
Indistinguishability Obfuscation vs. Auxiliary-Input
Extractable Functions: One Must Fall

Nir Bitansky∗ Ran Canetti† Omer Paneth‡ Alon Rosen§

June 3, 2014

This is an out of date draft. The paper was merged with How to Construct Extractable
Functions against Uniform Adversaries [BCP13] to form On the Existence of Extractable
One-Way Functions [BCPR14].

Abstract

We show that if there exist indistinguishability obfuscators for all circuits then there do not exist
auxiliary-input extractable one-way functions. In particular, the knowledge of exponent assumption with
respect to adversaries with auxiliary input is false in any group where computing discrete logarithms is
intractable. The proof uses the “punctured programs” technique of [Sahai-Waters 2013].

1 Introduction

1.1 Program obfuscation

Program obfuscation, namely the task of making code unintelligible while preserving its functionality, has
been long considered to be a holy grail of cryptography, with diverse and far reaching applications. The
rigorous treatment of obfuscation was initiated by Barak et al. [BGI+01], who formulated a number of
definitions of security for this task. However, until very recently, we only knew how to obfuscate a number
of specific and restricted classes of programs under any of these definitions. Furthermore, Barak et al.
demonstrated a class of programs that are unobfuscatable according to a natural definition, namely virtual
black box (VBB) obfuscation, which guarantees that access to the obfuscated program gives no more power
than access to an impenetrable black box with the same input-output functionality. Impossibility results
for more natural classes of programs, with respect to stronger variants of VBB obfuscation, subsequently
followed [GK05].

All of this changed with the work by Garg et al. [GGH+13b] who proposed a candidate construction
of general-purpose obfuscators. They show that, under algebraic assumptions closely related to multilinear
∗Tel Aviv University. Email: nirbitan@tau.ac.il. Supported by an IBM Ph.D. Fellowship, the Check Point Institute for

Information Security, and an ISF grant 20006317.
†Boston University and Tel Aviv University. Email: canetti@bu.edu. Supported by the Check Point Institute for Informa-

tion Security, an ISF grant 20006317, an NSF EAGER grant, and an NSF Algorithmic foundations grant 1218461.
‡Boston University. Email: omer@bu.edu. Supported by the Simons award for graduate students in theoretical computer

science and an NSF Algorithmic foundations grant 1218461.
§Efi Arazi School of Computer Science, IDC Herzliya, Israel. Email: alon.rosen@idc.ac.il. Supported by ISF grant

no. 1255/12 and by the ERC under the EU’s Seventh Framework Programme (FP/2007-2013) ERC Grant Agreement n. 307952.



maps [GGH13a, CLT13], their construction satisfies the relaxed notion of indistinguishability obfuscation
(iO) [BGI+01], for which no impossibility results are known. The notion of iO only requires that it is hard
to distinguish an obfuscation of C0 from an obfuscation of C1, for any two circuits C0 and C1 of the same
size that compute the exact same function.

The security of the Garg et al. construction is based on a specific family of intractability assumptions
(different for any obfuscated function). Being introduced only recently, these assumptions are still not well-
understood, though several recent works have verified the validity of the constructions (or variants thereof)
in idealized algebraic models [CV13, BR13, BGTK+13]. In fact, in these models the construction is even
shown to obtain the stronger VBB notion.

A priori, it is not clear how strong or meaningful is the iO notion of security. However, as observed in
[BGI+01, GR07], iO is “best possible,” in the sense that if a class of programs is obfuscatable according
to some notion of security, then a general iO obfuscator, applied to this class of programs, will provide
essentially the same security guarantee. Furthermore, several recent works [GGH+13b, SW13, HSW13,
GGHR13] showed that general iO obfuscation can be combined with more standard cryptographic primi-
tives to construct many powerful primitives such as functional encryption, public-key encryption from one
way functions, attribute-based encryption, as well as NIZKs, CCA encryption, 2-message multi-party com-
putation [GGHR13], deniable encryption, and more. Despite these dramatic advances, many questions are
still open and the full range of implications of iO for all circuits still seems far from being well understood.

