
Partially blind password-based signatures using
elliptic curves

Kristian Gjøsteen

July 31, 2013

Abstract
Password-based signatures allow a user who can only remember a pass-

word to create digital signatures with the help of a server, without reveal-
ing the messages to be signed to the server.

Certain applications require the ability to disclose part of the mes-
sage to the server. We define partially blind password-based signatures
and construct a scheme based that we prove secure, based on a novel
computational problem related to computing discrete logarithms.

Our scheme is based on Nyberg-Rueppel signatures. We give a variant
of Nyberg-Rueppel signatures that we prove secure based on our novel
computational problem.

Unlike previous password-based signature schemes, our scheme can be
instantiated using elliptic curve arithmetic over small prime fields. This
is important for many applications.

1 Introduction
Digital signature schemes are useful, both as primitives for use in cryptographic
protocols and directly for creating legally meaningful electronic signatures. A
digital signature scheme poses two key management problems, that of distribut-
ing the (public) verification key and keeping the (private) signing key both
available and secret.

Modern computers are generally considered insecure, and if a signing key
is stored on a compromised computer, the key is vulnerable to theft. The
traditional approach to prevent theft is to store the signing key on a smart card
(or equivalent hardened device) that the owner of the key controls physically.
The smart card is connected to a computer and signs the messages the computer
gives it. Note that unless special care is taken, a smart card only protects against
key theft, not key misuse by a compromised computer.

Smart cards have never been easy to deploy. Today, many modern computing
devices such as smart phones and tablets cannot be connected to smart cards.
This means that smart cards are becoming even more difficult to deploy.

Many applications do not require high security levels, and perhaps user-
chosen passwords and one-time codes sent out-of-band (e.g. SMS messages)

1

are considered sufficient. A low baseline for security may also be sufficient as
long as motivated users can do extra (maybe one-time) work to increase their
security. It therefore makes sense to ask if alternative solutions to smart cards
are possible.

One possible solution is to have users authenticate to a central server which
then signs messages on behalf of the users. Users are comfortable with passwords
and a careful implementation could provide reasonable security [6]. However,
there are obvious privacy issues, and one may also consider the risk of a corrupt
server impersonating users. The risk of corrupt servers could be mitigated by
sharing the signing key [9] between independently run servers or using tamper-
resistant hardware [11], but finding convincingly independent parties is often
difficult.

Gjøsteen and Thuen [7] provide a primitive that can be used to reduce the
trust requirements in such schemes, namely password-based signatures. The
idea is that the signing operation should depend on a user-chosen password in
such a way that signatures cannot be created without the user’s password. The
user can then protect against a corrupt server by choosing a good password.

The naïve approach is to treat the password as a seed to a pseudo-random
generator which is then used to generate a key for a traditional signature scheme.
This approach is too simple. The system must provide some security even
when passwords are chosen according to low-entropy probability distributions.
Because guesses can be checked against the public key, exhaustive search will
work.

Password-based signatures must rely on a server to help generate signatures.
The general strategy is that unlike the trusted third party discussed above,
the server does not have the entire signing key, just a share of it. The user’s
password is the second share, and generating a signature is done using a two-
party protocol.

There are three natural security goals for a password-based signature scheme:

• it should be impossible to generate a signature without the server’s partic-
ipation, so that any authentication systems restricting access to the server
will be effective;

• it should be impossible for the server to generate a signature without first
guessing the user’s password, so that users can protect themselves against
corrupt servers by choosing good passwords; and

• it should be hard for the server to say anything about which messages the
user signs, to protect the user’s privacy.

Application requirements presents us with two challenges. First of all, we
want to be able to deploy such a scheme to a variety of devices. This is possible
if we can execute the required protocols using Javascript code run inside modern
web browsers.

Unfortunately, it is difficult to implement fast large integer arithmetic in
Javascript, which is a problem for modern cryptography. (Future language de-

2

velopments along the lines of Webcrypto could change this, but reliable imple-
mentations are not expected soon.) However, it is possible to use cryptography
based on ordinary elliptic curves over small prime fields in Javascript [8]. Com-
pared to native code, point multiplications are expensive, but feasible.

Gjøsteen and Thuen [7] provided two schemes, one based on bilinear pairings
and one based on RSA. Unfortunately, the bilinear scheme is too computation-
ally intensive to be practical in our setting. The RSA scheme’s signing algorithm
might be feasible, but joint RSA key generation is required, which is too com-
putationally expensive and not feasible.

A second challenge is that in a trade-off between privacy and security, certain
applications [6] need to disclose part of the message to be signed to the server.
Password-based signatures do not satisfy this application requirement.

