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Abstract. In this paper, we investigate the security of a public-key encryption scheme
introduced by Huang, Liu and Yang (HLY) at PKC’12. This new scheme can be provably
reduced to the hardness of solving a set of quadratic equations whose coefficients of highest
degree are chosen according to a discrete Gaussian distributions. The other terms being
chosen uniformly at random. Such a problem is a variant of the classical problem of solving
a system of non-linear equations (PoSSo), which is known to be hard for random systems.
The main hypothesis of Huang, Liu and Yang is that their variant is not easier than solving
PoSSo for random instances. In this paper, we disprove this hypothesis. To this end, we
exploit the fact that the new problem proposed by Huang, Liu and Yang reduces to an easy
instance of the Learning With Errors (LWE) problem. The main contribution of this paper is
to show that security and efficiency are essentially incompatible for the HLY proposal. That
is, one cannot find parameters which yield a secure and a practical scheme. For instance, we
estimate that a public-key of at least 1.03 GB is required to achieve 80-bit security against
known attacks. As a proof of concept, we present practical attacks against all the parameters
proposed Huang, Liu and Yang. We have been able to recover the private-key in roughly
one day for the first challenge

(
i.e. Case 1

)
proposed by HLY and in roughly three days for

the second challenge
(
i.e. Case 2

)
.

1 Introduction

At PKC 2012 Huang, Liu and Yang (HLY) proposed a new public-key encryption scheme [25]. It
follows a line of research, called Multivariate Quadratic (MQ) cryptography, to construct public-
key encryption schemes from the known hard problem of solving systems of polynomial equations.
This line of research dates back to the mid eighties with the design of C∗ [35], later followed
by many other proposals, e.g., [44,30,14,41,28,49,50]. While this family of designs is commonly
considered to be an interesting alternative to constructions based on number-theoretic problems
(in the post-quantum setting), it suffers from a lack of clear security reductions to well-understood
problems, leading to a series of attacks, e.g., [29,13,18,24,20,17,19,15].

In contrast, [25] is part of a recent trend in MQ cryptography of designing cryptosystems whose
security can be provably reduced to the the hardness of solving a system of non-linear equations
(other examples include [3,8]). The key innovation of Huang-Liu-Yang [25] is a MQ scheme in
which the public key is noise-free and non-linear but ciphertexts are noisy and linear. Hence, the
scheme proposed by Huang, Liu, and Yang can be viewed as a hybrid between the Learning with
Errors (LWE) problem [42] andMQ cryptosystems. The semantic security of the scheme [25] can



be provably reduced to the difficulty of solving a system of non-linear equations which is somewhat
structured as the coefficients of the non-linear parts of the polynomials are chosen according to
a discrete Gaussian. The main assumption of [25] is that this new problem is not easier than the
problem of solving a random system of quadratics equations.

1.1 Organisation of the Paper & Overview of the Results

After this introduction, the paper is organized as follows. We first provide a brief introduction to
lattices and algorithms for solving LWE in Section 2. In particular, we briefly recall in Section
2.3 Micciancio and Regev’s [37,32] distinguishing approach and Kannan’s embedding technique
[26] for solving LWE. We then describe the HLY proposal in Section 3. The new hard problem
introduced by Huang, Liu and Yang is as follows:

Definition 1 (MQ(n,m,Φζ , Hβ)). Let n be positive integer, m = cn for some c ≥ 1, q be a polyno-
mially bounded prime, a constant β, 0 < β < q/2 and e be a secret vector in Hβ := [−β, . . . , β]n ⊆
Znq . We denote by ZΦζq [x1, . . . , xn] the distribution on quadratic polynomials of Zq[x1, . . . , xn] ob-
tained by sampling the monomials of degree 2 according to a discrete Gaussian distribution Φζ
of standard deviation ζ ∈ O (1) and centred on zero and by sampling the others coefficients (lin-

ear, and constant parts) uniformly at random. We denote by MQ
(n)
s,Φ the probability distribution

on the Zq[x1, . . . , xn]m × Zmq obtained by sampling p = (p1, . . . , pm) from ZΦζq [x]m, and returning

(p, c) =
(
p,p(e)

)
∈ Zq[x1, . . . , xn]m ×Zmq . We define MQ(n,m,Φζ , Hβ) as the problem of finding

s ∈ Hn
β given a pair

(
p,p(e)

)
←$ MQ

(n)
s,Φ.

The main assumption from [25] is that MQ(n,m,Φζ , Hβ) is not easier than the problem of solv-
ing a random system of quadratic equations (Assumption 1). Remark that the latter problem is
notoriously known as a hard problem from a theoretical [22] and practical point of view [4,5,6].
In this paper, we show that MQ(n,m,Φζ , Hβ) is in fact related to a much easier problem. The
starting point of our analysis is to simply remark (Fact 1) that MQ(n,mΦζ , Hβ) resembles to a
LWE problem with a discrete Gaussian with variance γ2 = O

(
n2β2ζ2

)
(centred at zero).

