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Abstract

Quantum Readout PUFs (QR-PUFs) have been proposed as a technique for remote authen-
tication of objects. The security is based on basic quantum information theoretic principles
and the assumption that the adversary cannot losslessly implement arbitrary unitary trans-
formations on a K-dimensional state space, with K ‘large’. We consider all possible attacks
in which the adversary bases his response on challenge state estimation by measurements.
We first analyze the security of QR-PUF schemes in the case where each challenge consists
of precisely n identical quanta. We use a result by Bruß and Macchiavello to derive an upper
bound on the adversary’s success probability as a function of K and n. Then we general-
ize to challenges that contain a probabilistic number of quanta, and in particular a Poisson
distribution.

1 Introduction

1.1 Physical Unclonable Functions

Authentication is usually based on either “something that you know” or “something that you
possess”. In the second case it is desirable to work with tokens that are difficult to clone, even
for the manufacturer of the token. With the advent of Physical Unclonable Functions (PUFs),
physical systems have been developed which satisfy strong uniqueness and unclonability properties,
e.g. phenomena such as laser speckle based on multiple scattering. A PUF is a complex piece
of material whose structure is difficult to reproduce accurately because its manufacture contains
uncontrollable steps [1, 2, 3, 4, 5, 6, 7, 8, 9]. A stimulus can be applied to the PUF (‘challenge’),
leading to a ‘response’ that depends in a complex way on the challenge and the precise details of
the PUF’s structure. The combination of a challenge and the corresponding response is called a
Challenge-Response Pair (CRP).
An example of a physical system satisfying the above requirements is the so-called Optical PUF:
a three-dimensional diffusive structure containing randomly positioned optical scatterers. When
an Optical PUF is illuminated by a laser, the transmitted and reflected light has a random-
looking pattern of dark and bright spots known as speckle. The characteristics of the laser beam
(e.g. wavelength, angle, focus) constitute the challenge; the speckle pattern is the response. The
response depends strongly on the challenge and on the exact positions of the scatterers. Optical
PUFs support a large number of independent CRPs. [10, 11, 12]

1.2 Quantum readout of PUFs

A PUF-based authentication or anti-counterfeiting system typically has two phases: enrollment
and verification. In the enrollment phase the Verifier applies a limited number of random challenges
to a PUF and records the CRPs in a database. Later, in the verification phase, the Verifier has
to decide whether a PUF is authentic. He looks up the CRPs listed for that given PUF, and
by challenging the PUF anew verifies if it produces the listed responses. The procedure sketched
above is extremely reliable when the Verifier has full physical control over the PUF. There are
many cases, however, where the PUF owner is unwilling or unable to hand over his PUF. In
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such situations the Verifier must do verification without having full control. This is referred to
as “hands-off” verification. Achieving a high level of security is far more difficult in this setting,
since there is a serious danger of emulation (‘spoofing’).
In practical situations, the number of supported independent CRPs is ‘small’ in the sense that
anyone holding the PUF can, in a feasible amount of time, extract enough information from the
PUF to be able to compute (or look up) the response to any future PUF challenge without having
to use the PUF any more. Thus we must assume that a PUF can be emulated once the adversary
has had a chance to examine it. This also holds for Optical PUFs, though the emulation may
require quite a large database of CRPs. In general, the stricter the robustness requirements (i.e.
reproducibility of responses), the smaller the challenge space and hence the more serious the danger
of emulation.
The usual way to retain control in the “hands-off” setting is to have a trusted measurement device
in the field or extra sensors for detecting specific kinds of spoofing. This approach has a drawback:
The extra anti-spoofing hardware adds cost, while it is difficult to ascertain how secure the system
actually is. For instance, remote trusted devices need to be tamper-proofed, but hardware attacks
improve over time. Similarly, new techniques are continuously developed to spoof sensors. Thus,
it is an arms race situation.
An elegant way out of this expensive arms race was proposed in [13]: Quantum Readout (QR)
of PUFs. It makes spoofing fundamentally difficult by making use of basic quantum information
theoretic principles. The main idea is to have PUF challenges that are quantum states, so that the
adversary cannot extract all information from them; if he does not know the challenge, he does
not know what to emulate. This approach is fundamentally secure as long as the adversary does
not have the means to efficiently1 apply arbitrary unitary transformations to the quantum state.
More specifically, the scheme works as follows. The PUF interacts with the challenge state via
unitary evolution and produces a response that is also a quantum state. The Verifier, who knows
from the enrollment phase what the response state is supposed to be, is able to verify if the response
is correct. All this can be done without a trusted remote device, because of the inherent tamper-
resistant properties of single quanta. The No Cloning Theorem [16, 17] ensures that an unknown
single quantum state cannot be copied onto another particle. One of the implications is that
the state of an unknown quantum challenge cannot be fully determined. By repeatedly sending
random challenges, the verifier ensures that the probability of successful spoofing is brought down
exponentially. Nice properties of the QR-PUF technique are that the challenge space does not
have to be large, and that the scheme is still secure if the list of responses is publicly known.
Quantum Readout of PUFs was first experimentally realized by Goorden et al. [15] in an Optical
PUF system. The challenge was implemented as a weak coherent light pulse with average photon
number nav and a randomly chosen wavefront that has K degrees of freedom, with K � nav.
The scattering in the PUF scrambles the wavefront. The response is the scrambled light pulse.
Verification was performed using a spatial light modulator and a photon counter. The security is
based on the fact that performing measurements on nav photons (give or take a few) reveals too
little information to characterize the K-mode challenge state.