Our Contribution In this work we extend the notion of password-based
signatures to partially blind password-based signatures, allowing the user to
disclose part of the message to be signed to the server. We design and analyse a
partially blind password-based signature that can be based on ordinary elliptic
curves over small prime fields.

Our scheme is based on Nyberg-Rueppel signatures [12]. Signature verifica-
tion costs two point multiplications. The key generation protocol requires one
point multiplication by both parties. Generating a signature again costs the
server one point multiplication and the user three point multiplications (since
the user must verify the signature before accepting).

We have not been able to find a proof of security based on standard com-
putational assumptions, but we have identified a problem related to computing
discrete logarithms that allows security proofs. Based on this problem, we are
also able to prove the security of a modified Nyberg-Rueppel signature scheme
in the random oracle model.

We provide some evidence for the hardness of this problem by proving that
it is hard in the generic group model. Obviously, this does not guarantee that
the problem is hard in the real world for any reasonable parameter size, but
given the similarity with the discrete logarithm problem, it seems reasonable to
assume its hardness for common parameter sizes.

We note that an additional benefit of identifying such problems is to identify
exactly what effects of the random oracle model we rely on, and at the same
time how the cryptosystem could be attacked by mathematical analysis.

Related Work Password-based signatures are to a certain extent inspired by
blind signatures, first introduced by Chaum [4], and later formalized by Juels,
Luby and Ostrovsky [10]. Partially blind signatures were proposed by Abe and
Fujisaki [1].

Variants of Nyberg-Rueppel signatures have been analysed previously [2]
directly in the generic group model. In contrast, we identify a computational
problem and only use the generic group model heuristic to analyse the com-
putational problem. The problem with the direct approach is that we know

3

there are cryptographic schemes that can be proven secure in the generic group
model, yet cannot be instantiated securely. In other words, the generic group
model heuristic is far from perfect. We believe that the generic group model is
a much better heuristic analysis tool when applied to computational problems
than when applied to cryptosystems.

Blind signatures based on Nyberg-Rueppel signatures were proposed by Ca-
menisch, Piveteau and Stadler [3]. As can be seen, our construction is quite
different. We use hash functions extensively, and we have a two-move protocol,
while the earlier blind signature scheme is a three-move protocol. This is due
both to the improved understanding of security requirements, and to the fact
that security requirements for password-based signatures can be simpler than
security requirements for blind signatures.

Many other approaches to useable digital signatures have appeared in the
literature. For instance, Damgård and Mikkelsen [5] consider a scenario where
a user has access to second (less capable) terminal that communicates with the
main terminal. The main practical problem is that communication between
terminals using wireless technologies is surprisingly difficult, even today.

As mentioned above one could probably also approach the problem by using
multiple signing servers working together [9]. One downside of this approach is
that it requires a more expensive infrastructure and several rounds of computa-
tion.

Overview Section 2 augments the existing definition [7] of a password-based
signature scheme to include partial blindness and discusses the relevant security
goals. We also improve slightly on the existing notion of unframeability.

Section 3 defines our novel problem and analyses it in the generic group
model. Section 4 uses this problem to provide a novel analysis of a modified
Nyberg-Rueppel signature scheme.

Section 5 defines our new partially blind password-based signature scheme
and proves it secure under the problem defined in Section 3. We note that
the proof strategy used is very similar to the one used to prove the modified
Nyberg-Rueppel scheme secure in Section 4.

Section 6 raises certain issues to be aware of when using the password-based
signature primitive to design larger systems. It also outlines some issues for
future work.

2 Partially Blind Password-based Signatures
The following definitions are based on those in Gjøsteen and Thuen [7]. The
functional definitions have been extended to include partial message disclosure.
We have also slightly improved the definition of non-frameability.

We consider the case where a user wants to sign something, but since he can
only store a password, not a signing key, he needs the assistance of a server to
sign.

4

Formally, a password-based signature scheme consists of a verification algo-
rithm and two two-party protocols between a user U and a server S, one for key
generation and one for signing. There may also be an additional setup algo-
rithm, run by a trusted third party, perhaps for choosing common parameters
or sampling a common reference string.

In the key generation protocol, U gets a secret password as input. When
the protocol ends, U outputs a verification key and S outputs a verification key
and a signing key share.

In the signing protocol, U gets a verification key, a two-part message and a
secret password as input, and S gets the verification key, the second part of the
message and a signing key share as input. When the protocol ends, U outputs
a signature on the two-part message, or ⊥.

The verification algorithm takes as input a verification key, a two-part mes-
sage and a signature, and outputs either 1 or 0.

The completeness requirement is that, when the verification key and the
signing key share were generated by the key generation protocol, and the sig-
nature was generated by the signing protocol, the verification algorithm will
output 1.