We use this fact, together with the Micciancio-Regev distinguisher and the strong lattice-reduction
complexity model of Lindner and Peikert to derive a new necessary conditions on the security of
the HLY scheme (Section 4.1). In particular, such a scheme has at most τ -bit security with regard
to the construction a distinguisher of advantage d if (n, β, c, k, τ, d) verifies

exp

(
− π2

12β2
· (ck)−2 · n−4 · (2(1.8/(τ+78.9)))2cn

)
= d

For example, with β = c = 2, k = 12, d = 0.5, setting n = 1140 satisfies this condition for τ = 80.
With n = 1140, however, the public-key is of size ≈ 1.03 GB.

It appears then that all parameters suggested in [25] (reproduced Table 1) are too small to verify
our new security condition. Indeed, we have been able to mount practical attacks (distinguish-
ing attack with Micciancio-Regev, and key-recovery attack with the embedding technique). We
successfully executed both attacks in roughly one day for the first challenge

(
i.e. Case 1)

)
and

in roughly three days for the second challenge
(
i.e. Case 2

)
proposed by the authors [25]. The

experimental results are detailed in Section 4.2.



2 Preliminaries

2.1 Notation

In the following we always start counting at zero, denote vectors and matrices in bold, vectors in
lower case, and matrices in upper case. Given a vector a, we denote by a(i) the i-th entry in a, and
by A(i,j) the entry at index (i, j). When given a list of vectors, we index its elements by subscript,
e.g., a0,a1,a2, to denote the first three vectors of the list. Let q be a prime. We represent elements
in Zq as integers in [− q2 , . . . ,

q
2 ]. We work in the Euclidean norm throughout.

2.2 Background on Lattices

A lattice Λ in Rm is a discrete additive subgroup. For a general introduction, the reader is referred
to [36]. We view a lattice as being generated by a (non-unique) basis B = {b0, . . . ,bn−1} ⊂ Zm
of linearly-independent integer vectors. We assume that the vectors b0, . . . ,bn−1 form the rows of
the n×m matrix B. That is:

Λ = L(B) = Zn ·B =

{
n−1∑
i=0

xi · bi | x0, . . . , xn−1 ∈ Z

}
.

In this work, we are concerned only with q-ary lattices which are those such that qZm ⊆ Λ ⊆ Zm.
The dimension of a lattice Λ is the dimension of the linear span span(Λ) of Λ. We also restrict our
attention to full-rank lattices i.e. those in which dim(span(Λ)) = m. The determinant or volume
vol (Λ) of a (full-rank) lattice Λ is the determinant of any given basis of Λ, hence vol (Λ) = det(B).

The dual of a lattice Λ, denoted by Λ∗, is the lattice consisting of the set of all vectors z ∈ Rm
such that 〈y, z〉 ∈ Z for all vectors y ∈ Λ. Given a lattice Λ, we denote by λi(Λ) the i-th minimum
of Λ

λi(Λ) := inf
{
r | dim(span(Λ ∩ B̄m(0, r))) ≥ i

}
where B̄m(0, r) denotes the closed, zero-centered m-dimensional (Euclidean) ball of radius r.
We define the minimum distance from a given point t ∈ Rm to the lattice by dist(Λ, t) =
min {‖t− x‖2 | x ∈ Λ}.

Minkowski’s second theorem gives us a bound on the geometric mean of the successive minima.
Given an m-dimensional lattice Λ and any 1 ≤ k ≤ m we have(

k∏
i=1

λi(Λ)

)1/k

≤ √γm · vol (Λ)
1/m

, where γm denotes Hermite’s constant of dimension m.

However, determining the exact value of γm is a long-standing open problem in the geometry
of numbers, with the exact values being known for only 1 ≤ m ≤ 8 and m = 24. Heuristically
speaking, given a random lattice Λ of dimension m and a Euclidean ball B̄m(x, r). We expect that

the number of lattice points which lie in Λ ∩ B̄m(x, r) to be approximately equal to
vol(B̄m(x,r))

vol(Λ) .

The lattices we consider here are not random, rather they are ‘Ajtai’ lattices, possessing reductions
from worst-case Approx-SVP to average-case Hermite-SVP. For more details on the nature of
random lattices, the reader is referred to [23]. However, it is generally assumed in the literature, as
in this work, that the Gaussian heuristic holds reasonably well for Ajtai lattices. If this approximate
equality was to hold for any such ball, then by considering the unit ball in B̄m(0, 1) ⊂ Rm, we
would have

| Λ ∩ B̄m(0, 1) |≈ πm/2

Γ (1 +m/2) · vol (Λ)
.



where Γ denotes the standard gamma function Γ (z) =
∫∞

0
xz−1e−xdx, z ∈ C.

Hence we would expect that λ1(Λ) ≈
(

vol(Λ)

vol(B̄m(0,1))

)1/m

= vol(Λ)1/m·Γ (1+m/2)1/m√
π

. For random

lattices, it is known that, with overwhelming probability, the above holds (for all successive min-
ima) [1]. This provides the motivation for the Hermite-SVP problem, which we define below. More
generally, we list below the four main lattice problems of relevance to this work:

The approximate Shortest Vector problem (γ-SVP):
Input. A lattice Λ = L(B).
Question. Find a vector v ∈ Λ such that 0 < ‖v‖ ≤ γ · λ1(Λ).

The approximate Hermite Shortest Vector problem (γ-HSVP):
Input. A lattice Λ = L(B).