1.2 Extractable Functions

The concept of extractable functions originates with the work of Damgård over 20 years ago [Dam92],
which first formulated the “knowledge of exponent assumption” (KEA). The KEA notion, with respect
to a group G, says that for any adversary A, there exists an extractor E , such that whenever A, given
two random generators (g, h) of G outputs two group elements of the form (gx, hx) for some x, then E ,
given the same (g, h), outputs x. Variants of this assumption have been used in the context of CCA and
plaintext aware encryption, zero knowledge, non-interactive succinct arguments and other primitives, e.g.,
[Dam92, HT98, BP04a, BP04b, Gro10, BSW12, GS12].

Abstracting from this assumption, Canetti and Dakdouk [CD08, CD09] defined the notion of extractable
function families. Similarly to KEA, a family of functionsF is extractable if for any adversaryA there exists
an extractor E , such that whenever A, given a random key e for a function fe ∈ F , outputs an element y
in the image of fe, then E , given the same e, outputs a preimage of y. Intuitively, this means that the “only
way” to generate a value in the image of fe is to “honestly” apply fe on some chosen input. When F has
additional hardness properties (such as one-wayness or collision resistance), this abstraction has proven to
be quite powerful [CD09, BCCT12, DFH12, GLR11].

Different formulations of assumptions of this kind exhibit widely different properties. While variants
differ in several aspects, let us concentrate on a particular aspect: the “advice”, or “auxiliary information”
available to the adversary and extractor. One straightforward formulation requires that, for any possible
adversary (modeled as a uniform algorithm) there exists an extractor (again, modeled as a uniform algorithm)
that successfully extracts as described above, given the adversary’s coin tosses. An alternative is to model
both the adversary and the extractor as non-uniform families of polysize circuits.

However, neither formulation suffices when using extractable functions with other components in a
larger cryptographic scheme or protocol. Indeed, during the execution of such a protocol or scheme, an
adversary A may gather information z from other components and use it as additional auxiliary input when
evaluating the extractable function. While, in the non-uniform definition, for every z, there exists an extrac-
tor for A(z, ·), a reduction/simulator might not be able to efficiently find this extractor. Similar issues are

2



encountered in various cryptographic contexts that involve composition: a classic example, from the context
of zero-knowledge, is in proving that zero-knowledge is closed under sequential composition. There, the
solution is to require a stronger notion of auxiliary-input zero-knowledge.

In the context of extractable functions, the solution is to require a single extractor that can handle any
auxiliary information z gathered by the adversary. Specifically, we require that for any polytime adversary
A there should exist a polytime extractor E such that extraction succeeds when A and E are given the same
advice string z. That is, for any polysize z, and for a randomly chosen key e, the probability that A, given
(z, e) outputs a value y in the image of fe and E , given (z, e), does not output a preimage of y, is negligible.
We call this property auxiliary-input extractability.

Indeed, this notion is needed in order to use extractable functions to obtain the standard notion of
auxiliary-input zero-knowledge. In certain cases, auxiliary-input extractability can be relaxed to consider
only the case where the common auxiliary input is taken from some specific distribution that captures the
‘possible’ auxiliary information in a given system (see e.g. [BCCT12]).

Do auxiliary-input extractable functions exist? With one recent exception, in which the adversary is
assumed to have only bounded-length advice [BCP13], we do not have any candidate extractable one-way
functions with an explicit, constructive extraction algorithm under any of the above formulations. Instead,
existence of such an extractor is merely assumed (e.g., [Dam92, CD09, BCCT12, Gro10, GGPR13]. Such
assumptions are arguably not satisfying. In particular, they do not qualify as “efficiently falsifiable” [Nao03];
namely, unlike standard assumptions where it possible to algorithmically study the best possible “breakers”,
here we do not even have an algorithmic way to test whether a given adversary A breaks the assumption.

1.3 Our Result

Auxiliary-input extractability is a strong requirement: the auxiliary-input z may potentially encode arbitrary
circuits, which may be executed by the adversary, meaning that the extractor needs to extract from arbitrary
circuits. Given our current lack of understanding of non-black-box extraction techniques, the latter further
decreases our confidence in such assumptions. Furthermore, the need to extract from arbitrary code reveals
a clear tension between extractable functions and obfuscation: if z contains obfuscated code, how can we
expect the extractor to algorithmically extract useful information out of it?

We show that general iO suffices to make this intuition rigorous:

Theorem 1.1. If there exist indistinguishability obfuscators for all circuits, then there do not exist one-way
functions that are auxiliary-input extractable.

