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Abstract. Distance-bounding is a practical solution to be used in security-sensitive contexts, to prevent relay attacks. Its
applied cryptographic role is definitely spreading fast and it is clearly far reaching, extending from contactless payments
to remote car unlocking. However, security models for distance-bounding are not well-established and, as far as we
know, no existing protocol is proven to resist all classical attacks: distance-fraud, mafia-fraud, and terrorist-fraud. We
herein amend the latter, whilst maintaining the lightweight nature that makes these protocols appropriate for concrete
applications. Firstly, we develop a general formalism for distance-bounding protocols and their security requirements.
In fact, we also propose specifications of generalised frauds, stemming from the (attack-prone) multi-party scenarios.
This entails our incorporation of newly advanced threats, e.g., distance-hijacking. Recently, Boureanu et al. proposed
the SKI protocol. We herein extend it and prove its security. To attain resistance to terrorist-fraud, we put forward the
use of a leakage scheme and of secret sharing, which we specialise and reinforce with additional requirements. In view
of resistance to generalised mafia-frauds (and terrorist-frauds), we further introduce the notion of circular-keying for
pseudorandom functions (PRFs); this notion models the employment of a PRF, with possible linear reuse of the key.
We also identify the need of PRF masking to fix common mistakes in existing security proofs/claims of distance-fraud
security. We then enhance our design such that we guarantee resistance to terrorist-fraud in the presence of noise. To our
knowledge, all this gives rises the first practical and provably secure class of distance-bounding protocols, even when our
protocols are run in noisy communications, which is indeed the real-life setting of deployed, time-critical cryptographic
protocols.

1 Introduction

Cryptography sees many applications in the world of smart-cards, from the more and more sophisticated NFC
bankcards to the simpler RFID access cards. But the security protocols implied (e.g., protocols for ATM sys-
tems) are vulnerable to relay attacks or more general forms of man-in-the-middle attacks. Relay attacks on
bankcards have been already mounted [17]. For access control, it is not guaranteed that the card computing
the responses to the reader’s challenges is indeed the one requiring access. Similarly, car manufacturers use
RFID protocols to unlock and even start their vehicles (see, e.g., [20]), but protocols may unfortunately be com-
promised by relaying [21]. The most interesting cryptographic solution to these threats seems to be based on
distance-bounding [17].

Distance-bounding (DB) protocols were introduced by Brands and Chaum [9]. Their purpose is for a prover
to demonstrate his proximity to a verifier and to authenticate this honest prover to this verifier.3 In the literature
covering such protocols, three main types of possible attacks have been distinguished. The first is distance-fraud,
in which a prover tries to convince the verifier that he is closer than he really is. The second type of attack is
the mafia-fraud attack, which involves three entities: an honest prover, an honest verifier, and an adversary. The
adversary communicates with both the prover and the verifier and tries to demonstrate to the verifier that the
prover is in the verifier’s proximity although the prover is in reality far away from the verifier. Finally, the third
type of attack is denoted as terrorist-fraud.4 Here, the adversary has the same goal as in the mafia-fraud attack,
but in this case the prover is dishonest and colludes with the adversary up to the non-disclosure of essential
information, e.g, (parts of) secret keys, that may facilitate later impersonations of this prover.

Ad-hoc countermeasures protecting against one or several such attacks have sometimes been provided [1].
It has also been claimed [27] that DB protocols in their commonly known form cannot protect against all

3 In this paper, we consider authenticated distance-bounding. Namely: protocols where both participants use a pre-established secret.
4 The terms “mafia-fraud" and “terrorist-fraud" were introduced in 1988 by Desmedt [15]. Although confusion-prone, these are the
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three frauds at a time. Unfortunately, these frauds have become even more dangerous through recent general-
isations [14,18]. Nonetheless, DB protocols will most probably soon be implemented by car manufacturers or
bank payment companies in their products, as platforms for such deployments arise [32]. In these contexts, secu-
rity proofs and clear, solid security models become of paramount importance. However, unitary security models
and respective compelling security proofs have not yet been formulated with respect to this class of protocols.
In the following, we endeavour in overcoming this shortcoming, providing a comprehensive security model for
distance-bounding protocols and constructing practical and provably secure protocols in the model herein.

1.1 Distance Bounding: Informal and Semi-formal Approaches

The academic literature and industrial interest in DB is certainly growing. Thus, we can only afford to include
details on what we consider essential for a good understanding of the material herein.5

Tolerance to Noise. Since distance-bounding protocols operate under time-critical constraints and with rapid-bit
exchanges, they are likely to be subject to noise, i.e., to noisy communication channels. So, these protocols often
tolerate a few faulty iterations, in such a way that honest executions would succeed with high probability. Of
course, noisy, rapid-bit exchanges are a reality of applied cryptographic protocols. However, many results on DB
assume noiseless conditions. In this paper, noise will be taken into consideration in our security assessments.

Protocols, Attacks and Amendments. Many DB protocols [26,28,33,39] consist of a data agreement phase or
initialisation phase and a distance-bounding phase. The distance-bounding phase is time-critical and it normally
imposes very fast computation, typically of less than a single clock cycle per round. (Light travels one meter
within about 3 nanoseconds. So, every bit must be treated on the fly, upon arrival, with no delay, and there is no
time to run any complicated computation.) Nevertheless, even if the time-of-flight is critical, some DB protocols
are not secure against terrorist-fraud (an attacker can find ways to collude defeating DB); such examples are
Bussard and Bagga [10,11], Hancke and Kuhn [24], Munilla and Peinado [29], and Kim and Avoine [27]. Reid
et al. [33] proposed generally follow-ups of each others’ schemes, addressing either a better protection against
terrorist-fraud or mafia-fraud, or a better suitability to practice, or a more formal description, etc. In general,
attempts [28,37,39] to construct secure distance-bounding protocols have been proven flawed [31,30]. In fact,
Kim et al. state [27] that there is no DB protocol, which has one-bit challenges/responses per iteration in the
distance-bounding phase, resisting all three attacks (i.e., distance-, mafia-, and terrorist-frauds) with a significant
probability. In [8,7, Table 1], the best-known attacks against the popular distance-bounding protocols are reported.
Also in [8,7], Boureanu et al. proposed the SKI protocol. So far, no attack was reported, but no security proof
was provided either.

Thus, the question of provable security against all frauds mounted onto DB stands prominently.
Moreover, more general attacks have been recently described. In [14], Cremers et al. described distance-

hijacking as an extension of distance-fraud, yet as an attack that is close to terrorist-fraud in the same time; the
fraud involves one dishonest, far-away prover and several honest provers, without the latter colluding with the
former. Impersonation (a type of man-in-the-middle) is presented in [18]. In the current work, our threat model
also incorporates these latter, powerful attacks.

In [2], a targeted protocol-analysis is carried on the TDB protocol by Avoine et al. They especially address the
protection against terrorist-fraud for the Hancke and Kuhn protocol, using secret sharing schemes. However, [2]
does state the sound, (necessary and) sufficient assumptions for combating terrorist-fraud. This will be amended
and taken further in this paper; we generalise the underlying idea of using secret sharing scheme [2] and introduce
a taxonomy of security-enforcing conditions (some of which are linked to secret sharing).

Recently, Hancke [23] observed that terrorist-frauds could also be mounted, by simply abusing the afore-
mentioned, noise-tolerance property required from DB. Basically, a malicious prover could help an adversary to
answer most challenges and not leak to this adversary the secret key but only a noisy version of the secret key.
Also, this leaked information is such that it does not give the adversary any significant advantage in later attacks
onto the scheme, i.e., the coerced prover mounts a valid terrorist-fraud. As a matter of fact, all but one protocols

5 In Appendix C, we briefly describe the relation between DB and position-based cryptography, which is in an intersecting area of
interest.
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allegedly resisting the classical terrorist-frauds as they were known before Hancke’s observation would now col-
lapse under terrorist-frauds executed in this new scenario of Hancke’s (at least, cnf. to [8,7, Table 1]). The one
protocol left standing is the SKI protocol.

1.2 Distance Bounding: Towards Provable Security

DB Formalisations. In [1], Avoine et al. give a complete but rather informal model for distance-bounding.
Herein, we will refer to this line as to the ABKLM model. They define distance-bounding as the combination
of authentication and distance-checking. They further carry on a tentative analysis of the Munilla-Peinado pro-
tocol [29]. As we will further discuss below, [1] does not clearly state the exact assumptions needed on the
underlying primitives in order to achieve the alleged security.

So far, the most promising model for distance-bounding was presented recently by Dürholz et al. in [18].
We refer to it as the DFKO model. This model does not provide a clear communication model and its notions of
time or distance are only implicit. The DFKO model formalises the three classical types of frauds and an extra
notion of impersonation fraud. The attackers are very specific, presented in terms of protocol session interleav-
ing. Maybe due to this specificity or to their requirements which may be too strong, Fischlin and Onete [19]
prove/claim the insecurity of many protocols in the DFKO model. However, insecurity against impersonation or
terrorist-fraud is a hard-to-defend claim as it leads to no convincing attack. This comes from their formalisation,
as we will discuss herein (see page 7). Actually, in [19], Fischlin and Onete admit that their model is probably
too strong and that finding a better model for resistance to terrorist-fraud is still open.

