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Abstract

The aim of this paper is to present a new way of computing short addition-subtraction chains using the
generalized continued fractions where subtraction is allowed. We will recover the most used ways of getting
addition-subtraction chains. This method is not always optimal but gives minimal chains that are easy to
compute.
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1 Introduction

Decreasing the number of multiplications needed to compute xa when a is a big integer is a very serious
problem of computation. And the addition chains give the best ways to achieve that aim. Also, the problem
of finding a minimal addition chain is known to be NP–complete [10, 11, 12]. Euclidean algorithm is a
polynomial algorithm (and is very important). It is used to get the continued fraction expansion of a

b ,
a, b ∈ N and it is used in [3, 5] to get many of the known ways of computing addition chains.

In this paper, we will use the generalized Euclidean algorithm to have a generalized continued fraction
and from that one, we will recover most of the known ways of getting addition-subtraction chains.

Definition 1.1 1. An addition chain for a positive integer n is a set of integers
{a0 = 1 < a1 < a2 < . . . < ar = n} such that every element ak can be written as sum ai + aj of
preceding elements of the set.

2. The integer r is called the length of the chain.

3. We define l(n) as the smallest r for which there exists an addition chain {a0 = 1 < a1 < a2 < . . . <
ar = n} for n.

There exists many ways of finding an addition chain for a positive integer n. We can cite the classical binary
method, the window method and the factor method. And many of those methods were recovered in [3, 5]
using the continued fraction expansion of n

k .



2

1.1 Continued fractions

Let n be an integer and k ∈ {2, 3, . . . , n− 1},
a continued fraction expansion of n

k is:

n

k
= ar +

1

ar−1 +
1

. . . +
1

a2 +
1

a1

Followong the non-usual notation of [3, 5], we denote the continued fraction expansion of n
k by [a1, a2, . . . , ar−1, ar].

The semi-continuants of this continued fraction Qi are:

Q0 = gcd (n, k), Q1 = Q0a1 and Qi = Qi−1ai +Qi−2 for 2 ≤ i ≤ r.

By construction, we can see that Qr = n.

Example 1.2 Let n = 86 and k = 10, the continued fraction expansion of 86
10 is [2, 1, 1, 8], and we have:

Q0 = 2, Q1 = 4, Q2 = 6, Q3 = 10, Q4 = 86,

the way of computing the Qis gives an addition chain for n,

C = {1, 2, 4, 6, 10, 20, 40, 80, 86}.

The method of computing short addition chains for n based on the continued fraction expansion of n
k is well

explained in [3, 5].

1.2 Addition-subtraction chains

Definition 1.3 1. A sequence {1 = a0, a1, . . . , al = n} is called an addition-subtraction chain for an
integer n if and only if:

For every integer i ∈ [1..l], there exist j and k with 0 ≤ j, k < i such that

ai > 0 and ai = aj + ak or ai = aj − ak.

2. The integer l is called the length of the chain.

3. We define l−(n) as the smallest l for which there exists an addition-subtraction chain {a0 = 1 < a1 <
a2 < . . . < al = n} for n.

Example 1.4 The sequence {1, 2, 4, 8, 16, 32, 31} is an addition-subtraction chain for 31.

There exists many ways of finding an addition-subtraction chain for a positive integer n. In this part, we
will give two ways of getting addition-sutraction chains for n.

1.2.1 Factor Method

Theorem 1.5 Let c1 and c2 be addition-subtraction chains respectively for n1 and n2. Then c1 ⊗ c2 is an
addition-subtraction chain for n1 · n2 where ⊗ is defined as follows:

if c1 = {a0, a1, . . . , ar} and c2 = {b0, b1, . . . , bl} , then

c1 ⊗ c2 = {a0, a1, . . . , ar, ar · b1, ar · b2, . . . , ar · bl}.