Question. Find a vector v ∈ Λ such that 0 < ‖v‖ ≤ γ · det(Λ)
1
m .

Any algorithm which solves γ-SVP also solves Hermite-SVP with factor γ
√
γn. The approximate

Shortest Vector Problem (γ-SVP) (γ ≥ 1) is NP-Hard under randomized reduction for any γ <

2(logn)1/2−ε , where ε > 0 is an arbitrarily small constant [27].

The bounded distance decoding problem (BDDη):
Input. A lattice Λ and a vector t such that dist(t, Λ) < η · λ1(Λ).
Question. Find the lattice vector y which is closest to t.

We note that, when considering BDDη from a complexity theory approach, arbitrary values for
η can be considered while in practical settings, the problem is often defined with the restriction
that η ≤ 1

2 . The case of solving BDDη> 1
2

corresponds to list-decoding in coding parlance. BDDη

is known to be NP-hard for any constant factor η > 1√
2
[33]. Finally:

The GapSVP (promise) problem (GapSVPγ):
Input. A lattice Λ, a radius r > 0 and approximation factor γ > 1.
Question. Is λ1(Λ) ≤ r ? If so return YES, else if λ1(Λ) > γr return NO, and otherwise return
YES or NO.

Note that GapSVPγ is NP-Hard for any constant γ[27].

Lattice Reduction. The predominant approaches for solving the Learning with Errors (LWE)
problem [42] rely on reducing a lattice basis (determined by a subset of the LWE samples) to obtain
either a single short vector in the (scaled) dual lattice [37] or a ‘good’ (relatively orthogonal) basis
of the primal lattice [32], as measured by the norms of the Gram-Schmidt vectors of such a basis.
In the first case, since we do not know λ1(Λ) a priori, it is customary to measure the ‘strength’ of
a basis reduction algorithm by the γ-HSVP factor it can attain. In the latter case, similar notions
are used, with the added heuristic that the norms of the Gram-Schmidt vectors of a reduced-basis
decrease geometrically.

We briefly recall some notions of lattice basis reduction (from a Hermite-SVP perspective). While
finding the shortest vector in low-dimensional lattices is relatively easy, only approximation algo-
rithms can be realistically run in higher dimensions. With respect to the Hermite-SVP problem,

we aim to find a vector v in the lattice such that γ = ‖v‖/vol (Λ)
1
m is small. The famed LLL

algorithm [31,39,40] discloses lattice vectors with Hermite factor ≤ (4/3)(m−1)/4 while the more
powerful Block Korkine-Zolotarev (BKZ) algorithm, parameterised by a block-size β, discloses
lattice vectors with Hermite factor ≤ √γβ1+(m−1)/(β−1) [21].



In practise, however, both LLL and BKZ perform much better than their worst-case provable
bounds and both are commonly characterised by a ‘root Hermite-factor’ δ0 such that δm0 ≈
‖v‖/vol (Λ)

1
m . Given a fixed algorithm, the value of δ0 appears to rapidly converge to a fixed value

as the lattice dimension increases. In [21], the authors report the results of extensive experiments,
partly aimed at determining root Hermite factors for LLL and BKZ with selected block-sizes. The
results of [21] indicate that, in practise, LLL achieves a δ0 ≈ 1.0219 while BKZ-20 and BKZ-28
achieve δ0 ≈ 1.0128 and δ0 ≈ 1.0109, respectively, conjecturing that the current limits of ‘practical’
lattice reduction appear to be a root Hermite factor of ≈ 1.01, with δ0 = 1.005 being far beyond
reach (in high dimension). However, estimation of the running time of BKZ in high dimension with
a large block-size is difficult, with the asymptotic running time being doubly-exponential in the
block-size. To attempt a conservative prediction of the running time of BKZ with large block-size,
the authors of [32] assume that δ0 is the dominant influence on the running-time of BKZ in high
dimension and proposed a simple extrapolation of running times as a function of δ0 leading to the
model

log2 Tsec = 1.8/ log2 δ0 − 110. (1)

We can translate this figure into bit operations by assuming 2.3 · 109 bit operations per second on
a 2.3 GHz CPU.

However, the accuracy and hence utility of such models is debatable, with such models giving
infeasibly low complexity estimates for the application of LLL. Alternative models of which we
are aware are log2 Tsec = exp(1/ log2(δ0)1.001 − 43.4) [43] and log2 Tsec = 0.009/ log2

2(δ0) − 27
[2]. Another shortcoming of such models is that the dimension of the lattice is ignored, with the
root Hermite-factor being treated as the dominant influence, despite the running time of BKZ
appearing to be exponential in the dimension [21].

2.3 Learning with Errors (LWE)

We briefly review the results on LWE required in our cryptanalysis. The central idea of our attack
is to observe that the security of HLY scheme actually relies on weak instances of LWE. After
providing the definition of LWE, we recall a modulus-switching result from [9] which we exploit to
improve our basic attack. Finally, we briefly review some known techniques for solving LWE. In
this work, we consider the short dual-lattice vector distinguishing attack [37] to distinguish LWE
instances arising in our attack of HLY scheme. The LWE problem is as follows:

Definition 2 (LWE [42]). Let n, q be a positive integers, χ be a probability distribution on Zq
and s be a secret vector in Znq . We denote by L

(n)
s,χ the probability distribution on Znq ×Zq obtained

by choosing a ∈ Znq uniformly at random, choosing e ∈ Zq according to χ, and returning (a, c) =
(a, 〈a, s〉+ e) ∈ Znq × Zq.