We shall restrict our attention to two-move signing protocols following the
traditional pattern request–issue–unblind. A request algorithm R gets as input
a verification key, a two-part message and a password and outputs a request
and a state. An issue algorithm I gets as input a message part, a verification
key, a signing key share and a request, and outputs a blinded signature. An
unblind algorithm UB gets as input a state and a blinded signature, and outputs
a signature.

The obvious protocol runs as follows: U runs R and sends the request to S,
which runs I on the request. Then S sends the blinded signature to U , which
in turn runs UB to get the final signature. The completeness requirement for
the signing protocol translates into natural completeness requirements for the
three algorithms.

2.1 Security Notions
There are three natural security notions for password-based signatures. Re-
stricted blindness says that the server should not learn anything about the part
of the message it does not get as input. Non-forgeability says that a user should
not be able to sign a message without access to the server. And non-frameability
says that server cannot forge signatures without first guessing the user’s pass-
word. (The assumption is that it will always be much easier to guess the user’s
password than to break the underlying mathematical problems.)

Passwords are bit strings sampled from some (possibly low-min-entropy)
probability space. We say that a probability space PW is f -cumulative if any
algorithm using at most T test queries will guess a password sampled from PW
with probability at most f(T).

We restrict attention to two-move signing protocols as discussed above, since
this significantly simplifies both definitions and analysis.

5

We also limit ourselves to considering restricted blindness. Gjøsteen and
Thuen [7] define stronger notions of blindness where the adversary is allowed
to see the signatures generated. For blind signatures, where the idea is that
there are many users per signing key, these stronger blindness notions are very
important for applications.

For password-based signatures, however, where there is only one user, these
notions are less useful. Once the adversary sees the signature on the message,
all that remains to be discovered is exactly when the signature was generated.
We expect that most applications will include some form of time stamp in the
signatures, rendering this issue moot. However, it is conceivable that there are
applications that require stronger forms of blindness. Our scheme will not be
suitable for such applications.

Restricted Blindness A corrupt server running the signing protocol should
not be able to say anything about the message included in a request, based on
the request only.

We consider the following game between an adversary and a simulator. First,
the adversary gives the simulator a verification key and a password. The simu-
lator flips a coin b. Then the adversary sequentially gives the simulator pairs of
messages (m(0)

1 ,m2), (m
(1)
1 ,m2). The simulator replies to each pair with requests

for (m(b)
1 ,m2) and (m(1−b),m2).

The adversary wins if in the end he outputs a bit b′ that equals the simula-
tor’s bit b.

The adversary’s advantage is the distance between the probability that he
wins and 1/2. We say that the system is (T, n, ε)-restricted-blind if any adversary
using time at most T and making at most n signing requests has advantage at
most ε.

Non-forgeability A corrupt user running the signing protocol n times should
not be able to produce n+ 1 valid signatures.

We consider the following game between an adversary and a simulator. First,
the key generation protocol is run with the adversary playing the user role and
the simulator playing the server. Then the adversary runs and may make n
requests to the simulator, upon which the simulator runs the issue algorithm I
with appropriate input and returns the blinded signatures.

The adversary wins if in the end he outputs n+ 1 valid signatures on n+ 1
distinct messages.

The adversary’s advantage is the probability that he wins. We say that
the system is (T, n, ε)-non-forgeable if any adversary using time at most T and
making at most n signing requests has advantage at most ε.

Non-frameability A corrupt server should not be able to sign without first
guessing the user’s password.

We consider the following game between an adversary and a simulator, con-
ditional on a f -cumulative probability space PW. First, the simulator samples

6

a password from PW and runs the key generation protocol with the adversary
as the server. The adversary then asks the simulator to make up to n signature
requests. After the adversary replies to these requests, the simulator unblinds
the signatures and passes them on to the adversary.

The adversary wins if he eventually outputs a signature on a message that
the user has not made a request for.

The adversary’s advantage is the probability that he wins this game. We say
that a system is (T, n, ε)-non-frameable if for any f -cumulative password space
PW any adversary using time at most T has advantage at most ε+ f(T).

Summary A password-based signature scheme is (T, n, ε)-(restricted-)secure
if it is (T, n, ε)-(restricted-)blind, -non-forgeable and -non-frameable.

3 The Underlying Problem
We shall now define a novel computational problem that is sufficient to prove
a modified version of Nyberg-Rueppel signatures and our scheme secure. The
problem is essentially to find the discrete logarithm of the product of a freely
chosen group element and a random power of a challenge element.

The purpose of defining this problem is to identify exactly what effects of
the random oracle model we rely on, and which group properties are needed.

Let G be a cyclic group of order q. Let g be a generator. Even though
the intention is that G is the rational points on an elliptic curve over a finite
field under the usual group law, we use multiplicative notation for G, since that
makes our equations easier to read.