The practical idea of this theorem is to have an addition-subtraction chain for n by using the smallest
divisor of n greater than 1 (6= n) when it exists, and to work with n − 1 if n is prime. That leads to the
factor strategy that is presented later in this paper.
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1.2.2 Non-adjacent form

A w–non-adjacent form (w–NAF) of length r for an integer n is a sequence of digits (dr−1 · · · d0) with |di| < w
such that

n =

r−1∑
i=0

dib
i

and
di · di+1 = 0 ∀i.

It has been proved [13] that each integer has exactly one 2-NAF representation. More importantly, it’s
proved that the 2–NAF minimizes the Hamming weight among all the binary signed-digit representations.
That gives to the NAFs, the particularity of being suitable for fast exponentiations.

Example 1.6 For e = (11101)2, we get NAF (e) = (1001̄01)2̄.

Here is an algorithm [5] to get the 2–NAF which is also called the Non-adjacent form of any integer n
using its binary expansion.

Algorithm 1 nonAdjacentForm (e)

Require: e : integer
Ensure: the non–adjacent form of e
1: i← 0
2: while (i < λ2(e)− 1) do
3: if (ei == 1 et ei+1 == 1) then
4: ei ← 1̄
5: i← i+ 1
6: while (ei == 1) do
7: ei ← 0
8: i← i+ 1
9: end while

10: ei ← 1
11: end if
12: end while

and, the addition-subtraction chain for an integer n is obtained using the non-adjacent form by the same
way than in the binary method. We have to look at the digit and add when it is equal to 1, subtract when
it is −1.
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2 Generalized continued fractions

Let n be an integer and k ∈ {2, 3, . . . , n− 1}.
A generalized continued fraction expansion of n

k where subtraction is allowed, is in our case:

n

k
= ar +

br−1

ar−1 +
br−2

. . . +
b2

a2 +
b1

a1

where bi ∈ {1,−1}.

Theorem 2.1 1. In the classical case, bi is always equal to 1.

2. Our generalized continued fraction is obtained easily with the generalized euclidean algorithm.

We denote this generalized continued fraction expansion of n
k by [b1a1, b2a2, . . . , br−1ar−1, ar].

Example 2.1 Let’s take n = 55 and k = 28, then 55 = 1 ∗ 28 + 27 is the classical Euclidean division and
gives us this continued fraction expansion

55

28
= 1 +

27

28
= [27, 28],

and the generalized Euclidean division gives us 55 = 2 ∗ 28− 1 and the generalized continued fraction is

55

28
= 2− 1

28
= [−28, 2].

Let’s define the generalized semi-continuants of this continued fraction Qi by:

Q0 = gcd (n, k), Q1 = Q0 · a1,

Qi = Qi−1ai + bi−1Qi−2, ∀2 ≤ i ≤ r.

By construction, we can see that Qr = n.

Theorem 2.1 Let’s prove by induction that, if Qo = gcd (n, k) then

Qr = n = Qo ·N and Qr−1 = k = Q0 ·K.

Let
n

k
=
N

K
= a2 +

b1
a1

then, N
K = a2a1+b1

a1
and we know that

Q1 = a1 ·Q0 = Q0 ·K = k

and

Q2 = a2Q1 + b1Q0 = a2a1Q0 + b1Q0 = Q0 ·N = n.
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Now, let’s suppose that the relation holds until r − 1 and

n

k
=
N

K
= ar +

br−1

ar−1 +
br−2

. . . +
b2

a2 +
b1

a1

then N
K = ar + br−1

n0
k0

, and so

N

K
=
arn0 + br−1k0

n0
;

thanks to the reccursion, we can conclude that n0 = Qr−1

Q0
and k0 = Qr−2

Q0
, and it means that

n1 =
n

Q0
= ar

Qr−1

Q0
+ br−1

Qr−2

Q0
=
Qr

Q0
.

And now, let C(d) be an addition-subtraction chain for d = gcd (n, k) and for i ∈ [1..r], let Ci = C(ui)
be some addition-subtraction chain for ui.

