
Verifiable Delegation of Computation on Outsourced Data?

Michael Backes1,2, Dario Fiore1, and Raphael M. Reischuk2

1 Max Planck Institute for Software Systems (MPI-SWS)
Saarbrücken, Germany

{backes,fiore}@mpi-sws.org
2 Saarland University
Saarbrücken, Germany

reischuk@cs.uni-saarland.de

Abstract. We address the problem in which a client stores a large amount of data with an untrusted
server in such a way that, at any moment, the client can ask the server to compute a function on
some portion of its outsourced data. In this scenario, the client must be able to efficiently verify the
correctness of the result despite no longer knowing the inputs of the delegated computation, it must be
able to keep adding elements to its remote storage, and it does not have to fix in advance (i.e., at data
outsourcing time) the functions that it will delegate. Even more ambitiously, clients should be able to
verify in time independent of the input-size – a very appealing property for computations over huge
amounts of data.

In this work we propose novel cryptographic techniques that solve the above problem for the class of
computations of quadratic polynomials over a large number of variables. This class covers a wide range
of significant arithmetic computations – notably, many important statistics. To confirm the efficiency
of our solution, we show encouraging performance results, e.g., correctness proofs have size below 1 kB
and are verifiable by clients in less than 10 milliseconds.

Keywords: Verifiable Delegation of Computation; CloudComputing; Secure Data Outsourcing;
Homomorphic MACs; Amortized Closed-Form Efficient PRF

? An extended abstract of this work appears in the proceedings of ACM CCS 2013 [9]. This if the full version.

Table of Contents

Verifiable Delegation of Computation on Outsourced Data . 1
Michael Backes, Dario Fiore, and Raphael M. Reischuk

1 Introduction . 3
1.1 Related Work . 5
1.2 A High-Level Overview of Our Techniques . 7
1.3 Organization of the Paper . 9

2 Preliminaries . 9
3 Homomorphic Message Authenticators with Efficient Verification . 10

3.1 Multi-Labeled Programs . 11
3.2 Homomorphic MACs for Multi-Labeled Programs . 12
3.3 Homomorphic MACs with Efficient Verification for Multi-Labeled Programs 14

4 Utilities . 16
4.1 Homomorphic Evaluation of Arithmetic Circuits . 16
4.2 Pseudorandom Functions with Amortized Closed-Form Efficiency 18
4.3 A PRF with Amortized Closed-Form Efficiency for GroupEval 19

5 Homomorphic Message Authenticators with Efficient Verification . 23
5.1 Construction . 23
5.2 Proof of Correctness . 25
5.3 Proof of Security . 27
5.4 Efficiency Analysis . 31

1 Introduction

Given the emergence of cloud computing (an infrastructure where clients or businesses lease com-
puting and storage resources from powerful service providers), it is of critical importance to provide
integrity guarantees for outsourced data management. Consider for example the following scenario.
A client has a collection of a large (potentially unbounded) amount of data D = D1, D2, D3, . . ., for
instance, environmental data such as air pollution levels at fixed time intervals (e.g., every hour),
and it may wish to compute statistics on such data. If the client’s memory is not large enough to
store the entire data, the client might consider relying on a cloud service and storing the data on a
remote server S. Other significant examples of this scenario include arbitrary files at remote stor-
age systems, as well as endless data streams such as financial data (e.g., price fixing data from the
stock markets, financial figures and revenues of companies), experimental data (e.g., genetic data,
laboratory measurements), and further environmental data (e.g., surface weather observations). In
this scenario, we hence have a client who incrementally sends D to a server S, the server stores
D, and at certain points in time the client asks S to compute a function on (a portion of) the
currently outsourced data. We stress that the data D and its size cannot be fixed in advance as the
client may need to add additional data to the outsourced storage. Analogously, the client might not
know in advance what functions it will apply on the outsourced data (e.g., it may wish to compute
several statistics).

However, if the server is untrusted (i.e., it is malicious or becomes prey to an external attack),
how can the client verify that the results provided by the server are correct? This question naturally
leads to two important requirements: (1) security, meaning that the server should be able to “prove”
the correctness of the delegated computation for some function f ; and (2) efficiency, meaning that
the client should be able to check the proof by requiring significantly fewer resources than those
that are needed to compute f (including both computation and communication). Furthermore, if we
consider computations over very large sets of inputs (e.g., statistics on huge data sets), we want to
be more ambitious and envision the achievement of (3) input-independent efficiency, meaning that
verifying the correctness of a computation f(D1, . . . , Dn) requires time independent of n. Moreover,
two further requirements are crucial in this setting: (4) unbounded storage, meaning that the size
of the outsourced data should not be fixed a-priori, i.e., clients should be able to outsource any
(possibly growing) amount of data; and (5) function-independence, meaning that a client should
be able to outsource its data without having to know in advance the functions that it will delegate
later.

Relation with Verifiable Computation. The problem of securely and efficiently outsourcing
the computation of a function f to a remote server has been the subject of many works in the
so-called field of verifiable computation. Most of these works achieve the goals of security (1) and
efficiency (2), but they inevitably fail in achieving requirements (3)–(5). Roughly speaking, the
issue is that most existing work requires the client to know (i.e., to store a local copy of) the input
D for the verification of the delegated function (e.g., in SNARG-based approaches [12,28] and in
signatures of correct computation [43]), or, otherwise, to send D to the server all at once (rather
than sending it over time) and to keep a small local state which would not allow to append additional
data at a later time (e.g., in [47,25]). Perhaps more critically, many of the existing solutions in this
area require the delegator to run in time proportional to the input size n of the delegated function,
e.g., in time poly(n). In the various existing protocols, these limitations arise for different reasons
(see Section 1.1 for a more detailed discussion). However, even if verification in these works is more

3

efficient than running f , we think that, for computations over huge data sets, a poly(n) overhead
is still unacceptably high.

The only approach that comes close to achieving requirements (1)–(5) is the work by Chung et
al. on memory delegation [22]. The authors propose a scheme based on techniques from [32] which
exploit the power of the PCP theorem [8,24,3,4]. With this scheme, a client can delegate a broad
class of computations over its outsourced memory fulfilling the requirements from above (except
for verification efficiency, which requires time log n, instead of constant time). While providing a
satisfying solution in theory, this approach suffers from the usual impracticality issues of general-
purpose PCP techniques and hence does not lead to truly practical solutions to the problem.

Our Contribution. In this work, we address the problem of verifiable delegation of computations
on (growing) outsourced data. Our main contribution is the first practical protocol that achieves
all five of the requirements stated before. Namely, a client can (continuously) store a large amount
of data D = D1, D2, D3 . . . with the server, and then, at certain points in time, it can request the
computation of a function f on (a portion of) the outsourced data, e.g., v = f(Di1 , . . . , Din). Using
our protocol, the server sends to the client a short piece of information vouching for the correctness
of v. The protocol achieves input-independent efficiency in the amortized model: after a single
precomputation with cost |f |, the client can verify every subsequent evaluation of f in constant
time, i.e., regardless of the input size n. Moreover, fulfilling properties (4)–(5), we have that data
outsourcing and function delegation are completely decoupled, i.e., the client can continuously add
elements to the remote storage, and the delegated functions do not have to be fixed a priori. This
means that the cost of outsourcing the data can be, in fact, excluded from the delegation; think for
instance of incrementally outsourcing a large data stream during an entire year, and then computing
statistics on the data at the end of the year.

Our solution works for computations over integers in the ring Zp (where p is a large prime of
roughly 2λ bits, for a security parameter λ), and supports the evaluation of arithmetic circuits
of degree up to 2. This restricted class of computations is enough to capture a wide range of
significant arithmetic computations, such as meaningful statistics, including counting, summation,
(weighted) average, arithmetic mean, standard deviation, variance, covariance, weighted variance
with constant weights, quadratic mean (aka root-mean square – RMS), mean squared error (MSE),
the Pearson product-moment correlation coefficient, the coefficient of determination (R2), and the
least squares fit of a data set {(xi, vi)}ni=1 (in the case when the xi are universal constants, e.g.,
days of the year)3.

Our key technical contribution is the introduction of homomorphic MACs with efficient verifi-
cation. This cryptographic primitive extends homomorphic message authenticators [30] by adding
a crucial efficiency property for the verification algorithm. We propose a first realization of homo-
morphic MACs with efficient verification (see Section 1.2 for an overview of our techniques), and
we prove its security under the Decision Linear assumption [13]. Using the above construction we
build an efficient protocol that can be implemented using bilinear pairings.

To demonstrate the practicality of our solution, we evaluate the concrete operations that have
to be performed by the client and the server, as well as the bandwidth overhead introduced by the
protocol for transferring the proofs. If we consider 80 bits of security and an implementation of
symmetric pairings [38] on a standard desktop machine, we observe the following costs (see Table 2
for the 128-bit case): For outsourcing a data item Di, the client needs to perform a single modular
exponentiation in 0.24ms. This operation yields a very short authentication tag of size 0.08kB,

3 The least squares fit for this case can indeed be computed using a linear function [15].

4

which is sent to the server along with Di. For the verification of a computation result v, the client
receives a proof σv of size 0.21kB from the server, and can check this proof by computing one
pairing and one multi-exponentiation in 1.06ms.

As we mentioned before, we achieve input-independent efficiency in an amortized sense. So,
the above verification costs are obtained after the precomputation of some concise information ωf
related to the delegated function f . Precomputing ωf takes the same time as computing f (with
almost no additional overhead!), it does not require knowledge of the input data, and ωf can be re-
used an unbounded number of times to verify several evaluations of f on many different outsourced
data sets. To generate the proof σv related to the evaluation of a function f , the server has to run
f with an additional, yet constant, overhead – derived from replacing additions in f with a group
operation, and replacing multiplications with a pairing. Although our solution can still not capture
general-purpose computations, the above performance evaluation shows that for our case of interest
we achieve results that are encouraging for a practical deployment of this protocol.

In summary, in this work we focus on the important problem of delegating computations over
data which continuously grows and is outsourced to remote servers. This specific problem has not
received much attention so far: the only existing solution [22], though very general, does not seem
to lead to efficient implementations. In contrast, we propose a protocol that achieves all the desired
requirements for a restricted, yet practical and useful, class of computations, and has the advantage
of achieving performances that are promising for a practically efficient solution.

1.1 Related Work

Memory Delegation. The work of Chung et al. [22] on memory delegation and streaming del-
egation is the closest one to the model considered in our work. Indeed, Chung et al. consider the
problem in which a client outsources a large amount of data to a server and it later delegates
computations over the data, while maintaining the ability to verify the results in time independent
of the input size. In memory delegation the client uploads his memory to the server (in an offline
phase), and it can later ask the server to update the outsourced memory and to compute a function
f on its entire memory (in an online phase). In streaming delegation the memory can be updated
only by appending elements. The main advantages of the work of Chung et al. over our results
are that: (i) the client can change values in the outsourced memory, (ii) they provide solutions for
more expressive computations (i.e., a 4-round protocol for arbitrary poly-time programs). However,
their solutions also suffer some disadvantages. First, they require the client to be stateful (in our
solution the client keeps only a fixed secret key). Second, in streaming delegation, the size N of the
stream has to be a-priori bounded. Such a bound also affects the client’s memory since it requires a
local storage size of approximately logN at the client, meaning that N cannot be chosen arbitrarily
long, and thus the stream cannot be endless. Also, in their solutions, the client still runs in time
polylog(n) in the online phase, where n is the size of the entire memory. In contrast, our solution
supports unbounded data streams, and allows for clients that (after a preprocessing phase which is
input-independent) can verify computations in constant time.

Authenticated Data Structures. A line of research which addresses a problem closely related
to the one considered in this paper is the existing work on authenticated data structures [42,53].
This area considers a setting in which clients want to securely delegate certain operations on data
structures that are stored at untrusted remote servers. Existing work addresses both static settings
and dynamic settings (where data structures can be updated), and it mostly focuses on specific data

5

structure operations, such as range search queries over databases [34,39], authenticated dictionaries
[23,44,33], and set operations (e.g., intersection, union, set difference) over a dynamic collection of
sets [45]. However, none of the works in this area considers the secure outsourcing of arbitrary or
arithmetic computations (e.g., statistics) over remotely stored data.

Multi-Function Verifiable Computation. The notion of multi-function verifiable computa-
tion proposed by Parno, Raykova, and Vaikuntanathan [47] is close to our model, in that a client
can delegate the computation of many functions f1, f2, . . . on the same input D, while being able
to efficiently verify the results. Even though multi-function verifiable computation does not require
the client to fix the function f before outsourcing the data, this model still falls short of our re-
quirements. The main problem is that in multi-function verifiable computation, the client has to
store some information τD for every input D on which it will ask to compute a function fi(D).
Furthermore, there is no possibility of updating τD without locally storing the previous data. This
essentially means that the data D has to be sent all at once, thus ruling out all applications in the
growing data scenario.

Homomorphic Signatures and MACs. The problem of realizing homomorphic message au-
thentication schemes in both the symmetric setting (MACs) and in the asymmetric setting (sig-
natures) has been considered by many prior works. Homomorphic signatures were first proposed
by Johnson et al. [35]. However, since then, most works focus solely on linear functions, mainly
because of the important application to network coding [14]. Several efficient schemes for linear
functions have been proposed both in the random oracle model [14,29,16,18] and in the standard
model [1,5,19,20,26,6,7]. Three more recent works consider the case of larger classes of functions
[15,30,17]. Boneh and Freeman [15] proposed a realization of homomorphic signatures for bounded
constant degree polynomials. Gennaro and Wichs [30] introduced homomorphic MACs and gave
a construction for arbitrary computations which is based on fully homomorphic encryption and is
proven secure in a weaker model where the adversary cannot ask verification queries. Catalano and
Fiore [17] proposed realizations of homomorphic MACs that, despite capturing a restricted class
of computations (i.e., arithmetic circuits with polynomially-bounded degree), support verification
queries and are more efficient than previous works.

However, virtually all of the above works suffer the problem of having a verification algorithm
which runs in time proportional to the function. Gennaro and Wichs [30] discuss the possibility of
verifying a MAC in time better than executing the function, and propose some general solutions for
their scheme which are based on fully homomorphic encryption and SNARGs [40]. However, neither
the proposed solutions nor the suggested techniques yield schemes that achieve input-independent
efficiency, and they do not seem to lead to practically efficient solutions, at least not as practical
as required in this work.

