
means of sharing the “secret” value ’0’ and adding the obtained partial secrets to the previ-
ous ones. We can easily see this property with Lagrange interpolation. Assume the general
secret is contained in f(0) and that another function g, with g(0) = 0 is shared and added
to the previous secret shares. The resulting addition will form another function f ′ such that
f ′(0) = f(0). This method reduces the threat of terminal keys being exposed. In order
to compromise the general secret key, an adversary will have to obtain t + 1 key shares
during a same time frame. This allows DV certificates to protect their general secret used
for threshold signature throughout their entire time validity. Notice that this step is highly
efficient if performed by the DV, i.e. the DV generates the additional secret key shares
and distribute them to their corresponding terminal. Verification keys will also have to be
redistributed to every participants. However, this can be achieved without the need of the
DV with secure multiparty computation.



To sum up, a stolen terminal will not be able to authenticate itself. A corrupted collabo-
rating terminal will learn no information except that a MRTD with some approximation
date has requested an authentication process. However, a corrupted requesting terminal
interacting with a MRTD will be granted access to the MRTD sensitive data if the terminal
behaves honestly with the other collaborating terminals. As long as at most t terminals are
corrupted, the secret key used to authenticate terminals remains protected. Furthermore,
the leakage of the secret key can be achieved only if at least t + 1 key shares are com-
promised within the same time frame of a resharing phase. These security properties are
desirable as they improve the current state of the EAC. By lowering the trust in terminals,
we increase the DV level of trust. This is an acceptable change as DVs are less exposed
than terminals.

4.4 Efficiency Tuning

Regarding computational costs, several modifications can be brought to reduce them. First,
the terminal in charge of combining partial signatures could perform the robustness checks
solely if the resulting combined signature is not valid. Hence instead of computing 4t
exponentiations he would first check the validity of the signature with one exponentiation.
Furthermore, a minor enhancement consists of letting the DV precompute ∆, (α, β) and
the Lagrange coefficients λΨ

0,j ,∀Ψ, and storing them in each terminals during the set up
phase. The drawback of this method is that it will require a storage space in terminals.
This can be an issue especially with the Lagrange coefficients, as there are (t+ 1)Ct+1

` =
`!

t!(`−t−1)! elements to compute. In the case of a large ` (e.g. ` > 100), we can see that
exponentiation by ∆ will slow down the system. In this scenario, the threshold signature
scheme of Gennaro et al. [GHKR08] will be preferable as it will be more efficient.

Furthermore, a small efficiency gain could be obtained by using the threshold signatures of
King [Kin00] which is itself derived from the Desmedt-Frankel [DF94] scheme. However,
the gain in efficiency is achieved by an increased difficulty to implement them and a higher
storage requirement.

4.5 Remarks

If a CVCA considers that the threshold t used in an organizational unit managed by a DV
is too low, he can request the participation of a special terminal that will act as a revocation
server (e.g. OCSP). The drawback with this method is that it introduces a single point of
failure. Moreover, the DV participation in the revocation process should be avoided as
it breaks the principle of closing the Public Key Generator (PKG) after key generation
(first mentioned in [Sha84]). Ideally, the set up of the organizational unit under a DV
should include enough terminals. As CVCAs provide foreign DV the ability to read their
passport, it would be desirable that these DV protect this privilege and avoid its missuse.
If the number of terminal needed is low (in a hotel, etc...), then new terminals should join



the infrastructure of another existing DV organizational unit.

Let us also mention the existence of multisignatures. These are a type of threshold sig-
nature where the identity of signers is provided in the general signature. However, even the
latest result in multisignatures that we could use, namely the scheme from Boldyreva [Bol03],
would imply an important efficiency decrease.

The overhead in time of our suggested solution should be less than 0.1 seconds, assuming
30 MHz CPU for MRTDs, 520 MHz CPU for terminals, 802.11g wireless communica-
tion between terminals (net average of 22 Mbit/s) and 200 Kbit/s communication speed
between MRTDs and terminals. We consider an upperbound of 50 exponentiations for re-
questing terminals, 3 exponentiations for collaborating terminals and 1 exponentiation for
the MRTD. Each message sent is around 1 Kbit except the messages from collaborating
terminals that are around 3 Kbits.
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