1.3 Security of Quantum-Readout PUFs: previous work

The existing security analyses of QR-PUFs assume that the adversary does not have a way to
perform arbitrary unitary operations. The analyses are restricted to so-called challenge estimation
attacks, in which the adversary first does a measurement on the challenge, from the outcome
calculates an estimate of the challenge and finally produces a response quantum state consistent
with the estimated challenge. We will also work in this context.
In [14] it was shown for the case of single-quantum challenges that the per-round false accept
probability cannot exceed 2/(K + 1), where K is the dimension of the Hilbert space. Hence,
QR-PUFs can be secure against challenge estimation even if the dimension of the Hilbert space is
low, e.g. K = 2.

1By ‘efficient’ we mean without particle losses, fast, and at a reasonable cost. At the moment, and in the
foreseeable future, there is no lossless way to apply arbitrary unitary operations in the optical PUF system of [15].
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Ref. [18] analyzed the case of Optical QR-PUFs [15] withK modes and average photon number nav.
The adversary has (on average) nav quanta to examine, which gives him more information than
in the single-quantum case. A specific type of measurement was considered, known as quadrature,
which is the most informative kind of measurement known for electromagnetic fields. It was
shown that a challenge estimation attack in this context cannot achieve a per-quantum false
accept probability better than approximately nav/(K + nav). Thus, security is achievable as long
as nav is not large compared to K.
In the case of multiple-quantum challenges, existing security analyses of QR-PUFs do not provide
a result for generic challenge estimation attacks, i.e. attacks without any assumption about the
measurements performed by the adversary.

1.4 Contributions

We analyze the security of QR-PUFs against generic challenge-estimation attacks, where we allow
the adversary to do arbitrary measurements such as Positive Operator-Valued Measures (POVMs).
We consider two cases: (i) The challenge comprises exactly n quanta. (ii) The number of quanta
is not fixed, but follows a probability distribution; in particular we focus on coherent states.

• For fixed n, we derive an upper bound n+1
n+K on the adversary’s per-quantum accept prob-

ability. This bound follows directly from a recent result by Bruß and Macchiavello [19].
Bounds on the per-round accept probability and on the overall false accept probability fol-
low straightforwardly.

• For a distribution of the number of quanta with average nav, we show that the per-quantum
accept probability is upper bounded by nav+1

nav+K .

• We derive a closed-form upper bound on the per-quantum accept probability in the case
where the challenge is a coherent state. The result does not differ much from the generic
bound nav+1

nav+K .