– Decision-LWE is the problem of deciding whether pairs (ai, ci) ∈ Znq ×Zq are sampled according

to L
(n)
s,χ or the uniform distribution on Znq × Zq.

The noise follows some distribution χ which is classically chosen to be a discrete Gaussian dis-
tribution over Z with mean 0, reduced modulo q. This distribution (over Z) is obtained by
rounding the (continuous) Gaussian distribution N (µ, σ2) with mean µ and standard deviation
σ = s/

√
2π = αq/

√
2π, i.e., we consider dN (µ, σ2)c. The modulus q is typically taken to be poly-

nomial in n. It was shown [42,9] that if αq > 2
√
n, then (worst-case) GapSVPÕ(n/α) reduces to

(average-case) LWE.



Remark 1 (Modulus reduction). Furthermore, it was shown in [10] that if the secret s follows a
distribution with small standard deviation σs, then we perform modulus reduction. That is, given
p� q we may consider a new LWE sample (bp/q ·aic, bp/q · cic) in place of the initial LWE (ai, ci)
at the cost of a slight increase in the noise level. In particular, by taking p ≈ bq

√
n/12σ2

s/σe, the

standard deviation of the noise after modulus reduction increases to
√

2σ.

Solving LWE with Lattice Reduction. For solving LWE, several approaches exist in the
literature. Asymptotically, combinatorial approaches are superior [2] while in practise lattice-
based approaches are often more efficient. The most straight-forward such approach [37] is to
apply lattice basis reduction to the (scaled) dual lattice determined by the LWE samples. This
allows to obtain a short vector in this lattice and leads to a distinguisher of valid LWE samples
and uniformly random samples. Note that thanks to the classical decision to search equivalence
for LWE [42] any distinguisher can be actually used to recover the secret key. This multiplies the
cost of the distinguisher by a polynomial factor q (more precisely, by the size of the secret space).

Given a set of m LWE samples (ai, ci), we denote by A ∈ Zn×mq the matrix whose columns are
the ai’s. We then consider the following q-ary lattice

Λq(A) :=
{
AT s mod q | s ∈ Zn

}
⊂ Zm

and a corresponding (scaled) dual lattice

Λ⊥q (A) := {y ∈ Zm | Ay = 0 mod q} .

In [37], the authors briefly examine an approach for solving LWE by distinguishing between valid
matrix-LWE samples of the form (A, c) = (A,As + e) and samples drawn from the uniform
distribution over Zm×nq × Zmq . Given a matrix of samples A, one way of constructing such a

distinguisher is to find a short vector u in the (scaled) dual lattice Λ⊥q (AT ), the vector u is such
that Au = 0 mod q. If c belongs to the uniform distribution over Zmq , then 〈u, c〉 belongs to the
uniform distribution on Zq. On the other hand, if c = As + e, then 〈u, c〉 = 〈u,As + e〉 = 〈u, e〉.
Each sample of the form 〈u, ei〉 are governed by another discrete, wrapped Gaussian distribution.
Following the work of Micciancio and Regev [37], the authors of [32] investigates the algorithmic
hardness of Decision-LWE by estimating the cost of the BKZ algorithm in finding a short enough
vector, using the model mentioned above (Section 2.2).

In particular, given m,n, q, σ = αq, we set s = σ
√

2π. Then, given a vector v in the dual lattice,
a good approximation for the distinguishing advantage obtained through this approach is

ε ≈ exp

(
−π ·

(
‖v‖ · s
q

)2
)

(2)

Thus, given a target distinguishing advantage ε, we can compute the required norm of a vector in
the (scaled) dual lattice to be:

v =
q

s

√
− log ε/π.

We also let

λ1(Λq(A)) = min

{
q, qn/m ·

√
m

2π · e

}
be the length of the shortest vector according to the Gaussian heuristic. Once again, we note that
while the q-ary lattices derived from LWE instances are not random in a strict sense and thus
we cannot a priori expect the Gaussian heuristic to be verified, in practice the heuristic holds
extremely well. Hence, as do other works, we assume this also in our case.

To estimate the root Hermite factor δ0 we need to achieve, we rely on the heuristic – but ex-
perimentally sound – model in which we expect the norm of the shortest vectors found to be



approximately qn/mδm0 . Then, the optimal sub-lattice dimension for the attack is mopt =
√

n log q
log δ0

.

Assuming that we have enough LWE samples to construct a lattice of the optimal dimension, we
then require the application of a basis-reduction algorithm with root-factor given by

δ0 = 2
log2 v
4n log q .

An alternative method for solving LWE (and for BDD in general) using lattice reduction is to
employ Kannan’s embedding method. Here, we take a lattice Λ = L(B) ⊂ Rm and a point t ∈ Rm
which is close to a lattice point y with ‖y − t‖ < λ1(Λ)/2. We then construct

B′ =

(
B 0
t ‖y − t‖

)
.

