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Abstract. In this paper, we propose a high-throughput pipeline architecture of the stream
cipher ZUC which has been included in the security portfolio of 3GPP LTE-Advanced. In
the literature, the schema with the highest throughput only implements the working stage
of ZUC. The schemas which implement ZUC completely can only achieve a much lower
throughput, since a self-feedback loop in the critical path significantly reduces operating
frequency. In this paper we design a mixed two-stage pipeline architecture which not only
completely implements ZUC but also significantly raises the throughput. We have imple-
mented our architecture on FPGA and ASIC. On FPGA platform, the new architecture
increases the throughput by 45%, compared with the latest work, and particularly the new
architecture also saves nearly 12% of hardware resource. On 65nm ASIC technology, the
throughput of the new design can up to 80Gbps, which is 2.7 times faster than the fastest
one in the literature, in particularly, it also saves at least 40% of hardware resource. In
addition to the academic design, compared with the fastest commercial design, the new
architecture doubles the throughput of that. To the best of our knowledge, this evaluation
result is so far the best outcome. It can be assumed that hardware implementations of ZUC
following our architecture will fit in future LTE equipments better.
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1 Introduction

ZUC [1–4] is a word-oriented stream cipher and consists of two stages (the initialization stage
and the working stage). ZUC has three logical layers as seen in Fig.1. The top layer is a linear
feedback shift register (LFSR) with 16 cells, the middle layer is the bit-reorganization, and the
bottom layer is a nonlinear function F. In the initial stage, LFSR is constructed using a 128 bit
key, a 128 bit IV and a 240-bit long constant string, and during the first 32 iterations, the output
of the FSM is added to the feedback loop for LFSR update [5]. After the first 32 iterations, ZUC
moves into the working stage and outputs 32 bits of key per iteration.

Since the throughput of hardware implementation of ZUC is determined by the ratio of oper-
ating frequency to the number of clock cycles to generate per 32-bit key, we use T to denote the
number of clock cycles. In order to acquire a high throughput, we should diminish T or increase
the operating frequency. In the contemporary proposed works, T = 1 is quite often applied in
order to achieve a high throughput, which means that the LFSR needs updating per clock cycle
to realize an output of 32-bit key every clock cycle.

Operating frequency is determined by the critical path in ZUC. The critical path of the ZUC
in hardware implementation is determined by the updating routine of the LFSR. The updating
routine of LFSR employs a series of modulo 231 − 1 multiplications and additions, while the
addition module is a time-consuming and resource-consuming component, due to which this data
path is much longer than others.

In the literature, many works try to shorten this path to increase the throughput of the ZUC.
The highest one [6] only implemented the working stage of ZUC, which is not applicable in practical
applications. The scheme proposed in INDOCRYPT2011 by Gupta et al [5] implemented the two
stages of ZUC, however, the self-feedback loop in their critical path significantly reduces operating
frequency of their architecture.
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As the critical path in the initialization stage is longer than that in the working stage, the
throughput of the previous works [7–9] which includes both stages are much lower than that
work [6] which includes the working stage only.

Motivation.
We consider the following problem in hardware implementations of ZUC.
As ZUC has a self-feedback loop in the critical path, it is harder to increase the key stream

throughput by means of traditional pipeline, since the traditional pipeline method not only increase
operating frequency but also increases the number of clock cycles required when generating each
32-bit cipher words. S. Gupta et al. [9] first raised this problem but the puzzle remains unsolved.
And the later works [5] [7] did not solve this problem either, which demonstrably threw solid proof
upon the impossibility of increasing ZUC throughput via traditional pipeline method at present.

In short, a lot of effort is being spent on improving this weakness, the efficient and effective
method has yet to be developed in past three years.

Contribution.
Our primary contribution is that we propose a novel mixed two-stage pipeline architecture

of ZUC to considerably increase the throughput of ZUC in hardware. On FPGA platform, the
new architecture increases the throughput by 45%, compared with the latest work [10], and saves
nearly 12% of hardware resource. On ASIC platform, our new architecture provides at least twice
the throughput compared to any existing academic designs and commercial designs.