Succinct Non-Interactive Arguments of Knowledge (SNARKs). A solution for realiz-
ing fully homomorphic signatures would be to use succinct non-interactive arguments of knowledge
(SNARKs) [12]. For a given NP statement, this primitive allows for producing a succinct argument
for proving knowledge of the corresponding witness. The main advantage of SNARKs is the suc-
cinctness of the argument (i.e., its size is independent of the size of both the NP statement and its
witness), which can thus be verified efficiently. However, SNARKs are not as practically efficient
as we might wish, and require either the random oracle model [40] or non standard, non-falsifiable,
assumptions [31].

6

Verifiable Computation. As we mentioned earlier, the problem considered by our work and ad-
dressed via homomorphic authenticators is related to the notion of verifiable computation for which
there exits a vast literature, ranging from works for arbitrary computations [36,40,32,27,21,2,47,28,46]
to works for specific classes of computations [11,25,43,18]. In verifiable computation, a client wants
to delegate a computationally heavy task to a remote server while being able to verify the result
in a very efficient way. As we mentioned before, most of these works suffer several limitations that
do not make them appropriate for the model considered in this paper. For example, many exist-
ing solutions require the delegator to run in time proportional to the input size of the delegated
function. This limitation arises for different reasons. For instance, in the definition proposed by
Gennaro, Gentry, and Parno [27] (and later adopted in several works, e.g., [21,11,47,25]), to dele-
gate the computation of f(D), the client has to compute an encoding τD,f of D, which depends on
the function f . However, if we want to choose f after outsourcing D, the computation of τD,f is
no longer possible. Alternatively, one could keep the entire input D locally and then compute τD,f
from D and f , which would yield a running time proportional to the input size. In other work (e.g.,
[36,40,32]) the efficiency requirement for a client is to run in time poly(n, log T), when delegating a
function f that runs in time T and takes inputs of size n.

Furthermore, as observed by Gennaro and Wichs [30], even if it is possible to reinterpret some
of the results on verifiable computation in the setting of homomorphic message authenticators, the
resulting solutions are still not appropriate. In particular, they might require a client to send the
data all at once and would not allow for composition of several authenticated computations. We
refer the reader to [30] for a thorough discussion about this.

Another interesting line of work in this area recently proposed efficient systems for verifiable
computation [50,49,48,54]. The proposed solutions also work in a model where the client needs to
know the input of the computation, and it also has to engage in an interactive protocol with the
server in order to verify the results. In contrast, our work considers a completely non-interactive
setting in which the proof is transferred from the server to the client in a single round of com-
munication. In the past there have been proposals of practical solutions, but of limited provable
security: e.g., solutions based on audit (e.g., [41,10]) or secure co-processors (e.g., [52,55]) which
prove the computation as correct, under the assumption that the adversary cannot tamper with the
processor. Compared to these results, our work relies only on standard cryptographic assumptions,
and does not require any trusted hardware.

1.2 A High-Level Overview of Our Techniques

In what follows we give a high level overview of our construction and the techniques used therein.

To obtain our solution we build on the notion of homomorphic message authenticators proposed
by Gennaro and Wichs [30], a primitive which can be considered the secret-key equivalent of
homomorphic signatures [15]. The basic idea of homomorphic MACs is that a user can use a
secret key to generate a set of tags σ1, . . . , σn authenticating values D1, . . . , Dn respectively. Then,
anyone can homomorphically execute a function f over (σ1, . . . , σn) to generate a short tag σ
that authenticates D as the output of f(D1, . . . , Dn). At first glance, homomorphic MACs seem
to perfectly fit the problem of verifiable computations on (growing) outsourced data. However,
a closer look at this primitive reveals that this idea lacks the very important property of efficient
verification. As discussed in Section 1.1, the issue is that in all existing constructions the verification
algorithm of homomorphic MACs runs in time proportional to the description of the function. Our

7

key contribution is therefore to solve this efficiency issue by proposing a definition and a first
practical realization of homomorphic MACs with efficient verification.

The starting point for the design of our construction is the homomorphic MAC scheme of Cata-
lano and Fiore [17]: to authenticate a value m ∈ Zp, one “encodes” m into a degree-1 polynomial
y ∈ Zp[x] such that y(0) = m and y(α) = FK(L). Here α ∈ Zp is a secret value randomly chosen by
the client, and FK(·) is a pseudorandom function that is used to “randomize” a label L. One can
think of a label as arbitrary information (e.g., a string) chosen by the client to describe the mean-
ing of the authenticated value m (e.g., “air pollution on 2013/08/14 at 9:06:12”). Given a set of n
authentication polynomials y1, . . . , yn, the server creates a new MAC y which authenticates (i.e., it
proves) that m is the result of f(m1, . . . ,mn), e.g., f could be the variance of pollution levels at all
time instants within a specific day/year etc. More specifically, the basic idea in [17] is to compute
y by homomorphically executing the function f on the corresponding authentication polynomials,
i.e., y = f(y1, . . . , yn). By the design of the yi, this computation satisfies y(0) = f(m1, . . . ,mn) and
also y(α) = f(FK(L1), . . . ,FK(Ln)). Hence, the client can test whether a value m′ (proposed by the
server) is indeed the result of a computation f(m1, . . . ,mn) by checking whether the MAC y pro-
vided by the server verifies the two conditions: (i) y(0) = m′ and (ii) y(α) = f(FK(L1), . . . ,FK(Ln)).

However, the Catalano-Fiore homomorphic MAC cannot be adopted in our setting: verifying a
MAC for a function f requires the client to compute W = f(FK(L1), . . . ,FK(Ln)) to perform check
(ii), but this clearly takes the same time T as that for computing f — exactly what we want to
avoid! One may then hope that once this value W is computed, it could be re-used, e.g., to verify
other computations involving f . Unfortunately, this would require the re-use of labels, which is not
possible at all: it is forbidden by the security definition used in [17]. More critically, the security of
the Catalano-Fiore MAC completely breaks down in the presence of label re-use!

In our work, we solve this critical issue with two main ideas. Very informally, we first elaborate
a model that allows us to partially, but safely, re-use labels. Then, we introduce the construction of
a pseudorandom function which allows us to precompute a piece of label-independent information
ωf , such that ωf can be re-used to compute W very efficiently (when the labels Li are known).

To allow for a meaningful re-use of labels, we split labels in two dimensions, thus elaborating
a model of multi-labels. A multi-label L consists of two components (∆, τ) where ∆ is the data set
identifier and τ is the input identifier. A data set identifier could for instance be “air pollution
on 2013/08/14”; and an input identifier could be used to identify a time, e.g., 9:06:12 am. For the
example of the stock market data, the values could be the stock market prices for a company C at
different times T . Then, the data set identifier could be the name of C while the input identifier
could be the date and time T of the stock market price. The data set identifier is essentially a way
of grouping together homogeneous data (e.g., data of the same population over which one wants to
compute significant statistics) in such a way that one can compute within a data set ∆.

While a multi-label L = (∆, τ) can still not be re-used to authenticate different messages, this
model does allow us to assign the same input identifiers τ to as many messages as we need, as
long as such messages lie in different data sets. In any case, a re-use of a complete multi-label
for authentication purposes would not make much sense, as multi-labels are used by clients to
“remember” and categorize the outsourced data. This transition from labels to multi-labels is
natural: think again of the air pollution levels for a specific day. The input identifiers capture the
hours of a day. Hence, the input identifiers might be re-used for other days, but the combination
of date and time would never be re-used.

8

The use of multi-labels, however, does not in itself solve the issue of the inefficient verification
algorithm: in this case one still has to compute W = f(FK(∆, τ1), . . . ,FK(∆, τn)). Our key technical
tool for achieving efficient verification is the introduction of a pseudorandom function F with a new
property that we call amortized closed-form efficiency: if one precomputes some information ωf
related to a program f with input identifiers τ1, . . . , τn, but independent of the data set ∆, then
it is possible to use ωf to compute W , for any data set ∆, very efficiently, e.g., in constant time.
Amortized closed-form efficiency essentially extends the closed-form efficiency of Benabbas et al.
[11] to the setting in which the same function f is evaluated on many pseudorandom inputs.4

If we consider the example mentioned before, then one can precompute the verification infor-
mation ωf for the function “variance of the air pollution levels at all time instants within a day”
(without knowing the actual data), and then use such ωf for verifying the computation of this
statistic on any specific day (i.e., the data set) in constant time.

We propose an efficient instantiation of amortized closed-form efficient PRFs whose security is
based on standard PRFs and on the Decision Linear assumption [13], thereby achieving amortized
closed-form efficiency in constant time, i.e., independent of the input size n. Our PRF maps pairs
of binary strings (∆, τ) to pseudorandom values in a group G of prime order p. For this technical
reason, we changed the Catalano-Fiore MAC (which works with a PRF mapping to Zp) so as to
encode the MACs y into elements of the group G, and we used pairings to “simulate” the ring
behavior over Zp for all those computations that require at most one multiplication, i.e., arithmetic
circuits of degree bounded by 2.

1.3 Organization of the Paper

The paper is organized as follows. In Section 2 we review notation and basic definitions. In Section
3 we introduce the notions of multi-labeled programs and the definition of homomorphic message
authenticators with efficient verification for multi-labeled programs. Next, Section 4 contains the
description of two technical tools that will be important for the design of our new construction
of homomorphic MACs: algorithms for the homomorphic evaluation of arithmetic circuits, and
pseudorandom functions with amortized closed-form efficiency. Finally, in Section 5, we give our
construction of homomorphic MACs with efficient verification, we discuss its efficiency, and we
prove its security.

2 Preliminaries

In this section, we review the notation and some basic definitions that we will use in our work.

Notation. We will denote with λ ∈ N a security parameter. We say that a function ε : N → R+

is negligible if and only if for every positive polynomial p(λ) there exists λ0 ∈ N such that for
all λ > λ0: ε(λ) < 1/p(λ). If S is a set, x ←R S denotes the process of selecting x uniformly at
random in S. If A is a probabilistic algorithm, x ←R A(·) denotes the process of running A on
some appropriate input and assigning its output to x.

Algebraic Tools. Let G(1λ) be an algorithm that on input the security parameter 1λ, outputs
the description of bilinear groups bgpp = (p,G,GT , e, g) where G and GT are groups of the same

4 We notice that the amortized extension was necessary in our case: while previous works [11,25] used the PRF to
obtain a shorter description of the function f (e.g., by defining the coefficients of a polynomial in a pseudorandom
way), this is not possible in our case where the description of f remains arbitrary.

9

prime order p > 2λ, g ∈ G is a generator and e : G×G→ GT is an efficiently computable bilinear
map. We call such an algorithm G a bilinear group generator.

Arithmetic Circuits. We review some useful definitions and facts of arithmetic circuits. We refer
the interested reader to [51] for a useful survey on this subject.

An arithmetic circuit over a field F and a set of variables X = {τ1 . . . τn}, is a directed acyclic
graph with the following properties. Each node in the graph is called gate. Gates with in-degree 0
are called input gates (or input nodes) while gates with out-degree 0 are called output gates. Each
input gate is labeled by either a variable or a constant. Variable input nodes are labeled with binary
strings τ1, . . . , τn, and can take arbitrary values in F. A constant input node instead is labeled with
some constant c and it can take only some fixed value c ∈ F.

Gates with in-degree and out-degree greater than 0 are called internal gates. Each internal gate
is labeled with an arithmetic operation symbol. Gates labeled with + are called sum gates, while
gates labeled with × are called product gates. In this paper, we consider circuits with a single
output node and where the in-degree of each internal gate is 2. The size of the circuit is the number
of its gates. The depth of the circuit is the length of the longest path from input to output.

Arithmetic circuits evaluate polynomials in the following way. Input gates compute the polyno-
mial defined by their labels. Sum gates compute the polynomial obtained by the sum of the (two)
polynomials on their incoming wires. Product gates compute the product of the two polynomials
on their incoming wires. The output of the circuit is the value contained on the outgoing wire of
the output gate. The degree of a gate is defined as the total degree of the polynomial computed by
that gate. The degree of a circuit is defined as the maximal degree of all gates in the circuit.

We stress that arithmetic circuits should be seen as computing specific polynomials in F[X]
rather than functions from F|X| to F. In this paper, we restrict our interest to families of polynomials
{fλ} over F which have degree bounded by 2.

3 Homomorphic Message Authenticators with Efficient Verification

Homomorphic message authenticators were first defined by Gennaro and Wichs [30]. Their definition
was tailored to the model of labeled programs defined therein. Roughly speaking, a labeled program
is a function f (e.g., a circuit) which takes in n variable inputs such that each of these variables is
assigned a label τ (e.g., a binary string). One may think of such labeling of variables as a way to give
useful names to the variables of a program. Using this model, homomorphic message authenticators
were defined in [30] in such a way that a message m is authenticated with respect to a label τ .
Binding m with τ essentially means that the value m can be assigned to those input variables of a
labeled program f whose label is τ . This, however, imposes a limitation: a label cannot be re-used
for multiple messages, i.e., one cannot authenticate two different messages m,m′ with respect to
the same label τ . This limitation makes perfect sense if one considers labeling of the data as a way
to uniquely “categorize” the data, which is useful, for instance, in cases where a user outsources
her data to a remote server and does not keep a local copy of the data. However, for the purpose of
labeling programs, the re-use limitation also requires changing the labeling of the variable inputs
of f whenever f is executed on a different set of inputs.

In other words, labels are useful to identify both concrete data items and variable inputs of
programs. The current definition of homomorphic MACs, however, focuses more on a labeling
mechanism for data items, instead of capturing the notion of identifying the program inputs. In the
next section, we bridge this gap by introducing so-called multi-labels that aim to capture both useful

10

properties of labels: program variable labeling and data labeling. Thereafter, we give a definition
of homomorphic MACs for multi-labeled programs.

3.1 Multi-Labeled Programs

We elaborate a variation of labeled programs that we call multi-labeled programs. The basic idea
behind our model is to introduce the notion of a multi-label L, which consists of two parts: a data set
identifier ∆ and an input identifier τ . Input identifiers, in isolation, are used to label the variable
inputs of a function f , whereas the combination of both, i.e., the full multi-label L = (∆, τ), is used
to uniquely identify a specific data item. Precisely, binding a value m with multi-label (∆, τ) means
that m can be assigned to those input variables with input identifier τ . The pair (∆, τ) is necessary
to uniquely identify m. While one can still not re-use a pair (∆, τ) for authentication purposes, one
can re-use the input identifier τ , instead.