Security shortcomings in DB. Practical DB should be also attack-proof. But, from the above, one can conclude
that provably secure DB is still in the making. Indeed, some of the literature on distance-bounding uses either
unsupported claims of the form “if f is a PRF, then this protocol is secure against...”. In fact, in the recent line
of Boureanu et al. [6], it was proven, by the technique of PRF programming, that if PRFs exist, then these
results are incorrect. When employed with some specific PRFs, the TDB [2] protocol, an enhancement of the
Kim-Avoine protocol [18], Hancke and Kuhn’s [24] protocol, Avoine and Tchamkerten’s [3], Reid’s et al. [33]
protocol, and the Swiss-Knife [28] protocol, they were all shown to be indeed vulnerable to distance-fraud and/or
man-in-the-middle attacks. The DB security claims recently disproven by Boureanu et al. [6] seem to come from
a mis-use of PRF techniques: replacing a PRF (in security arguments) by a random function at a place where
the adversary has access to the PRF key or at a place where the PRF key is simultaneously used at other places
in the protocol. In a parallel line, [28] prove that many existing distance-bounding protocols are also subject
to mafia-fraud. And, in [4], it is revealed that public-key techniques do not necessarily protect against terrorist-
fraud. Also therein, a family of protocols is exposed to generalised mafia-fraud attacks. Finally, Hancke [23]
shows that noisy communications and tolerance to them must also be addressed in the security analysis.

1.3 Contribution

In the context of the shortcomings above, our main contribution is three-fold:

1. We present a formalism for distance-bounding, which includes a sound communication and adversarial
model. In these latter models, we incorporate the notion of time-of-flight for distance-based communica-
tion.6 We further formalise security against distance-fraud, man-in-the-middle (MiM) generalising mafia-
frauds, and an enhanced version of terrorist-fraud that we call collusion-fraud. As practice dictates, our
formalisations take noisy communications into account.

2. Mainly in the context of security against generalised mafia-frauds (when TF-resistance is also enforced), we
introduce the concept of circular-keying security to extend the security of a pseudorandom function (PRF)
f to its possible uses in maps of the form y 7→ L(x)+ fx(y), for a secret key x and a transformation L. We
also introduce a leakage scheme, to resist to collusion frauds, and a PRF masking technique to address
distance-fraud issues. These formal mechanisms come to counteract mistakes like those in proofs based on
PRF-constructions, errors of the kind exposed by Boureanu et al. [6] and Hancke [23].

6 Since every send/receive action in our model is subject to a maximal transmission speed, there is no distinction between a lazy phase
and a time-critical one as in the DFKO model [18,19].

3



3. We analyse and propose variants of SKI [8,7], leading us to the first provably secure, practical class of
distance-bounding protocols. On the way to this, we formalise the DB-driven requirements of the SKI pro-
tocols’ components. In addition to enjoying provable security, our protocols offer competitive performance
and practical security. Especially in terms of suitability to practice, we offer the only DB protocols that
resist terrorist-frauds in the presence of noise.

2 Model for Distance-Bounding Protocols

We consider a multiparty setting where each participant U is modelled by a polynomially bounded interactive
Turing machine (ITM), has a location locU , and where communication messages from a location to another take
some time, depending on the distance to travel. Some participants may be corrupted. Some are set up with a
pre-shared key.

As aforementioned, we model a generic two-party communication protocol by the interactive system run
by ITMs [22]; we now fix the notations.7 Consider two honest participants P and V , each running a prede-
fined algorithm denoting its side of the interaction to take place. Along standard lines, a general communi-
cation is formalised via an experiment, generically denoted exp = (P(x;rP)←→V (y;rV )), where r〈·〉 are the
random coins of the participants and x is an input of P and y is the input of V . In some cases, x = y denoting
a long-term shared secret. The experiment above can be “enlarged” with an adversary A0 which interferes in
the communication, up to his abilities (which will be described below). This “enlargement” can be denoted as
(P(x;rP)←→ A0(rA)←→V (y;rV )). At the end of each experiment, participant V has an output, denoted, OutV .
The view of a participant on an experiment is the collection of all its initial inputs (including coins) and his
incoming messages, i.e., the view of A0 subsumes his “communication” with P and his “communication” with
V . In the notation (P(. . .)←→ A(. . .)←→V (. . .)), we may group several participants under the same symbolic
name; e.g., several (colluding) malicious participants encapsulated under a single A denomination.

Bound on the Distance. To our modelling, we add a fixed integer constant B denoting the distance-bound. It
defines what it means to be “close-enough” to a verifier V . Hence, the output of a verifier is 1 if the responses
authenticate the prover and his estimated8 location is not further than B in the metric space.

The crux of the DB model. The crux of proving security of DB protocols lies in Lemma 1. This says the
following: if V sends a challenge c, the answer r by a close participant A is locally computed by A from its own
view and incoming messages from far-away participants B which are independent from c and all forthcoming
messages. I.e., A cannot get online help from far-away parties in order to respond to V ’s challenges. On the one
hand, we could just introduce a full model in which such a lemma holds. We do so in Appendix A. On the other
hand, we could also just state the text of the lemma and take it axiomatically.

Lemma 1. Assume an experiment B(z;rB)↔ A(u;rA)↔ V (y;rV ) in which the verifier V plays a two-round
protocol where he broadcasts a message c, then V receives a response r from A , and V accepts if r took at
most time 2B to arrive. In the experiment, A is the set of all participants which are within a distance up to B to
V , and B is the set of all other participants. For each user U, we consider his view ViewU just before the time
when U can see the broadcast message c. We say that a message by U is independent from c if it is the result of
applying U on ViewU , or a prefix of it. If V accepts, it must be the case that the response c was either sent by
some B ∈ B as a message independent from c, or by some A ∈ A . In any case, it can be expressed as a function
r = A(ViewA ,c,w) where ViewA is the list of all ViewA, A ∈ A , and w is a list of messages independent from c.

Proof (w.r.t. the model in Appendix A). We first assume a single participant in A . Fig. 1 illustrates the commu-
nication flow. Let (p;rA) be the partial view such that r = A(p;rA). Clearly, p can be written p = (v,c,w) with
(v;rA) = ViewA and a list w of messages from B participants. If w includes a message m not independent from
c, there is time for c to arrive to B , to compute m, sent it to A , compute r and sent it to V . Due to the distance

7 We use standard notations for ITMs. Namely, random coins are separated from other inputs by a semicolumn or omitted for simplicity.
Inputs consist of the initial input and the variable number of incoming messages.

8 This estimation is based on round-trip time, i.e., each response ought to be received before V has 2B standby actions.
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Fig. 1. Adversarial Communication Flow Over Time

between B and V , this is not the case. So, all messages in w are independent from c. This means that, in due time,
A cannot get any help from B to answer to c.

With several participants in A , there is one A ∈ A for which r = A(vA,c,wA;rA) and messages in wA are
either A messages, and can be written the same (recursively), or B messages which are independent from c. ut

In this paper, we will use this lemma every time when a too-long-distance has an implication on the data-
flow. We believe such a clear-cut formalisation eases the proofs. I.e., in the DFKO model [18], the implicitness
of timed communications requires an effective distinction between a lazy and a time-critical phase in the runs of
the protocols, which may in turn hinder the construction of clear security proofs.

2.1 Formal Distance-Bounding

When modelling distance-bounding protocols, we consider provers, denoted by P and verifiers, denoted by V .
We let A denote the adversary and P∗ generally denote dishonest provers. We assume that provers have no output
and verifiers output one bit OutV denoting acceptance, i.e. OutV = 1, or rejection, i.e., OutV = 0 (e.g., privileges
are granted or not). We proceed with the definition of a DB protocol.

Definition 2 (Distance-Bounding Protocols). A distance-bounding (DB) protocol is defined by a tuple (Gen,P,V,B),
where: 1. Gen is a randomised, key-generation algorithm such that (x,y) is the output9 of Gen(1s;rk), where rk
are the random coins of Gen and s is a security parameter; 2. P(x;rP) is a ppt. ITM running the algorithm of
the prover with input x and random input rP; 3. V (y;rV ) is a ppt. ITM running the algorithm of the verifier with
input y, and random input rV ; 4. B is a distance-bound. They must be such that the following two facts hold:

– Termination: (∀s)(∀R)(∀rk,rV )(∀locV ) if (·,y)← Gen(1s;rk) and (R←→V (y;rV )) model the execution, it
is the case that V halts in Poly(s) computational steps, where R is any set of (unbounded) algorithms;10

– p-Completeness: (∀s) (∀locV , locP such that d(locV , locP)≤ B) we have

Pr
rk,rP,rV

[
OutV = 1 :

(x,y)← Gen(1s;rk)
P(x;rP)←→V (y;rV )

]
≥ p.

Throughout, “Prr [event : experiment]” denotes the probability that an event takes place after the experiment
has happened, taken on the set of random coins r underlying the experiment. The random variable associated to
the event is defined via the experiment. Hence, we are not referring here to two events conditioning one another,
but just to an experiment leading to the description of a random variable.

Our model implicitly assumes concurrency involving participants not sharing the secret inputs amongst them.
In security definitions, these extra participants are implicitly universally quantified. When several provers using
the same input x appear in experiments, they will be explicitly mentioned. I.e., several instances of the same
participant at different location and/or time.