Problem 1. Suppose y is a group element chosen uniformly at random. We
have access to an oracle that

• on input of a challenge r (which may have been queried before), chooses a
random integer t, 0 ≤ t < q, records (r, t) and replies with t.

The problem is to find an s such that the relation

gs = ryt

holds for some pair (r, t) recorded by the oracle.

We say that an adversary is a (T, ε)-adversary against this problem if the
adversary uses time at most T , makes at most T queries to the oracle and
outputs a valid relation with probability at least ε.

It is clear that this problem is no more difficult than computing discrete
logarithms. It is certainly also plausible that it is no easier than computing
discrete logarithms, but we do not believe it is possible to prove this.

7

Generic Model Analysis We consider Problem 1 in the generic group model.
This does not prove that the problem will be hard for a specific group, but at
least we know that the problem is not obviously easy.

A generic group algorithm is an algorithm that does not care about the
representation of group elements. Formally, we consider a randomly chosen
bijection σ : {0, 1, 2, . . . , q − 1} → Zq. The generic group algorithm does not
have direct access to σ, but may query an oracle with

• a single element z, to which the oracle reply is σ−1(−σ(z)); or

• a pair of elements (z, z′), to which the oracle reply is σ−1(σ(z) + σ(z′)).

The generic algorithm is typically given σ−1(1) as input.
An alternative oracle is one that maintains a partial injection σ : {0, 1, 2, . . . , q−

1} → Zq. When a query involves an element z not in the domain of σ, or the
result u is not in the image of σ, it chooses u or z at random from the the
elements not in the image or domain of σ, and extends σ with z 7→ u. This
oracle is more convenient for proofs.

Theorem 1. Any generic group algorithm making at most n queries to the group
oracle and challenge oracle has probability at most n(n+ 1)/2q of outputting a
valid triple.

Proof. We phrase the proof as a sequence of games, and begin with the game
where the generic group algorithm interacts with the generic group oracle as
well as the challenge oracle. We let σ(y) = a.

We modify this game by switching to the alternative generic group oracle, as
well as adding a second representation of group elements, ρ : {0, 1, 2, . . . , q−1} →
Zq[X], where ρ(g) = 1 and ρ(y) = X.

It can happen at some point that we compute a value u+ vX ∈ Zq[X] that
is not in the image of ρ, but the corresponding value u+va is in the image of σ,
say σ(z) = u + va. If this happens, we stop the game, which is an exceptional
event.

In this case, ρ(z) = u′+v′X, which means that a is a zero of the polynomial
u − u′ + (v − v′)X. Until such a collision happens, the generic algorithm only
knows what the value of a cannot be. After n queries without a collision,
there are at most n(n− 1)/2 linear polynomials that a cannot be be a zero of.
We conclude that the probability of the exceptional event is upper-bounded by
n(n− 1)/2q.

Suppose the generic algorithm does output a triple (r, s, t) that the simulator
accepts, and that ρ(r) = u+ vX. Since ρ is injective, we get that

s ≡ u+ vX + tX (mod q).

It follows that v ≡ −t (mod q).
Since r was queried in a challenge query before t was sampled, we know

that v was fixed before t was chosen at random. Therefore, the probability
that v ≡ −t (mod q) is 1/q. Since there are at most n challenge queries, the
probability of this happening is upperbounded by n/q.

8

It now follows that the adversary’s probability of success in this game is at
most n/q, from which the claim follows.

4 Modified Nyberg-Rueppel Signatures
The Nyberg-Rueppel signature scheme [12] is similar to ElGamal and DSA.
Consider the following modified Nyberg-Rueppel signature scheme, using two
hash functions H1 : {0, 1}∗ → G and H2 : G → {0, 1, . . . , q − 1}. We note that
for elliptic curves, it is easy to construct efficient hash functions from bit strings
into the group.

Key generation chooses a random number a from {0, 1, 2, . . . , q − 1} as the
signing key, and computes y = ga as the verification key.

To verify a signature (r, s) on a message m using verification key y, we check
the verification equation

H1(m)gs
?
= ryH2(r).

We use this specific verification equations because it slightly simplifies the pre-
sentation. Other equivalent equations could improve computational efficiency.

To sign a message m using signing key a, choose a number k at random from
{0, 1, 2, . . . , q − 1}, compute r = H1(m)gk and s = k +H2(r)a. The signature
is (r, s).

A (T, n, ε)-adversary against the signature scheme is an adversary using at
most time T , making at most n queries to a signature oracle, that has probability
ε in producing a valid forgery.

The security proof begins with the standard signature game. The main
change is to the signing oracle so that instead of using the signing key, it tam-
pers with the H2 hash function. The only complication is that depending on
the adversary’s successful forgery, there are two possibilities for extracting the
required relation, but which to use must be decided before the adversary’s pro-
duces his forgery. This accounts for the halving of the advantage.