For the sake of illustration, consider the multi-labeled approach as a separation of data items
into two independent dimensions. One might think of a database table, e.g., storing air pollution
levels, where some function f : Mn → M is evaluated over n columns (labeled τ1, . . . , τn). Each
such column could represent a point in time, e.g., 7:05, 07:10, etc. This computation is performed for
each row (labeled ∆i) of the table. Each such row could represent a different day, e.g., 2013/08/14,
2013/08/15, etc. We hence evaluate f∆i(τ1, . . . , τn) for each row i, hence for each day.

Labeled Programs. First, we review the notion of labeled programs introduced by Gennaro
and Wichs [30]. While this notion was given for the case of Boolean circuits f : {0, 1}n → {0, 1},
here we generalize it to the case of any function f defined over an appropriate set M. A labeled
program P is defined by a tuple (f, τ1, . . . , τn) where f : Mn → M is a function on n variables,
and each τi ∈ {0, 1}∗ is the label of the i-th variable input of f . Labeled programs allow for
composition as follows. Given labeled programs P1, . . . ,Pt and given a function g : Mt → M,
the composed program P∗ corresponds to evaluating g on the outputs of P1, . . . ,Pt. The composed
program is compactly denoted as P∗ = g(P1, . . . ,Pt). The labeled inputs of P∗ are all distinct
labeled inputs of P1, . . . ,Pt, i.e., all inputs with the same label are grouped together in a single
input of the new program. If fid :M→M is the canonical identity function and τ ∈ {0, 1}∗ is a
label, then Iτ = (fid, τ) denotes the identity program for input label τ . Notice that any program
P = (f, τ1, . . . , τn) can be expressed as the composition of n identity programs P = f(Iτ1 , . . . , Iτn).

Multi-labeled Programs. Intuitively, multi-labeled programs are an extension of labeled pro-
grams in which a labeled program P is augmented with a data set identifier ∆. Formally, we
define a multi-labeled program P∆ as a pair (P, ∆) where P = (f, τ1, . . . , τn) is a labeled program
(as defined above) and ∆ ∈ {0, 1}∗ is a binary string called the data set identifier. Multi-labeled
programs allow for composition within the same data set in the most natural way, i.e., given multi-
labeled programs (P1, ∆), . . . , (Pt, ∆) having the same data set identifier ∆, and given a function
g :Mt →M, the composed multi-labeled program P∗∆ is the pair (P∗, ∆) where P∗ is the composed
program g(P1, . . . ,Pt), and ∆ is the data set identifier shared by all the Pi. If fid : M → M is
the canonical identity function and L = (∆, τ) ∈ ({0, 1}∗)2 is a multi-label, then IL = (fid, L) de-
notes the identity multi-labeled program for data set ∆ and input label τ . As for labeled programs,
any multi-labeled program P∆ = ((f, τ1, . . . , τn), ∆) can also be expressed as the composition of n
identity multi-labeled programs: P∆ = f(IL1 , . . . , ILn) where Li = (∆, τi).

It is worth noting that, in the notation of [30], a multi-labeled program P∆ = ((f, τ1, . . . , τn), ∆)
is essentially a labeled program (f, L1, . . . , Ln) where each string Li is a multi-label (∆, τi). The main

11

difference here is the (explicit) notion of labeled data sets that we use in order to group together
several inputs, similarly to the definition used for homomorphic signatures [15,26]. This explicit
splitting will turn out to be crucial in order to achieve the desired property of efficient verification.

3.2 Homomorphic MACs for Multi-Labeled Programs

We review the notion of homomorphic message authenticators [30,17]. We have adapted the defi-
nition to our model of multi-labeled programs as defined in the previous section.

Definition 1. A homomorphic message authenticator scheme HomMAC-ML for multi-label pro-
grams is a tuple of algorithms (KeyGen,Auth,Ver,Eval) satisfying four properties: authentication
correctness, evaluation correctness, succinctness, and security. More precisely:

KeyGen(1λ): given the security parameter λ, the key generation algorithm outputs a secret key sk
and a public evaluation key ek.

Auth(sk, L,m): given the secret key sk, a multi-label L = (∆, τ) and a message m ∈ M, it outputs
a tag σ.

Ver(sk,P∆,m, σ): given the secret key sk, a multi-labeled program P∆ = ((f, τ1, . . . , τn), ∆), a
message m ∈M, and a tag σ, the verification algorithm outputs 0 (reject) or 1 (accept).

Eval(ek, f,σ): on input the evaluation key ek, a circuit f : Mn → M and a vector of tags σ =
(σ1, . . . , σn), the evaluation algorithm outputs a new tag σ.

Authentication Correctness. Informally speaking, a homomorphic MAC has authentication
correctness if any tag σ generated by the algorithm Auth(sk, L,m) authenticates m with respect to
the identity program IL. More formally, we say that a scheme HomMAC-ML satisfies authentication
correctness if for any message m ∈ M, all keys (sk, ek) ←R KeyGen(1λ), any multi-label L =
(∆, τ) ∈ ({0, 1}∗)2, and any tag σ ←R Auth(sk, L,m), we have that Ver(sk, IL,m, σ) = 1 holds with
probability 1.

Evaluation Correctness. This property aims at capturing that if the evaluation algorithm
is run on a vector of tags σ = (σ1, . . . , σn) such that each σi authenticates some message mi as
the output of a multi-labeled program (Pi, ∆), then the tag σ produced by Eval must authenticate
f(m1, . . . ,mn) as the output of the composed program (f(P1, . . . ,Pn), ∆). More formally, let us fix
a pair of keys (sk, ek)←R KeyGen(1λ), a function g :Mt →M and any set of message/program/tag
triples {(mi,P∆,i, σi)}ti=1 such that all multi-labeled programs P∆,i = (Pi, ∆) (i.e., share the same
data set identifier ∆) and Ver(sk,P∆,i,mi, σi) = 1. If m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and
σ∗ = Eval(ek, g, (σ1, . . . , σt)), then Ver(sk,P∗∆,m∗, σ∗) = 1 holds with probability 1.

Succinctness. The size of a tag is bounded by some fixed polynomial in the security parameter,
which is independent of the number n of inputs taken by the evaluated circuit.

Security. A homomorphic MAC has to satisfy the following notion of unforgeability. Let HomMAC-ML
be a homomorphic MAC scheme as defined above and let A be an adversary. HomMAC-ML is said
to be unforgeable if for every PPT adv. A, we have Pr[HomUF−CMAA,HomMAC-ML(λ) = 1] ≤ ε(λ)
where ε(λ) is a negligible function. The experiment HomUF−CMAA,HomMAC-ML(λ) is the one defined
below.

Setup The challenger generates (sk, ek)←R KeyGen(1λ) and gives ek to A.

12

Authentication queries The adversary can adaptively ask for tags on multi-labels and messages
of its choice. Given a query (L,m) where L = (∆, τ), the challenger proceeds as follows: If (L,m)
is the first query with data set identifier ∆, then the challenger initializes an empty list T∆ = ∅
for data set identifier ∆. If T∆ does not contain a tuple (τ, ·) (i.e., the multi-label (∆, τ) was
never queried), the challenger computes σ ←R Auth(sk, L,m), returns σ to A and updates the
list T∆←T∆ ∪ (τ,m). If (τ,m) ∈ T∆ (i.e., the query was previously made), then the challenger
replies with the same tag generated before. If T∆ contains a tuple (τ,m′) for some message
m′ 6= m, then the challenger ignores the query.

Verification queries The adversary has access to a verification oracle as follows: Given a query
(P∆,m, σ) from A, the challenger replies with the output of Ver(sk,P∆,m, σ).

Forgery The adversary terminates the experiment by returning a forgery (P∗∆∗ ,m∗, σ∗) for some
P∗∆∗ = (P∗, ∆∗) and P∗ = (f∗, τ∗1 , . . . , τ

∗
n). Notice that, equivalently, A can implicitly return

such a tuple as a verification query (P∗∆∗ ,m∗, σ∗) during the experiment.

Before describing the outcome of this experiment, we review the notion of well-defined programs
with respect to a list T∆ [17]. A labeled program P∗ = (f∗, τ∗1 , . . . , τ

∗
n) is well-defined with respect

to T∆∗ if either one of the following two cases holds:

– there exist messages m1, . . . ,mn such that the list T∆∗ contains all tuples (τ∗1 ,m1), . . . , (τ
∗
n,mn).

Intuitively, this means that the entire input space of f for data set ∆∗ has been authenticated.

– there exist indices i ∈ {1, . . . , n} such that (τ∗i , ·) /∈ T∆∗ (i.e., A never asked authentication
queries with multi-label (∆∗, τ∗i)), and the function f∗({mj}(τj ,mj)∈T∆∗ ∪ {m̃j}(τj ,·)/∈T∆∗) out-
puts the same value for all possible choices of m̃j ∈ M. Intuitively, this case means that the
unauthenticated inputs never contribute to the computation of f .

To define the output of the experiment HomUF−CMA, we say it outputs 1 if and only if
Ver(sk,P∗∆∗ ,m∗, σ∗) = 1 and one of the following conditions holds:

– Type 1 Forgery: no list T∆∗ was created during the game, i.e., no message m has been authen-
ticated with respect to a data set identifier ∆∗ during the experiment.

– Type 2 Forgery: P∗ is well-defined w.r.t. T∆∗ and m∗ 6= f∗({mj}(τj ,mj)∈T∆∗), i.e., m∗ is not the
correct output of the labeled program P∗ when executed on previously authenticated messages
(m1, . . . ,mn).

– Type 3 Forgery: P∗ is not well-defined w.r.t. T∆∗ .

Our definition is obtained by extending the one by Catalano and Fiore [17] to our model of
multi-labeled programs. The resulting definition is very close to the one proposed by Freeman for
homomorphic signatures [26], with the exception that we allow for arbitrary labels, and we do not
impose any a-priori fixed bound on the number of elements in a data set.

In the most general case where f can be any function, it might not be possible to efficiently
(i.e., in polynomial time) check whether a program P is well-defined w.r.t. a list T . However, for
more specific classes of computations, this is not an issue. For example, Freeman showed that this
is not a problem for linear functions [26]. In the following proposition, we show a similar result for
the classes of computations considered in our work, i.e., arithmetic circuits defined over the finite
field Zp where p is a prime of roughly λ bits, and whose degree d is bounded by a polynomial. In
particular, we show that any adversary who wins by producing a Type 3 forgery can be converted
into one who outputs a Type 2 forgery.

13

Proposition 1. Let λ ∈ N be the security parameter, let p > 2λ be a prime number, and let {fλ}
be a family of arithmetic circuits over Zp whose degree is bounded by some polynomial d = poly(λ).
If for any adversary B producing a Type 2 forgery we have that Pr[HomUF−CMAB,HomMAC-ML(λ) =
1] ≤ ε, then for any adversary A producing a Type 3 forgery it holds Pr[HomUF−CMAA,HomMAC-ML(λ) =
1] ≤ ε+ d/p.

Proof. The proof is by contradiction. Assume there exists an adversary A such that

Pr[HomUF−CMAA,HomMAC-ML(λ) = 1] > ε+ d/p

and A produces a Type 3 forgery, then we show an adversary B such that

Pr[HomUF−CMAB,HomMAC-ML(λ) = 1] > ε

by producing a Type 2 forgery. We construct B out of A as follows.

B first runs the adversary A to obtain a Type 3 forgery (m∗,P∗∆∗ , σ∗), i.e., B simulates the
HomUF−CMA game to A by forwarding all messages back and forth from its challenger. Let P∗∆∗ =
(P∗, ∆∗) where P∗ = (f∗, τ∗1 , . . . , τ

∗
n), and assume that B maintains the lists of queries made by

A as done by the challenger. Let T∆∗ be the list of queries for the data set ∆∗. Since P∗ is not
well-defined w.r.t. T∆∗ there exists an index j ∈ {1, . . . , n} such that (τ∗j , ·) /∈ T∆∗ . B proceeds
as follows. For all j ∈ {1, . . . , n} such that (τ∗j , ·) /∈ T∆∗ , B chooses random messages rj ←R Zp,
queries its challenger for tags on ((∆∗, τ∗j), rj), and finally outputs (m∗,P∗∆∗ , σ∗) as a forgery.

To complete the proof, we show that in the experiment HomUF−CMAB,HomMAC-ML(λ) played
by B the tuple (m∗,P∗∆∗ , σ∗) is a Type 2 forgery with probability 1 − d/p. First, notice that by
definition, (m∗,P∗∆∗ , σ∗) verifies correctly, and that in B’s experiment, the program P∗ is well-
defined. Second, we argue that Pr[m∗ = f∗({mj}(τj ,mj)∈T∆∗ ∪ {rj}(τj ,·)/∈T∆∗)] ≤ d/p. This bound
follows from the fact that the program P∗ in the experiment simulated to A is not well-defined,
i.e., the polynomial represented by the circuit f∗ for fixed values {mj}(τj ,mj)∈T∆∗ is not a constant
function. Therefore, if d is an upper bound on the degree of such polynomial it is not hard to see
that over the random choices of rj in Zp, the above equality will be satisfied with probability at
most d/p. So, the tuple is a forgery of Type 2 with probability at least 1 − d/p. Hence, we can
bound B’s probability of success by

Pr[HomUF−CMAB,HomMAC-ML(λ) = 1] ≥ Pr[HomUF−CMAA,HomMAC-ML(λ) = 1](1− d/p)
≥ Pr[HomUF−CMAA,HomMAC-ML(λ) = 1]− d/p
> ε

which concludes the proof. ut

3.3 Homomorphic MACs with Efficient Verification for Multi-Labeled Programs

In this section we introduce a new property for homomorphic MACs that we call efficient verifica-
tion. Informally, a homomorphic MAC satisfies efficient verification if it is possible to verify a tag
σ against a multi-labeled program P∆ = (P, ∆) in less time than that required to compute P. We
define this efficiency property in an amortized sense, so that the verification is more efficient when
the same program P is executed on different data sets. The formal definition follows.

14

Definition 2. Let HomMAC-ML = (KeyGen,Auth,Ver,Eval) be a homomorphic MAC scheme for
multi-labeled programs as defined in the previous section. HomMAC-ML satisfies efficient verification
if there exist two additional algorithms (VerPrep,EffVer) as follows:

VerPrep(sk,P): on input the secret key sk and a labeled program P = (f, τ1, . . . , τn), this algorithm
generates a concise verification key VKP . We stress that this verification key does not depend
on any data set identifier ∆.