To achieve a high-throughout ZUC hardware implementation, the LFSR should be updated
per clock cycle for the purpose of producing 32-bit key works in a higher operating frequency. Al-
though the long path is undertaken in the initialization stage only, yet it slows down the operating
frequency in the entire ZUC implementation. It seems unworthy to lose the greater for the less.

Based on this observation, in our mixed two-stage pipeline architecture, it actually has two
modes, namely half-pipeline mode and full-pipeline mode. In the initialization stage of ZUC, our
architecture works in half-pipeline mode, in which the LFSR is updated every two clock cycles,
so the long data path in the initialization stage can be divided into two small sub-blocks and
operating frequency is boosted. After 64 clock cycles when the initialization stage ends in our
architecture, the pipeline architecture will be transferred into the full-pipeline mode. During this
mode, the LFSR updates per clock cycle and at the same time 32-bit key stream is generated in
each clock cycle, and moreover, the full-pipeline architecture is totally different from that of the
previous works.

In particular, in our new architecture, we do not use any optimization techniques which are
specific to a certain platform. Thus our architecture can perform well on different platforms (F-
PGA and ASIC) without any changes. If someone wants to further improve the throughput, the
specific optimization skills corresponding to certain platform can be used to further improve the
throughput, and moreover, compared with previous works, our architecture uses less hardware
resource.

In order to verify the accuracy of our mixed two-stage pipeline architecture, we have imple-
mented our architecture in Xilinx V5 and Xilinx V6 FPGA, achieving a throughput of 7.9 Gbps
with 350 slices and 11.2 Gbps with 328 slices respectively. It is deduced that our evaluation results
are so far the optimal outcomes in Xilinx FPGA given a comparison of existing pipeline and non
pipeline architecture properties.

We also implement the design in 65 nm ASIC platform, as the result shown, our design at least
increases the throughput by 2 times compared with the academic designs and the commercial
designs.

Owing to the highest throughput and smaller hardware size, the designs following our archi-
tecture will perform better in future LTE equipments.

2 Preliminaries: ZUC Algorithm

The new stream cipher ZUC is a word-oriented stream cipher [1]. It takes a 128-bit initial key
and a 128-bit initial vector as input, and outputs a key stream of 32-bit words. The execution of
ZUC has two stages: initialization stage and working stage. In the first stage, a key initialization
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is performed, i.e. the cipher is clocked without producing output. The second stage is a working
stage. The algorithm produces a 32-bit word of output in per loop of the working stage.
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Fig. 1. The architecture of ZUC

2.1 The linear feedback shift register (LFSR)

The LFSR has 16 31-bit cells (S0, S1, · · · , S15). Each cell Si(0 ≤ i ≤ 15) is registered to take
values from the following set: {1, 2, 3, . . . , 231 − 1}. The LFSR has 2 modes of operations: the
initialization and the working mode. In the initialization mode, the LFSR receives a 31-bit input
word u, which is obtained by removing the rightmost bit from the XOR of the 32-bit output W
of the nonlinear function F and the output X3 of the bit-reorganization, i.e.,u = (W ⊕X3) >> 1.
More specifically, the initialization mode works as follows:

LFSRWithInitialisationMode(u)
{
1. v = {215S15 + 217S13 + 221S10 + 220S4 + (1 + 28)S0} (mod 231 − 1)
2. S16 = v + u (mod 231 − 1)
3. if S16 = 0 then set S16 = 231 − 1
4. (S1, S2, . . . , S15, S16) → (S0, S1, . . . , S14, S15)

}

+ denotes the addition of two integers, mod denotes the modulo operation of integers. In the
working mode, the LFSR does not receive any input, the LFSR works independently with other
part of ZUC. The LFSR update data path of working process is shorter than that of in the initi-
ation stage. More specifically, the working mode works as follows:

LFSRWithWorkMode()
{
1. S16 = {215S15 + 217S13 + 221S10 + 220S4 + (1 + 28)S0} (mod 231 − 1)
2. if S16 = 0 then set S16 = 231 − 1
3. (S1, S2, . . . , S15, S16) → (S0, S1, . . . , S14, S15)

}



4 Zongbin Liu1, Neng Gao1, Jiwu Jing1, and Peng Liu2

2.2 The Bit-reorganization

The middle layer of the algorithm is the Bit-reorganization. It extracts 128 bits from the state of
the LFSR and forms 4 32-bits words, X0,X1,X2, and X3. X0 = S15H ∥ S14L, X1 = S11L ∥ S9H ,
X2 = S7L ∥ S5H , X3 = S2L ∥ S0H .

S15H denotes the leftmost 16 bits of integer S15, S14L denotes the rightmost 16 bits of integer
S14, S15H ∥ S14L, denotes the concatenation of strings S15H and S14L, more detail specification
can be found in [1].

2.3 The nonlinear function F

The nonlinear function F has two 32-bit width memory cells R1 and R2. The input of the nonlin-
ear function is the X0, X1, X2, which are the output of the bit-reorganization step, the nonlinear
function F outputs a 32-bit word W.

The nonlinear function(X0, X1, X2, X3)
{

1. W = (X0 ⊕R1)�R2

2. W1 = R1 �X1

3. W2 = R2 �X2

4. R1 = S(L1(W1L ∥ W2H))

5. R2 = S(L2(W2L ∥ W1H))

}

∥ denotes the concatenation of strings. ⊕ denotes the bit-wise exclusive-OR operation of inte-
gers. � denotes the modulo 232 addition . In item 4 and 5, S is a 32×32 S-box which is composed
of four 8× 8 SBoxes, and L1 and L2 are linear transformations, which are defined as equation 1,
2:

L1(X) = X ⊕ (X ≪ 2)⊕ (X ≪ 10)⊕ (X ≪ 18)⊕ (X ≪ 24) (1)

L2(X) = X ⊕ (X ≪ 8)⊕ (X ≪ 14)⊕ (X ≪ 22)⊕ (X ≪ 30) (2)

2.4 The execution of ZUC

Key Loading The key loading procedure will expand the initial key and the initial vector into
16 31-bit integers as the initial state of the LFSR. Let the 128-bit initial key k and the 128-bit
initial vector iv be:

k = k0∥k1∥k2∥ · · · ∥k15
and

iv = iv0∥iv1∥iv2∥ · · · ∥iv15

Let D be a 240-bit long constant string composed of 16 substrings of 15 bits:

D = d0∥d1∥ · · · ∥d15

For 0 ≤ i ≤ 15, let si = ki∥di∥ivi
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The execution of ZUC The execution of ZUC has two stages: the initialization stage and the
working stage. During the initialization stage, the algorithm first loads the 128-bit key, initial iv,
and into the LFSR as the initial state, and set the memory cells R1 and R2 to be all 0. Then the
cipher stays in the initialization stage in the first 32 iterations, and then moves into the working
stage to generate key stream.

3 The State-of-the-Art implementation of ZUC in hardware

In this paper, we focus on designing a high-throughput architecture of ZUC. Since the throughput
is determined by the critical path, here we first show the detailed description of the critical path of
ZUC in hardware implementation and then review the methods adopted for shortening the critical
path in the literature.

According to the description of ZUC in the above section, we can easily find that the critical
path in hardware implementations of ZUC is the LFSR update operation in the initialization
stage.

Compared with the same operation in the initialization stage, in the working stage, the update
operation does not need an extra 32-bit addition to obtain the value of S16, which is the value of
S15 in the next round. In the working stage, the value of S16 can be calculated using equation (3).
If this sum S16 = 0, it is replaced by 231 − 1, this step is named the check step in this paper.