So, is the knowledge of exponent assumption wrong? Originally [Dam92], the knowledge of exponent
assumption (KEA) was not stated with auxiliary-input extractability, but rather according to the notion where
every adversary A has an extractor E , and the only joint extra information is the adversary’s coin tosses and
key for the function. In particular, given a non-uniform adversary A with an obfuscated code as advice z,
the extractor is allowed to have a different advice z′, representing the “deobfuscated” code. Indeed, our
result does not rule out such a notion of extraction (even assuming iO for all cicruits). Our result does not
disvalidate the intuition that “the only way” to compute (gx, hx), given (g, h) is by “knowing” x. As we shall
see, our adversary and auxiliary-input will be devised so that x is actually known, but only by an underlying
obfuscated computation, and thus cannot be figured out efficiently from it by an external extractor.

We also note that our result does not rule out extractable functions with respect to adversaries with
bounded polynomial advice, such as those constructed in [BCP13]. Neither do they rule out extractable

3



functions with respect to auxiliary input that is taken from specific distributions, e.g. the uniform distribu-
tion, required in [BCCT12].

1.4 Proof Idea

To show that the existence of iO rules out auxiliary-input extractable functions, we follow the basic intuition
given above. We focus on the ‘hardest scenario’, where the auxiliary input z may represent an arbitrary
malicious, and potentially obfuscated code. Specifically, we consider the following folklore case (sketched
in [BCCT12, BC12, BCI+13, BCCT13]) where z is an obfuscation of a circuit Ck that, given key e for an
extractable fe, chooses its preimage in an unpredictable way: it applies a pseudo-random function PRFk to
the key, and outputs the result fe(PRFk(e)).

Note that an adversary, given such an obfuscated circuit as auxiliary input z, can run it on the key e for
the extractable function and always obtain a proper image. The question is whether the extractor, given the
same (e, z), can output a preimage. Intuitively, had we given the extractor black-box access to the circuit
Ck, instead of an obfuscation of Ck, it would have to invert the one-way function to obtain such a preimage.
Note that as an oracle Ck only returns fe′(PRFk(e′)) for any query e′, and thus by pseudo-randomness,
finding a preimage of fe(PRFk(e)) is as hard as finding a preimage for a random image fe(u).

If z is a VBB obfuscation of Ck, the above could be translated to an actual proof; but is that also the case
if we use indistinguishability obfuscation? When z = iO(Ck), it is not as clear what kind of information
leaks on the PRF key k. Nevertheless, we show that the above argument can still be salvaged. The idea is to
consider an alternative to the the circuitCk that computes the same function, but without actually “knowing”
PRFk(e). This is achieved using the puncturing technique of Sahai and Waters [SW13].

Specifically, instead of using any PRF family, we use a puncturable PRF. In such PRFs it is possible
to puncture a given key k at an arbitrary point x∗ in the domain of the function. The punctured function
PRFkx∗ , with punctured key kx∗ , preserves functionality at any other point, but hides any information on
the point PRFk(x∗); namely, this value is pseudo-random, even given (x∗, kx∗). As shown in several recent
works [BW13, BGI13, KPTZ13], such puncturable PRFs follow from the [GGM86] construction.

Using a puncturable PRF in the implementation of Ck, we can now show that if the extractor succeeds
in finding a preimage of y = fe(PRFk(e)), it would also succeed had we provided it with an obfuscation of
the alternative circuit Cke,y. The circuit Cke,y computes the same function as Ck, but in a different way: it
only has the punctured key ke, and has the value y = fe(PRFk(e)) directly hardwired into it, so that it does
not have to evaluate the PRF in order to compute it. Thus, the fact that the extractor still succeeds follows
by the guarantee of indistinguishability obfuscation. However, now by the pseudo-randomness guarantee at
the punctured point e, we know that PRFk(e) is pseudo random, and thus the extractor can be used to invert
the one-way function fe from scratch.

Finally, we note that since puncturable PRFs can be constructed from one-way functions, and any EOWF
is in particular a OWF, it follows that the impossibility of EOWFs is implied by indistinguishability obfus-
cation without any further assumptions.

2 Definitions

We define extractable one-way functions, indistinguishability obfuscation, and puncturable pseudo-random
functions.