The security requirements of DB protocols are described below, where α,β,γ,γ′ ∈ [0,1].

9 We denote this output as (x,y)← Gen(1s;rk). For all protocols in this paper, there is just one common input, i.e., we assume x = y.
10 In the above, only the termination of V is of interest, since it is only the verifier who has a meaningful output.
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Definition 3 (α-resistance to distance-fraud). (∀s) (∀P∗) (∀locV such that d(locV , locP∗)> B) (∀rk), we have

Pr
rV

[
OutV = 1 :

(x,y)← Gen(1s;rk)
P∗(x)←→V (y;rV )

]
≤ α

where P∗ is any (unbounded) dishonest prover. In a concurrent setting, we implicitly allow a polynomially
bounded number of honest P(x′) and V (y′) close to V (y) with independent (x′,y′).

In a 2-party setting, the above definition corresponds to the one of the ABKLM model [1]. When α is negligible,
our security notion becomes equivalent to the one in the DFKO model [18].

Relation with Distance Hijacking [14]. Due to our concurrent setting, Def. 3 captures the notion of distance
hijacking in [14], i.e., an experiment in which a dishonest far-away prover P∗ may use several provers to get
authenticated as one, honest P that is close to the verifier.

We now formalise resistance to mafia-frauds, and –in fact– to their generalisation, i.e., to MiM attacks. In
MiM attacks, we consider that during a learning phase, the attacker A interacts, in parallel, with m ≥ 0 provers
and z ≥ 0 verifiers and then —in the attack phase— A tries to win in an experiment in front of a verifier which
is far-away from `−m≥ 0 provers.

Definition 4 (β-resistance to MiM). (∀s)(∀m, `,z) polynomially bounded, (∀A1,A2) polynomially bounded, for
all locations such that d(locPj , locV )> B, where j ∈ {m+1, . . . , `}, we have

Pr

OutV = 1 :
(x,y)← Gen(1s)
P1(x), . . . ,Pm(x)←→ A1←→V1(y), . . . ,Vz(y)
Pm+1(x), . . . , P̀ (x)←→ A2(ViewA1)←→V (y)

≤ β

over all random coins, where ViewA1 is the final view of A1. In a concurrent setting, we implicitly allow a
polynomially bounded number of P(x′), P∗(x′), and V (y′) with independent (x′,y′), anywhere.

Definition 4 separates a learning phase (with the adversarial behaviour A1) from an attack phase (with the
adversarial behaviour A2). Def. 4 model a practical setting where an attacker would have cloned several tags
and would make them interact with several readers with which they are registered. From such a multi-party
communication, the attacker can get potentially more benefits, in a shorter period of time.

Of course, the attacker can set up this learning phase as he pleases, to increase his gains. So, we can even
imagine that he places prover-tags close to verifier-readers, even if being an active adversary between two neigh-
bouring P and V is technically more challenging than interfering between two far-away parties. E.g., in this
scenario, the adversary could interfere with the initial frequency synchronisation phase so that the P↔ A and
A ↔V channels would become different (e.g., using different frequency bands) and P and V would not even be
aware of the existence of the other channel.

In any case, note that the learning phase is not obligatory in our setting (m and z can be 0). Indeed, we further
consider mafia-frauds as a specialisation of the above, where no learning phase is present. But, if and when a
non-trivial learning phase is present, it renders a stronger threat model and proven resistance to such attacks
entails better security.

Relation with Mafia-fraud. The classical notion of mafia-fraud (the one from the ABKLM model [1]) corre-
sponds to m = z = 0 and `= 1. The classical notion of impersonation for identification schemes corresponds to
` = m (i.e., there is no prover in the attack phase). The DFKO model [18] of mafia-fraud already includes the
above general extension since concurrent settings are implicit in the DFKO model.

We now describe a special type of MiM attackers. We say that a (MiM) attacker is non-narrow [40] if he can
learn the bit the verifier outputs. A way in which this can be trivially formalised is by adding a return channel
to the communication, here denoting that the verifier V sends OutV as a final message, just before V halts. In
real life this is the case, e.g., there is a LED on a door turning green denoting “access-granted” and turning red
otherwise. Moreover, in the generalised MF presented in [4], it is this sort of return channel that facilitates the
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attacks (i.e., logically, intruders learn more information by looking also at whether the run was successful or
not.). To avoid defining a new class of attacks (as done in the literature [40]), we define this as a property of the
protocol.

Definition 5 (Non-narrow MiM). A distance-bounding protocol is called non-narrow if it terminates by V
sending OutV to P as his final message.

We now formalise the resistance to an attack-pattern that extends the terrorist-fraud.

Definition 6 ((γ,γ′)-resistance to collusion-fraud). (∀s)(∀P∗) (∀locV0 such that d(locV0 , locP∗)>B) (∀ACF ppt.)
such that

Pr
[

OutV0 = 1 :
(x,y)← Gen(1s)
P∗(x)←→ ACF←→V0(y)

]
≥ γ

over all random coins, there exists a (kind of)11 MiM attack m, `,z,A1,A2,Pi,Pj,Vi′ using P and P∗ in the learning
phase, such that

Pr

OutV = 1 :
(x,y)← Gen(1s)

P(∗)
1 (x), . . . ,P(∗)

m (x)←→ A1←→V1(y), . . . ,Vz(y)
Pm+1(x), . . . , P̀ (x)←→ A2(ViewA1)←→V (y)

≥ γ′

where P∗ is any (unbounded) dishonest prover and P(∗) runs either P or P∗. Following the MiM requirements,
d(locPj , locV ) > B, for all j ∈ {m+ 1, `}. In a concurrent setting, we implicitly allow a polynomially bounded
number of P(x′), P∗(x′), and V (y′) with independent (x′,y′), but no honest participant close to V0.

Definition 6 expresses the following. If a prover P∗, situated far-away from V0, can help an adversary ACF

that is closer to V0 pass a distance-bounding protocol, then a malicious (A1,A2) could run a rather successful
MiM attack12 playing with possibly multiple instances of P∗(x) in the learning phase. In other words, a dishonest
prover P∗ cannot successfully collude with ACF without leaking some private information.

One problem with collusion frauds is that they are non-falsifiable. But this is inherent to terrorist frauds.

Relation with Terrorist-fraud. The notion of terrorist-fraud (in the ABKLM or DFKO models) corresponds
here to the specialised case where m = z = ` = 1 and A1 just runs ACF in the learning phase. I.e., ACF gets
information to directly impersonate the prover. (So, collusion-frauds are more general.)

In the DFKO model [18], the formalisation of terrorist-fraud further considers pA = Pr[OutV0 = 1], and
pS = Pr[OutV = 1|OutV0 = 1]. Following some results from [19], a protocol resists to terrorist-fraud if for every
ACF there is a A2 such that pA ≤ pS. However, we think that illustrating some ACF such that pA is negligible
but for no A2 we would have pA ≤ pS [19] is not argument enough for insecurity. It rather shows that the
definition from [18] is too strong. In our approach, we decided to characterise resistance herein through a pair of
probabilities (γ,γ′).

3 Practical and Secure Distance-Bounding Protocols

3.1 SKI: DESCRIPTION AND COMPLETENESS

At a high level, the protocol schema SKI is presented in Fig. 2. We use the parameters (s,q,n,k, t, t ′), where s is
the security parameter. The SKI protocols are built using a PRF (pseudorandom function), denoted ( fx)x∈GF(q)s ,
with q being a small power of prime. In the concrete examples in the main body of the paper, we employ q = 2,
i.e., x, a are simply bitstrings as it is most practical. In the DB phase, n rounds are used, with n∈Ω(s). Then, SKI
uses the value fx(NP,NV ,L)∈GF(q)t ′n, with nonces NP,NV ∈ {0,1}k and a mask M ∈GF(q)t ′n, where k ∈Ω(s).
In our main proposal, we use t ′ = 2, i.e., we keep the lightweight character. The element a = (a1, . . . ,an) is

11 Def. 4 defines MiM attacks as using a honest P(x). Here, we deviate a bit by introducing P∗(x) as well.
12 In practice, AMiM and ACF represent the same adversarial party; we simply differentiate to show that different algorithms/attack-

strategies may be involved.

7



Verifier V Prover P
x;rV x ∈U GF(q)s x;rP

Initialisation phase

NP←−−−−−−−−−−−−−−−−− Use rP to generate a nonce NP ∈ {0,1}k

Use rV to generate a ∈ GF(q)t
′n,

a transformation L ∈ L

and a nonce NV ∈ {0,1}k M,L,NV−−−−−−−−−−−−−−−−−→
do M := a⊕ fx(NP,NV ,L) do a := M⊕ fx(NP,NV ,L);

do x′ := L(x), with x′ ∈ GF(q)n do x′ = L(x), with x′ ∈ GF(q)n

Distance-bounding phase
for i = 1 to n

Use rV to generate ci ∈ {1, . . . , t}
Start Clock ci−−−−−−−−−−−−−−−−−→ if ci /∈ {1, . . . , t}, halt

Stop Clock ri←−−−−−−−−−−−−−−−−− do ri := F(ci,ai,x′i)

verify the responses and that clocked-rounds ≤ 2B for at least τ iterations
OutV−−−−−−−−−−−−−−−−−→

Fig. 2. The SKI schema of Distance-Bounding Protocols

established by V in the initialisation phase, and it is sent encrypted as M := a⊕ fx(NP,NV ,L), with M ∈GF(q)t ′n.
Similarly, V selects a random linear transformation L from a set13 L which is specified by the SKI protocol
instance and the parties compute x′ = L(x). Further, c = (c1, . . . ,cn) is the challenge-vector with ci ∈ {1, . . . , t},
ri := F(ci,ai,x′i) is the i-th response to the i-th challenge ci, with i ∈ {1, . . . ,n}, ri ∈ GF(q) and F as specified
below.14 In our concrete proposals, we use t = 3, or t = 2 for the lighter version. The protocol ends with a
message OutV denoting the output of the verifier (i.e., the success/failure of the protocol), to capture the notion
of MiM attackers on a non-narrow protocol.