It can be shown [34] that if
√

2 · ‖y− t‖ < λ1(Λ) then [t ‖y− t‖] is a shortest (non-zero) vector
in L(B′). This leads to an instance of unique-SVP - an instance of SVP in which we are given the
additional guarantee that there is a certain ‘gap’ between λ1(L(B′)) and λ2(L(B′)). Note that, in
practise, one would choose the embedding factor to be smaller than ‖y− t‖ to (probabilistically)
maximise this gap. However, compared to alternative approaches for solving LWE, the efficacy of
the embedding approach is poorly understood at present with no good models (to the best of our
knowledge) to predict when the approach will succeed. It is known, however, that the presence of
a λ2/λ1 gap makes finding the shortest vector somewhat easier, with an exponential gap clearly
allowing disclosure of a shortest non-zero vector by application of LLL. With smaller gaps, the
success of the approach is known to be probabilistic [21]. The principle motivation for considering
this approach in addition to more well-known approaches for LWE is the obviation of a further
(though cheap) search phase.

3 A New Multivariate Quadratic Assumption and LWE with Small
Secrets

in this section we describe the public-key encryption scheme proposed by Huang, Liu and Yang
(HLY) [25] at PKC’12 as the well as the new hard problem underlying their scheme. We will revisit
the fact that the hardness of this new problem is related to the difficulty of solving a LWE-style
problem for a very small secret. In [25] the authors introduced a variant of the classical Polynomial
System Solving Problem (PoSSo).

Definition 3. Let f0, . . . , fm−1 ∈ Zq[x0, . . . , xn−1] be non-linear polynomials. PoSSo is the prob-

lem of finding – if any – s ∈ Zq
n

such that f0(s) = 0, . . . , fm−1(s) = 0.

It is well known [22] that this problem is NP-hard. Note that PoSSo remains NP-hard [22] even
if we suppose that the input polynomials are quadratics. In this case, PoSSo is also called MQ.
Huang, Liu and Yang proposed a variant of MQ where the monomials of highest degree (i.e., 2) in
the system have their coefficients chosen according to a discrete Gaussian distribution of standard
deviation ζ ∈ O (1) and centred on zero. Following [25], we denote this distribution by Φζ .

1 The
remaining coefficients (linear, and constant parts) are chosen uniformly at random. We denote

this distribution on Zq[x1, . . . , xn] by ZΦζq [x]. The problem introduced by Huang, Liu and Yang
will be the main concern of this work:

Definition 4 (MQ(n,m,Φζ , Hβ)). Let n be positive integer, m ∈ O (n), q be a polynomially
bounded prime, a constant β, 0 < β < q/2 and e be a secret vector in Hβ := [−β, . . . , β]n ⊆ Znq .

1 The parameter ζ is called α in [25] but this notation clashes with the standard notation for LWE.



We denote by MQ
(n)
s,Φ the probability distribution on Zq[x1, . . . , xn]m × Zmq obtained by sampling

p = (p1, . . . , pm) from ZΦζq [x]m, and returning (p, c) =
(
p,p(e)

)
∈ Zq[x1, . . . , xn]m × Zmq .

MQ(n,m,Φζ , Hβ) is the problem of finding s ∈ Hn
β given a pair

(
p,p(e)

)
←$ MQ

(n)
s,Φ.

The decision problem associated to MQ(n,m,Φζ , Hβ) is the task of distinguishing MQ
(n)
s,Φ from the

uniform distribution on Zq[x1, . . . , xn]m × Zmq .

Fact 1 As mentioned in [25], MQ(n,m,Φζ , Hβ) is rather close to LWE. Indeed, each
(
p,p(s)

)
←$

MQ
(n)
s,Φ can be mapped to a LWE instance. To do so, we just consider the matrix Ap ∈ Zm×nq

corresponding to the linear part of p. We then remark that each component of p(s)−Ap · s− p(0)

is the sum of n(n+1)
2 discrete Gaussians each having variance

(
(2β+1)2−1

12

)
· ζ2. From now, we

assume that this sum is a discrete Gaussian of variance γ2 = n(n+1)
2 ·

(
(2β+1)2−1

12

)
· ζ2 (centred at

zero).

It is proven in [25] that MQ(n,m,Φζ , Hβ) has decision to search equivalence. Such equivalence
makes the problem appealing to design an encryption scheme. The public-key of the scheme

proposed in [25] is a pair of the form
(
p,p(s)

)
= (p, c) ∈ ZΦζq [x]m × Zmq . To encrypt a bit b,

we choose r ∈ Hnλ := [−nλ, . . . , nλ]m ⊂ Zmq with λ being a new parameter. We then compute :

c =
(
Ap · r, 〈 r, c−p(0) 〉+ b · bq/2e

)
. Thus, each encryption of zero produces a LWE sample whose

error has variance: m ·n2λ ·γ2. As a consequence, we expect the noise to have size
√

2
π ·
√
m ·nλ ·γ.

Note that [25] also proposed a Key Encapsulation Mechanism (KEM) scheme, based on the same
new hard problem, but which we do not discuss here.