4



2.1 Auxiliary-Input Extractable One-Way Functions

In this paper, we focus attention to extractable one-way functions. Our results directly extend to stronger ex-
tractable function primitives, such as extractable collision-resistant hashing, and extractable commitments.

Definition 2.1 (Auxiliary-input EOWFs [CD08]). Let `, `′,m be polynomially bounded length functions.
An efficiently computable family of functions

F =
{
fe : {0, 1}`(n) → {0, 1}`

′(n)
∣∣∣ e ∈ {0, 1}m(n), n ∈ N

}
,

associated with an efficient (probabilistic) key sampler KF , is an auxiliary-input extractable one-way func-
tion if it satisfies:

1. One-wayness: For PPT A, large enough security parameter n ∈ N, and z ∈ {0, 1}poly(n):

Pr
e←KF (1n)
x←{0,1}`(n)

[
x′ ← A(e, fe(x); z)
fe(x

′) = fe(x)

]
≤ negl(n) .

2. Extractability: For any PPT adversary A, there exists a PPT extractor E such that, for any large
enough security parameter n ∈ N, and advice z ∈ {0, 1}poly(n):

Pr
e←KF (1n)

[
y ← A(e; z)
∃x : fe(x) = y

∧ x′ ← E(e; z)
fe(x

′) 6= y

]
≤ negl(n) (1)

Remark 2.1 (On the auxiliary input). For our results it is critical that the extractor E receives the same aux-
iliary input z, which could be of arbitrary polynomial length, as A does, and has to operate efficiently with
respect to this auxiliary input. This flavor of definition is standard in defining auxiliary-input security, e.g.,
auxiliary-input zero-knowledge, and auxiliary-input obfuscation. Additional motivation for this formulation
appears in the introduction.

Still, one could consider weaker notions of extractability which may still suffice for some applications,
and are not ruled out by our results, even assuming indistinguishability obfuscation.

• Separate auxiliary inputs: Here we only require that for any A with non-uniform advice zs, there
exists an extractor with non-uniform advice zs′ , which may arbitrarily and inefficiently depend on zs,
and could be of an arbitrary polynomial size. This weaker notion may be useful in cases where the
adversary’s auxiliary inputs do not depend on computations that may have taken place in the system
before the extractable function is used. Examples include CCA and plaintext-aware encryption with
non-uniform security reductions [Dam92, BP04b], and weak versions of 3-message zero-knowledge
where the where the verifier doe not get auxiliary information and simulator is allowed to be more
non-uniform than the verifier [HT98, BP04a].

• Common but benign auxiliary input: Here A and S , in addition to arbitrary separate auxiliary-
inputs zs and zs′ , respectively, get common auxiliary input z as that id drawn from a specific distribu-
tion that is conjectured to be ‘benign’, in the sense that it is unlikely to encode a malicious obfuscation.
For instance, the distribution can be uniform or an encryption of a random string. Examples where
this is sufficient includes essentially all the works on succinct non-interactive arguments (SNARGs),
succinct NIZKs, and targeted malleability that rely on extractable primitives [DCL08, Mie08, Gro10,
GLR11, BSW12, BCCT12, BC12, DFH12, Lip12, BCCT13, BCI+13, GGPR13, Lip13].

5



• Bounded auxiliary input: Here there is a bound on the size of the auxiliary-input that the adversary
may get. EOWFs according to this notion are constructed in [BCP13] from standard assumptions, and
shown to suffice for 3-message arguments of knowledge and 2-message arguments that are bounded
auxiliary-input zero-knowledge.

Finally, we remark that one may consider adversaries with both separate and common dynamic auxiliary
input. That is, for any A and auxiliary input zs there should exist S and auxiliary input zs′ such that (1)
holds for any common auxiliary input z. This notion is also ruled out by our techniques.

2.2 Indistinguishability Obfuscation

Indistinguishability obfuscation was introduced in [BGI+01] and given a candidate construction in [GGH+13b],
and subsequently in [BR13, BGTK+13, CV13].

Definition 2.2 (Indistinguishability obfuscation [BGI+01]). A PPT algorithm iO is said to be an indistin-
guishability obfuscator (INDO) for C, if it satisfies:

1. Functionality: For any C ∈ C,

Pr
iO

[∀x : iO(1n, C)(x) = C(x)] = 1 .