SKI Instances. We first depict SKIpro through Fig. 3.
In fact, in Boureanu et al. [8,7], several variants of SKI were proposed. We further concentrate on two of

them:

– SKIpro with q = 2, t ′ = 2, t = 3, with the response-function

F(1,ai,x′i) = (ai)1 F(2,ai,x′i) = (ai)2 F(3,ai,x′i) = x′i +(ai)1 +(ai)2,

where (ai) j denotes the jth bit of ai, with the transforms Lµ defined each from a vector µ ∈ GF(q)s by

Lµ(x) = (µ · x, . . . ,µ · x)

i.e., n repetitions of the same bit µ · x, the dot product of µ and x.
– SKIlite with q = 2, t ′ = 2, t = 2, with the response-function

F(1,ai,x′i) = (ai)1 F(2,ai,x′i) = (ai)2,

with the transform-set L = { /0}.

Namely, note that SKIlite never uses the ci = 3 challenge, i.e., it never uses the part x′ having to do directly with
the secret key x in the DB responses. Each SKIpro session uses a transform Lµ on x such that on x′ all coordinates
are set to the scalar product between µ and x. Since SKIlite never uses x′, L can be left empty.

13 The L set will be later introduced as a leakage scheme; its purpose is to leak L(x) in the case of a collusion-fraud/terrorist-fraud.
14 This will be called the F-scheme and it will incorporate requirements towards (generalised) DF-, TF- and MF-resistance.
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Verifier V Prover P
x;rV x ∈U GF(q)s x;rP

Initialisation phase

NP←−−−−−−−−−−−−−−−−− Use rP to generate a nonce NP ∈ {0,1}k

Use rV to generate a ∈ GF(q)t
′n,

µ ∈ GF(q)s

and a nonce NV ∈ {0,1}k M,Lµ,NV−−−−−−−−−−−−−−−−−→
do M := a⊕ fx(NP,NV ,Lµ) do a := M⊕ fx(NP,NV ,Lµ);

do x′ := Lµ(x), with x′ ∈ GF(q)n do x′ = Lµ(x), with x′ ∈ GF(q)n

with Lµ(x) = (µ · x, . . . ,µ · x)

Distance-bounding phase
for i = 1 to n

Use rV to generate ci ∈ {1, . . . , t}
Start Clock ci−−−−−−−−−−−−−−−−−→ if ci /∈ {1, . . . , t}, halt

Stop Clock ri←−−−−−−−−−−−−−−−−− do ri := F(ci,ai,x′i),

where F(1,ai,x′i) = (ai)1,
F(2,ai,x′i) = (ai)2,

F(3,ai,x′i) = x′i +(ai)1 +(ai)2.

verify the responses and that clocked-rounds ≤ 2B for at least τ iterations
OutV−−−−−−−−−−−−−−−−−→

Fig. 3. The SKIpro Distance-Bounding Protocol (q = 2, t = 3, t ′ = 2)

We note that both instances are efficient. Indeed, we could precompute the table of F(·,ai,x′i) and just do a
table lookup to compute ri from ci. For SKIpro, this can be done with a circuit of only 7 NAND gates and depth
4. For SKIlite, 3 NAND gates and a depth of 2 are enough.

However, in our design, we need the reuse of x for protection against terrorist-fraud and/or collusion-fraud.
Along these lines, the SKIlite protocols do not assume circular-keying security (as defined below), but SKIpro do.

In Appendix B, we consider other variants of SKI from [8,7] with different F-schemes (using, e.g., two-bit
responses) which we still deem very practical.

SKI Completeness (in Noisy Communications). We would like inquire on the suitability of the parameters; we
verify for which parameters our proposal SKI is in line with Definition 2, i.e., it definitely terminates, but the
completeness bound can be “tuned”.

Each (ci,ri) exchange is time-critical, so it is subject to errors. To address this, we introduce the probability
pnoise of one response being erroneous (à la Hancke-Kuhn [24]). Then, our protocol specifies that the verifier
accepts only if the number of correct answers is at least τ, where τ is an extra parameter. The probability that at
least τ responses out of n are correct is clearly given by:

B(n,τ,1− pnoise) =
n

∑
i=τ

(n
i

)
(1− pnoise)

i pn−i
noise

It is natural to choose τ (and other parameters) such that we operate with correct DB protocols, cnf. with
Definition 2. I.e., the protocol is complete: honest communications succeed with high probability.

Lemma 7. Let ε > 0. For τ≤ (1− pnoise− ε)n, the SKI protocols are (1− e−2ε2n)-complete.

Proof. Due to the the Chernoff-Hoeffding bound [13,25], τ ≤ (1− pnoise − ε)n implies B(n,τ,1− pnoise) ≥
1− e−2ε2n. According to Definition 2, this makes the SKI protocols (1− e−2ε2n)-complete. ut

9



In practice, we may use a constant pnoise (i.e., hard-coded in the protocol implementation). This also entails
employing τ as some parameter which is linear in terms of n. A detailed analysis of the optimal selection of this
threshold τ is provided in [16].

3.2 SKI: SECURITY-DRIVEN DESIGN & SECURITY ASSESSMENT

In this subsection, we discuss the design choices that we made in order to render the instances of SKI provably
secure.

PRF masking. Importantly, SKI applies a random mask M on the output of fx to fix the problems raised in
Boureanu et al. [6]. We call this PRF masking. As detailed in [6], when M is not used (or equivalently, that M
is always set to 0), then we could construct a PRF such that, e.g., for all x and NV , fx(x,NV ,L) is a special value
a such that F(ci,ai,x′i) does not depend on ci. This way, a malicious prover could set NP = x and predict the
answer F(ci,ai,x′i) without having received the challenge ci. Hence, he could mount a successful distance-fraud.
By having the verifier decide a, SKI enforces that the distribution of a cannot be influenced by a malicious
prover.

F-scheme. In our way to prove security, we need some notions related to the response-function F ; these charac-
terise the concept of F-scheme. At the same time, these concepts give the sufficient conditions to protect against
all three frauds possible against the concrete SKI instances to follow. Such a characterisation is different from
the approach in Avoine et al. [2], where a response-function based on secret sharing is proposed for the protec-
tion against terrorist-fraud only, but no formal justification was given to that end; also, the relation between the
other frauds and the response-function was not addressed therein. Thus, we stress that using a secret sharing
scheme in computing the responses may be too strong and/or insufficient to characterise the protection against
frauds mounted onto DB protocols, and we amend this with Definition 8 and Definition 12.

Definition 8 (F-scheme). Let t, t ′ ≥ 2. The response-function F : {1, . . . , t}×GF(q)t ′ ×GF(q)→ GF(q) gives
an F-scheme, which is characterised as follows.

– We say that the F-scheme is linear if for all challenges ci in their domain, the F(ci, ·, ·) function is a linear
form over the GF(q)-vector space GF(q)t ′×GF(q) which is non-degenerate in the ai component.

– We say the F-scheme is pairwise uniform if

(∀I  {1, . . . ,n},#I ≤ 2)(H(x′i|F(ci,ai,x′i)ci∈I) = H(x′i)),

where (ai,x′i) ∈U GF(q)t ′×GF(q), #S denotes the cardinality of a set S, and H denotes the Shannon entropy.
– We say the F-scheme is t-leaking if there exists a polynomial time algorithm E such that for all (ai,x′i) ∈

GF(q)t ′×GF(q), we have E
(
F(1,ai,x′i), . . . ,F(t,ai,x′i)

)
= x′i.

– Let Fai,x′i denote F(·,ai,x′i). We say that the F-scheme is σ-bounded if for any x′i ∈ GF(q), we have

Eai

(
maxy

(
#(F−1

ai,x′i
(y))

))
≤ σ, where x′ ∈ GF(q) and the expected-value is E taken over ai ∈ GF(q)t ′ .

We shortly discuss the definition above. The pairwise uniformity and the t-leaking property of the F-scheme say
that knowing the complete table of the response-function F for a given ci leaks x′i, yet knowing only up to 2 entries
challenge-response in this table discloses no information about x′i. The σ-boundedness of the schemes says that
the expected value (taken on the choice of the subsecrets ai) of the largest preimage of the map ci 7→ F(ci,ai,x′i)
is bounded by a constant σ. We have t

q ≤ σ≤ t due to the pigeonhole principle, since ∑y #(F−1
ai,x′i

(y)) = t.
In relation with the definitions of the F-schemes above, we now prove the following lemma.