S16 = {215S15 + 217S13 + 221S10 + 220S4 + (1 + 28)S0} (mod 231 − 1) (3)

In order to achieve a high throughput, Liu et al [6] proposed a four-stage pipeline architecture
of ZUC, here denoted FOUR-ZUC, which only included the working stage of ZUC. As only one
modulo 231 − 1 addition is in their critical path, their design can reach to a high throughput.
How does this architecture work? As the values of some cells in LFSR could be known in advance,
such as the values of S13 in the second and third rounds, Liu et al divided this path {215S15 +
217S13 +221S10 +220S4 + (1+ 28)S0} (mod 231 − 1) into four stages, each of which only included
one modulo 231 − 1 addition as shown in Fig.2.
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Fig. 2. Four-stage and three-stage pipeline structure of ZUC

The reason why they only implemented the working stage is that if their architecture includes
the initialization stage, the long path in the initialization stage will impact the throughput of key
stream. As mentioned above, the critical path in the initialization stage includes an extra 32-bit
adder which is used to calculate u, however, u and S16 must be calculated serially in the same
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clock cycle due to u derived from S15. This extra 32-bit adder increases the critical path, thus
reducing the throughput of key stream. Although the throughput of this architecture is high, this
architecture is not flexible due to a lack of the initialization stage in hardware.

Kitsos et al [11] found above drawbacks and designed an architecture including the initialization
stage. Owing to cascading three modulo 231−1 adders in their critical path, the delay of this path
was longer than that of FOUR-ZUC, thus the throughput of this work is much lower. As they did
not adopt pipeline architecture which uses more hardware resource to store intermediate results,
this schema can save the consumption of hardware resource.

In the most recent conference INDOCRYPT 2011, Gupta et al [9] improved the architec-
ture of FOUR-ZUC and proposed a three-stage pipeline architecture as shown in Fig.2, here
denoted THREE-ZUC. Compared with FOUR-ZUC, the advantage of THREE-ZUC is that the
initialization stage of LFSR is included without much extra hardware resource. As their pipeline
architecture included the initialization stage, the critical path is longer than that of FOUR-ZUC.
The reason why their work can build a three-stage pipeline rather than four is that two modulo
231 − 1 additions can be calculated serially in one stage of THREE-ZUC, Gupta et al need not to
divide the long path into four parts. Although the architecture included the initialization stage,
the throughput of this architecture was decreased by the lengthened critical path.

Gupta et al [5] proposed an extend version of their paper in INDOCRYPT 2011, but no
throughput is increased in their improved architecture of ZUC, with the same reason discussed
above.

Without using pipeline architecture, Wang et la [8] and Zhang et al [10] proposed architectures
based on carry save adder (CSA) for implementing the ZUC algorithm on FPGA, they still cannot
overcome the obstacle that the path in the initialization stage is longer than that in the working
stage, despite involving carry save adder to shorten the critical path.

In short, the long path in the initialization stage greatly reduced the throughput of the key
stream. Although a lot of effort is being spent on improving this weakness, the efficient and effective
method has yet to be developed in past three years.

In the later sections we will propose a mixed two-stage pipeline architecture to solve this
problem and this new architecture can increase the throughput drastically.

4 The Mixed two-stage pipeline architecture of ZUC

4.1 The architecture of modulo 231 − 1 adder

Since the modulo 231 − 1 addition shown in Fig.1 is the most time-consuming and resource-
consuming component, this section first gives three methods to compute (a+ b) (mod 231 − 1) in
hardware, and then discusses the disadvantages and advantages of them, at last depicts our mixed
two-stage pipeline architecture of ZUC.

The algorithm to compute (a+ b) (mod 231 − 1) is as follows:
Let a, b ∈ GF (231−1), the computation of v = (a+b) (mod 231−1) can be done by computing

v=a+b; and then check the carry bit:

– carry = 1, set v = a+ b+ 1.
– carry = 0, set v = a+ b.