2. Indistinguishability: For any ensemble of circuit pairs {(C(1)
n , C

(2)
n ) ∈ C × C}n∈N, where the two

circuits in each pair are of the same size and functionality, it holds that:{
iO(1n, C(1)

n )
}
n∈N
≈c

{
iO(1n, C(2)

n )
}
n∈N

.

For ease of notation, we shall often omit 1n from the input to the obfuscator.

2.3 Puncturable PRFs

We next define puncturable PRFs. We consider a simple case of the puncturable PRFs where any PRF might
be punctured at a single point. The definition is formulated as in [SW13].

Definition 2.3 (Puncturable PRFs). Let `,m be polynomially bounded length functions. An efficiently com-
putable family of functions

PRF =
{
PRFk : {0, 1}m(n) → {0, 1}`(n)

∣∣∣ k ∈ {0, 1}n, n ∈ N
}

,

associated with an efficient (probabilistic) key sampler KPRF , is a puncturable PRF if there exists a punc-
turing algorithm Punc that takes as input a key k ∈ {0, 1}n, and a point x∗, and outputs a punctured key
kx∗ , so that the following conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}`(n),

Pr
k←KPRF (1n)

[
∀x 6= x∗ : PRFk(x) = PRFkx∗ (x)

∣∣ kx∗ = Punc(k, x∗)
]
= 1 .

2. Indistinguishability at punctured points: The following ensembles are computationally indistin-
guishable:

6



• {x∗, kx∗ ,PRFk(x∗) | k ← KPRF (1n), kx∗ = Punc(k, x∗)}x∗∈{0,1}m(n),n∈N

•
{
x∗, kx∗ , u

∣∣ k ← KPRF (1n), kx∗ = Punc(k, x∗), u← {0, 1}`(n)
}
x∗∈{0,1}m(n),n∈N .

To be explicit, we include x∗ in the distribution; throughout, we shall assume for simplicity that a
punctured key kx∗ includes x∗ in the clear. As shown in [BGI13, BW13, KPTZ13], the GGM [GGM86]
PRF yield puncturable PRFs as defined above.

3 From iO to Impossibility of Extractable Functions

We now show that if indistinguishability obfuscators exist, there do not exist EOWFs according to Defini-
tion 2.1. For this purpose, assuming the existence of an EOWF family F , we shall describe an adversary A
and a distribution Z on auxiliary inputs, such that any extractor fails, for auxiliary inputs sampled from Z .

3.1 The Universal Adversary

We consider a universal PPT adversaryA that given (e, z) ∈ {0, 1}m(n)×{0, 1}poly(n), parses z as a circuit
and returns z(e).

3.2 The Auxiliary Input Distribution.

Let F be a family of extractable one-way functions and let PRF be a puncturable pseudo-random function
family. We start by defining two families of circuits

C =
{
Ck : {0, 1}m(n) → {0, 1}`′(n)

∣∣∣ k ∈ {0, 1}n, n ∈ N
}

,

C∗ =
{
Cke∗ ,y∗ : {0, 1}

m(n) → {0, 1}`′(n)
∣∣∣ k ∈ {0, 1}n, n ∈ N

}
.

The circuit Ck, given a key e for an EOWF, applies PRFk to e , obtains an input x, and returns the result
of applying the EOWF fe to x.

Ck

Hardwired: a PRF key k ∈ {0, 1}n.

Input: an EOWF key e ∈ {0, 1}m(n).

1. Compute x = PRFk(e).

2. Return y = fe(x).

Figure 1: The circuit Ck.

The circuit Cke∗ ,y∗ , has a hardwired PRF key ke∗ that was derived from k by puncturing it at the point
e∗. In addition, it has hardwired an output y∗ to replace the punctured result. In particular, when y∗ =
fe∗(PRFk(e

∗)) the circuit Cke∗ ,y∗ computes the same function as Ck.
We are now ready to define our auxiliary input distribution Z = {Zn}n∈N. Let s = s(n) be the

maximal size of circuits in either C or C∗, corresponding to security parameter n, and denote by [C]s a

7



Cke∗ ,y∗

Hardwired: a punctured PRF key ke∗ = Punc(k, e∗) and y∗ ∈ {0, 1}`′(n).

