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Abstract

We show that for an arbitrary mapping F on Fn
2 to verify that it

is APN, it is enough to consider the difference mappings of F defined
by elements from an hyperplane.
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1 Introduction

Let F : F2n 7→ F2n and a ∈ F2n be non-zero. The mapping

DaF : F2n 7→ F2n , x 7→ F (x+ a) + F (x)

ia called the difference mapping of F defined by a, or the derivative of F in
direction a. The differential uniformity of F is defined as

δ(F ) = max
a 6=0, γ∈F2n

|{x ∈ F2n | DaF (x) = γ }. (1)

The image set of a difference mapping DaF contains at most 2n−1 elements,
since DaF (x) = DaF (x + a) for any a ∈ F2n . Clearly, the image set of a
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difference mapping DaF is of that maximal size if and only if DaF is 2-to-
1. A mapping is called almost perfect nonlinear, abbreviated APN, if all its
difference mappings are 2-to-1. Note that the APN mappings can be defined
also as those having differential uniformity 2. APN mappings provide the
optimal resistance against the differential cryptanalysis when they are used
as an S-box [5].

To verify the APN property of F it necessitates, a priori, to check that
all difference mappings DaF are 2-to-1. Actually, it is well-known that not
all DaF must be checked. It was notably proved in [2, Eurocrypt 93] that it
is sufficient to check 2n−1 well-chosen DaF . In this note, we come back to
this result and show that it is equivalent to the following statement: Let H
be a hyperplane in F2n , that is H is an (n − 1)-dimensional F2-subspace of
F2n . A mapping F : F2n 7→ F2n is APN if and only if DaF are 2-to-1 for all
non-zero a ∈ H.

Further we give some applications of the latter result.

2 A combinatorial problem

In [2], Beth and Ding introduced a so-called differential representation set of
Fn
2 , which is defined as follows:

Definition 1 Let S be a subset of Fn
2 \ {0}. If S satisfies

x ∈ Fn
2 , y ∈ Fn

2 with x 6= 0, y 6= 0, x 6= y ⇒ {x, y, x+ y} ∩ S 6= ∅, (2)

then S is called a differential representation set of Fn
2 . Moreover, S is said

minimal when it has minimal size.

It is proved in [2] that the size of differential representation set S is equal to
or greater than 2n−1 − 1. This is easy to see. Indeed, set

S ′ = Fn
2 \ (S ∪ {0}) = {s1, s2, . . . , s`}, ` = 2n − |S| − 1.

Thus, the `−1 elements s1+si, 2 ≤ i ≤ `, belong to S so that |S| ≥ 2n−|S|−2
providing |S| ≥ 2n−1− 1. In particular, a minimal differential representation
set of Fn

2 has cardinality 2n−1−1. The next theorem shows that the minimal
differential representation sets are exactly the hyperplanes of Fn

2 without the
zero element.

2



Theorem 1 A subset S ⊂ Fn
2 is a minimal differential representation set of

Fn
2 if and only if S ∪ {0} is an hyperplane of Fn

2 .

Proof. Let k := |S| = 2n−1 − 1. Evidently, if S ∪ {0} is an hyperplane of Fn
2

then S satisfies (2). So suppose that S satisfies (2) with k = 2n−1 − 1. Our
goal is to prove that S ∪ {0} is an hyperplane.

We proceed by induction. For n = 2 it is clear that the property holds.
We assume that the statement is true until n− 1 where n ≥ 3.

Let H be any hyperplane of Fn
2 and denote by H its complement in Fn

2 .
Set

T = (S ∪ {0}) ∩H and T = S ∩H.

Then |T | ≥ 2n−2 since T satisfies (2) in H \ {0}. Therefore T ≤ 2n−2. Note
that if |T | = 2n−1 then T = H. So we suppose now that |T | < 2n−1.

Fix y ∈ H \ T . Then for all z ∈ H \ T we get y + z ∈ H. But y + z ∈ T
because y 6∈ S and z 6∈ S. The set of elements y + z, z describing H \ T has
cardinality c with c ≥ 2n−2. This is impossible unless |T | = 2n−2.

If |T | = 2n−2 then T is a subspace of dimension n− 2, from the induction
hypothesis applied to H. In this case, we have

Fn
2 = T ∪ (a+ T ) ∪ (b+ T ) ∪ (a+ b+ T ), with H = (T ∪ a) + T,

for some (a, b). If T is neither equal to b + T nor equal to (a + b) + T then
there are

x ∈ b+ T \ T , y ∈ (a+ b) + T \ T providing x+ y ∈ a+ T

which contradicts (2). So T is a coset of T , completing the proof. �

3 Verifying the APN property

Let F : F2n 7→ F2n . We say that F satisfies the property (pa), a ∈ F∗
2n , when

the equation
F (x) + F (x+ a) = b (3)

has either 0 or 2 solutions for all b ∈ F2n , i.e. the derivative of F in direction a
is 2-to-1. In [2], it is shown that to verify that F is APN it is enough to check
(pa) for all elements a from a differential representation set of F2n . Hence by
Theorem 1, this result becomes the next theorem, which is introduced in [4,
Theorem 2.1]. We give a sketch of proof for clarity.
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Theorem 2 Let H be a hyperplane in F2n, that is H is an (n−1)-dimensional
F2-subspace of F2n. A mapping F : F2n 7→ F2n is APN if and only if F sat-
isfies (pa) for all non-zero a ∈ H.