Method 1 This method is used in THREE-ZUC, and the architecture is shown in Fig.3. This
is a direct way to implement the modulo 231 − 1 addition, which concatenates two 31-bit adders
directly, and the delay of this method is that of two 31-bit adders.

Method 2 Based on the observation of the long delay in Method 1, Liu et al [6] proposed this
method to shorten the delay of Method 1. In order to calculate A+B+1, Carry0 is set to 1, A, B
as inputs of one adder, and Carry0 = 0, A, B as inputs of another adder. A+B and A+B+1 can
be computed at the same time, and the last result can be selected by the carry bit of A+B. The
delay in this method is lower than that of Method 1. The architecture of this method is shown in
Fig.3.
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Method 3 Another adder which is widely used in hardware design is carry save adder (CSA). It
is simply a parallel ensemble of k full adders without any horizontal connection [12]. When adding
together three or more numbers, using a CSA followed by a carry propagate adder(CPA) is faster
than using two CPAs. For example, in order to calculate (A + B + C) (mod 231 − 1), first use
equation (4,5) produces two integer Carry and Sum, and then use a CPA to get the last result.

Carry = Ai&Bi|Ai&Ci|Bi&Ci (4)

Sum = Ai ⊕Bi ⊕ Ci (5)

Carry ∗ 2 + Sum = A+B + C (6)

Carry ∗ 2 (mod 231 − 1) = Carry ≪ 1 (7)
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It is straightforward to find that A+B +C (mod 231 − 1) is equal to (Sum+ (Carry ≪ 1))
(mod 231 − 1). Consequently, if using this CSA architecture to implement the modulo 231 − 1
addition, it will be very efficient as the total delay of this method is shorter than that of previous
methods, and moreover, less hardware resource is needed in this method.
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The disadvantage of this method is that the operand number of the CSA modulo 231−1 adder
must be more than three, and the last result should be gotten by Method 2 or Method 1 as shown
in Fig.3.

There are many modulo 231−1 additions in the critical path of ZUC. Based on this observation,
the implementation should use as many adders following Method 3 as possible, and should not
use many two-input modulo 231 − 1 adders proposed by Method 1 and 2.

4.2 The Mixed Two-Stage Pipeline Architecture of ZUC

To achieve a high-throughput ZUC hardware implementation, the LFSR should be updated per
clock cycle for the purpose of producing 32-bit key works in a higher operating frequency. Al-
though the long path is undertaken in the initialization stage only, yet it slows down the operating
frequency in the entire ZUC implementation. It seems unworthy to lose the greater for the less.

Based on this observation, we propose a new architecture. In this new architecture, the LFSR
is updated every other clock cycle in the initialization stage, and per clock cycle in the working
stage, by this means, we increase the operating frequency, thus the throughput of the key is boosted
since the 32-bit key words generating per clock cycle as other architectures proposed before. In
particular, the new architecture consumes less hardware resource. Next we will give the detailed
information on this new architecture.

The initialization stage As discussed above, in this stage the LFSR is updated every other clock
cycle, that means we can divide the original critical path into two sub-blocks, namely Pipeline
Stage 1 and Pipeline Stage 2 respectively. Fig. 4 shows the structure of our architecture. From
Fig. 4, the data path in the Pipeline Stage 2 is longer than in the Pipeline Stage 1, but the former
is much shorter than THREE-ZUC as seen in Fig.4, it is about one fourth of the THREE-ZUC,
because the modular adder using in THREE-ZUC adopts Method 1, while the Method 2 is used
in our architecture.

It occurred to us that the updating job of LFSR can be promoted by pipeline construction,
since S15 is the only necessity for Pipeline Stage 2 in the working stage, and the value of S15

required in Pipeline Stage 1 can be achieved by pre-computation.
Utilization of the revised method can help boost the throughout of the new design with a

considerable increase compared with all the previous works.
Here we give the detailed design of Pipeline Stage 1 and Pipeline Stage 2. The architecture of

Pipeline Stage 1 and 2 can be found in Fig.5 and in Fig.6 respectively.
In the Pipeline Stage 1, the first three CSAmodular adders are used to calculate (Carry1, Sum1)

using equation (8). The last CSA calculates (Carry2, Sum2) using equation (9).