EffVer(sk,VKP , ∆,m, σ): given the secret key sk, a verification key VKP , a data set identifier ∆, a
message m ∈M and a tag σ, the efficient verification algorithm outputs 0 (reject) or 1 (accept).

The above algorithms are required to satisfy the following two properties:

Correctness. Let (sk, ek) ←R KeyGen(1λ) be honestly generated keys, and (P∆,m, σ) be any
program/message/tag tuple with P∆ = (P, ∆) such that Ver(sk,P∆,m, σ) = 1. Then, for every
VKP ←R VerPrep(sk,P), we have Pr[EffVer(sk,VKP , ∆,m, σ) = 1] = 1.

Amortized Efficiency. Let P∆ = (P, ∆) be a program, let (m1, . . . ,mn) ∈Mn be any vector of
inputs, and let t(n) be the time required to compute P(m1, . . . ,mn). If VKP←VerPrep(sk,P), then
the time required for EffVer(sk,VKP , ∆,m, σ) is O(1), i.e., independent of n.

Notice that in our efficiency requirement, we do not include the time needed to compute VKP .
The reason is, since VKP is independent of ∆, the same VKP can be re-used in many verifications
involving the same labeled program P but many different ∆. In this sense, the cost of computing
VKP is amortized over many verifications of the same function on different data sets.

Application to Verifiable Computation on Outsourced Data. A homomorphic MAC scheme
with efficient verification can be easily used to obtain a protocol for verifiable delegation of com-
putations on outsourced data, satisfying the requirements (1)–(5) mentioned in Section 1. Below,
we sketch such a protocol between a client C and a server S:

Setup: C generates the keys (sk, ek)←R KeyGen(1λ) for a homomorphic MAC, sends ek to S and
stores sk.

Data Outsourcing: to outsource a value m, C first authenticates m wrt. some multi-label L, i.e.,
σ ←R Auth(sk, L,m), and then sends (m, L, σ) to the server. It is easy to see that this phase
satisfies the requirements of unbounded storage (4) and function independence (5).

Client’s Preparation: assume that C needs to evaluate a labeled program P = (f, τ1, . . . , τn) on
some of its outsourced data sets. In this preparation phase (offline), the client computes and
stores VKP ←R VerPrep(sk,P) (independently of any ∆).

Delegation: when the client wants to compute P on a data set ∆ (online), it simply sends (P, ∆)
to the server.5

Computation: to compute (P, ∆), where P = (f, τ1, . . . , τn), the server first looks for the corre-
sponding data (m1, . . . ,mn) and tags (σ1, . . . , σn) according to the labeling previously sent by
C. Next, S computes m = f(m1, . . . ,mn) and σ←Eval(ek, f, σ1, . . . , σn), and sends (m,σ) to C.

Verification: given the result (m,σ) sent by S, the client checks that m is the correct output of the
multi-labeled program (P, ∆) by running EffVer(sk,VKP , ∆,m, σ). By the amortized efficiency
property of the homomorphic MAC, we obtain that C achieves amortized input-independent
efficiency (3) – and thus also efficiency (2) – in verifying the delegated computations.

5 While in general the description of P may be large, here we assume the case in which P has a succinct description,
e.g., “daily variance of the air pollution levels at every 5 minutes”. Hence, the cost of communicating P can, in
fact, be ignored.

15

Finally, from the unforgeability of the homomorphic MAC, it is straightforward to see that the
server cannot induce the client to accept incorrect results (1).

4 Utilities

This section provides some technical tools that will be useful to obtain our construction of homo-
morphic MACs with efficient verification.

4.1 Homomorphic Evaluation of Arithmetic Circuits

In the next two sections, we describe algorithms that allow for the homomorphic evaluation of an
arithmetic circuit f :Mn →M over values defined in some appropriate set J 6=M.

Homomorphic Evaluation over Polynomials. As a first example, we consider the case in which
J is a ring of polynomials. More formally, let Jpoly = Zp[x1, . . . , xm] be the ring of polynomials in
variables x1, . . . , xm over Zp. For every fixed tuple a = (a1, . . . , am) ∈ Zmp , let φa : Jpoly → Zp be
the function defined by φa(y) = y(a1, . . . , am) for any y ∈ Jpoly. By the substitution property of
polynomials, φa is a homomorphism from Jpoly = Zp[x1, . . . , xm] to Zp, i.e., ∀y1, y2 ∈ Jpoly it holds:
φa(y1+y2) = φa(y1)+φa(y2) and φa(y1 ·y2) = φa(y1)·φa(y2). By simple induction, we then observe
that for a given arithmetic circuit f : Znp → Zp, there exists another circuit f̂ : J npoly → Jpoly such

that ∀y1, . . . , yn ∈ Jpoly: φa(f̂(y1, . . . , yn)) = f(φa(y1), . . . , φa(yn)). The circuit f̂ is structurally
the same as f . The only difference is that in every gate the operation in Zp is replaced by the
corresponding operation over polynomials in Zp[x1, . . . , xm].

For every positive integer m ∈ N and a given arithmetic circuit f : Znp → Zp, we formally define

the computation of f̂ on (y1, . . . , yn) ∈ J npoly as an algorithm PolyEval(m, f, y1, . . . , yn). Concretely,
PolyEval is a simple algorithm that at every gate fg, on input two polynomials y1, y2 ∈ Jpoly,
proceeds as follows: if fg is an addition gate, it outputs y = y1 + y2 (i.e., it adds all coefficients
component-wise); if fg is a multiplication gate, it outputs y = y1 · y2 (i.e., it uses the convolution
operator on the coefficients). We notice that every multiplication gate increases the degree of y,
and thus it also increases the number of its coefficients. In particular, if y1, y2 have degrees d1, d2
respectively, then the degree of y = y1 · y2 is d1 + d2.

For any homomorphism φa defined by a tuple a = (a1, . . . , am) ∈ Zmp , and for any circuit f and
any values y1, . . . , yn ∈ Jpoly the following property clearly holds for PolyEval:

φa(PolyEval(m, f, y1, . . . , yn)) = f(φa(y1), . . . , φa(yn)). (1)

Above, we gave for completeness a generic definition of PolyEval for any possible m ∈ N.
However, we observe that in our work we will use PolyEval only with m = 1 and m = 2.

Homomorphic Evaluation over Bilinear Groups. As a second example, we show how to
homomorphically evaluate arithmetic circuits, of degree at most 2, over prime order groups with
bilinear maps. Let bgpp = (p,G,GT , e, g) be the description of bilinear groups where G has prime
order p. If we fix a generator g ∈ G, then G and the additive group (Zp,+) are isomorphic by
considering the isomorphism φg(x) = gx for every x ∈ Zp. Similarly, by the property of the pairing
function e, we also have that GT and the additive group (Zp,+) are isomorphic by considering
φgT (x) = e(g, g)x. Since φg and φgT are isomorphisms there also exist the corresponding inverses
φ−1g : G→ Zp and φ−1gT : GT → Zp, even though these are not known to be efficiently computable.

16

For every arithmetic circuit f : Znp → Zp of degree at most 2, we define GroupEval(f,X1, . . . , Xn)
to be the algorithm which homomorphically evaluates f with inputs in G and output in GT in such
a way that, for every tuple (X1, . . . , Xn) ∈ Gn, and every such circuit f , it holds

φ−1gT (GroupEval(f,X1, . . . , Xn)) = f(φ−1g (X1), . . . , φ
−1
g (Xn)) (2)

or, equivalently, for every (X1, . . . , Xn) ∈ Gn, we have that

GroupEval(f,X1, . . . , Xn) = e(g, g)f(x1,...,xn) : ∀i = 1, . . . , n : xi = φ−1g (Xi). (3)

Notice that the equivalence of equations (2) and (3) holds by using the fact that

GroupEval(f,X1, . . . , Xn) = φgT (f(φ−1g (X1), . . . , φ
−1
g (Xn))).

Given a circuit f of degree at most 2, and given an n-tuple of values (X1, . . . , Xn) ∈ Gn,
GroupEval intuitively proceeds as follows. It computes additions by using the group operation in G
or in GT . To compute multiplications, it uses the pairing function, e.g., R = e(R1, R2), thus “lifting”
the result to the group GT . By our assumption on the degree of f , one can see that multiplication
is well defined.

More precisely, given a circuit f and an n-tuple of values (X1, . . . , Xn) ∈ Gn, GroupEval proceeds
gate-by-gate as follows. For an addition gate f+ there are four cases depending on the type of its
inputs. Namely, for inputs

• X1 ∈ G and X2 ∈ G, output X ∈ G with X = X1 ·X2.
• X̂1 ∈ GT and X̂2 ∈ GT , output X̂ ∈ GT with X̂ = X̂1 · X̂2.
• X̂1 ∈ GT and X2 ∈ G, output X̂ ∈ GT with X̂ = X̂1 · e(X2, g).
• X1 ∈ G and X̂2 ∈ GT , output X̂ ∈ GT with X̂ = e(X1, g) · X̂2.

For a multiplication gate f× there is only a single case with two variable inputs where both X1, X2 ∈
G. The reason is that multiplication “lifts” the evaluation from G to GT . Assuming that deg(f) ≤ 2,
we know that every multiplication must take as input two terms of degree 1, hence two elements
in G. Multiplication gates thus output X̂ ∈ GT with X̂ = e(X1, X2). For the multiplication of
X1 ∈ G ∪GT with a constant c ∈ Zp, output X = (X1)

c.

The final output X∗ of GroupEval is the output of the last gate of the circuit. In case no multi-
plication has occurred while evaluating the circuit, i.e., X∗ ∈ G, output e(X∗, g) ∈ GT as final
result.

The following theorem proves that GroupEval achieves the desired homomorphic property:

Theorem 1. Let bgpp = (p,G,GT , e, g) be the description of bilinear groups. Then, the algo-
rithm GroupEval satisfies Equation (3), i.e., ∀(X1, . . . , Xn) ∈ Gn: GroupEval(f,X1, . . . , Xn) =
e(g, g)f(x1,...,xn) for the unique values {xi}ni=1 ∈ Zp such that Xi = gxi.

Proof. The proof is by induction on the structure of f and proceeds gate-by-gate. We show the
case for the identity circuit fid first, and then we show the case for addition and multiplication
gates by an inductive argument. For the identity circuit: GroupEval(fid , X) = e(X, g) = e(gx, g) =
e(g, g)x = e(g, g)fid (x). For the inductive case, we distinguish three cases depending on the number
of previous multiplications in the two input branches of the gates:

(1) No multiplication before.

17

• The evaluation of an addition gate f+ for X1, X2 ∈ G yields

X = X1 ·X2
ind
= gx1gx2 = gx1+x2 .

Eventually, X is ‘lifted’ to GT in the case of a subsequent multiplication or by the final step
of GroupEval, hence we eventually obtain X̂ = e(X, g) = e(g, g)x1+x2 .
• The evaluation of a multiplication gate f× for variable inputs X1, X2 ∈ G yields

X̂ = e(X1, X2)
ind
= e(gx1 , gx2) = e(g, g)x1x2 .

• The evaluation of a multiplication gate f× for input X1 ∈ G with a constant c ∈ Zp yields

X = (X1)
c ind

= (gx1)c = gx1c.

(2) Multiplication in one input branch.
W.l.o.g., we assume the multiplication to have occurred in the left branch, hence X̂1 ∈ GT .
• The evaluation of an addition gate f+ with X2 ∈ G yields

X̂ = X̂1 · e(X2, g)
ind
= e(g, g)x1 · e(g, g)x2 = e(g, g)x1+x2 .

• The evaluation of a multiplication gate f× with a constant c ∈ Zp yields

X̂ = (X1)
c ind

= (e(g, g)x1)c = e(g, g)x1c.
• The evaluation of a multiplication gate f× for two variable inputs is undefined for this case

because of deg(f) ≤ 2.

(3) Multiplications in both input branches.
• The evaluation of an addition gate f+ with inputs X̂1, X̂2 ∈ GT yields

X̂ = X̂1 · X̂2
ind
= e(g, g)x1 · e(g, g)x2 = e(g, g)x1+x2 .

• The evaluation of a multiplication gate f× for two variable inputs is undefined for this case
because of deg(f) ≤ 2. ut

4.2 Pseudorandom Functions with Amortized Closed-Form Efficiency

Here we introduce one of most important technical tools for our construction, that is the notion
of pseudorandom functions with amortized closed-form efficiency. This primitive is an extension of
closed-form efficient PRFs proposed by Benabbas et al. [11], and later refined by Fiore and Gennaro
[25]. As we will show in Section 5, this new notion of PRFs will be crucial for achieving the property
of efficient verification in our homomorphic MAC realization.

In a nutshell, closed-form efficient PRFs [11] are defined like standard PRFs with the addi-
tional requirement of satisfying the following efficiency property. Assume there exists a computa-
tion Comp(R1, . . . , Rn, z) which takes random inputs R1, . . . , Rn and arbitrary inputs z, and runs
in time t(n, |z|). Also, think of the case in which each Ri is generated as FK(Li). Then the PRF F
is said to satisfy closed-form efficiency for (Comp,L) if, by knowing the seed K, one can compute
Comp(FK(L1), . . . ,FK(Ln), z) in time strictly less than t. Here, the key observation is that in the
pseudorandom case all the Ri values have a shorter “closed-form” representation (as function of
K), and this might also allow for a shorter closed-form representation of the computation.

Starting from the above considerations, we introduce a new property for PRFs that we call
amortized closed-form efficiency. Our basic idea is to address computations Comp(R1, . . . , Rn, z)
of the above form, but then consider the case in which all values Ri are generated as FK(∆, τi).
Basically, we interpret the PRF inputs Li as pairs of values (∆, τi), all sharing the same ∆ com-
ponent. Then, we informally say that F satisfies amortized closed-form efficiency if it is possible to
compute ` computations {Comp(FK(∆j , τ1), . . . ,FK(∆j , τn), z)}`j=1 in time strictly less than ` · t.
More detailed definitions follow.