Theorem 2. Given a (T, n, ε)-adversary against the signature scheme, we can
construct a (T, ε/2− T 2/q)-adversary against Problem 1.

Proof. We begin with a game between the signature game simulator and the
adversary. First we subsume the random oracles inside the simulator.

Next, we change the signing oracle. Note that the adversary interacting
with the original signing oracle expects s to be uniformly distributed. Instead
of choosing r and computing s, the simulator chooses random s and t, computes
r using the formula

r = H1(m)gsy−t

and programs the H2 oracle to hash r to t. The only way this can fail is if
the programming of the hash oracle fails, that is, if the H2 oracle has already
been queried or programmed at r. Since r is chosen uniformly at random, this
happens with probability at most nT/q ≤ T 2/q.

9

If the simulator ever encounters a collision in H1, it stops. The probability
that this happens is upperbounded by T 2/q.

Next, we change the H1 oracle, so that when it is asked to hash a messagem,
it does not just choose a random group element as the hash value, but instead
chooses a random number u and uses either yu or gu as the hash value.

If the adversary interacting with the original simulator succeeds with prob-
ability ε, an adversary interacting with our modified simulator succeeds with
probability at least

ε′ = ε− (T 2/q + T 2/q) = ε− 2T 2/q.

We now see that we have a simulator that chooses y uniformly at random
at the start, that upon queries for r responds with a random integer t. The
only remaining issue is how to convert the adversary’s signature to the required
(r, s, t)-relation.

An adversary interacting with our modified simulator that successfully cre-
ates a valid forgery (r, s) on a message m, will either use an r that was first
queried to the H2 oracle, or an r from a signature returned by the signing oracle.

In the former case, if messages have been hashed to known (to the simulator)
powers of g, the verification equation for the valid forgery then becomes

ryH2(r) = H1(m)gs = gugs.

In other words, we have the required relation.
In the latter case, there was a reply (r, s′) on a signing request for the message

m′ (which cannot equal m, since then s = s′). In this case, if m and m′ have
been hashed to yu and yu

′
, respectively, we have that

H1(m)gs = ryH2(r) and H1(m
′)gs

′
= ryH2(r).

Combining the two equations, we get

H1(m)gs = H1(m
′)gs

′
,

or
yu−u

′
= gs

′−s.

Since there are no collisions in H1, we can recover logg y, which allows us to
easily generate a relation of the required form.

Depending on how we construct the hashes of messages, we have two adver-
saries for our problem. Choosing between them at run-time with probability
1/2 yields a combined adversary with the claimed advantage.

5 Our Construction
Our construction is based on a slightly modified Nyberg-Rueppel verification
equation, where we add randomness before hashing the message. To accomodate

10

the revealed part of the message, the domain of the hash function H2 must be
G× {0, 1}∗, not just G.

The key generation protocol is quite simple, and requires a hash function
H4 : G → {0, 1}l, where we shall assume that 2l < q. The user computes its
part of the verification key yU = gH3(pw). The server chooses its signing key
share a uniformly at random from {0, 1, 2, . . . , q−1} and computes its part of the
verification key yS = ga. Both parties commit to their part of the verification
key by sending H4(yU) / H4(yS) to the other party. Afterwards, both parties
open the commitments by sending yU / yS to the other party. The verification
key is y = yUyS .

To verify a signature (k0, r, s) on a two-part message (m1,m2) using the
verification key y, we check the verification equation

H1(m1||k0)gs
?
= ryH2(r,m2).

The request algorithm R chooses a random string k0 of length l and a random
integer k1 ∈ {0, 1, 2, . . . , q − 1}. It computes the request r0 = H1(m1||k0)gk1 .
The state is y, m1, m2, k0, k1 and pw .

The issue algorithm chooses a random integer k2 ∈ {0, 1, 2, . . . , q − 1} and
computes r = r0g

k2 and s0 = H2(r,m2)a + k2 mod q and outputs the blinded
signature (r, s0).

The unblind algorithm computes s = s0 + H2(r,m2)H3(pw) + k1 mod q,
verifies that the verification equation holds, and outputs the signature (k0, r, s).

The system is complete, since

H1(m1||k0)gs = H1(m2||k0)gk1+k2g(a+H3(pw))H2(r,m2) = ryH2(r).

5.1 Security Analysis
The security claim for our system is captured in the following theorem. It follows
from the Propositions 1–3 below, proving blindness, non-forgeability and non-
frameability.

Theorem 3. Given a (T, n, ε)-restricted-adversary against the scheme, we can
construct a (T, ε/2− 5T 2/2l+1)-adversary against Problem 1.