Regarding the security, [25] showed that breaking the semantic security of the encryption scheme
is equivalent to solving MQ(n,m,Φζ , Hβ). More precisely:

Theorem 2 ([25]). Let A be an adversary breaking the semantic security of the scheme working
in time T with advantage ε. Then, there exists a probabilistic algorithm B solving MQ(n,m,Φζ , Hβ)
in time at most T · 128

ε2 · (2β + 1) · (n2 log q)2, with success probability at least ε/(4 q).

A similar result holds for the KEM scheme, i.e., breaking the semantic security of the KEM scheme
allows to solve MQ(n,m,Φζ , Hβ).

Such reduction is then used to establish concrete parameters for the proposed encryption scheme.
The basic hypothesis for setting the parameter is to assume that solving p − p(s) = 0, for(
p,p(s)

)
←$ MQ

(n)
s,Φ, is essentially not easier than solving a random system of equations [25].

Assumption 1 (HLY Hardness Hypothesis) Solving MQ(n,m,Φζ , Hβ) is as hard as solving
a random system of m quadratic equations in n variables modulo q with a pre-assigned solution in
Hn
β .

Remark 2. The fact that the secret is in Hn
β implies that one can always add n equations of degree

2β + 1 of the form
∏
j∈Hβ (xi − j). Clearly, the evaluation of such equations on any s ∈ Hn

β will
be zero.

Arguably, this connection between the semantic security and hardness of PoSSo is the main dif-
ference between the HLY scheme and the classical encryption scheme based on LWE. Indeed, the



HLY scheme is very similar to a textbook LWE encryption scheme equipped with a Gaussian of
standard deviation

√
m · nλ · γ with a very small secret. A noteworthy difference lies in the fact

that we also consider small (i.e., of norm bounded by nλ) linear combinations of public samples.
In the classical LWE encryption scheme, we consider only linear combinations with coefficients in
{−1, 0, 1} of the public samples.

Assumption 1 allows to estimate the cost of the best attack against MQ(n,m,Φζ , Hβ). A well-
established approach to solve PoSSo is to compute a Gröbner basis [7,11,12]. The cost of solving a
(zero-dimensional, i.e., finite number of solutions) system of m non-linear equations in n variables

with the F5 algorithm [4,16] is O
((
n+Dreg
Dreg

)ω)
, where Dreg is the maximum degree reached during

the Gröbner basis computation, and ω is the matrix multiplication exponent (or the linear-algebra
constant) as defined in [47, Chapter 12]. We recall [48,46] that ω ∈ [2, 2.3727]).

In general, it is a hard problem to predict a priori the degree of regularity of a given system of
equations. However, Assumption 1 implies that the system of non-linear equations involved is no
easier to solve than semi-regular equations [4,5,6]. Precisely, Dreg is bounded from below by the

index of the first non-positive coefficient of:
∑
k≥0 ckz

k = (1−z2)m(1−z(2β+1))n

(1−z)n . This is the degree of

regularity of a system of m equations of degree 2 plus n equations of degree 2β+ 1 in n variables.2

From now on, we will denote by Tref(m,n, q) the cost of solving such system with F5 algorithm,
and by εref the success probability. Usually, a Gröbner basis computation always succeeds, but one
can relax this condition by randomly fixing variables. Precisely, a success probability εref allows
to fix

rref =

⌈
log2 β+1

(
1

εref

)⌉
variables for systems sampled according to MQ

(n)
s,Φ.

It is worth mentioning and commending that [25] propose concrete parameters for their scheme
(reproduced in Table 1). The parameters are chosen as follows. Assume there exist an adversary
A breaking the semantic security of the HLY encryption in time Tdist = 2` with advantage εdist =
2−s. According to Theorem 2, we can construct an algorithm B solving MQ(n,m,Φζ , Hβ) in
time Tsearch(Tdist, εdist, n, q) with success probability εsearch(εdist, q). From Assumption 1, the best
algorithm for solving MQ(n,m,Φζ , Hβ) works in time Tref(m,n−rref , q) with a success probability
εref . The parameters m,n, q are chosen such that

Tsearch(Tdist, εdist, n, q) < Tref(m,n, q) and εsearch(εdist, q) < εref .

Under the HLY hypothesis (Assumption 1), this means that no adversary can break the semantic
security of the scheme in time less than 2` with success probability better than 2−s.

4 Full Cryptanalysis of HLY Scheme

4.1 Analysis of the Parameters

In this part, we show that security and efficiency are essentially incompatible for HLY. To do so,
we derive a set of conditions on the parameters that would thwart known attacks against LWE-
style systems such as those discussed above. That is, we want to find parameters such that both
computing a Gröbner basis and lattice attacks (in particular the non-optimal Micciancio-Regev
approach) are exponentially hard in the security parameter τ .

Below, we recall the constraints on the parameters from [25]:

2 Note that this quantity can be explicitly computed for any value of n,m and β.



1. k · ζ · n2+λ ·m · β2 ≤ q/4 (to allow for correct decryption)
2. m · log(2nλ + 1) ≥ (n+ 1) log q + 2k (to ensure the subset sum problem is hard)
3. n,m, q, ζ, β (to satisfy the condition in the MQ assumption such that MQ(n,m, q, Ψζ , Hβ) is

hard to solve).