18

A PRF consists of two algorithms (KG,F) such that (1) the key generation KG takes as input
the security parameter 1λ and outputs a secret key K and some public parameters pp that specify
domain X and range R of the function, and (2) the function FK(x) takes input x ∈ X and uses
the secret key K to compute a value R ∈ R. As usual, a PRF must satisfy the pseudorandomness
property. Namely, we say that (KG,F) is secure if for every PPT adversary A we have that:

|Pr[AFK(·)(1λ, pp) = 1]− Pr[AΦ(·)(1λ, pp) = 1] | ≤ ε(λ)

where ε(λ) is negligible, (K, pp)←R KG(1λ), and Φ : X → R is a random function.

For any PRF (KG,F) we define amortized closed-form efficiency as follows.

Definition 3 (Amortized Closed-Form Efficiency). Consider a computation Comp that takes
as input n random values R1, . . . , Rn ∈ R and a vector of m arbitrary values z = (z1, . . . , zm), and
assume that the computation of Comp(R1, . . . , Rn, z1, . . . , zm) requires time t(n,m).

Let L = (L1, . . . , Ln) be arbitrary values in the domain X of F such that each can be interpreted
as Li = (∆, τi). We say that a PRF (KG,F) satisfies amortized closed-form efficiency for (Comp,L)
if there exist algorithms CFEvaloff

Comp,τ and CFEvalon
Comp,∆ such that:

1. Given ω←CFEvaloff
Comp,τ (K, z), we have that

CFEvalon
Comp,∆(K,ω) = Comp(FK(∆, τ1), . . . ,FK(∆, τn), z1, . . . , zm)

2. the running time of CFEvalon
Comp,∆(K,ω) is o(t).

We remark two important facts on our definition. First, the computation of ω←CFEvaloff
Comp,τ (K,

z) does not depend on ∆, which means that the same value ω can be re-used in CFEvalon
Comp,∆(K,ω)

to compute Comp(FK(∆, τ1), . . . ,FK(∆, τn), z) for many different ∆. Second, the efficiency property
puts a restriction only on the running time of CFEvalon. This is related to the previous remark, and
it captures the idea of achieving efficiency in an amortized sense when considering many evaluations
of Comp(FK(∆, τ1), . . . ,FK(∆, τn), z), each with a different data set identifier ∆. More concretely,
this means that one can precompute ω once, and then use it to run CFEvalon as many times as he
needs, almost for free.

It is worth noting that the structure of Comp may enforce some constraints on the rangeR of the
PRF, and that due to the pseudorandomness property, the output distribution of CFEvalon

Comp,∆(K,

CFEvaloff
Comp,τ (K, z)) (over the random choice of K) is computationally indistinguishable from the

output distribution of Comp(R1, . . . , Rn, z) (over the random choices of the Ri ∈ R).

4.3 A PRF with Amortized Closed-Form Efficiency for GroupEval

We propose an efficient construction of a pseudorandom function which satisfies amortized closed-
form efficiency for the algorithm GroupEval, given in Section 4.1.

Our PRF construction uses two generic pseudorandom functions which map binary strings to
integers in Zp (where p is a sufficiently large prime number), together with a weak PRF whose
security relies on the Decision Linear assumption, first introduced by Boneh, Boyen, and Shacham
[13] and recalled below:

19

Definition 4 (Decision Linear [13]). Let G be a bilinear group generator, and let bgpp = (p,G,
GT , e, g)←R G(1λ). Let g0, g1, g2 ←R G, and r0, r1, r2 ←R Zp be chosen uniformly at random. We
define the advantage of an adversary A in solving the Decision Linear problem as

AdvdlinA (λ) = |Pr[A(bgpp, g0, g1, g2, g
r1
1 , g

r2
2 , g

r1+r2
0) = 1]−

Pr[A(bgpp, g0, g1, g2, g
r1
1 , g

r2
2 , gr00) = 1] |

We say that the Decision Linear assumption holds for G if for every PPT algorithm A we have that
AdvdlinA (λ) is negligible.

Also, in our proof we will use the following useful Lemma (Lemma 7 in [37]) which basically
shows that the Decision Linear problem is random self-reducible6:

Lemma 1 ([37]). Given g0, g1, g2, g
r1
1 , g

r2
2 , g

r0
0 ∈ G, one can generate g

r′1
1 , g

r′2
2 , g

r′0
0 such that: (1)

r′1, r
′
2 are uniformly random in Zp, and (2) r′0 = r′1 + r′2 if r0 = r1 + r2, or r′0 is uniformly random

otherwise.

Our pseudorandom function. Here we describe our PRF with amortized closed-form efficiency:

KG(1λ). Let bgpp = (p,G,GT , e, g) be the description of bilinear groups G and GT having the same
prime order p > 2λ and such that g ∈ G is a generator and e : G × G → GT is an efficiently
computable bilinear map. The key generation chooses two seeds K1,K2 for a family of PRFs
F′K1,2

: {0, 1}∗ → Z2
p. Finally, it outputs K = (bgpp,K1,K2) and pp = bgpp. The parameters

define a function F with domain X = {0, 1}∗ × {0, 1}∗ and range G, as described below.
FK(x). Let x = (∆, τ) ∈ X be the input value. To compute the corresponding output R ∈ G, the

algorithm generates values (u, v)←F′K1
(τ) and (a, b)←F′K2

(∆), and then outputs R = gua+vb.

We first show that the above function is pseudorandom, and then we will show that it admits
amortized closed-form efficiency for GroupEval.

Theorem 2. If F′ is a pseudorandom function and the Decision Linear assumption holds for G,
then the function (KG,F) described above is a pseudorandom function.

Proof. The proof follows by a standard hybrid argument based on the following games.

Game 0: this is the pseudorandomness game for the function F.
Game 1: this is Game 0 where the function F′K1

is replaced by a random function Φ1 : {0, 1}∗ → Z2
p.

It is easy to see that Game 1 is computationally indistinguishable from Game 0 by the security
of the pseudorandom function F′.

Game 2: this is Game 1 where the function F′K2
is replaced by a random function Φ2 : {0, 1}∗ → Z2

p.
Similarly to the previous case, one can easily argue that Game 2 is computationally indistin-
guishable from Game 1 by the security of the pseudorandom function F′.

Game (3, j): informally, for j = 0, . . . , Q∆, Game (3, j) is a modification of Game 2 in which
the queries (∆, τ), where ∆ is among the first j distinct values ∆1, . . . ,∆j queried by A, are
answered with randomly chosen outputs. More formally, let Q∆ be the number of distinct ∆’s
queried by the adversary A during the experiment. If S = {∆1, . . . ,∆Q∆} is the ordered set of
all such values queried by A, then, for 0 ≤ j ≤ Q∆, we define the following partitioning sets of

6 Lewko and Waters [37] state this Lemma for the k-Linear problem. We only recall the version for k = 2.

20

S: S≤j = {∆i ∈ S : i ≤ j} and S>j = {∆i ∈ S : i > j}. So, we define Game (3, j) as the game
which is the same as Game 2, except that queries (∆, τ) such that ∆ ∈ S≤j are answered with
a value R ←R G chosen uniformly at random, whereas queries (∆, τ) such that ∆ ∈ S>j are
answered with R = gua+vb where (u, v)←Φ1(τ) and (a, b)←Φ2(∆).

As one can notice, Game (3,0) is identical to Game 2, while Game 3,Q∆ is the game in which all
queries are answered with freshly random values in G, i.e., it is like if A is given oracle access to a
truly random function from X to G.

Therefore, in order to complete the proof we claim that, for every 1 ≤ j ≤ Q∆, Game (3, j− 1)
is computationally indistinguishable from Game (3, j) under the assumption that Decision Linear
holds for G. This is obtained by proving the following Lemma:

Lemma 2. For 1 ≤ j ≤ Q∆, let G3,j be the event that Game (3, j), run with adversary A, outputs
1. If the Decision Linear assumption holds for G, then |Pr[G3,j−1]− Pr[G3,j]| is negligible.

The key tool of our proof is the following Lemma which essentially shows that the function
fa,b(U, V) = (UaV b) is a weak pseudorandom function under the Decision Linear assumption.

Lemma 3. If the Decision Linear assumption holds for G then the function fa,b(U, V) = (UaV b),
where a, b←R Zp are randomly chosen, is a weak pseudorandom function.

Proof. First, notice that given a tuple (g0, g1, g2, g
r1
1 , g

r2
2 , g

r0
0) we can rename values as U = gr11 , V =

gr22 , Z = gr00 . Next, we observe that for a fixed g0, given two random values g1, g2 ∈ G there exist
two values a, b (uniformly distributed in Zp) such that g0 = ga1 and g0 = gb2.

So, given such renaming of variables, we can reduce the security of fa,b(·, ·) to Decision Linear
by observing that by Lemma 1 we can create polynomially-many triples (Ui, Vi, Zi) such that Zi
has the desired form that it is either fa,b(Ui, Vi) or uniformly random. ut

Proof (Lemma 2). Given the result of Lemma 3, we are now ready to prove Lemma 2. To this end,
we show that any PPT adversary A who has non-negligible probability in distinguishing between
Game (3, j−1) and Game (3, j) can be used to build a PPT algorithm B who breaks the security
of the weak PRF fa,b(U, V) = UaV b, thus contradicting Lemma 3.

B receives as input a bilinear groups description bgpp = (p,G,GT , e, g) and gets access to an
oracle O that upon each query (with no input) it outputs a triple (U, V, Z). Recall that if O = Of ,
then Z = UaV b where (a, b) is the secret seed of the weak PRF f . Otherwise, if O = OR, then Z
is randomly chosen in G. In both cases, U and V are randomly chosen at every new query.

B runs the simulation for A as follows.

First, assume that Qτ is an upper bound on the number of distinct τ ’s queried by A. B queries
the O oracle Qτ times in order to get Qτ triples {(Ui, Vi, Zi)}Qτi=1. Moreover, for k = j + 1, . . . , Q∆,
B chooses (ak, bk)←R Zp at random.

Notice that all this preparation is made at the beginning of the simulation only for ease of pre-
sentation. Both the queries to O and the generation of (ak, bk) could be done during the experiment
without explicitly knowing the bounds Q∆, Qτ .

Let (∆, τ) be a query from A, and assume that (∆, τ) = (∆k, τi), for 1 ≤ k ≤ Q∆ and
1 ≤ i ≤ Qτ . B answers (∆k, τi) as follows.

– If k ≤ j − 1, then B chooses R←R G uniformly at random and returns R.

– If k > j, then B returns R = Uaki · V
bk
i .

21

– If k = j, then B returns R = Zi.

Basically, the simulator is implicitly setting (aj , bj) = (a, b) where (a, b) is the secret seed of the
weak PRF f . Finally, if A outputs b, then B outputs the same value b.

It is not hard to see that the simulation is perfect. Precisely, in the case when B is given access to
the weak PRF, i.e., Zi = fa,b(Ui, Vi), then B is simulating Game (3, j−1). On the other hand, when
B gets access to a random function, i.e., Zi is random and independent of Ui, Vi, then B simulates the
view of Game (3, j). Therefore, we have that Pr[BOf = 1] = Pr[G3,j−1] and Pr[BOR = 1] = Pr[G3,j].
Thus, it holds:

|Pr[BOf = 1]− Pr[BOR = 1]| = |Pr[G3,j−1]− Pr[G3,j]|

which concludes the proof of Lemma 2. ut

Amortized Closed-Form Efficiency. Here we show that the pseudorandom function described
before satisfies amortized closed-form efficiency for (GroupEval,L). Recall that GroupEval is the
algorithm which takes as input n random values R1, . . . , Rn ∈ G and the description of an arithmetic
circuit f : Znp → Zp, and it returns a value W ∈ GT , where L is a vector (L1, . . . , Ln) such that

Li = (∆, τi) ∈ X . Below we describe the algorithms CFEvaloff
GroupEval,τ and CFEvalon

GroupEval,∆:

CFEvaloff
GroupEval,τ (K, f). Let K = (bgpp,K1,K2) be a secret key as generated by KG(1λ). For i = 1

to n, compute (ui, vi)←F′K1
(τi), and set ρi = (0, ui, vi): ρi are essentially the coefficients of a

degree-1 polynomial ρi(z1, z2) in two (unknown) variables z1, z2.
Next, run ρ←PolyEval(2, f, ρ1, . . . , ρn) to compute the coefficients ρ of a polynomial ρ(z1, z2)
such that ∀z1, z2 ∈ Zp it holds ρ(z1, z2) = f(ρ1(z1, z2), . . . , ρn(z1, z2)).
Finally, output ωf = ρ.

CFEvalon
GroupEval,∆(K,ωf). Let K = (bgpp,K1,K2) be a secret key and let ωf = ρ be as computed

by the previous algorithm. The online evaluation algorithm first generates (a, b)←F′K2
(∆), and

then it uses the coefficients ρ to compute w = ρ(a, b), and it finally outputs W = e(g, g)w.

Theorem 3. Let L = (L1, . . . , Ln) be such that Li = (∆, τi) ∈ X , let GroupEval be the algorithm
described in Section 4.1, and let t be the running time of GroupEval. Then the pseudorandom
function (KG,F), extended with the algorithms CFEvaloff

GroupEval,τ and CFEvalon
GroupEval,∆ described

above, satisfies amortized closed-form efficiency for (GroupEval,L) according to Definition 3, having
CFEvaloff

GroupEval,τ run in time O(t) and CFEvalon
GroupEval,∆ run in time O(1).

Proof. To prove the theorem we show that our algorithms satisfy both the correctness and efficiency
properties of Definition 3. Let K be a secret key as generated by KG(1λ), and let L be any vector of
n values (L1, . . . , Ln) such that Li = (∆, τi) ∈ X for arbitrary binary strings ∆, τ1, . . . , τn ∈ {0, 1}∗.
Let ωf = ρ be the output of CFEvaloff

GroupEval,τ (K, f). Then, we have:

CFEvalon
GroupEval,∆(K,ωf) = W

CFEvalon

= e(g, g)ρ(a,b)

PolyEval
= e(g, g)f(ρ1(a,b),...,ρn(a,b))

CFEvaloff

= e(g, g)f(u1a+v1b,...,una+vnb)

= GroupEval(f,FK(∆, τ1), . . . ,FK(∆, τn))

where the last equality holds by the correctness of GroupEval (Theorem 1).