Let’s define this new sequence of addition-subtraction chains Xi for all i ∈ [1..r]:
X0 = C(d), X1 = X0 ⊗ C1, and for all i ∈ [2..r]

Xi =

{
(Xi−1 ⊗ Ci)⊕Qi−2 if bi−1 > 0,

(Xi−1 ⊗ Ci)	Qi−2 if bi−1 < 0,

where ⊗, ⊕ and 	 are defined this way:

Definition 2.2 1. if c1 = {a0, a1, . . . , ar} and c2 = {b0, b1, . . . , bl} , then

c1 ⊗ c2 = {a0, a1, . . . , ar, ar × b1, ar × b2, . . . , ar × bl},

2. if c1 = {a0, a1, . . . , ar} and m ∈ c1, then

c1 ⊕m = {a0, a1, . . . , ar, ar +m},

3. if c1 = {a0, a1, . . . , ar} and m ∈ c1, then

c1 	m = {a0, a1, . . . , ar, ar −m}.

By this definition, we can see that these three operations give new addition-subtraction chains.

Theorem 2.2 1. Notice that, in the above definition, we need that m always appears in the chain c1.

2. Xr is an addition-subtraction chain for n of length `−(C(d)) + r − 1 +
∑r

i=1 `
−(ci).

The choice of k is very important if we want to have short addition-subtraction chains, and to our
knowledge, there is no good heuristics known way to choose k, this point remains mysterious. The known
ways of choosing k are the strategies.

Definition 2.3 A strategy is a function γ that determines for every integer n some non empty subset of
{2, 3, . . . , n− 1}.
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Here are a few examples, and we will see how to get addition-subtraction chains with some of them.

(1) Total Strategy
t(n) = {2, 3, . . . , n− 1}.

(2) Binary Strategy

β(n) =
{⌊n

2

⌋}
.

The chains obtained with the binary stratedy are exactly the classical binary chains. With the following
modification, we have the chains obtained using the Non-adjacent form.

(3) Modified-Binary Strategy

β2(n) =
{⌊n

2

⌋
if
n

2
is even,

⌊
n+ 1

2

⌋
otherwise

}
.

With this strategy, we have the addition-subtraction chains obtained with the non-adjacent form, and we
gain one step (in the length of the chain) when n = 3 ∗ 2k + x where log2(x) < k.

Example 2.4 Let’s take n = 55, then β2(n) = 28 and the gcf is [−28, 2].
gcd (55, 28) = 1, then we have

Q0 = 1, Q1 = 28 and Q2 = 2 · 28− 1 = 55,

and after computing the sequence of addition-subtraction chain, we obtained this last chain

{1, 2, 4, 8, 7, 14, 28, 56, 55}.

(4) Factor Strategy

π(n) =

{
{n− 1}, if n is prime;

{n− 1, q}, otherwise, where q is the smallest prime dividing n.

The factor strategy gives us the factor addition chains that we were talking about below. (need to modify
it to have some factor addition-subtraction chains)

We will get the factor addition-subtraction chains using this new strategy. This strategy uses a primaly
test and/or a factorization algorithms, and so the factor strategy isn’t suitable all the time.

(5) Square root Strategy

β(n) =
{⌊√

n
⌋}

Example 2.5 Let n = 55, then β(n) = 7 and the gcf is [−8, 7].
Then gcd (55, 7) = 1, and we have

Q0 = 1, Q1 = 8 and Q2 = 7 · 8− 1 = 55,

and after computing the sequence of addition-subtraction chain, we obtained this last chain

{1, 2, 4, 8, 16, 24, 48, 56, 55}.

Many other strategies exist and aren’t studied in this paper.

Definition 2.6 An addition-subtraction chain c for n is called a gcf–chain when it exists an integer k such
that the generalized continued fraction expansion of n

k allows to get c using the method describe above.