Lemma 9. The F-schemes used in SKIpro are linear, pairwise uniform, 9
4 -bounded, and t-leaking. The F-scheme

used in SKIlite is linear, pairwise uniform, 3
2 -bounded, but not t-leaking.

This lemma extends to Lem. 15 given and proven in Appendix B.
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Leakage scheme. We can consider several sets L of transformations to be used in the PRF-instance, of the SKI
initialisation phase. The idea of the set L is that, when leaking some noisy versions of L(x) for some random
L ∈ L , the adversary can reconstruct x without noise.

We define Lclassic = {L}, with only one transformation: the identity function L, i.e., L(x) = x. Unfortunately,
this is not sufficient to add protection against collusion fraud due to Hancke [23]: given a constant θ, a malicious
prover could select a vector e of Hamming weight n− τ+ θ and provide the full table of all ci 7→ F(ci,ai,xi)
functions, only that some entries in the table had been changed. Namely, for each i ∈ {1, . . . ,n} with ei = 1, the
dishonest prover flips F(ci,ai,xi) in this leaked table. Then, we would have γ =

(
1− 1

t

)θ, but this helped attacker
can only reconstruct x+ e. Using multiple coerced provers P∗ will not reveal anything more, if the function g(x)
giving e is deterministic (i.e., then, several runs would have no randomised, adaptive choices of g(x), coming
from P∗’s). Depending on such functions g, and since n−τ is linear, recovering x takes exponential time. So, the
value of x+g(x) is not enough to run a MiM attack since we need x to evaluate fx.

We consider the leakage scheme Lbit of SKIpro, consisting of all Lµ transforms, where Lµ is defined from a
vector µ ∈ GF(q)s by

Lµ(x) = (µ · x, . . . ,µ · x)

More formally, we introduce the following notion.

Definition 10 (Leakage scheme). Let L be a set of linear functions from GF(q)s to GF(q)n. Given x ∈ GF(q)s

and a ppt. algorithm e(x,L;r), we define an oracle OL ,x,e producing a random pair (L,e(x,L)) with L ∈U L . L
is a (T,r)-leakage scheme if there exists an oracle ppt. algorithm A〈·〉 such that for all x ∈GF(q)s, for all ppt. e,
Pr[AOL ,x,e = x]≥ Prr[dH(e(x,L),L(x))< T ]r, where dH denotes the Hamming distance.

Intuitively, this means that based on r values of L and a noisy L(x), we can decode x.

Lemma 11. Lbit is a (n
2 ,s)-leakage scheme.

Proof. A calls the oracle s times, then —by computing the majority– A deduces µ · x with probability p, for
each of the obtained µ. We run OL ,x,e until we collect s linearly independent µ values. All the s obtained µ · x are
correct with probability ps. Then, we deduce x by solving a linear system. ut

Circular-Keying Security. On our way to prove the security of the SKI protocols, we need and hereby introduce
the notion of security against circular-keying. This notion of security will help protect against MiM, in the
context in which the key x is used in the response-function to protect against TF. To attain provable security
against MiM attackers, we take secure circular-keying as an extra assumption to the PRF ( fx)x∈GF(q)s to handle
the reuse of a fixed x outside of a PRF instance fx.

Definition 12 (Circular-Keying). Let s be some security parameter, let b be a bit, let q≥ 2, let m∈ Poly(s), and
let x,x∈GF(q)s be two row-vectors. Let ( fx)x∈GF(q)s be a family of (keyed) functions, e.g., fx : {0,1}∗→GF(q)m.
For an input y, the output fx(y) can be represented as a row-vector in GF(q)m.

We define an oracle O fx,x such that upon a query of form (yi,Ai,Bi), with Ai ∈ GF(q)s, Bi ∈ GF(q)m, it
answers (Ai · x)+(Bi · fx(yi)). The game Circ fx,x of circular-keying with an adversary A is described as follows:
we set b fx,x := AO fx ,x , where the queries (yi,Ai,Bi) from A must follow the restriction that

(∀c1, . . . ,ck ∈ GF(q))
(

#{yi;ci 6= 0}= 1,
k

∑
j=1

c jB j = 0 =⇒
k

∑
j=1

c jA j = 0
)
.

We say that the family of functions ( fx)x∈GF(q)s is an (ε,C,Q)-circular-PRF if for any ppt. adversary A making Q
queries and having complexity C, it is the case that Pr[b fx,x = b f ∗,x]≤ 1

2 + ε, where the probability is taken over
the random coins of A and over the random selection of x,x ∈ GF(q)s and the random function f ∗.

The condition on the queries means that for any set of queries with the same value yi, any linear combination
making B j vanish makes A j vanish at the same time. (Otherwise, we would trivially extract some information
about x by linear combinations.)

We note that it is possible to create secure circular-keying in the random oracle model (ROM) [5]. This is a
“sanity check” for our circular-keying notion.
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Lemma 13. Let fx(y)=H(x,y), where H is a random oracle, x∈{0,1}s, and y∈{0,1}∗. Then, f is a (T 2−s,T,Q)-
circular PRF for any T and Q.

Proof. Let (y,Ai,Bi), i ∈ 1, . . . ,k, be some queries to O fx,x that share the same y, made by some A , making no
query to H. We define the matrices A = (A1 · · ·Ak)

T and B = (B1 · · ·Ak)
T . Thus, A learns Ax+BH(x,y). Now,

w.l.o.g., assume that A multiplies Ax+BH(x,y) to the left by a conveniently chosen, invertible matrix P, i.e.,
such that PB = (Ip 0)T where Ip is the identity matrix of rank p of B and 0 is a zero matrix block.

By taking c = c′P with c′ = (0, . . . ,0,1,0 . . . ,0), where 1 appears at some position j for any j > p, we
have that cB = 0. Then, by circular keying, we have that cA = 0. Thus, all rows from positions beyond p, i.e.,
p+1, p+2, . . . “downwards” inside the matrix PA, are filled with zeroes. Thus, A learns A′x+H(x,y), where A′

is the “upper-part” of PA, i.e., above the pth row. We have shown that A is equivalent to an adversary learning
A′x+H(x,y) for some random matrix A′. So, we can replace H(x,y) by something random and the advantage of
the adversary A in this game would not change.

Now, in the random oracle model, A also queries H. We consider the hybrids of A in which the first queries
to H are simulated and the hybrid stops before making the next query to H (there are up to T hybrids). We
apply the previous argument to the hybrids to show that they cannot query H with x, except by guessing it with
probability 2−s. ut

We proceed with inspecting the rest of the security requirements on these protocols.

Theorem 14. The SKI protocols are secure distance-bounding protocols, i.e.,:

– A. If the F-scheme is linear and σ-bounded, if ( fx)x∈GF(q)n is a (ε,nN,C)-circular PRF, then the SKI proto-
cols offer α-resistance to distance-fraud, with α = B(n,τ,max(σ

t ,
1
t ))+ε, for attacks limited to complexity C

and N participants. So, we need τ
n > σ

t for security.
– B. If the F-scheme is linear and pairwise uniform, if ( fx)x∈GF(q)n is a (ε,n(`+ z+ 1),C)-circular PRF, if

L is a set of linear mappings, the SKI protocols are β-resilient against (non-narrow) MiM attackers with
parameters ` and z and a complexity bounded by C, β = B(n,τ, 1

t +
t−1

t ×
1
q)+2−k

(
`(`−1)

2 + z(z+1)
2

)
+ ε. So,

we need τ
n > 1

t +
t−1

t ×
1
q for security.

– B
′
. If the F-scheme is linear and pairwise uniform, if ( fx)x∈GF(q)n is a (ε,n(`+ z+1),C)-PRF, if the function

F(ci,ai, ·) is constant for each ci,ai, the SKI protocols are β-resilient against (non-narrow) MiM attackers
with parameters ` and z and a complexity bounded by C, β = B(n,τ, 1

t +
t−1

t ×
1
q)+2−k

(
`(`−1)

2 + z(z+1)
2

)
+ε.

So, we need τ
n > 1

t +
t−1

t ×
1
q for security.

– C. If the F-scheme is t-leaking, if L is a (T,r)-leakage scheme, for all θ ∈]0,1[, the SKI protocols offer(
γ,γ′

)
-resistance to collusion-fraud, for γ ≥ B(T,T + τ− n, t−1

t )1−θ, γ−1 is polynomially bounded, and

γ′ =
(
1−B(T,T + τ−n, t−1

t )θ)r
. So, we need τ

n > 1− T
tn for security.

The proof of Th. 14.B
′
is similar (and simplified) as the one of Th. 14.B. So, we prove the A, B, and C parts only.

Proof (Th. 14.A). For each key x′ which is different from x and for which there is a P(x′) close to V (so, there
is no P∗(x′) anywhere, due to the distance-fraud model), we apply the circular-PRF reduction. (Details as for
why we can apply this reduction will appear in the proof of Th. 14.B.) We are losing a probability up to ε in this
reduction.

We recall that if the F-scheme is linear, then F(ci,ai,x′i) must be non-degenerate in ai. So, answers ri coming
from P(x′) instead of P∗(x) are correct with probability 1

t , since ai is random, after the circular-PRF reduction.
If ri now comes from P∗, due to Lem. 1, ri must be a function independent from ci. I.e., P∗ must have

F(ci,ai,x′i) ready, before ci arrives from V . So, for any secret x and a, the probability to get one response right is
given by pi = Prci∈{1,...,t}[ri = F(ci,ai,x′i)].