22

To see the efficiency property, we first observe that the running time of CFEvaloff
GroupEval,τ (K, f) is

essentially dominated by the computation of ρ using PolyEval(2, f, ρ1, . . . , ρn). Interestingly, due to
the bound deg(f) ≤ 2 and due to having only m = 2 variables, the polynomial ρ can be computed at
roughly the same cost of running f , which is the cost of GroupEval, i.e., O(t). Regarding the online
algorithm CFEvalon

GroupEval,∆(K,ωf), its complexity depends on the size of ρ, hence on the number
of coefficients of a two-variate polynomial whose degree is the same as the degree of f . In general,
for f of degree d, this would be |ρ| =

(
d+2
d

)
. Considering our specific case of GroupEval which

evaluates arithmetic circuits of degree at most 2, and by observing that the degree-0 coefficient is
always 0, we obtain a vector ρ which can be represented with 5 elements of Zp, from which we have
CFEvalon

GroupEval,∆(K,ωf) running in time O(1). ut

5 Homomorphic Message Authenticators with Efficient Verification

In this section, we describe our construction of homomorphic MACs with efficient verification for
multi-labeled programs as introduced in Section 3.3. In particular, the following theorem sum-
marizes the main result of this work which is obtained by combining the EVH−MAC construction
(Section 5.1) and our concrete instantiation of the PRF with amortized closed-form efficiency based
on the Decision Linear assumption (Section 4.3).

Theorem 4. If the Decision Linear assumption holds, then EVH−MAC is a secure homomorphic
message authenticator which supports evaluations of any arithmetic circuit f of degree at most 2,
and achieves efficient verification, i.e., EVH−MAC has amortized efficiency in which the offline
verification VerPrep takes time O(|f |), and the online verification EffVer takes time O(1).

We proceed by detailing our construction (Section 5.1), showing its correctness (Section 5.2), and
then proving its security (Section 5.3), and finally discussing its efficiency (Section 5.4).

5.1 Construction

Our construction works for circuits whose additive gates do not get inputs labeled by constants. As
mentioned in [17], this can be done without loss of generality as one can use an equivalent circuit
with a special variable/label for the constant 1 and publish the MAC of 1. Our scheme EVH−MAC
is defined as follows:

KeyGen(1λ). Run bgpp←R G(1λ) to generate the description of bilinear groups. Let bgpp = (p,G,
GT , e, g) as defined above. Let the message space M be Zp. Choose a random value α←R Zp,
and run (K, pp) ←R KG(1λ) to obtain the seed K of a pseudorandom function FK : {0, 1}∗ ×
{0, 1}∗ → G. Output the secret key sk = (bgpp, pp,K, α), and the evaluation key ek = (bgpp, pp).

Auth(sk, L,m). To authenticate a message m ∈ Zp with multi-label L = (∆, τ) where ∆ ∈ {0, 1}λ
is the identifier of a data set and τ ∈ {0, 1}λ is an input identifier, proceed as follows.

First, compute R←FK(∆, τ) and then compute values (y0, Y1) ∈ Zp×G by setting: y0 = m and
Y1 = (R · g−m)1/α. Finally, output the tag σ = (y0, Y1).

If we let y1 ∈ Zp be the (unique) value such that Y1 = gy1 , then (y0, y1) are basically the
coefficients of a degree-1 polynomial y(x) that evaluates to m on the point 0 (i.e., y(0) = m)
and it evaluates to r = φ−1g (R) on a hidden random point α (i.e., y(α) = r).

23

Eval(ek, f,σ). The homomorphic evaluation algorithm takes as input the evaluation key ek =
(bgpp, pp), an arithmetic circuit f : Znp → Zp, and a vector σ of tags (σ1, . . . , σn).
Eval proceeds gate-by-gate as follows. At every gate fg, given two tags σ1, σ2 (or a tag σ1 and a
constant c ∈ Zp), it runs the algorithm σ←GateEval(ek, fg, σ1, σ2) described below that returns
a new tag σ, which is in turn passed on as input to the next gate in the circuit. When the
computation reaches the last gate of the circuit f , Eval outputs the tag vector σ obtained by
running GateEval on such last gate.
To complete the description of Eval we thus describe the subroutine GateEval:

– GateEval(ek, fg, σ
(1), σ(2)). Let σ(i) = (y

(i)
0 , Y

(i)
1 , Ŷ

(i)
2) ∈ Zp ×G×GT for i = 1, 2 (see below

for the special case when one of the two inputs is a constant c ∈ Zp). For ease of description,

whenever Ŷ
(i)
2 is not defined, we assume Ŷ

(i)
2 = 1 ∈ GT .

• Addition. If fg = f+, then compute (y0, Y1, Ŷ2) as follows:

y0 = y0
(1) + y0

(2), Y1 = Y
(1)
1 · Y (2)

1 , Ŷ2 = Ŷ
(1)
2 · Ŷ (2)

2 .

• Multiplication. If fg = f×, then compute (y0, Y1, Ŷ2) as follows:

y0 = y0
(1) · y0(2), Y1 = (Y

(1)
1)y

(2)
0 · (Y (2)

1)y
(1)
0 , Ŷ2 = e(Y

(1)
1 , Y

(2)
1).

Because of our assumption that deg(f) ≤ 2, we can assume that σ(i) = (y
(i)
0 , Y

(i)
1) ∈

Zp ×G for both i = 1, 2.
• Multiplication with constant. If fg = f× and one of the two inputs, say σ2, is a

constant c ∈ Zp, then compute (y0, Y1, Ŷ2) as follows:

y0 = c · y0(1), Y1 = (Y
(1)
1)c, Ŷ2 = (Y

(1)
2)c.

Return σ = (y0, Y1, Ŷ2).

Ver(sk,P∆,m, σ). Let sk = (bgpp, pp,K, α) be a secret key. Let P∆ = (P, ∆) be a multi-labeled
program for P = (f, τ1, . . . , τn) and data set ∆. Let m ∈ Zp be the result to be verified, and
let σ = (y0, Y1, Ŷ2) be a tag. The verification proceeds as follows. For i = 1 to n, compute
Ri←FK(∆, τi). Then run W←GroupEval(f,R1, . . . , Rn) ∈ GT , as described in Section 4.1. Fi-
nally, check the following equations:

m = y0 (4)

W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2

(5)

If both checks are satisfied, then output 1, and 0 otherwise.

Finally, to complete the description of EVH−MAC we give the algorithms for efficient verification:

VerPrep(sk,P). Let P = (f, τ) be a labeled program where f ∈ Znp → Zp is an arithmetic circuit
and τ = (τ1, . . . , τn) is a vector of input identifiers for f . The algorithm computes concise
verification information VKP = ω where ω is obtained by using the offline closed-form efficient
algorithm of F for GroupEval, i.e., ω←CFEvaloff

GroupEval,τ (K, f).
EffVer(sk,VKP , ∆,m, σ). Let sk = (bgpp, pp,K, α) be a secret key. Let VKP = ω be the concise

verification information for P. Let m ∈ Zp be the result to be verified and let σ = (y0, Y1, Ŷ2) be
a tag. The online verification proceeds as follows. First, it runs the online closed-form efficient
algorithm of F for GroupEval, in order to compute W←CFEvalon

GroupEval,∆(K,ω). Finally, it runs
the same checks (4) and (5) as in standard verification. If both checks are satisfied, then output
1. Otherwise output 0.

24

5.2 Proof of Correctness

In this section, we prove that EVH−MAC satisfies authentication and evaluation correctness.

Theorem 5. EVH−MAC satisfies authentication correctness.

Proof. Letm ∈ Zp and L = (∆, τ) be given. Let a correctly generated secret key sk = (bgpp, pp,K, α)
and a correctly generated evaluation key ek = (bgpp, pp) with bgpp = (p,G,GT , e, g) be given. Let
further σ = (yo, Y1) be an authentication tag obtained from running Auth(sk, L,m). We show that
Ver(sk, IL,m, σ) = 1 with probability 1 for some identity program IL computing the identity func-
tion fid for L. To this end, we verify the equations (4) and (5). For the first equation, it is obvious
to see that indeed m = y0 because of our definition of Auth. For the second equation, we know that

Y1
Auth
= (R · g−m)1/α with R = FK(∆, τ), and Ŷ2 = 1.

e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2

Auth
= e(g, g)m · e((R · g−m)1/α, g)α · 1
= e(g, g)m · e(R · g−m, g)

= e(g, g)m · e(R, g) · e(g−m, g)

= e(g, g)m · e(R, g) · e(g, g)−m

= e(R, g)
GroupEval

= GroupEval(fid , R) = W

For the last equality, the verification is successful only if GroupEval(fid , R) = e(R, g), which follows
immediately from the correctness of GroupEval (Theorem 1). ut

Theorem 6. EVH−MAC satisfies evaluation correctness.

Proof. Let a valid pair of keys (sk, ek) ←R KeyGen(1λ) be given. Let f ′ : Mn → M and a set
of message/program/tag triples {(mi,P∆,i, σi)}ni=1 be given, such that all P∆,i = (Pi, ∆) share
the same data set identifier ∆ and Ver(sk,P∆,i,mi, σi) = 1. Let m∗ = f ′(m1, . . . ,mn), let P∗
be the composed program f ′(P1, . . . ,Pn), and let σ∗ = Eval(ek, f ′, (σ1, . . . , σn)). We show that
Ver(sk,P∗∆,m∗, σ∗) = 1 holds with probability 1.

For i = 1 to n, let Wi be the values obtained by computing GroupEval in the runs of Ver(sk,P∆,i,
mi, σi), and let σi = (y0

(i), Y
(i)
1 , Ŷ

(i)
2). By our inductive hypothesis, i.e., Ver(sk,P∆,i,mi, σi) = 1,

we know that both the following equations

mi = y0
(i) (6)

Wi = e(g, g)y0
(i) · e(Y (i)

1 , g)α · (Ŷ (i)
2)α

2
(7)

are satisfied. For all i = 1, . . . , n, consider the unique values y
(i)
1 = φ−1g (Y

(i)
1), y

(i)
2 = φ−1gT (Ŷ

(i)
2),

and wi = φ−1gT (Wi), and let us compactly denote by y(i) the degree-2 polynomial with coefficients

y
(i)
0 , y

(i)
1 , y

(i)
2 ∈ Zp. Equations (6) and (7) imply that y(i)(0) = mi and y(i)(α) = wi, ∀i = 1, . . . , n.

Similarly, for the tag σ∗ = (y0
∗, Y ∗1 , (Ŷ2)

∗) we let y∗ be the degree-2 polynomial with coefficients
y∗0, y

∗
1, y
∗
2 ∈ Zp uniquely defined as above. Also, let W ∗ be the value obtained by running GroupEval

in Ver(sk,P∗∆,m∗, σ∗) = 1.

25

To prove this theorem we will show that y∗(0) = m∗ and e(g, g)y
∗(α) = W ∗ are satisfied. To this

end, we first prove the following claim. Intuitively, the claim shows that our algorithm GateEval is
computing PolyEval “in the exponent”, over the input polynomials {y(i)}ni=1 encoded in the groups
G,GT .

Claim 1 Let fg be a gate of an arithmetic circuit, let σ(1) = (y
(1)
0 , Y

(1)
1 , Ŷ

(1)
2) and σ(2) = (y

(2)
0 , Y

(2)
1 ,

Ŷ
(2)
2) be any two tags in Zp×G×GT , and let σ = (y0, Y1, Ŷ2) be the output of GateEval(ek, fg, σ

(1),
σ(2)). If we define the three polynomials y(1), y(2), y from the three tags σ(1), σ(2), σ, respectively,
by using the homomorphisms φg and φgT , then it holds y = PolyEval(1, fg, y

(1), y(2)).

Proof. To prove the claim we consider the two cases in which fg is either an addition or a multi-
plication gate.

For an addition gate f+, we have

(y0, Y1, Ŷ2)
GateEval

= (y0
(1) + y0

(2), Y
(1)
1 · Y (2)

1 , Ŷ
(1)
2 · Ŷ (2)

2)

= (y0
(1) + y0

(2), gy
(1)
1 +y

(2)
1 , e(g, g)y

(1)
2 +y

(2)
2)

Hence, we clearly have that y = PolyEval(1, f+, y
(1), y(2)).

For a multiplication gate f×, we have

(y0, Y1, Ŷ2)
GateEval

= (y0
(1)y0

(2), (Y
(1)
1)y0

(2) · (Y (2)
1)y0

(1)
, e(Y

(1)
1 , Y

(2)
1))

= (y0
(1)y0

(2), gy
(1)
1 y0(2)+y

(2)
1 y0(1) , e(g, g)y

(1)
1 y

(2)
1)

Hence, we clearly have that y = PolyEval(1, f×, y
(1), y(2)). ut

By inductively extending the result of Claim 1 over the entire circuit f ′, we obtain that y∗ =
PolyEval(1, f ′, y(1), . . . , y(n)). So, by relying on the homomorphic property of PolyEval and on our
inductive hypothesis we have that the first equation of Ver is satisfied, i.e.:

y∗(0)
PolyEval

= f ′(y(1)(0), . . . , y(n)(0))

(6)
= f ′(m1, . . . ,mn) = m∗.

To see that the second equation is satisfied as well, we observe that:

e(g, g)y0
∗ · e(Y ∗1 , g)α · (Ŷ ∗2)α

2

= e(g, g)y
∗(α)

PolyEval
= e(g, g)f

′(y(1)(α),...,y(n)(α))

(7)
= e(g, g)f

′(w1,...,wn)

= W ∗

where the last equality follows from the composition property of circuits applied to GroupEval.

26

Theorem 7. If F has amortized closed-form efficiency for (GroupEval,L), then EVH−MAC satisfies
efficient verification.

Proof. According to Definition 2, we have to show that both properties of (1) correctness and
(2) efficiency hold. Correctness simply follows from the fact that the function F satisfies closed-
form efficiency for (GroupEval,L) according to Theorem 3. This indeed means that by computing
W←CFEvalon

GroupEval,∆(K,ω) for ω←CFEvaloff
GroupEval,τ (K, f), one obtains the same value W as ob-

tained by computing GroupEval(f,FK(∆, τ1), . . . ,FK(∆, τn)). Hence, it is clear that the combination
of the algorithms VerPrep and EffVer computes the same code of Ver. The amortized efficiency prop-
erty is achieved by EffVer in executing CFEvalon

GroupEval,∆ once, and performing a constant number
of multiplications and exponentiations. ut

We notice that by the correctness of efficient verification, it also follows that EVH−MAC satisfies
authentication and evaluation correctness w.r.t. the algorithm EffVer.

5.3 Proof of Security

The security of EVH−MAC is established by the following theorem.