Proof. Necessity of the condition follows clearly from definition of APN
mappings. To prove that it is also sufficient, suppose that α ∈ F2n \H and
DαF is not 2-to-1. Then there are two distinct x, y ∈ F2n such that x+y 6= α
and

DαF (x) = F (x) + F (x+ α) = F (y) + F (y + α) = DαF (y).

After that, one prove easily that

Dx+yF (x) = Dx+yF (x+ α) and Dx+y+αF (x) = Dx+y+αF (x+ α).

Thus, Dx+yF and Dx+y+α are not 2-to-1, which is a contradiction since either
x+ y or x+ y + α belong to H. �

With the previous result, we can directly simplify some characterizations of
APN functions. For example, [1, Theorem 2] reduces to Theorem 3. We use
the notation from [1]: fλ, λ ∈ F∗

2n , are the component functions of F , i.e.,
the Boolean functions x 7→ Tr(λF (x)) where Tr is the absolute trace on F2n ;
also, for any Boolean function f , set

F(f) :=
∑
x∈F2n

(−1)f(x) and Daf(x) := f(x) + f(x+ a).

Theorem 3 Let H be any hyperplane in F2n. Let F : F2n → F2n let fλ,
λ ∈ F2n, denote its components. Then, for any nonzero a ∈ F2n:∑

λ∈F2n

F2(Dafλ) ≥ 22n+1. (4)

Moreover, F is APN if and only if for all nonzero a ∈ H:∑
λ∈F2n

F2(Dafλ) = 22n+1. (5)

Proof. Set A =
∑

λ∈F2n
F2(Dafλ) for some λ. Then A is equal to∑

λ,x,y ∈F2n

(−1)Tr(λ(F (x+a)+F (x)+F (y+a)+F (y))).
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So

A=2n#{(x, y) ∈ F2
2n | DaF (x) = DaF (y)}

=22n+1

+ 2n#{(x, y)| DaF (x) = DaF (y), x 6=y 6=x+a},

implying (4). Moreover A = 22n+1 if and only if DaF is 2-to-1, i.e.,

DaF (x) = DaF (y) for y ∈ {x, x+ a} only.

Theorem 2 completes the proof. �

Remark 1 If we look at the components of F , Theorem 2 is related with
Theorems V.2 and V.3 from [3] which consider Boolean functions. These
theorems show that one can check that a Boolean function is bent (resp. semi-
bent) by looking at the derivatives in direction a ∈ H only, where H is any
hyperplane.

For several classes of mappings, it is well-known that to verify the APN
property it is sufficient to check (pa) for particular values of a. The most
simple case is when F (x) = xt for some fixed integer t. In this case it is
enough to check (p1) only. When F is a polynomial whose coefficients are in
a subfield of F2n , Theorem 1 yields another general simplification.

Theorem 4 Let H = { α ∈ F2n | Tr(α) = 0 }. Set n = ks where s > 1
and k ≥ 1. Let β be a primitive root of F2n. Let F be a mapping on F2n

which is given by a polynomial in F2k [x]. Let I be a set of representatives of
2k-cyclotomic cosets modulo 2n − 1 and I = {i ∈ I | βi ∈ H}.

Then, F is APN if and only if it satisfies (pa) for all a ∈ I.

Proof. From Theorem 1, we can choose any hyperplane H to check the APN
property. Here H is the hyperplane which is invariant under the Froebenius
isomorphism σ : a 7→ a2. Thus, taking a ∈ H we get a2

k ∈ H and

D
a2

kF (y) = F (y + a2
k

) + F (y) = (F (x+ a) + F (x))2
k

= (DaF (x))2
k

where y = x2k , since F ∈ F2k [x]. It is clear that Da2k
F is 2-to-1 if and only

if DaF is, completing the proof. �

Example 1 Let F be any mapping on F27 expressed by a polynomial in F2[x].
There are 18 cyclotomic cosets modulo 127, implying |I| = 9. Then F is APN
as soon as DaF satisfies (pa) for only 9 elements a.
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4 Conclusion

Many questions arise when the computation of the differential uniformity of
mappings is discussed. We give only two examples of problems which appear
evidently according to Theorem 1. The first one concerns APN property
only.

Problem 1 Given an arbitrary mapping F , Theorem 2 shows that to verify
that F is APN it is enough to check (pa) for non-zero elements a from a
hyperplane. Are there other sets, possibly with less elements than 2n−1 − 1,
for which a similar statement holds?

The second one concerns the so-called differential spectrum of a mapping F
on F2n , i.e., the multiset of the numbers of solutions of

F (x) + F (x+ a) = b, a ∈ F∗
2n , b ∈ F2n .

Problem 2 Find new classes of mappings, for which the computation of the
differential spectrum or, more simply, of the differential uniformity can be
reduced to examine DaF on a small set of elements a.
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