Input: an EOWF key e ∈ {0, 1}m(n).

1. If e 6= e∗, compute x = PRFke∗ (e), and return y = fe(x).

2. If e = e∗, return y∗.

Figure 2: The circuit Cke∗ ,y∗ .

circuit C padded with zeros to size s. Let iO be an indistinguishability obfuscator. The distribution Zn

simply consists of an obfuscated (padded) circuit Ck.

Zn

1. Sample k ← KPRF (1n).

2. Sample an obfuscation z ← iO([Ck]s).

3. Output z.

Figure 3: The auxiliary input distribution Zn.

3.3 A Does Not Have an Extractor

We next show that A cannot have any extractor E satisfying Definition 2.1. In fact, we show a stronger
claim; namely, that for the auxiliary input distribution Z , any extractor fails with overwhelming probability.

Proposition 3.1. Let E be any PPT candidate extractor for A then

Pr
e←KF (1n)

z←Zn

[
y ← A(e; z)
∃x : fe(x) = y

∧ x′ ← E(e; z)
fe(x

′) 6= y

]
≥ 1− negl(n) .

We note that, since the key e is sampled above independently of the auxiliary input z, the above indeed
disproves extractability.

Proof of Proposition 3.1. First, we note that

Pr
e←KF (1n)

z←Zn

[
y ← A(e; z)
∃x : fe(x) = y

]
= 1 ;

indeed, by the definition of A and Zn, and the correctness of iO,

A(e, z) = z(e) = Ck(e) = fe(PRFk(e)) ,

8



where Ck ∈ C is the circuit obfuscated in z, i.e. z = iO([Ck]s).
Now, assume towards contradiction that, for infinitely many n ∈ N, the extractor E successfully outputs

an image with noticeable probability ε(n), i.e.

Pr
e←KF (1n)

z←Zn

[
x′ ← E(e; z)

fe(x
′) = z(e) = fe(PRFk(e))

]
≥ ε(n) ,

where as before, z = iO([Ck]s).
Next, for every e∗ we consider an alternative distribution Zn(e

∗, y∗) that, instead of sampling a circuit
Ck, samples a circuit Cke∗ ,y∗ , by first sampling k as usual, and then computing y∗ = fe∗(PRFk(e

∗)), and
the punctured key ke∗ . (Note that Zn(e

∗, y∗) is actually only parameterized by e∗, we add y∗ to the notation,
to be more explicit.) We claim that the extractor still succeeds in finding a preimage, i.e.,

Pr
e∗←KF (1n)

z∗←Zn(e∗,y∗)

[
x′ ← E(e∗; z∗)

fe∗(x
′) = z∗(e∗) = y∗ = fe∗(PRFk(e

∗))

]
≥ ε(n)− negl(n) .

This follows from the fact that, for any e∗ and k, Ck and Cke∗ ,y∗ compute the same function, and the iO
indistinguishability guarantee.

Next, we consider another experiment where Zn(e
∗, y∗) is altered to a new distribution Zn(e

∗, u) that,
instead of sampling y∗ = fe∗(PRFk(e

∗)) in Cke∗ ,y∗ , samples y∗ = fe∗(u), for an independent random
u← {0, 1}`. We claim that

Pr
e∗←KF (1n)
z∗←Zn(e∗,u)

[
x′ ← E(e∗; z∗)

fe∗(x
′) = z∗(e∗) = y∗ = fe∗(u)

]
≥ ε(n)− negl(n) ;

indeed, this follows from the fact that PRFk(e∗) is pseudo-random, even given the punctured key ke∗ .
This means that E can be used to break the one-wayness of F . Indeed, given a random key e∗, and

a challenge y∗ = fe∗(u), an inverter can simply sample a punctured ke∗ on its own, construct the circuit
Cke∗ ,y∗ , with its challenge y∗ hardwired in, and sample an obfuscation z∗ ← iO(Cke∗ ,y∗). Finally, it runs
E(e∗, z∗) to invert y∗, with the same probability ε(n)− negl(n).

Remark 3.1 (Separate vs. common auxiliary input). As mentioned in Remark 2.1, our proof also holds in
the case that the extractor E is allowed extra (separate) auxiliary input s, which does not depend on the
(common) auxiliary input z (provided that the EOWF is one-way against non-uniform adversaries).