For the number of equations, we may restrict m = c · n where c is a constant (we remark that
the challenges proposed in[25] have c = 2). In this case, we can assume that MQ is hard (that
is, the cost of computing a Gröbner basis is exponential in the number of variables [4,5,6]. From
Condition 2, we then get :

m · log(2nλ + 1) ≥ (n+ 1) log q + 2k ≥ n log q,

c · n · log(2nλ + 1) ≥ n log q,

c · log(2nλ + 1) ≥ log q.

This means that 2nλ should be roughly (or at least) q1/c. Hence, the first condition yields:

k · ζ · n2+λ ·m · β2 ≤ q/4
k · ζ · n2+λ · c · n · β2 ≤ 2(c−2)ncλ

ζ · n2 · β2 ≤ (ck)−12(c−2)n(c−1)λ−1

as a bound on the noise in each of the m samples. As explained in Section 2.3, (heuristically)
lattice reduction will produce vectors of length

v = qn/m · δm0 = q1/c · δcn0 ≤ 2nλ · δcn0 .

By combining this with the above, we get a distinguishing advantage (as defined in (2)) of

exp

(
−πs

2v2

q2

)
= exp

(
−πs

24n2λδ2cn
0

q2

)
= exp

(
−2π2σ24n2λδ2cn

0

q2

)
= exp

(
−2π2σ24n2λδ2cn

0

4cn2cλ

)
,

= exp
(
−(4(1−c+ 1

2 )π2σ2n2λ(1−c)δ2cn
0 )

)
.

Now, we can write:

σ2 = ζ2 · n(n+ 1)

2
·
(

(2β + 1)2 − 1

12

)
≈ 1

6
· ζ ·

(
ζ · n2 · β2

)
Now, we have

ζ /
(ck)−12(c−2)n(c−1)λ−1

n2 · β2

Hence we can write

σ2 /
1

6
· n2 · β2 ·

(
(ck)−222(c−2)n2(c−1)λ−2

n4 · β4

)
=

(ck)−222(c−2)n2(c−1)λ−4

6β2

Hence we can lower-bound the distinguishing advantage by:

exp
(
−(4

3
2−cπ2σ2n2λ(1−c)δ2cn

0 )
)

= exp

(
− π2

12β2
· (ck)−2n−4 · δ2cn

0

)



We now introduce a parameter τ , representing the bit-complexity of solving such instances using
the model of Lindner and Peikert. We then replace δ0 by 2(1.8/(τ+78.9)) (employing (1) to deliver
an estimate of the number of bit operations required to obtain such a root Hermite factor) and
require that the advantage is constant in terms of τ . In other words

exp

(
− π2

12β2
· (ck)−2 · n−4 · (2(1.8/(τ+78.9)))2cn

)
= d (3)

For example, for τ = 80, with β = 2, c = 2, k = 12 and d = 0.5, setting n = 1140 satisfies this
condition. For τ = 128, the same parameters require n = 1530. We note, however, that setting
n = 1140 already results in a public key of considerable size (optimistically setting ζ = 10):

m ·
(
n+2

2

)
· log2(2πζ)

8 · 10243
≈ 1.03 GB,

while setting n = 1530 results in a public-key of size 2.49 GB.

Furthermore, we stress that these parameters do not take potential other attack vectors into
account and should be viewed as a somewhat loose upper-bound on the complexity of solving such
instances. In particular, this discussion does not reflect the possibility of exploiting the small secret
for example through modulus reduction (Remark 1).

4.2 Practical Attacks against HLY Challenges [25]

From the discussion in the previous section 4.1 we expect that all parameters suggested in [25]
should be weak against a lattice-reduction attack (the number of variables being much smaller
that what is required by (3)). The goal of this part is to provide experimental results to confirm
the previous analysis. To mount the attack, we also make use of the fact that we can look at the
hard problem from [25] as an LWE instance and then solve these instances using lattice reduction.
In particular, we consider all the parameter sets proposed in [25] (Table 1).

Case n m ζ β q Hardness (T, µ)

1 200 400 10 2 ≈ 274 (2156, 2−100)

2 256 512 10 2 ≈ 276 (2205, 2−104)

Table 1. Suggested parameters in [25].

The column “Hardness” (T, µ) is a strict lower bound [25] on the complexity of solving MQ(n,m,Φζ , Hβ)
under Assumption 1. The parameters of Case (1) are chosen such that no adversary running in
time less than 282 can break the semantic security of the HLY bit-encryption scheme with advan-
tage better than 2−11. For the KEM, Case (1) provides a security of (285, 2−10) (which denotes
(time, advantage). Case (2) was expected to provide a security level of (2130, 2−11) for the bit
encryption scheme (and a security level of (2130, 2−10) for the KEM scheme).

Case (1). We have m = 400 equations in n = 200 unknowns. Coefficients for quadratic terms are
chosen from a discrete Gaussian with standard deviation ζ = 10 and the secret is in [−β, . . . , β]
for β = 2. If we ignore all quadratic terms and only consider the linear part, we have an LWE-style
instance with m = 400, n = 200, q = 18031317546972632788519 and standard deviation

γ =

√
n · (n+ 1)

2
· ζ2 ·

(
(2β + 1)2 − 1

12

)2

=

√
200 · 201

2
· 102 ·

(
52 − 1

12

)2

≈ 211.47.