Restricted blindness Restricted blindness is much easier than than full
blindness, since we do not have to worry about the complete signature, only
the request. For our scheme, we observe that the request is statistically inde-
pendent of the message, and blindness is immediate. We also note that our
scheme does not achieve blindness.

Proposition 1. The scheme is (T, n, 0)-restricted-blind.

Proof. A request r0 is distributed uniformly at random and is independent of
the message. Any adversary that sees any number of requests will therefore be
correct exactly half the time and the claim follows.

11

Non-forgeability The proof of non-forgeability is very similar to the security
proof for the modified Nyberg-Rueppel scheme. The main new idea is that
we tamper with the key generation protocol to force a suitable value for the
verification key, which means that we can derive the appropriate relation from
the list of signatures the adversary generates. As before, we issue signatures by
tampering with the H2 oracle.

Proposition 2. Given a (T, n, ε)-adversary against non-forgeability, we can
construct a (T, n, ε/2− 5T 2/2l+1)-adversary against Problem 1.

Proof. We begin with a game between the non-forgeability simulator and the
adversary. First we subsume the random oracles inside the simulator.

Next, we change the signing oracle. Note that the adversary interacting
with the original issue algorithm expects s0 to be randomly distributed and
that ryH2(r,m2) = r0g

s0y
H2(r,m2)
U . When our simulator receives a request r0, it

chooses random s0 and t, computes r using the equation

r = r0y
−tgs0ytU ,

and programs the H2 oracle to hash (r,m2) to t. The only way this can fail
is if the programming of the hash oracle fails, that is, if the oracle has already
been queried at (r,m2). Since r is chosen at random, the probability that this
happens is upperbounded by Tn/q.

If the simulator ever encounters a collision in H1 or H2, it stops. The
probability of this happening is upperbounded by T 2/q.

Next, we change the key generation protocol as follows. When the simulator
receives the adversary’s commitment, it checks if the commitment has exactly
one preimage. If it has no preimages or more than one, we stop. The probability
that the latter happens is upperbounded by T 2/2l, where l is the length of the
commitments. The probability that the adversary will be able to complete the
protocol if there is no preimage is upperbounded by T/2l.

The next change is that the simulator chooses y at random. Instead of
committing to yS , it sends a random hash value. After the simulator has deduced
yU , it computes yS = y/yU and programs the H4 oracle accordingly. This
programming fails only if H4 has been queried at yS before, the probability of
which can be upperbounded by T/q.

Finally, we change the H1 oracle, so that when it is asked to hash a message
m1||k0, it does not just choose a random group element as the hash value, but
instead either chooses an exponent u and uses gu as the hash value, or chooses
two exponents u and v and uses guyv as the hash value.

If the adversary interacting with the original simulator succeeds with prob-
ability ε, an adversary interacting with our modified simulator succeeds with
probability at least

ε′ = ε− (Tn/q + T 2/q + T 2/2l + T/2l + T/q) ≥ ε+ 1/q − 5T 2/2l.

We now see that we have a simulator that chooses y uniformly at random
at the start, that upon queries for r (and m2) responds with a random integer

12

t, and at most n times receives a request r0 for which it finds (r, s, t), but t was
chosen before r. The only remaining issue is how to convert the adversary’s
signatures to the required (r, s, t)-relation.

An adversary interacting with our modified simulator that creates n+1 valid
signatures on n+1 distinct messages, will either use n+1 distinct r’s, or produce
signatures on two distinct messages that have the same r.

In the former case, if messages have been hashed to known (to the simulator)
powers of g, we get from each signature a distinct relation

gs+u = ryH2(r,m2).

At most n of those relations will involve an r for which our simulator chose t
before it selected r. For at least one relation, t must have been chosen randomly
in response to r. In other words, we have the required relation.

In the latter case, we have two distinct message pairs (m1,m2) and (m′1,m
′
2)

with signatures (k0, r, s) and (k′0, r, s
′). If m1||k0 = m′1||k′0, then m2 6= m′2 and

the verification equations for the two signatures give us

gs−s
′
= yH2(r,m2)−H2(r,m

′
2),

Since there are no collisions in H2, we can recover logg y, which allows us to
easily generate a relation of the required form.

Assume that m1||k0 6= m′1||k′0. If m1||k0 and m′1||k′0 have been hashed to
guyv and gu

′
yv

′
, respectively, we get that

H1(m1||k0)gs = gs+uyv = ryH2(r,m2) = ryH2(r,m
′
2)yH2(r,m2)−H2(r,m

′
2)

= H1(m
′
1||k′0)gs

′
yH2(r,m2)−H2(r,m

′
2)

= gs
′+u′

yv
′
yH2(r,m2)−H2(r,m

′
2).