Thanks to PRF masking, the distribution of the ai’s is uniform. Namely, P∗ cannot influence their distribution
by selecting NP maliciously.
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To establish the probabilities pi, consider the partitions I j, j ∈ {1, . . . , t} as follows: for i ∈ I j, the largest

preimage of Fai,x′i : ci 7→F(ci,ai,x′i) has size j, i.e., maxy

(
#(F−1

ai,x′i
(y)

)
= j. Then, we are looking at the probability

Pj(x′i) := Pr
ai

[
max

y

(
#(F−1

ai,x′i
(y))

)
= j

]
,

where #(S) denotes the cardinality of a set S. Given x′ fixed, each iteration has a probability to succeed equal to

P1

t
+

2P2

t
+ · · ·+ tPt

t
=

σ
t

So, the probability to win the experiment is bounded by p = B(n,τ, σ
t ). ut

Proof (Th. 14.B). In the next, P(. . .) and V (. . .) respectively denote the algorithm/(part of the) protocol of a
generic prover P and that of a generic verifier V , out of the ` provers and z+1 verifiers in this attack-game, run
on specific parameters to be specified in-line. We herein denote V in the MiM-resistance definition as Vz+1.

We use the game-reduction methodology [36] to prove this lemma. Let Game0 be the non-narrow MiM
attack-game described in Definition 4 played by A against the honest parties in a SKI protocol.

Below we consider a prover Pj and a verifier Vk in an experiment, j ∈ {1, . . . , `},k ∈ {1, . . . ,z+ 1}. Let
(NP, j,M j,L j,NV, j) be the values of the nonces (NP,NV ), of the mask M, and of the transformation L that the
prover Pj generates or sees respectively, and (NP,k,Mk,Lk,NV,k) be the values of the nonces (NP,NV ), mask M,
and transformation L that a verifier Vk generates or sees at his turn, j ∈ {1, . . . , `},k ∈ {1, . . . ,z+1}.

We apply a reduction by failure-event to prove that the game Game0 is indistinguishable to the adversary A
from a game Game1 where no repetitions on NP, j or on NV,k happen for j ∈ {1, . . . , `}, k ∈ {1, . . . ,z+ 1}, i.e.,
there is no collision on the nonces generated by the provers and there is no collision on the nonces of the verifiers.

Assume that F is the event that at least a collision as above happens, i.e.,

F ≡
( ∨

0<i< j≤`
(NP,i = NP, j)

)∨( ∨
0<i′< j′≤z+1

(NV,i′ = NV, j′)
)
.

We want to have that, from the point of view of the adversary A , Game0∧¬F ⇔ Game1∧¬F ⇔ Game1. But,

‖Pr[A wins in Game0]−Pr[A wins in Game1]‖ ≤ Pr[F ].

Then, Pr[F ]≤ 2−k
(
`(`−1)

2 + z(z+1)
2

)
.

Since the F-scheme is linear, we can write F(ci,ai,x′i) = ui(ci)x′i+(vi(ci) ·ai) where ui(ci) ∈GF(q),vi(ci) ∈
GF(q)t ′ . Note that, in terms of i, the (vi(1), . . . ,vi(t))’s span independent linear spaces. In Game1, each (NP,NV ,L, i)
tuple can be invoked only twice (with a prover and a verifier) by the adversary. The pairwise uniformity of
the F-scheme implies that yvi(ci)+ y′vi(c′i) = 0 implies yui(ci)+ y′ui(c′i) = 0 for all ci,c′i ∈ {1, . . . , t} and all
y,y′ ∈ GF(q). So, we deduce that the condition to apply the circular-keying reduction is fulfilled. We can thus
apply the circular-PRF reduction and reduce to Game2, where F(ci, fx(NP,NV ,L)i,x′i) is replaced by ui(ci)x̃i +
(vi(ci) · f ∗(NP,NV ,L)i), where f ∗ is a random function. This reduction has a probability loss of up to ε.

From here, we use a simple bridging step to say that the adversary A has virtually no advantage over Game2
and a game Game3, where the vector a = f ∗(NP,NV ,L) is selected at random; we recall that this is the case since
there is no repetition on NP and f ∗ is a random function. The (NP,NV ,L) triplet used by V in the attack phase
can be used by only one Pj, in the attack phase as well, where j ∈ {m+1, . . . , `}. We can simulate all other P’s
and V ’s based on a (simulated) random a. This reduces to an adversary making no use of the learning phase and
using only Pj and V in the attack phase.

So, the probability p of A of succeeding in Game3 is the probability that at least τ rounds have a correct
ri. Due to Lem. 1, ri must be computed by A (and not Pj). Getting ri correct for ci can thus be attained in two
distinct ways: 1. in the event e1 of guessing c′i = ci and sending it beforehand to Pj and getting the correct
response ri, or 2. in the event e2 of simply guessing the correct answer ri (for a challenge c′i 6= ci). So, p =
B(n,τ,Pr[e1]+Pr[e2]) = B(n,τ, 1

t +
t−1

t ×
1
q). ut
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Proof (Th. 14.C). Assume as per the requirement for resistance to collusion-fraud that there is an experiment
expCF = (P∗(x) ←→ ACF(rCF)←→V0(y;rV0)), with P∗ a coerced prover who is far away from V0 and that
PrrV0 ,rCF [OutV0 = 1] = γ. Given some random c1, . . . ,cn from the verifier, we define the random variable Viewi

as being the view of ACF before receiving ci from V , and the random variable wi being all the information that
ACF has received from P∗ before the time when sending out ri would become critical (i.e., before it would be
too late to send ri on to V0). This answer ri done by ACF is formalised in Lem. 1. So, ri := ACF(Viewi‖ci‖wi).

Let Ci be the set of all possible ci’s on which the functions ACF(Viewi‖ · ‖wi) and F(.,ai,x′i) match (i.e.,
ACF answers correctly to the challenge ci at round i). Let S be the set of i’s such that ci ∈Ci (i.e., ACF answers
correctly at round i). Finally, let R be the set of i’s such that #Ci = t (i.e., ACF answers correctly at round i
whatever the challenge). I.e., Ci = {c ∈ {1, . . . , t}|ACF(Viewi‖c‖wi) = F(c,ai,x′i)}, S = {i ∈ {1, . . . ,n}|ci ∈Ci},
and R = {i ∈ {1, . . . ,n}|#Ci = t}. The adversary A succeeds in expCF if #S ≥ τ, i.e., if he can pass at least τ
rounds, for the challenges that V0 will fix in those rounds.

For terrorist-fraud resistance, we would also like that—in the second, MiM experiment—the adversary A2
can answer τ rounds (or more), no matter what the challenge, i.e., in this way, A could extract x and the TF would
be invalid. In other words, we would like that #R is large, i.e. #R > n−T so that we can decode.

So, if we were to pick a set of challenges such that #S≥ τ and #R≤ n−T , we should select a good challenge
(from no more than t − 1 existing out of t), for at least T + τ− n rounds out of T . In other words, Pr[#S ≥
τ,#R ≤ n−T ] ≤ B(T,T + τ− n, t−1

t ). But, by the hypothesis, Pr[#S ≥ τ] ≥ γ. So, we deduce immediately that
Pr[#R≤ n−T |#S≥ τ]≤ γ−1B(T,T +τ−n, t−1

t ). Therefore, Pr[#R > n−T |#S≥ τ]≥ 1−γ−1B(T,T +τ−n, t−1
t ).

We use m= `= z=O(γ−1r) (i.e., A2 will directly impersonate P to V after A1 ran m times the collusion fraud,
with P∗ and V ). We define A2 such that, for each execution of the collusion fraud with P∗ and V , it gets Viewi, wi.
For each i, A2 computes the table c 7→ ACF(Viewi‖c‖wi) and apply the t-leaking function E of the F-scheme on
this table to obtain yi = E(c 7→ ACF(Viewi‖c‖wi)). For each i ∈ R, the table matches the one of c 7→ F(c,ai,x′i)
with x′ = L(x), and we have yi = x′i. So, A2 computes a vector y. If V accepts the proof, then y coincides with
L(x) on at least n−T +1 positions, with a probability of at least p := 1− γ−1B(T,T + τ−n, t−1

t ). That is, after
O(γ−1) runs, A2 implements an oracle which produces a random L ∈ L and a y which has a Hamming distance
to L(x) up to T −1.

By applying the leakage scheme decoder e on this oracle, with r samples, it can fully recover x, with prob-
ability at least pr. Then, by taking γ = B(T,T + τ− n, t−1

t )1−θ and γ′ =
(
1−B(T,T + τ−n, t−1

t )θ)s, we obtain
our result. ut

Thus, under the circumstances where protection against terrorist-fraud and/or collusion-fraud15 is not of
primary importance, one can use our proposed SKIlite protocols, the security of which does not rely on the
assumption of circular-keying security.