Theorem 8. Let λ be the security parameter, F be a pseudorandom function with security εF, and
G be a bilinear group generator. Then, any PPT adversary A making Q verification queries has at
most probability Pr[HomUF−CMAA,HomMAC-ML = 1] ≤ 2 · εF + 8Q

p−2(Q−1) of breaking the security of
EVH−MAC.

Proof. We have to show property (4) of Definition 1. In other words, we have to show that for
every PPT adversary A the probability of winning the experiment HomUF−CMAA,HomMAC-ML is
negligible. Using a hybrid argument, we transform the experiment HomUF−CMAA,HomMAC-ML with
a number of games to an experiment with indistinguishable distribution. By Gi(A) we denote the
event that an adversary A wins in the experiment defined in Game i, hence that the challenger
outputs 1.

Game 0 is the experiment HomUF−CMAA,HomMAC-ML.
Game 1 is like Game 0, but using Proposition 1, we omit forgeries of Type 3. Notice that after

such a change, now the challenger can efficiently distinguish between forgeries of Type 1 and
Type 2.

Game 2 is like Game 1, but the PRF is replaced by a truly random functionR : {0, 1}∗×{0, 1}∗ →
G. Hence, each R ∈ G is a truly random value.

Game 3 is like Game 2, but the verification equation is split into two checks: (1) if m 6= y0, reply
0; (2) if W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
, reply 1 to A. The first check is performed as the

very first step after receiving a verification query from A. The position of the second check is
unchanged. Moreover, we split verification after the first check in two cases: (Type 1) for queries
in which no list T∆ has been created and (Type 2) in which a list T∆ has been created. Both
subroutines perform exactly the same operation, i.e., computing W ← GroupEval(f,R1, . . . , Rn)
and checking whether W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
.

Game 4 is like Game 3, but verification queries (P∆,m, σ) in which a list T∆ exists are treated
differently: for each τi such that (τi, ·) 6∈ T∆, compute a dummy tag σ̃i (step 2). For each
τj such that (τj , ·) ∈ T∆, fetch the previously stored value σ̃j ← Σ[∆, τj] (step 3). Evaluate

27

f on σ̃ = (σ̃1, . . . , σ̃n) computing (y0
′, Y ′1 , Ŷ

′
2) ← Eval(ek, f, σ̃) (step 4). Next, check if σ =

(y0, Y1, Ŷ2) = (y0
′, Y ′1 , Ŷ

′
2) and accept (step 5). Otherwise, check if e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
=

e(g, g)y0
′ · e(Y ′1 , g)α · (Ŷ ′2)α

2
and accept (step 6). Otherwise, reject (as before).

Game 5 is like Game 4, but instead of replying 1 to the adversary, in two cases we reply 0 and set
an (initially false) flag bad to true. These two cases are: (T1) for the empty list T∆ whenever
W = e(g, g)y(α) holds, and (T2) when the list T∆ is not empty whenever e(g, g)y0 · e(Y1, g)α ·
(Ŷ2)

α2
= e(g, g)y0

′ · e(Y ′1 , g)α · (Ŷ ′2)α
2

holds.

Claim 2 The probability for adversary A of winning in Game 5 is zero.

Proof. Winning the experiment means that the answer to the adversary for a verification/forgery
query is 1 (accept) and that one of the two cases in the forgery check is satisfied.

The only case to return 1 to the adversary is in line 5 in the case of P being well-defined with
respect to ∆. The necessary condition here is that σ = σ′, which means that the attacker provides
a MAC σ that is equal to a honestly generated MAC σ′. Since the two MACs are equal, they
both authenticate a unique message m′, which, by the correctness of Eval, must be the same as the
attacker message m. In particular, m′ = Eval(ek, f,σ) = f({mj}(τj ,mj)∈T∆). Therefore, the forgery
check 2 with m 6= f({mj}(τj ,mj)∈T∆) is not true. And hence there is no forgery, and the output of
the experiment is never 1. ut

Next, we show that for all i the difference between Game i and Game i + 1 is negligible. This
finally yields that Pr[G0(A)] is negligible, which concludes the proof of security for EVH−MAC.

Game 0 and Game 1 differ only in the event that an adversary A wins in Game 0 with a Type
3 forgery, namely |Pr[G0(A)]−Pr[G1(A)]| = Pr[G0(A)∧TA,3] where TA,3 is the event that A wins
by returning a forgery of Type 3. In order to get an upper bound on the probability of an adversary
winning in Game 0 with a Type 3 forgery, we can use Proposition 1 which relates this probability
with the probability of winning with a Type 2 forgery.

Claim 3 If ε is an upper bound on the probability Pr[G1(B)] for any adversary B, then for all
adversaries A, we have |Pr[G0(A)]− Pr[G1(A)]| ≤ ε+ 2/p.

Proof. We first observe that the difference between the two games only depends on how forgeries
of Type 3 are handled. More precisely, for all adversaries A, we have |Pr[G0(A)] − Pr[G1(A)]| =
Pr[G0(A)∧TA,3], where TA,3 is the event in which A uses a forgery of Type 3 to win. Proposition 1
yields that if for all B, we have that Pr[G1(B)] is negligible, then also for all A, we have Pr[G0(A)∧
TB,3] is negligible. More precisely, Pr[G0(A) ∧ TB,3] ≤ ε + d/p, where ε is an upper bound on the
probability Pr[G1(B)]. ut

It remains hence to show that Pr[G1(A)] is indeed negligible for any adversary A. To this end,
we give negligible bounds for the distance of any two consecutive games.

Claim 4 If F is a pseudorandom function, then Pr[G1(A)] − Pr[G2(A)] ≤ εF, where εF is the
negligible advantage of an adversary in breaking the security of F.

Proof. This proof can be easily obtained by reducing any adversary with non-negligible probability
of distinguishing Game 1 and Game 2 into one that breaks the security of the pseudorandom
function F. ut

Claim 5 Pr[G2(A)] ≡ Pr[G3(A)].

28

Proof. It is easy to see that all changes from Game 2 to Game 3 are only syntactical. Hence, all
views and all probability distributions are the same in both games. ut

Claim 6 Pr[G3(A)] ≡ Pr[G4(A)].

Proof. The changes from Game 3 to Game 4 only affect queries from the adversary with well-
defined programs. We hence assume that P is well-defined. In particular, all dummy tags σ̃i (if
any) in Game 4 do not contribute in the evaluation of f using Eval.

We show that the output to the adversary is 1 in Game 4 if and only if the output is 1 in
Game 3. To this end, assume the answer to A is 1 in Game 3. We hence know that m = y0 and
that W3 ← GroupEval(f,R1, . . . , Rn) with W3 = e(g, g)y(α).

In Game 4, the evaluation of σ′ ← Eval(ek, f, σ̃) is based on σ̃, which are all taken from the
list of previously generated tags. This is hence the same as the generation of the values Ri in
Game 3. By correctness of Eval, we know that Ver(sk,P, y0′, σ′) = 1. In particular, we have that
W4 ← GroupEval(f,R1, . . . , Rn) with W4 = e(g, g)y

′(α). Since the values Ri for the corresponding
evaluations of GroupEval is the same in both games, we have that W3 = W4 for the corresponding
games. This yields e(g, g)y(α) = W3 = W4 = e(g, g)y

′(α), which indeed gives e(g, g)y0 · e(Y1, g)α ·
(Ŷ2)

α2
= e(g, g)y0

′ · e(Y ′1 , g)α · (Ŷ ′2)α
2
.

If (y0, Y1, Ŷ2) = (y0
′, Y ′1 , Ŷ

′
2), then verification returns the correct result 1 and clearly, e(g, g)y0 ·

e(Y1, g)α · (Ŷ2)α
2

= e(g, g)y0
′ · e(Y ′1 , g)α · (Ŷ ′2)α

2
is also satisfied. ut

Claim 7 |Pr[G4(A)] − Pr[G5(A)]| ≤ Pr[Bad], where Bad is the event that bad is set to true in
Game 5.

Proof. Game 4 and Game 5 are identical unless bad is set to true in Game 5. More precisely,
Pr[G4(A)] = Pr[G5(A) ∧ ¬Bad], hence |Pr[G4(A)]− Pr[G5(A)]| ≤ Pr[Bad]. ut

To finalize the security proof, we are left with bounding the probability of the event Bad, i.e.,
the event in which bad is set to true in Game 5.

Claim 8 Pr[Bad] ≤ 4Q
p−2(Q−1) , where p is the prime used in the construction, and Q is an upper

bound on the number of verification queries made by an adversary.

Proof. Let Bj be the event that bad was set from false to true in the j-th verification query. Let Q
be the number of verification queries performed by an attacker. Then

Pr[Bad] = Pr

 Q∨
j=1

Bj

 ≤ Q∑
j=1

Pr[Bj]

In the following, we estimate the probability Pr[Bj] taken over the random choices of α and all
values Ri sampled by the challenger. We also take into account all possible values chosen by the
adversary. From the definition of Game 5, there are only two cases in which Bj can occur:

Event B1
j : W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
and C1

j ,

where C1
j is the event that no list T∆ has been created.

Event B2
j : e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
= e(g, g)y0

′ · e(Y ′1 , g)α · (Ŷ ′2)α
2

and C2
j ,

where C2
j is the event that P is well-defined on T∆, and at least for one index i we have yi 6= y′i.

29

In the following we will often write y(α) = y′(α) to stand for e(g, g)y0 ·e(Y1, g)α · (Ŷ2)α
2

= e(g, g)y0
′ ·

e(Y ′1 , g)α · (Ŷ ′2)α
2
. From the definition of Bj , we know that bad was not set to true in the previous

j − 1 verification queries. Hence, we have

Pr[Bj] = Pr[B1
j ∨B2

j | NotZeroj]

where we denote by NotZeroj the event that B1
1 ∧B2

1 ∧ . . .∧B1
j−1 ∧B2

j−1. Let us further note that

Pr[B1
j ∨B2

j | NotZeroj] = Pr[B1
j | NotZeroj] + Pr[B2

j | NotZeroj]

= Pr[W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2 ∧ C1

j | NotZeroj]
+ Pr[y(α) = y′(α) ∧ C2

j | NotZeroj]

≤ Pr[W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2 | C1

j ∧ NotZeroj]
+ Pr[y(α) = y′(α) | C2

j ∧ NotZeroj]

Let us now fix the value of α in the beginning of Game 5. Let us then have a look at what
the adversary learns with each query against the challenger. We consider the case first, in which
the attacker has not issued any verification query yet. Assume that the attacker have issued n
authentication queries, and let R1, . . . , Rn be the random values generated in those queries. Then,
for each of the p possible values of α, there is only a single value Ri which is valid for α. Indeed,
we remind to the reader that in Game 5, a new fresh Ri is generated for each multi-label L, i.e., for
every authentication query. There are hence p possible tuples (α,R1, . . . , Rn) that are consistent
with the attackers view after seeing n authentication queries. Next, we look at the verification
queries. It is easy to see that queries with m 6= y0 do not reveal any additional information about
α. Moreover, if σ = σ′, then the attacker does not learn anything new about α since all information
in this case is computed using Eval with the tags that are already known to the attacker.

Hence, without loss of generality, we assume that all Q verification queries are of case C1
j , where

W is checked against e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2
, or of case C2

j , where y(α) is compared to y′(α).
Indeed, as noted before, all the remaining queries can be even answered without using α, and thus
they will not reveal any information. After each query of case C1

j or C1
j , if B1

j and B2
j occur, then

the number of possible values for (α,R1, . . . , Rn) in the attacker’s view is reduced by at most d since
the zeroes (i.e., the roots) of a non-zero polynomial of degree d are at most d, and the information
revealed by a rejection answer says that at most d of such roots (i.e., d possible values of α) can

be excluded. In general, after i queries with B1
1 ∧B2

1 ∧ . . .∧B1
i ∧B2

i , the number of possible values
becomes at least p− i · d.

We hence obtain an upper bound on the second probability from above as

Pr[y(α) = y′(α) | C2
j ∧ NotZeroj] ≤

d

p− (j − 1) d
.

This follows from the fact that the polynomial y(α)− y′(α) is non-zero (as σ 6= σ′), its roots are at
most d, and by our previous counting argument there are p− (j − 1) d possible values for α.

To evaluate the first probability Pr[W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2 | C1

j ∧ NotZeroj], we first

note that W is “almost” random since by C1
j we know that all Ri have never been used before

for authentication, and by definition the function f proposed by the adversary in its query is not

30

a constant function. In particular, the latter property means that at least one of the Ri values,
say Rk, “contributes” to the computation of W . Namely, if we fix all values {Ri}i 6=k, we can
write GroupEval(f,R1, . . . , Rn) as GroupEval(f ′, Rk) where f ′ is the univariate degree-d polynomial
obtained from f after fixing the values of all variables {Ri}i 6=k. Notice that after every verification
query j involving Rk and in which the event NotZeroj occurs, the adversary can exclude at most d
possible values for Rk. Therefore, at the j-th query, the adversary can not guess Rk with probability
better than 1/(p− (j − 1) d). We hence end up with

Pr[W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2 | C1

j ∧ NotZeroj] ≤
d

p− (j − 1) d

Using the facts from above, we can give an upper bound for the probability of Bj as

Pr[Bj] ≤
2d

p− (j − 1) d

and hence

Pr[Bad] ≤ 2dQ

p− (Q− 1) d

which proves the claim for the restricted degree d = 2. ut

To finalize the proof of Theorem 8, we have to put together the results of all the above Claims.
This yields that for any adversary A, it holds

Pr[HomUF−CMAA,HomMAC-ML = 1] ≤ 2 · εF +
8Q

p− 2(Q− 1)
.

The proof is completed by observing that both quantities εF and 8Q
p−2(Q−1) are negligible. For εF

this fact follows from the assumption that F is secure, whereas for the second quantity this follows
from observing that Q is poly(λ) and that p ≈ 2λ. In other words, a PPT adversary A has at most
a negligible advantage of breaking the unforgeability of EVH−MAC. ut

5.4 Efficiency Analysis

The efficient verification of EVH−MAC immediately follows from the amortized closed-form ef-
ficiency of the pseudorandom function F. Indeed, the verification preparation VerPrep runs in
the same time as CFEvaloff

GroupEval,τ , and the online verification EffVer runs in the same time as
CFEvalon

GroupEval,∆. By applying the result of Theorem 3, we thus obtain that VerPrep and EffVer run
in time O(|f |) and O(1), respectively.