There are no collisions in H1, so we know that the pairs (u, v) and (u′, v′) are
distinct. Since v and v′ are chosen independently and uniformly at random, we
may consider the difference v − v′ mod q to be chosen uniformly at random.

The adversary has no information about v and v′. Therefore, the difference
H2(r,m2) −H2(r,m

′
2) mod q (which to a certain extent may be chosen by the

adversary) is independent of the difference v− v′ mod q. It follows that we may
consider

v − v′ − (H2(r,m2)−H2(r,m
′
2)) mod q

to be chosen uniformly at random, which means that it will be zero with prob-
ability 1/q. When this value is non-zero, we can recover logg y, which allows us
to easily generate a relation of the required form.

Depending on how we construct the hashes of messages, we have two adver-
saries for our problem. Choosing between them at run-time with probability
1/2 yields a combined adversary with the claimed advantage.

13

Non-frameability The proof of non-frameability is very similar to the proof
of non-forgeability. Instead of tampering with the H2 oracle, we now use the
randomness included with the message in H1 to fake signing messages. Note
that the adversary now produces only one signature.

Proposition 3. Given a (T, n, ε)-adversary against non-frameability, then we
can construct a (T, n, ε/2− 5T/2l+1)-adversary against Problem 1.

Proof. We begin with a game between the non-frameability simulator and the
adversary, with the random oracles subsumed within the simulator. Let PW
be an f -cumulative password space, and suppose our adversary has advantage
ε+ f(T).

Next, if the adversary queries H3 at pw , we stop. By assumption, this
happens with probability at most f(T), leaving the adversary with a success
probability of at least ε.

We modify the request and unblind process. Note that since H1 is a random
function queried at a random point, the adversary will almost never have any
information about k1, so the final s will appear to be uncorrelated to s0. Instead
of issuing a request and unblinding the result, our modified simulator does the
following: The request is computed as r0 = gk1 . To unblind after receiving
(r, s0), we first use the alternative verification equation

r0g
s0 ?

= ry
H2(r,m2)
S .

Then we choose random k0 and s, compute h = g−sryH2(r,m2), and program the
H1 oracle to hash m1||k0 to h. The only way this can fail is if the programming
of the hash oracle fails, that is, if the H1 oracle has already been queried at
m1||k0. This happens with probability at most T/2l.

If the simulator encounters a collision in H1 or H2, it stops. The probability
of this happening is upperbounded by T 2/q.

Next, we change the key generation protocol as in the proof of Proposition 2,
except that the simulator plays the role of the user, not the server. The end
result is that the simulator samples y uniformly at random, and computes yU =
y/yS . This fails with probability at most T 2/2l + T/2l + T/q.

Finally, we change the H1 oracle, so that when it is asked to hash a message
m1||k0, it does not just choose a random group element as the hash values, but
instead either chooses an exponent u and uses gu as the hash value, or chooses
two exponents u and v and uses guyv as the hash value.

If the adversary interacting with the original simulator succeeds with prob-
ability ε+ f(T), an adversary interacting with our modified simulator succeeds
with probability at least

ε′ = ε+ f(T)− (f(T) + T/q + T 2/q + T 2/2l + T/2l + T/q)

≥ ε+ 1/q − 5T 2/2l.

We now see that we have a simulator that chooses y uniformly at random
at the start, that upon queries for r responds with a random integer t. The

14

only remaining issue is how to convert the adversary’s signature to the required
(r, s, t)-relation.

There are two cases to consider. When the adversary outputs a valid signa-
ture (k0, r, s) on a message pair (m1,m2), then either the adversary’s r comes
from a signature created by the simulator, or it does not.

In the latter case, if H1 hashed m1||k0 to gu, we get that

ryH2(r,m2) = H1(m1||k0)gs = gu+s.

In other words, we have the required relation.
In the former case, we have two distinct message pairs (m1,m2), (m

′
1,m

′
2)

and two signatures (k0, r, s) and (k′0, r, s
′). If m1||k0 = m′1||k′0, then m2 6= m′2

and the verification equations for the two signatures give us

gs−s
′
= yH2(r,m2)−H2(r,m

′
2).

Since there are no collisions in H2, we can recover logg y, which allows us to
easily generate a relation of the required form.

Assume that m1||k0 6= m′1||k0. If m1||k0 and m′1||k0 have been hashed to
guyv and gu

′
yv

′
, respectively, we get that

H1(m1||k0)gs = guyvgs = ryH2(r,m2) = ryH2(r,m
′
2)yH2(r,m2)−H2(r,m

′
2)

= H1(m
′||k′0)gs

′
yH2(r,m2)−H2(r,m

′
2)

= gu
′
yv

′
gs

′
yH2(r,m2)−H2(r,m

′
2).