(Carry1, Sum1) = {217S13 + 221S10 + 220S4 + (1 + 28)S0} (mod 231 − 1) (8)

The multiplexer in Fig.5 plays an important role in changing the working mode. In the ini-
tialization stage, u ≫ 1 is strobed into the last CSA via the multiplexer in Fig.5, while in the
working stage, 0 is strobed. In this way, when in the working stage, the multiplexer can bypass
the circuit(denoted with the dotted box in Fig. 5) which special to the initialization stage. Since
in the initialization stage, the LFSR is updated every other clock cycle, the expected value of S16

required in the initialization stage is guaranteed.
At the last part of the Pipeline Stage 1, two extra 31-bit wide registers are used to store

the intermediate results Carry2 andSum2 of the last CSA. Here we do not calculate the sum of
Carry2 and Sum2 directly in the Pipeline stage 1, because if we do, the path in the Pipeline Stage
1 will be increased by an extra 31-bit wide addition.

(Carry2, Sum2) = {Carry1 + Sum1 + u >> 1} (mod 231 − 1) (9)

(Carry3, Sum3) = {Carry2 + Sum2 + 215S15} (mod 231 − 1) (10)
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In the Pipeline Stage 2, the CSA component is used to calculate (Carry3, Sum3) using equation
(10). At the end of this stage, the modulo 231−1 adder with Method 2 is used to derive S16 which
is the value of S15 in the next iteration. When the value of S15 is figured out, the checking step
is needed to guarantee that the value of new S15 is in the set {1, 2, · · · , 231 − 1}. If this checking
step was included in this stage, it would extend the path in the Pipeline Stage 2. However, Zhang
et al [10] has proofed this step can be ignored in the hardware implementation of ZUC.

The working stage The operations of the working stage in the initial two clock cycles are
different from the latter ones in that the pipeline is constructed during the first and second clock
cycle. In the first clock cycle, Pipeline Stage 1 calculates (Carry1, Sum1) using equation (8) which
is the major part of S16 of the next iteration. At the end of the first clock cycle, all cells of the
LFSR, except the fifteenth shift right to update the LFSR state, while the content of the fifteenth
in the LFSR remains unchanged.

In the second clock cycle, Pipeline Stage 2 starts running and calculates the value of S16 using
equation (10). At the same time, the major part of S17 , the required value of S15 after two
iterations is calculated in Pipelined Stage 1 using equation (8). At the end of the second clock
cycle, the value of S16 is simultaneously written into the fifteenth and fourteenth cells of the LFSR
to update both contents, when other cells of the LFSR shift right to update the contained values.
After those two clock cycles, the pipeline is constructed and begins to work, outputting a 32-bit
key each clock cycle.

5 Evaluation and Analysis

5.1 Data path of ZUC

Based on the description of ZUC, there are two main data paths: one is in the LFSR and another
one is in the nonlinear function F. Since the modulo 231 − 1 addition is a time-consuming compu-
tation in ZUC with other five modulo 231 − 1 additions in the path of the LFSR, it becomes the
longest data path of ZUC in the initialization mode.

1. u = ((S15H ∥ S14L)⊕R1)�R2

2. v = {215S15 + 217S13 + 221S10 + 220S4 + (1 + 28)S0} (mod 231 − 1)
3. S16 = v + u >> 1 (mod 231 − 1)
4. IFS16 = 0 then set S16 = 231 − 1

Since in the nonlinear function F, the value of R1 and R2 are required for the next loop
computation as shown in Fig.1, if the LFSR needs to be updated per clock cycle, the value of R1

and R2 must be calculated in each clock. That means the data path in the nonlinear function F
cannot be divided into sub blocks to increase the operating frequency. Based on this observation,
the lower limit of the critical path of ZUC is determined by the path in the nonlinear function F,
which consists of one 32-bit addition delay, a SBox(8 ∗ 8) delay, and some logic gates delay(linear
transformation).