Now, we will give an algorithm to have gcf–chains for n.
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3 Algorithm

We will create a first algorithm MinChain(n, γ) wich will allow us to have a minimal gcf–chain for Q0 and
for all the ui using the strategy γ. From those chains, we will construct another algorithm Chain(n, k) which
will get the generalized continued fraction expansion of n

k and obtain all the gcf–chains Xi, we will return
Xr which is a gcf–chain for n.

Algorithm 2 MinChain(n, γ)

Require: n : integer, γ: a strategy
Ensure: a sequence of integers that is a gcf–chain for n
1: if (n = 2a) then
2: chain = 1, 2, 22, . . . , 2a

3: else
4: if (n = 3) then
5: chain = 1, 2, 3
6: else
7: choose k ∈ γ(n) such that Chain(n, k) is minimal
8: chain = Chain(n, k)
9: end if

10: end if
11: return chain

and now, here is the algorithm to construct a gcf–chain for n,

Algorithm 3 Chain(n, k, γ)

Require: n, k : integers, γ: a strategy
Ensure: a sequence of integers that is a gcf–chain for n
1: gcf = [u1, u2, . . . , ur] the generalized continued fraction expansion of n

k
2: Q0 = gcd (n, k); Q1 = |u1| ·Q0

3: X0 = MinChain(Q0, γ); X1 = X0 ⊗MinChain(|u1|)
4: for i = 2 to r do
5: Qi = |ui|Qi−1 + sign(ui−1)Qi−2

6: Xi = Xi−1 ⊗MinChain(|ui|)
7: if (ui−1 < 0) then
8: Xi = Xi 	Qi−2

9: else
10: Xi = Xi ⊕Qi−2

11: end if
12: end forReturn Xr
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Those algorithms were implemented in gp-pari by the author and tested. Now we will study the complexity
of those gcf–chains obtained with the algorithms above according to the chosen strategy γ. For that, we will
give this definition:

Definition 3.1 Let n, k be integers (n > k) and lambda a strategy, we denote by:

1. `−(n, γ) the length of a shortest gcf–chain for n according to γ,

2. L−({n, k}, γ) tht length of a shortest gcf–chains for n containing k and obtained through the generalized
continued fraction expansion of n

k .

We have:

`−(n, γ) =


a if n = 2a,

a+ 1 if n = 2a ± 2b, a > b

min {L−({n, k}, γ), k ∈ γ(n)} otherwise

and here is a definition by induction of L−()

L−({n, k}, γ) =


L−({k}, γ) + `−(q, γ) if r = 0,

L−({n, k}, γ) + `−(q, γ) + 1 if r ∈ {1, 2},
L−({k, r}, γ) + `−(q, γ) + 1 otherwise

with n = kq ± r and 0 ≤ r < k
2 .

Now, we will deduce from the last result that

L−({n, k}, γ) =

{
`−(k, γ) + `−(q, γ) if n = kq,

`−({k, r}, γ) + `−(q, γ) + 1 if n = kq ± r with 0 < r < k
2

because every chain for k contains 1 and 2. Now, we can see that the complexity of computing a `−(n, γ) for
an integer n using a strategy γ is O(xxxx).

4 Conclusion

In this paper, we have presented new computationally easy ways of getting addition-subtraction chains that
recover most of the known ways (binary, non-adjacent form, factor method, ...). Although, one can think
about using the generalized continued fraction to recover the window method. Addition-subtraction chains
can give fast, efficient and secure scalar multiplication on elliptic curves, which are very important in elliptic
curve cryptography. It will be interesting to investigate possible scalar multiplications based on this new
ways. A more precise value of the complexity can also be found.
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Informatique théorique et applications 24, (6) (1990) 531-543.

[2] Peter L. Montgomery. Evaluating recurrences of form Xm+n = f(Xm, Xn, Xm−n) via Lucas Chains
January 1992.



9

[3] F. Bergeron, J. Berstel, S. Brlek and C. Duboc, Addition chains using continued fractions, journal of
algorithms 10, p 403-412, 1989

[4] F. Bergeron, J. Berstel and S. Brlek, Efficient computation of addition chains, Journal de théorie des
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