In the remainder of this section, we discuss the concrete efficiency of our scheme when im-
plemented with specific security parameters of 80 and 128 bits. In particular, we consider the
bandwidth costs for sending the MACs over the network, and the computational timings of the
various algorithms at both the client and the server. The timings are obtained by evaluating the
most significant operations performed by our algorithms, namely modular exponentiations and
pairing computations. For our evaluation, we consider an implementation of Type-A (symmetric)
pairings using the PBC library [38], on an 2.5 GHz Intel Core i5 workstation running Mac OS X
10.8.3. The timings of all basic operations needed by our scheme are summarized in Table 1. In
addition, we note that by using 80 (resp. 128) bits of security, an element of Zp can be represented

31

Operation Time (ms)

80-bits 128-bits

Pairing 1.23 12
? Pairing 0.62 6.34

Exp. in G 1.83 9.55
? Exp. in G 0.24 1.34

Exp. in GT 0.22 1.15
? Exp. in GT 0.05 0.26

Multiexp(2). in G 2.53 13.34

Multiexp(3). in GT 0.44 2.45
? Costs obtained using precomputation.

Table 1. Summary of costs per operation (in ms).

Operations at Time (ms) Size of tags (kB)

the client side 80 bits 128 bits 80 bits 128 bits

Data Outsourcing 0.24 1.34 0.08 0.22

Verif. w/o prep. 1.06 8.79 0.21 0.59

Table 2. Clients’ costs to outsource and to verify.

with 160 (resp. 256) bits, an element of G with 512 (resp. 1536) bits, and an element of GT with
1024 (resp. 3072) bits. Most clients’ costs are summarized in Table 2. Below we illustrate how they
are obtained, and we give more details on the remaining costs.

To obtain the bandwidth costs, we observe that the MAC σ created by the client, i.e., as
generated by Auth, consists of two elements (y0, Y1) ∈ Zp ×G, whereas the MAC returned by Eval
may include the additional element Ŷ2 ∈ GT .

Next, let us consider the computational performances of the algorithms of EVH−MAC. To
authenticate a data item, the client runs Auth, whose cost basically boils down to that of computing
Y1. The latter requires one PRF evaluation to generate R (which amounts to one exponentiation in
G), plus two other exponentiations, one for m, and one for α−1. However, with a more careful look
at our PRF construction, we observe that this operation can be optimized by computing directly
Y1 = g(ua+vb−m)/α, a single exponentiation in G (with precomputation on the fixed basis g). For
verification, the client has to first prepare the re-usable verification information VKP using VerPrep.
The cost of this algorithm depends on the computation of ω←CFEvaloff

GroupEval,τ (K, f), which is
essentially the same as computing the function f (no exponentiations, pairings or group operations
are needed). Such value VKP is stored by the client (its size amounts to at most 5 elements of Zp),
and it can be re-used over and over when running P on different data sets, thus amortizing the cost
of its computation. To verify a MAC using EffVer in the online phase, the client needs to compute
only one pairing (with precomputation on the fixed g), i.e., e(Y1, g), and one multi-exponentiation
with three bases7, for e(g, g)y0−we(Y1, g)α(Ŷ2)

α2
. To conclude our analysis, we consider the cost

required to the server for generating the correctness proofs, i.e., to run Eval. As one can notice,
Eval evaluates the circuit f with an additional, constant, overhead which derives from replacing

7 Here we observed that the explicit computation of W = e(g, g)w in CFEvalon can be avoided by directly considering
e(g, g)y0−w.

32

every addition of f with the group operation (in either G or GT), and every multiplication with
one multi-exponentiation in G plus one pairing.

References

1. S. Agrawal and D. Boneh. Homomorphic MACs: MAC-based integrity for network coding. In M. Abdalla,
D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors, ACNS 09, volume 5536 of LNCS, pages 292–305, Paris-
Rocquencourt, France, June 2–5, 2009. Springer, Berlin, Germany.

2. B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification via secure computa-
tion. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and P. G. Spirakis, editors, ICALP 2010,
Part I, volume 6198 of LNCS, pages 152–163, Bordeaux, France, July 6–10, 2010. Springer, Berlin, Germany.

3. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation
problems. J. ACM, 45(3):501–555, May 1998.

4. S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of np. J. ACM, 45(1):70–122, Jan.
1998.

5. N. Attrapadung and B. Libert. Homomorphic network coding signatures in the standard model. In D. Catalano,
N. Fazio, R. Gennaro, and A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 17–34, Taormina, Italy,
Mar. 6–9, 2011. Springer, Berlin, Germany.

6. N. Attrapadung, B. Libert, and T. Peters. Computing on authenticated data: New privacy definitions and
constructions. In ASIACRYPT 2012, volume 7658 of LNCS, pages 367–385. Springer, Berlin, Germany, Dec.
2012.

7. N. Attrapadung, B. Libert, and T. Peters. Efficient completely context-hiding quotable and linearly homomorphic
signatures. In PKC 2013, volume 7778 of LNCS, pages 386–404. Springer, Berlin, Germany, 2013.

8. L. Babai. Trading group theory for randomness. In 17th ACM STOC, pages 421–429, Providence, Rhode Island,
USA, May 6–8, 1985. ACM Press.

9. M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on outsourced data. In 2013
ACM Conference on Computer and Communication Security. ACM Press, November 2013.

10. M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and A. Lysyanskaya. Incentivizing outsourced
computation. In Workshop on Economics of Networked Systems – NetEcon, pages 85–90, 2008.

11. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets. In P. Rogaway,
editor, CRYPTO 2011, volume 6841 of LNCS, pages 111–131, Santa Barbara, CA, USA, Aug. 14–18, 2011.
Springer, Berlin, Germany.

12. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct non-
interactive arguments of knowledge, and back again. In ITCS ’12: Proceedings of the 3rd Symposium on Innova-
tions in Theoretical Computer Science, 2012.

13. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 41–55, Santa Barbara, CA, USA, Aug. 15–19, 2004. Springer, Berlin, Germany.

14. D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signature schemes for network coding.
In S. Jarecki and G. Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 68–87, Irvine, CA, USA, Mar. 18–20,
2009. Springer, Berlin, Germany.

15. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions. In K. G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168, Tallinn, Estonia, May 15–19, 2011. Springer, Berlin,
Germany.

16. D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new tools for lattice-based
signatures. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS,
pages 1–16, Taormina, Italy, Mar. 6–9, 2011. Springer, Berlin, Germany.

17. D. Catalano and D. Fiore. Practical homomorphic MACs for arithmetic circuits. In Eurocrypt ’13: Proceedings
of the 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2013.

18. D. Catalano, D. Fiore, R. Gennaro, and K. Vamvourellis. Algebraic (trapdoor) one way functions and their
applications. In TCC 2013, volume 7785 of LNCS, pages 680–699. Springer, Berlin, Germany, 2013.

19. D. Catalano, D. Fiore, and B. Warinschi. Adaptive pseudo-free groups and applications. In K. G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 207–223, Tallinn, Estonia, May 15–19, 2011. Springer,
Berlin, Germany.

20. D. Catalano, D. Fiore, and B. Warinschi. Efficient network coding signatures in the standard model. In M. Fis-
chlin, J. Buchmann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 680–696, Darmstadt,
Germany, May 21–23, 2012. Springer, Berlin, Germany.

33

21. K.-M. Chung, Y. Kalai, and S. P. Vadhan. Improved delegation of computation using fully homomorphic en-
cryption. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 483–501, Santa Barbara, CA, USA,
Aug. 15–19, 2010. Springer, Berlin, Germany.

22. K.-M. Chung, Y. T. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In P. Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 151–168, Santa Barbara, CA, USA, Aug. 14–18, 2011. Springer, Berlin, Germany.

23. G. Di Battista and B. Palazzi. Authenticated relational tables and authenticated skip lists. In Proceedings
of the 21st annual IFIP WG 11.3 working conference on Data and applications security, pages 31–46, Berlin,
Heidelberg, 2007. Springer-Verlag.

24. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the hardness of approximating
cliques. J. ACM, 43(2):268–292, Mar. 1996.

25. D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix computations, with
applications. In 2012 ACM Conference on Computer and Communication Security. Full version available at
http://eprint.iacr.org/2012/281. ACM Press, October 2012.

26. D. M. Freeman. Improved security for linearly homomorphic signatures: A generic framework. In M. Fischlin,
J. Buchmann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 697–714, Darmstadt, Germany,
May 21–23, 2012. Springer, Berlin, Germany.

27. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to un-
trusted workers. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482, Santa Barbara, CA,
USA, Aug. 15–19, 2010. Springer, Berlin, Germany.

28. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs without PCPs.
In Eurocrypt ’13: Proceedings of the 32nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, 2013. Also in Cryptology ePrint Archive, Report 2012/215, http://eprint.iacr.
org/2012/215.

29. R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin. Secure network coding over the integers. In P. Q. Nguyen
and D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 142–160, Paris, France, May 26–28, 2010.
Springer, Berlin, Germany.

30. R. Gennaro and D. Wichs. Fully homomorphic message authenticators. Cryptology ePrint Archive, Report
2012/290, 2012. http://eprint.iacr.org/.

31. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In
L. Fortnow and S. P. Vadhan, editors, 43rd ACM STOC, pages 99–108, San Jose, California, USA, June 6–8,
2011. ACM Press.

32. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive proofs for muggles. In
R. E. Ladner and C. Dwork, editors, 40th ACM STOC, pages 113–122, Victoria, British Columbia, Canada,
May 17–20, 2008. ACM Press.

33. M. T. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and distributed cryptographic accumulator.
In A. H. Chan and V. D. Gligor, editors, ISC 2002, volume 2433 of LNCS, pages 372–388, Sao Paulo, Brazil,
Sept. 30 – Oct. 2, 2002. Springer, Berlin, Germany.

34. M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Authenticated data structures for graph and
geometric searching. In M. Joye, editor, CT-RSA 2003, volume 2612 of LNCS, pages 295–313, San Francisco,
CA, USA, Apr. 13–17, 2003. Springer, Berlin, Germany.

35. R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic signature schemes. In B. Preneel, editor,
CT-RSA 2002, volume 2271 of LNCS, pages 244–262, San Jose, CA, USA, Feb. 18–22, 2002. Springer, Berlin,
Germany.

36. J. Kilian. A note on efficient zero-knowledge proofs and arguments. In 24th ACM STOC, pages 723–732, Victoria,
British Columbia, Canada, May 4–6, 1992. ACM Press.

37. A. B. Lewko and B. Waters. Efficient pseudorandom functions from the decisional linear assumption and weaker
variants. In E. Al-Shaer, S. Jha, and A. D. Keromytis, editors, ACM CCS 09, pages 112–120, Chicago, Illinois,
USA, Nov. 9–13, 2009. ACM Press.

38. B. Lynn. PBC: The pairing-based crypto library.
39. C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A general model for authenti-

cated data structures. Algorithmica, 39(1):21–41, 2004.
40. S. Micali. CS proofs. In 35th FOCS, Santa Fe, New Mexico, Nov. 20–22, 1994.
41. F. Monrose, P. Wyckoff, and A. D. Rubin. Distributed execution with remote audit. In NDSS’99, San Diego,

California, USA, Feb. 3–5, 1999. The Internet Society.
42. M. Naor and K. Nissim. Certificate revocation and certificate update. In in Proceedings of the 7th USENIX

Security Symposium, pages 217–228, 1998.

34

http://eprint.iacr.org/2012/215
http://eprint.iacr.org/2012/215
http://eprint.iacr.org/

43. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation, 2013.
44. C. Papamanthou and R. Tamassia. Time and space efficient algorithms for two-party authenticated data struc-

tures. In S. Qing, H. Imai, and G. Wang, editors, ICICS 07, volume 4861 of LNCS, pages 1–15, Zhengzhou,
China, Dec. 12–15, 2007. Springer, Berlin, Germany.

45. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of operations on dynamic sets. In
P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 91–110, Santa Barbara, CA, USA, Aug. 14–18,
2011. Springer, Berlin, Germany.

46. B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly practical verifiable computation. In IEEE
Symposium on Security and Privacy, Oakland, 2013.

47. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: Verifiable computation from
attribute-based encryption. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 422–439, Taormina,
Sicily, Italy, Mar. 19–21, 2012. Springer, Berlin, Germany.

48. S. Setty, B. Braun, V. Vu, A. Blumberg, B. Parno, and M. Walfish. Resolving the conflict between generality
and plausibility in verified computation. ACM European Conference on Computer Systems, EuroSys 2013.

49. S. Setty, R. McPherson, A. Blumberg, and M. Walfish. Making argument systems for outsourced computation
practical (sometimes). In Network & Distributed System Security Symposium, NDSS 2012, 2012.

50. S. Setty, V. Vu, N. Panpalia, B. Braun, A. Blumberg, and M. Walfish. Taking proof-based verified computation
a few steps closer to practicality. In USENIX Security Symposium, Security 2012, August 2012.

51. A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations
and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

52. S. W. Smith and S. Weingart. Building a high-performance, programmable secure coprocessor. Computer
Networks, 31:831–860, 1999.

53. R. Tamassia. Authenticated data structures. In G. Battista and U. Zwick, editors, Algorithms - ESA 2003,
volume 2832 of Lecture Notes in Computer Science, pages 2–5. Springer Berlin Heidelberg, 2003.

54. V. Vu, S. Setty, A. Blumberg, and M. Walfish. A hybrid architecture for interactive verifiable computation. IEEE
Symposium on Security and Privacy, Oakland 2013, to appear.

55. B. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon University, 1994.

35

	Verifiable Delegation of Computation on Outsourced Data
	Introduction
	Related Work
	A High-Level Overview of Our Techniques
	Organization of the Paper

	Preliminaries
	Homomorphic Message Authenticators with Efficient Verification
	Multi-Labeled Programs
	Homomorphic MACs for Multi-Labeled Programs
	Homomorphic MACs with Efficient Verification for Multi-Labeled Programs

	Utilities
	Homomorphic Evaluation of Arithmetic Circuits
	Pseudorandom Functions with Amortized Closed-Form Efficiency
	A PRF with Amortized Closed-Form Efficiency for GroupEval

	Homomorphic Message Authenticators with Efficient Verification
	Construction
	Proof of Correctness
	Proof of Security
	Efficiency Analysis