In this instance, the optimal sub-lattice dimension for applying LLL is
√
n log(q)/ log(1.0219) ≈

688. However, applying LLL in dimension 400 is expected to return a vector of norm v = qn/m·δm0 ≈
249.47 which is more than sufficient to distinguish between such LWE samples and random with

advantage ε = exp
(
−πs

2v2

q2

)
≈ 0.9999.

A slightly more efficient variant is to perform modulus reduction before performing LLL in order
to keep coefficients small. We may apply modulus reduction technique (Remark 1) with the above
parameters and pick p ≈ 265.00 and γ ≈ 23.59. Applying LLL in dimension 400 is expected to
return a vector of norm v = 245.00 which translates into a distinguishing advantage of ε ≈ 1.
Finally, we may also consider the embedding attack as described in Section 2.3. We apply LLL to
the 401 × 401 extended primal lattice and using a (conservative) embedding factor

√
m · σ. The

λ2/λ1 gap in this case is approximately 222.94.

Case (2). We have m = 512 equations in n = 256 unknowns modulo q ≈ 275.47. Coefficients for
quadratic terms are chosen from a discrete Gaussian with standard deviation ζ = 10 and the secret

is in [−2, . . . , 2] for β = 2. This gives a standard deviation γ =

√
256·257

2 · 102 ·
(

52−1
12

)2 ≈ 211.82.

Applying LLL in dimension 512 is expected to return a vector of norm v = qn/m · δm0 ≈ 253.74

which is more than sufficient to distinguish between such LWE samples and random with advantage

ε = exp
(
−πs

2v2

q2

)
≈ 1.

Using modulus reduction, we pick p ≈ 266.36 and γ ≈ 23.76. Applying LLL in dimension 512 is
expected to return a vector of norm v = 216.00 which translates into a distinguishing advantage of
ε ≈ 1.

The λ2/λ1 gap in the embedding attack is comparable to that in Case 1, being approximately
223.36.

Experimental Verification. Since the attacks proposed in this section are practical and rely on
some heuristic assumptions, we implemented the relevant steps and verified their behaviour. That
is, we first confirmed the noise distribution indeed is close to a discrete Gaussian with standard
deviation γ. Secondly, we confirmed that LLL produces vectors short enough to distinguish such
LWE samples from random with probability ≈ 1. Finally, we confirmed that the embedding attack
indeed recovers the noise vector.

Noise distribution. In Figure 1 we plot the observed distribution of 4096 samples obtained by

summing up n·(n+1)
2 (n = 200) products of gi ·bi0 ·bi1 where gi are sampled from a discrete Gaussian

with standard deviation ζ = 10 and bij are samples uniformly from [−β, . . . , β] for β = 2 and the

density plot for a Gaussian distribution with standard deviation γ =

√
n(n+1)

2 ·
(

(2β+1)2−1
12

)2

· ζ2.

From Figure 1, we take that approximating the noise by a Gaussian with standard deviation γ is
permissible.

Quality of LLL output. We also ran the LLL algorithm as implemented in fpLLL [38,?] on lat-
tice instances as in Case (1), i.e., with m = 400, n = 200, q = 18031317546972632788519. More
precisely, we ran LLL (using Sage’s default parameters [45]) on the 400 × 400 dual lattice. The
shortest vector recovered by LLL had norm 249.76 while we predicted a norm of 249.47. The entire
computation took 26 hours on a single core.
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Fig. 1. Distribution of “noise” terms (in gray) vs. N (0, γ2).

Embedding attack. We also implemented the embedding attack on lattice instances as in Case (1)
and as above, applying LLL to the 401 × 401 extended primal lattice and using a (conservative)
embedding factor

√
m · σ. The λ2/λ1 gap in this case is approximately

vol(L(B))1/m · Γ (1 +m/2)1/m

√
2πmσ

≈
q
m−n
m

√
m

2πe√
2mσ

≈ 222.94.

The attack recovered the ‘noise’ from the public key, allowing the private key (or an equivalent)
to be recovered by simple linear algebra. We note that this attack obviates the need for a separate
search-to-distinguishing phase, as required in the dual-lattice method, the attack taking again ∼26
hours using a single core.

We also ran the embedding attack on Case 2, with application of LLL successfully disclosing the
‘noise’ vector and hence the private key in ∼98 hours using a single core.

5 Conclusion & Future Work

We presented a review and practical cryptanalysis of the public-key encryption scheme of Huang,
Liu and Yang by exploiting the close connection between the hard problem underlying the scheme
and the LWE problem, demonstrating that the (T,Adv) = (2156, 2−100) assumptions of Huang,
Liu and Yang are optimistic by achieving a distinguishing advantage of ≈ 1 and recovering the
private key in roughly a day using a single core of an i7 CPU. We further examine the possibility
of finding a set of parameters for the scheme which would offer the desired security level against
lattice attacks, reaching the conclusion that such an instantiation would only be possible at the cost
of an enormous public key size even when not taking into account additional structural properties
such as the presence of a small secret.
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4. Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et
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