There are no collisions in H1, so we know that the pairs (u, v) and (u′, v′) are
distinct. Since v and v′ are chosen independently and uniformly at random, we
may consider the difference v − v′ mod q to be chosen uniformly at random.

The adversary has no information about v and v′. Therefore, the difference
H2(r,m2) −H2(r,m

′
2) mod q (which to a certain extent may be chosen by the

adversary) is independent of the difference v− v′ mod q. It follows that we may
consider

v − v′ − (H2(r,m2)−H2(r,m
′
2)) mod q

to be chosen uniformly at random, which means that it will be zero with prob-
ability 1/q. When this value is non-zero, we can recover logg y, which allows us
to easily generate a relation of the required form.

Depending on how we construct the hashes of messages, we have two adver-
saries for our problem. Choosing between them at run-time with probability
1/2 yields a combined adversary with the claimed advantage.

6 Concluding Remarks
We have expanded on the definition of password-based signatures to include the
possibility of partial message disclosure, which may be required by applications.
We have defined a new partially blind password-based signature scheme that

15

can be based on elliptic curves, and proved it secure under a novel hardness
assumption. We have proven that this hardness assumption holds in the generic
model. We have also defined a variant of the Nyberg-Rueppel signatures scheme
and proved it secure under the same hardness assumption.

Changing passwords must be possible. Since the key generation protocol
used in our scheme is very cheap, the obvious approach is to recall the user’s
previous verification key, run key generation again and then issue a new veri-
fication key for the user. However, depending on the PKI in use, this may be
expensive.

It is possible to design a password change protocol that only changes the
server’s signing key share, not the verification key. Such a protocol may not
be a good idea, however. If we consider a corrupt server that has somehow
discovered the user’s password, it will be impossible for the user to recover by
changing his password, even if the new password is hard to guess.

We also note that anyone who gets access to the messages sent in either
the key generation phase or the signing protocol will learn enough to be able
to search for the user’s password. Specifically, this means that both protocols
should only run over secure networks, and that the server’s issue functionality
is protected.

References
[1] Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In

Kwangjo Kim and Tsutomu Matsumoto, editors, ASIACRYPT, volume
1163 of Lecture Notes in Computer Science, pages 244–251. Springer, 1996.

[2] Giuseppe Ateniese and Breno de Medeiros. A provably secure Nyberg-
Rueppel signature variant with applications. Cryptology ePrint Archive,
Report 2004/093, 2004. http://eprint.iacr.org/.

[3] Jan Camenisch, Jean-Marc Piveteau, and Markus Stadler. Blind signatures
based on the discrete logarithm problem. In Alfredo De Santis, editor,
EUROCRYPT, volume 950 of Lecture Notes in Computer Science, pages
428–432. Springer, 1994.

[4] David Chaum. Blind signatures for untraceable payments. In David
Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO, pages
199–203. Plenum Press, New York, 1982.

[5] Ivan Damgård and Gert Læssøe Mikkelsen. On the theory and practice
of personal digital signatures. In Stanislaw Jarecki and Gene Tsudik, edi-
tors, Public Key Cryptography, volume 5443 of Lecture Notes in Computer
Science, pages 277–296. Springer, 2009.

[6] Kristian Gjøsteen. Protocol variants and electronic identification. Cryptol-
ogy ePrint Archive, Report 2013/329, 2013. http://eprint.iacr.org/.

16

[7] Kristian Gjøsteen and Øystein Thuen. Password-based signatures. In
Svetla Petkova-Nikova, Andreas Pashalidis, and Günther Pernul, editors,
EuroPKI, volume 7163 of Lecture Notes in Computer Science, pages 17–33.
Springer, 2011.

[8] Laurie Haustenne, Quentin De Neyer, and Olivier Pereira. Elliptic curve
cryptography in JavaScript. Cryptology ePrint Archive, Report 2011/654,
2011. http://eprint.iacr.org/.

[9] Yong-Zhong He, Chuan-Kun Wu, and Deng-Guo Feng. Server-aided digital
signature protocol based on password. In Security Technology, 2005. CCST
2005, pages 89–92, 2005.

[10] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital sig-
natures (extended abstract). In Burton S. Kaliski Jr., editor, CRYPTO, vol-
ume 1294 of Lecture Notes in Computer Science, pages 150–164. Springer,
1997.

[11] Peter Landrock. New PKI protocols using tamper resistant hardware. In
Stig Fr. Mjølsnes, Sjouke Mauw, and Sokratis K. Katsikas, editors, Eu-
roPKI, volume 5057 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2008.

[12] Kaisa Nyberg and Rainer A. Rueppel. A new signature scheme based on the
DSA giving message recovery. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM Conference
on Computer and Communications Security, pages 58–61. ACM, 1993.

17