Finally, we note that since puncturable PRFs can be constructed from one-way functions, and any EOWF
is, in particular, a OWF, the impossibility of auxiliary-input EOWFs is implied by indistinguishability ob-
fuscation without any further assumptions. Thus, Theorem 1.1 follows.

References

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In CRYPTO, pages 255–272, 2012.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 326–
349, 2012.

9



[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data. In STOC, pages 111–120, 2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In TCC, pages 315–333, 2013.

[BCP13] Nir Bitansky, Ran Canetti, and Omer Paneth. How to construct extractable one-way functions
against uniform adversaries. IACR Cryptology ePrint Archive, 2013:468, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-
way functions. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC ’14, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vad-
han, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18,
2001.

[BGI13] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. IACR Cryptology ePrint Archive, 2013:401, 2013.

[BGTK+13] Boaz Barak, Sanjam Garg, Yael Tauman-Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. IACR Cryptology ePrint Archive, 2013:631, 2013.

[BP04a] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In Proceedings of the 24th Annual International Cryptology Con-
ference, pages 273–289, 2004.

[BP04b] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption without
random oracles. In ASIACRYPT, pages 48–62, 2004.

[BR13] Zvika Brakerski and Guy Rothblum. Virtual black-box obfuscation for all circuits via generic
graded encoding. IACR Cryptology ePrint Archive, 2013:563, 2013.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomorphic encryption for
restricted computations. In ITCS, pages 350–366, 2012.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
IACR Cryptology ePrint Archive, 2013:352, 2013.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Extractable perfectly one-way functions. In Pro-
ceedings of the 35th International Colloquium on Automata, Languages and Programming,
pages 449–460, 2008.

[CD09] Ran Canetti and Ronny Ramzi Dakdouk. Towards a theory of extractable functions. In TCC,
pages 595–613, 2009.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps
over the integers. In CRYPTO (1), pages 476–493, 2013.

[CV13] Ran Canetti and Vinod Vaikuntanathan. Obfuscating branching programs using black-box
pseudo-free groups. IACR Cryptology ePrint Archive, 2013:500, 2013.

10



[Dam92] Ivan Damgård. Towards practical public key systems secure against chosen ciphertext attacks.
In Proceedings of CRYPTO91, pages 445–456, 1992.

[DCL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an extractability as-
sumption. In Proceedings of the 4th Conference on Computability in Europe, pages 175–185,
2008.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low
communication. In TCC, pages 54–74, 2012.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In EUROCRYPT, pages 1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

[GGHR13] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure mpc from
indistinguishability obfuscation. IACR Cryptology ePrint Archive, 2013:601, 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct nizks without pcps. In EUROCRYPT, pages 626–645, 2013.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary
input. In FOCS, pages 553–562, 2005.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without
rejection problem from designated verifier CS-proofs. Cryptology ePrint Archive, Report
2011/456, 2011.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC, pages 194–
213, 2007.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT,
pages 321–340, 2010.

[GS12] Divya Gupta and Amit Sahai. On constant-round concurrent zero-knowledge from a knowl-
edge assumption. IACR Cryptology ePrint Archive, 2012:572, 2012.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. IACR Cryptology ePrint Archive, 2013:509, 2013.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In
Proceedings of the 18th Annual International Cryptology Conference, pages 408–423, 1998.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. IACR Cryptology ePrint Archive, 2013:379,
2013.

11



[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In TCC, pages 169–189, 2012.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and
linear error-correcting codes. IACR Cryptology ePrint Archive, 2013:121, 2013.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. Journal of Mathematical Cryptol-
ogy, 2(4):343–363, 2008.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Proceedings of the 23rd Annual
International Cryptology Conference, pages 96–109, 2003.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryp-
tion, and more. IACR Cryptology ePrint Archive, 2013:454, 2013.

12


	Introduction
	Program obfuscation
	Extractable Functions
	Our Result
	Proof Idea

	Definitions
	Auxiliary-Input Extractable One-Way Functions
	Indistinguishability Obfuscation
	Puncturable PRFs

	From iO to Impossibility of Extractable Functions
	The Universal Adversary
	The Auxiliary Input Distribution.
	A Does Not Have an Extractor