Here we will show the detailed comparison of the critical path between the existing designs
and ours.

In the Pipeline Stage 2, since the cell S14 and S15 of LFSR are renewed with different values
in the initialization stage and working stage, which induces an extra multiplexer into the data
path in LFSR, for simplicity, this multiplexer is not marked in Fig.2. Based on this and Fig.6, the
data path of our architecture in LFSR consists of one CSA, one modulo 231 − 1 adder, and two
multiplexers. The detailed comparison is shown in Table.1.

In reference to schema proposed by Zhang et al [10], the critical path of ours saves a 32-bit
adder. As shown in Table.1, in THREE-ZUC and schema proposed by Zhang et al, the critical
paths are much longer than that in the nonlinear function F. However, our data path in the LFSR
is nearly one fourth of THREE-ZUC. If this path is the critical path of the ZUC, the throughput
will be increased by four times. But the point is, the minimal length of a real feasible path is
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Table 1. The critical path of this work and existing designs

Critical Path

Our work(LFSR) One Level CSA → 31-bit adder → a multiplexer → a multiplexer

Nolinear F 32-bit adder → XORs(linear transforms) → SBox(8 ∗ 8)
THREE-ZUC(LFSR) 31-bit adder → 31-bit adder → 31-bit adder → 31-bit adder → a multiplexer

Zhang et al [10] 32-bit adder → a multiplexer → One Level CSA → one modulo 231 − 1 adder

determined by the lower limit path in the nonlinear function F, which means the longer length of
the two has the final say on the terminal throughput.

Is the data path in the LFSR of our architecture longer than the path in nonlinear function?
The answer dependent on the implementation platform. Because the SBox delay is dependent on
the hardware platform. We will discuss this issue in following subsection.

5.2 Evaluation result of the two-stage pipeline ZUC in FPGA

In order to verify the correctness and evaluate the performance of our architecture in FPGA
platform, we implement the two-stage pipeline architecture in Verilog HDL and map it into Virtex-
5 XC5VLX110T-3 and Virtex-6 XC6vlx75t-3 FPGA. The synthesis tool is ISE 11.5. The result of
performance (in terms of throughput), consumed area (in terms of Xilinx FPGA slices), the ratio
of throughput to area is given in Table.2.

Table 2. Comparison of our architecture with existing designs in Xilinx FPGA

Implementation Technology
Frequency
(MHz)

Area
Throughput

(Mbps)
Throughput/Area

Proposed-ZUC Virtex 6 XC6vlx75t-3 353 328 slices 11296 34

Proposed-ZUC Virtex-5 XC5VLX110T-3 246 350 slices 7872 22

Kitsos et al [11] Virtex 5 65 385 slices 2080 5.4

Wang et al [8] Virtex-5 XC5VLX110T-3 108 356 slices 3456 9.7

Zhang et al [10] Virtex-5 XC5VLX110T-3 172 395 slices 5504 13.9

As shown in the Table 5.2, the new architecture increases the throughput approximately by
45% compared with the latest and best implementation [10], and particularly it also saves nearly
12% of hardware resource.

5.3 Comparison with Existing Designs in ASIC

Comparison with Academic Designs in ASIC In order to compare with the exciting designs
in ASIC, the gate-level synthesis was carried out using Synopsys Design Compiler Version G-
2012.06-SP5, using topographical mode for a 65nm technology. The only hardware realizations
for ZUC have been done in ASIC [5] so far. In order to compare with the commercial designs,
the author used the best performance library in 65nm technology for the sake of fairness in their
paper. Therefore, in our implementation, we also used the best performance library of 65nm target
technology. The area results are reported using equivalent 2-input NAND gates.