Following Lem. 9 and Th. 14, it is clear that the probabilities α and β to succeed respectively in a distance-
fraud and MiM, against the SKI protocols are based on:

SKIpro SKIlite
α: B(n,τ, 3

4) B(n,τ, 3
4)

β: B(n,τ, 2
3) B(n,τ, 3

4)

γ: B(n
2 ,τ−

n
2 ,

2
3) 1

SKI’s parameters: Let ε > 0. Remember (from page 9, Lem. 7) that the SKI protocols are (1−e−2ε2n)-complete
if τ is at most (1− pnoise− ε)n.

According to the data in the table above, we must take 1− pnoise−ε≥ τ
n ≥

3
4 +ε to make the above instances

of SKI secure, with a failure probability bounded β by e−2ε2n (by the Chernoff-Hoeffding bound [13,25]).
By changing the F-scheme, we can decrease the value 3

4 in α. For instance, using the Shamir secret shar-
ing [35], we reduce it to 5

8 , as shown in Appendix B.
If we require TF-resistance (as per Th. 14.C), we also get a constraint of τ

n > 5
6 +

ε
2 , similarly.

We observe that Th. 14 is tight for SKIpro and SKIlite, due to the attacks shown in [8,7].

15 It is clear that these SKIlite protocols do not protect against terrorist-fraud (given the F-scheme used inside them).
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4 Conclusion

In this paper, we have specified distance-bounding protocols and their security requirements, i.e., resistance
to (generalised) distance-fraud, man-in-the-middle, terrorist-fraud attacks, in a general formalism for modelling
location-driven security protocols developed herein. We also proposed the formal proofs for what is to our knowl-
edge the first provably secure class of practical protocols for distance-bounding, by identifying the requirements
on the building blocks (i.e., the F-scheme, the leakage scheme, PRF masking, and the circular-keying security).
Thus, these protocols are practical, efficient and provably secure. As a by-product, we introduced (at least) a new
security notion, i.e., circular-keying for pseudorandom functions (PRFs); this models the employment of a PRF,
with possible linear reuse of the key.

Our protocols are secure when the level of noise is below 1
6 , using t = 3 possible challenges per round, and a

leakage scheme requiring s executions. We leave the problem of improving these parameters as an open problem.
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14. C. Cremers, K. B. Rasmussen, and S. Čapkun. Distance hijacking attacks on distance bounding protocols. In IEEE Symposium on
Security and Privacy, pages 113–127, 2012.

15. Y. Desmedt. Major Security Problems with the “Unforgeable” (Feige)-Fiat-Shamir Proofs of Identity and How to Overcome Them.
In Proceedings of the 6th Worldwide Congress on Computer and Communications Security and Protection - SecuriCom ’88, pages
147–159, Paris, France, 15-17 March 1988. SEDEP.

16. C. Dimitrakakis, A. Mitrokotsa, and S. Vaudenay. Expected Loss Bounds for Authentication in Constrained Channels. In Proceed-
ings of INFOCOM 2012, pages 478–485, Orlando, FL, USA, March 2012. IEEE press.

17. S. Drimer and S. J. Murdoch. Keep your enemies close: distance bounding against smartcard relay attacks. In Proceedings of 16th
USENIX Security Symposium, pages 7:1–7:16, Berkeley, CA, USA, 2007. USENIX Association.

18. U. Dürholz, M. Fischlin, M. Kasper, and C. Onete. A formal approach to distance bounding RFID protocols. In Proceedings of the
14th Information Security Conference ISC 2011, LNCS, pages 47–62. SPRINGER, 2011.

19. M. Fischlin and C. Onete. Subtle kinks in distance-bounding: an analysis of prominent protocols. In Proceedings of WISEC 2013,
pages 195–206. ACM, 2013.

20. Ford. Safe and Secure SecuriCodeT M Keyless Entry. http://www.ford.com/technology/, 2011.
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A A Communication Model

We introduce a model for distance-bounding protocols. We first specify the main ideas at a high-level and then,
in Section A.2, we formalise our communication and our threat model.

A.1 General Communication Principles

We impose the following gold principles: 1. participants have a location; 2. messages travelling one unit of
distance between two locations require one time-unit for delivery; 3. messages under transmission are broadcast
and become readable at a location when they physically reach its proximity. We now explain the above in more
depth and add some extra specifications.

A participant has a physical location, modelled as a centre of a sphere with the radius of one distance-unit.
A sender S who wants to send a message to a receiver R just broadcasts the message, setting R as the aimed
“delivery address”. Every time-unit, a message sent by S moves from the sphere centred on S to another sphere
with a radius augmented by one unit (see Fig. 4). Participant R can read the message as soon as the growing
sphere on which the message is travelling includes R.

Honest participants are supposed to read only the messages for which they are the purported recipient.
There is no implicit authentication: received messages may have been previously sent by any participant.
The adversary can change the destinator to himself (so that the legitimate receiver does not read the corre-

sponding message).
In the following, we give further, more formal explanations on these, as well as on time-increments and the

communication model.
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Fig. 4. Sketch of Message-Transmitting Model: A message send by V is broadcast and travels at one unit of distance per clock cycle.
Assume P is the purported recipient. However, A can read the message two clock cycles before P, whereas P∗ must wait three clock
cycles more than P before the message reaches him.

A.2 Computation and Communication Models

Formalised Participants. Each participant in the protocol is formally described by an interactive Turing machine
(ITM). The ITMs we use in this formalisation have the following tapes: an input tape, a random tape, an incoming
communication tape, an outgoing communication tape, a read/write working tape, and an output tape. Each
machine has an assigned algorithm, which describes the behaviour of that participant in the protocol to model.
As suggested, each participant U has a location denoted by locU in a metric space, where d is the distance-
function of this metric space (i.e., there is a distance-unit and the classical requirements to measure distances).
The distance is assumed to measure the time-of-flight of messages between two locations (i.e., as if messages
were travelling uniformly at a speed of one distance-unit per time-unit). At this stage, the reader can refer to
Fermat’s principle [34] for the notion of time-of-flight.

The time-of-flight is further described by a global counter called clock. This clock is incremented at certain
execution-points, as the communication model will explain below. We underline that the complexity of the
machines is measured in the number of computational16 steps and it is not linked to this notion of time-of-flight.
Thus, we assume that all computation of (parts of) messages is instantaneous (in terms of the ticks of the clock).
Only other actions, e.g., sending a message from one location to another, have a time-duration on the clock.

Also, there is a global system-recall called history. The tuples stored in this register are of the form

(message, locationOfOrigin, timeOfSending,destination)

i.e., a message that has been sent, from some initiator-origin, departing at some time and being aimed at some
participant.

Communication. In the following, we assume that the network is asynchronous. We consider insecure and noisy
channels. However, the adversary receives messages with no noise.17 In addition to this, protocol messages
which are not “time-critical” (as clearly explained later) can be assumed to be noiseless, or equivalently, that
participants use a computations overhead for error correction. All channels employed in this model are timed,
i.e., by the (units of) global counter clock. As aforementioned, we assume that all communication happens
through a broadcast anonymous channel.

All machines have communication-related actions of three types: send, standby and halt. If a machine does
a halt action, then its execution is terminated. Before halting, the machines write their output on the output tape.
If a machine M performs the action send(m,P), this denotes that the message m is aimed at a participant P.
Namely, the message m is written on the outgoing communication tape of the sending machine M and the tuple

16 We will still consider “time complexity”, namely polynomial versus non-polynomial computational complexity, but it does not relate
to the notion of time-of-flight that we refer to in this section.

17 This is due to adversaries using a more elaborate equipment.
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(m, locM,clock_value,P) is added to the history, where clock_value is the value of the clock register at the time
of this sending by M. After some sendings or simply at some point, the machine will do a standby action: i.e.,
the machine waits for a reactivation. When all participants are in a “hanging” state (e.g., some in standby, some
halted), the global counter clock is incremented by a unit and the participants standing by are reactivated.

Let clock_value be the current value of the global clock register. For each tuple in the global history of the
form (m, locM, time_sent,dest), if d(locP, locM) ≤ (clock_value− time_sent) then the participant P can read18

the content m of its incoming communication tape. However, an honest participant P will not read m if dest 6= P.

Adversary. An adversary A is modelled by an ITM of the above kind, i.e., he is part of the system as described,
he has a location, etc. Moreover, an adversary A has the following abilities: 1. reading messages for which he is
not necessarily the intended recipient; 2. corrupting the channel between any two participants P and V (i.e., upon
corruption, for an action send(m,P) done by V , the system performs the action send(m,A) instead, re-aiming
the message m to A); 3. sending his own messages to different participants. An adversary is not able to: a) block
already sent messages on their way to their intended destination; b) modify sent messages.

Instead of doing19 a) and/or b) (i.e., blocking a message far along its course), A can change the destinator
from R to A and may send another message to R. We believe this does not decrease the capabilities compared to
practice since adversaries can still carry out man-in-the-middle attacks.

Also, the adversary has no control over the global counter clock. This is normal, since the counter clock
simply models time passing, as we know it. However, the adversary is the first to be activated after each increment
of the clock (i.e., as he may, e.g., corrupt a channel before a new message is sent on it).

B SKI Variants

Our F-scheme can be instantiated to produce different SKI protocols, some arguably more practical/secure than
others. In the main body of this paper, we presented a version that is in-line with the existing literature in the
field, i.e., one-bit responses and a set of values for challenges of small cardinality, e.g., 3. Irrespective of this
alignment of ours with the state-of-the-art, we consider that the practicality of today’s RFID/NFC cards goes
beyond one-bit responses [38]. Moreover, pre-computation tables can be used.