As shown in Table. 5.3, our new architecture improves the throughput significantly comparing
with the exciting designs. Since THREE-ZUC did not give the detailed information of the library
which they used, we give the results synthesized by two different TSMC 65nm target libraries
in Table 5.3. The rough analysis below shows the reason why our design can reach such high
performance.

For the sake of simplicity, here we define a full adder delay as a unit time, denoted ∆t. We
assume that the adder is following CPA architecture. Here we ignore the routing delay. The 31-bit
CPA delay is about 31∆t. The delay of one stage CSA is about ∆t. A multiplexer delay is about
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Table 3. Comparison of our architecture with existing academic designs in 65nm technology

Implementation Technology
Frequency
(MHz)

Area
(KGates)

Throughput
(Gbps)

Proposed-ZUC TSMC-GP 65nm 2500 12.5 80

Proposed-ZUC TSMC-LP 65nm 2000 12.5 64

Gupta et al [5] - 920 20 29.4

∆t, the minimum delay of the SBox is about 8∆t. So the critical path of our architecture is in
the nonlinear function.

According to the above definition and comparison result in Table 1, the total delay of the path
in nonlinear function Function is about 41∆t = 32∆t + 8∆t + 1∆t, assuming XOR = 1 * ∆t.
The total delay of the critical path in our work is about 44∆t = 31∆t + 8∆t + 5∆t. The total
delay of the critical path in THREE-ZUC is about 125∆t = 31∆t + 31∆t + 31∆t + 31∆t + ∆t.
From this point of view, the designs following our architecture will perform better than that of
THREE-ZUC in the ASIC platform. The delay of the critical path of ours is about one third of
THREE-ZUC, that means the throughput of our architecture is approximately three times the
value of THREE-ZUC. Since the CLA uses more hardware resource than CPA, if our architecture
and THREE-ZUC both use the adder with CPA architecture to save the hardware resource, the
throughput of our design will be approximately three times the throughput of THREE-ZUC.

In fact, with the best performance constraint, the synthesized tool uses Carry Look-ahead
Adder(CLA) architecture to implement addition, thus the delay of the 32-bit adder is much shorter
than that of adder with CPA architecture. From the synthesized result of our design with TSMC-
LP 65nm library and TSMC-GP 65nm library, our design can increase the throughput by 2 times
and 2.7 times respectively compared with that of THREE-ZUC.

In reference to consumption of hardware resource, our architecture will use less hardware
resource. Compared with THREE-ZUC, our new pipeline architecture utilizes Method 3 to cal-
culate modulo 231 − 1 addition. In this way, the new architecture can save four 31-bit adders,
and moreover, since only two stages in our pipeline, less hardware resource is needed to store
the intermediate results. These points let our design save much more hardware area than that of
THREE-ZUC.

Comparison with Commercial Designs in ASIC In the commercial area, both IP Cores
Inc. [9] and Elliptic Tech Inc. [13] provide ZUC IP core in 65nm ASIC technology, and neither of
them releases their architecture. As far as we know, the best implementation of ZUC in ASIC is
given by IP cores Inc. This commercial ZUC IP core is released later than that of THREE-ZUC.
IP Cores Inc. only claims that the best performance of their ZUC IP core can up to 40 Gbps in
TSMC 65nm technology.

Table 4. Comparison of our architecture with existing commercial designs in 65nm technology

Implementation Technology
Frequency
(MHz)

Area
(KGates)

Throughput
(Gbps)

Proposed-ZUC TSMC 65nm 2500 12.5 80

Elliptic Tech. - 500 10 - 13 16

IP Cores Inc. TSMC - - 40

6 Conclusion

In conclusion, we proposed a two-stage pipeline architecture of stream cipher ZUC in hardware.
Compared with the previous works, the new architecture increases the throughput significantly
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and saves much hardware resource in FPGA and ASIC. As the commercial IP companies have not
released their designs, we hope this architecture could be a standard for hardware implementation
of ZUC.
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