As formalised above, to attain security, the idea behind such an F-scheme is that it should be a secret sharing
scheme in which the response to the t > 2 challenges in round i reveals the component xi of the secret, but the
answers to only 2 of these challenges (e.g., one from the prover and another indirectly leaked by the verifier, e.g.,
within a non-narrow MiM attack) do not reveal xi. Namely, we will consider two generic such response-functions
in which the ith response (1≤ i≤ n) is produced as follows:

Fshamir(ci,ai,xi) = xi +(ai)1ci +(ai)2ci
2 + . . .+(ai)t−1ci

t−1

where xi ∈ GF(q), q ≥ 4, ci ∈ {1, . . . , t} is mapped to ci ∈ GF(q)∗ by an arbitrary injective mapping, (ai) j ∈
GF(q), j ∈ {1, . . . , t−1};

Fxor(ci,ai,xi) = xi1ci=t +(ai)11ci∈{t,1}+ . . .+(ai)t−11ci∈{t,t−1}

where ci ∈ {1, . . . , t}, xi ∈GF(q), q≥ 2, (ai) j ∈GF(q), j ∈ {1, . . . , t−1}, and 1R is 1 if R is true and 0 otherwise.
Note that the function Fxor has been invoked in the main body of this paper to define SKIpro and SKIlite. We

give two more variants of it, SKIshamir and SKI4.
In our numerical studies, we actually look at three specific F-schemes dictated by the functions above, giving

three specific SKI protocols as follows:

18 This formalises the discussion in page 16 about broadcasting and reading messages when the intended recipients are on the correct
spheres.

19 If the adversary A could modify a flying message sent by S to R before R could actually read it, this would implement a super-fast
channel contradicting our gold principles. We could then design the following trivial (but unrealistic) distance-fraud. The adversary
can send random responses before receiving the challenges, use this super-fast channel to get the verifier’s challenges faster than
communication allows, and modify his own responses accordingly “on-the-fly”, when they have not reached the verifier yet. Clearly,
any sent message could thuswise be used as a “carrier” to send messages faster than allowed by our gold principles.

18



– SKIshamir: defined by L = Lbit, and the response-function Fshamir above, with q = 4, t = 3, t ′ = 2, i.e.,
F(ci,ai,xi) = xi +(ai)1ci +(ai)2ci

2, with xi,(ai)1,(ai)2 ∈ GF(4) and ci ∈ GF(4)∗;
– SKIpro: defined by L =Lbit, and the response-function Fxor above, with q= 2, t = 3, t ′= 2, i.e., F(ci,ai,xi)=
(ai)ci for ci ∈ {1,2} and F(3,ai,xi) = xi +(ai)1 +(ai)2, with (ai)1,(ai)2,xi ∈ GF(2);

– SKI4: defined by L = Lbit, and the response-function Fxor above, with q = 2, t = 4, t ′ = 3, i.e., F(ci,ai,xi) =
(ai)ci for ci ∈ {1,2,3} and F(4,ai,xi) = xi +(ai)1 +(ai)2 +(ai)3, with (ai)1,(ai)2,(ai)3,xi ∈ GF(2);

– SKIlite: defined by a variant of response-function Fxor above (not depending on xi), with q = 2, t = t ′ = 2,
i.e., F(ci,ai,xi) = (ai)ci for ci ∈ {1,2}, with (ai)1,(ai)2 ∈ GF(2). Since x′ is not used, L can be let empty.

In relation with the definitions of the F-schemes and protocols above, we prove the following lemma.

Lemma 15. The F-schemes used in SKIshamir, SKIpro and SKI4 are linear, pairwise uniform, t-leaking. The
F-scheme used in SKIlite is linear, pairwise uniform and not t-leaking.

– Lemma 15.1: The F-scheme used in SKIshamir is 15
8 -bounded.

– Lemma 15.2: The F-scheme used in SKIpro is 9
4 -bounded.

– Lemma 15.3: The F-scheme used in SKI4 is 3-bounded.
– Lemma 15.4: The F-scheme used in SKIlite is 3

2 -bounded.

Following Lem. 15 and Th. 14, it is clear that the probabilities α and β to succeed respectively in distance-frauds
and in MiMs, against the SKI protocols are:

SKIshamir SKIpro SKI4 SKIlite
α: B(n,τ, 5

8) B(n,τ, 3
4) B(n,τ, 3

4) B(n,τ, 3
4)

β: B(n,τ, 1
2) B(n,τ, 2

3) B(n,τ, 5
8) B(n,τ, 3

4)

Proof. The first three properties (i.e, linearity, pairwise uniformity, t-leaking property) follow easily from the
respective definitions of the three functions.

For the property of σ-boundedness, we will carry the proof using the notation

Pj(xi) := Pr
ai

[
max

y

(
#(F−1

ai,xi
(y))

)
= j

]
for Fai,xi : ci 7→ F(ci,ai,xi). We will compute the bound σ as maxxi ∑t

j=1 jPj(xi). We recall that Pj(xi) = 0 for
j < t

q .
We start by proving Lem. 15.1, i.e., the response-function F that gives the ith response as F(ci,ai,xi) =

xi+(ai)1c̄i+(ai)2c̄2
i , with xi,(ai)1,(ai)2 ∈GF(4) and c̄i ∈GF(4)∗ is the mapped of the challenge ci ∈ {1, . . . , t}.

We can show that:

max
y

(
#(F−1

ai,xi
(y))

)
= 1⇔(ai)2 = 0 and (ai)1 6= 0

max
y

(
#(F−1

ai,xi
(y))

)
= 2⇔(ai)2 6= 0

max
y

(
#(F−1

ai,xi
(y))

)
= 3⇔(ai)2 = (ai)1 = 0

So, for a component xi in the secret vector x as per above, it holds that:

P1(xi) =
3
16

, P2(xi) =
3
4
, P3(xi) =

1
16

.

Thus, σ = 1× 3
16 +2× 3

4 +3× 1
16 = 15

8 . This ends the proof of Lem. 15.1.

We now proceed to proving Lem. 15.2, i.e., the response-function F that gives the ith response as F(ci,ai,xi)=
(ai)ci for ci ∈ {1,2} and F(3,ai,xi) = xi +(ai)1 +(ai)2, with (ai)1,(ai)2,xi ∈ GF(2).

Following a similar calculation as above, we have:

max
y

(
#(F−1

ai,xi
(y))

)
= 3⇔ (ai)1 = (ai)2 = xi, thus P3(xi) =

1
4
.
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For j < t
q ,Pj(xi) = 0, so since 1 < 3

2 we have that P1(xi) = 0. So, P2(xi) = 1−P3(xi) =
3
4 . Thus, σ = (2× 3

4 +

3× 1
4) =

9
4 . This ends the proof of Lem. 15.2.

We now proceed to proving Lem. 15.3, i.e., the response-function F that gives F(ci,ai,xi) = (ai)ci for ci ∈
{1,2,3} and F(4,ai,xi) = xi +(ai)1 +(ai)2 +(ai)3, with (ai)1,(ai)2,(ai)3,xi ∈ GF(2). For j < t

q ,Pj(xi) = 0, so
since 1 < 4

2 , P1(xi) = 0.
If xi = 0 we have:

max
y

(
#(F−1

ai,xi
(y))

)
= 4⇔ (ai)1 = (ai)2 = (ai)3, thus P4(xi) =

1
4
.

We have that maxy

(
#(F−1

ai,xi
(y))

)
= 3 is impossible, i.e., P3(xi) = 0. So, P2(xi) = 1−P4(xi) =

3
4 . Finally,

(
4× 1

4 +

2× 3
4

)
= 5

2 .

If xi = 1, then maxy

(
#(F−1

ai,xi
(y))

)
= 4 or 2 are impossible, i.e, P4(xi) = 0. Thus, for xi = 1 we have

maxy

(
#(F−1

ai,xi
(y))

)
= 3. We conclude that σ = max

{5
2 ,3

}
= 3. This ends the proof of Lem. 15.3.

The proof of Lem. 15.4 is along the same lines as in the above, especially as in Lem. 15.2. ut

C On Location-Based Cryptography

Position-based cryptography (PBC) [12] becomes possible through secure positioning (SP), which involves a set
of verifiers ensuring that a given prover is indeed at some claimed position. In other words, in PBC a verifier
within the network not only estimates the distance to another device but is also helped by, e.g., trusted base-
stations that offer position-data for coordinate-triangulation in his final decisions. In SP, this assistance by, e.g.,
base-stations can happen repeatedly, to defend against malicious behaviour. This is not the case in DB, where
the verifier is on his own, with his much simpler measurements at hand. However, distance-bounding protocols
could potentially be used as building blocks for SP.

The model needed to achieve PBC bears similarities with the one to follow, yet distance-bounding is a
weaker requirement than secure positioning. DB informally implies one prover proving to one verifier only that
the former is close enough to the latter, using the time-of-flight of their exchanges. Thus, while the “geometry”
needed for achieving distance-bounding is much simpler, the notion of time is of greater importance for distance-
bounding.
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