2 Preliminaries

2.1 Notation

Quantum states are represented as vectors in a Hilbert space. We adopt the usual Dirac ‘bra’ and
‘ket’ notation; the ket vector |ψ〉 stands for a quantum state labelled by some description ψ which
summarizes all the knowable information about the state. The Hermitian conjugate is denoted
as the bra vector 〈ψ|. The notation for the inner product between two states is 〈ψ1|ψ2〉. We
will consider only normalized states, i.e. satisfying 〈ψ|ψ〉 = 1. We will consider a K-dimensional
Hilbert space. The properties of the PUF are summarized as a unitary K×K transition matrix R.
The PUF response to a challenge |ψ〉 is R|ψ〉.

2.2 Attacker model

We consider the following attacker model. The verifier prepares a challenge consisting of exactly
n quanta (with n < K) that are all in the same pure state |ψ〉. The state |ψ〉 is chosen uniformly
at random. He sends the challenge to the PUF holder. There the challenge interacts with the
PUF, resulting in a response state. The challenge state can be written as |Ψ〉 = ⊗nα=1|ψ〉α, and
the expected response state is |Ω〉 = ⊗nα=1|ω〉α with |ω〉 = R|ψ〉. The response state is returned
to the verifier. The protocol has N rounds.
For each quantum in |Ω〉 independently the verifier checks the validity of the response. He does
this by projecting each response quantum onto |ω〉 (with measurement outcome 1 in the case of
a match and 0 otherwise). We assume that he has the technological means to measure the pro-
jection operator |ω〉〈ω| for arbitrary |ω〉. Ideally, the correct response yields n matches. However,
imperfections in the equipment may cause some noise. (Noise can occur at any stage: challenge
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preparation, state transport, interaction with the PUF, and measurement of |ω〉〈ω|.) In order to
accommodate for such noise, the verifier tolerates a fraction εnoise of all projection outcomes (i.e.
over multiple rounds in the protocol) to be zero.
We investigate the following attack. The adversary fully knows R but does not possess the PUF.
Furthermore, he does not possess a quantum computer or, equivalently, a device that can perform
arbitrary unitary operations in a lossless way. The adversary performs a generic measurement
on |Ψ〉, described by a POVM, in order to estimate |ψ〉 as accurately as he can. We denote his
estimate as |ψ̂〉. He computes |ω̂〉 = R|ψ̂〉, prepares this state n times and sends |Ω̂〉 def= ⊗nα=1|ω̂〉
back to the verifier.
We say that the attack has succeeded if, in the whole set of challenge-response rounds, the success
rate exceeds 1− εnoise.

2.3 State estimation

In our context, the most natural figure of merit to express the ‘goodness’ of the adversary’s estimate
|ψ̂〉 is the fidelity, which is defined as

F
def= Eψ|〈ψ̂|ψ〉|2, (1)

where Eψ stands for the expectation over the randomly chosen state |ψ〉. Note that |ψ̂〉 is a
function of |ψ〉, the choice of measurement, and the (probabilistic) outcome of the measurement.

Lemma 1 (from [19]) The maximum achievable fidelity for state estimation from n identical
copies of a K-dimensional quantum system is Fmax = n+1

n+K .

3 Security analysis

We determine the attacker’s success probability in the model specified in Section 2.2.

3.1 The False Accept probability per quantum

For each of the attacker’s response quanta independently there is a probability Paccept|ψ that the
state |ω̂〉 will be projected to |ω〉,

Paccept|ψ = |〈ω|ω̂〉|2 = |〈ψ|R†R|ψ̂〉|2 = |〈ψ|ψ̂〉|2. (2)

Here we have used the fact that R is unitary, i.e. R†R = 1. The probability of single-quantum
correct projection is

Paccept = EψPaccept|ψ = F. (3)

Theorem 1 In the QR-PUF protocol and attack as specified in Section 2.2, the adversary’s prob-
ability Paccept that a response quantum is accepted by the verifier satisfies

Paccept ≤ n+ 1
n+K

.

Proof: Follows directly from (3) and Lemma 1. �

3.2 False Accept probability of the protocol

The expected number of passing attacker quanta in one round is nPaccept, and the expected total
number in the protocol is NnPaccept. Hence, if Paccept exceeds 1 − εnoise then the protocol will
typically accept the attacker.
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The precise False Accept probability is computed as follows. Since the projections of the quanta
are independent events, the number of accepted quanta is binomial-distributed. We denote the
number of accepted quanta as A, with distribution

pNn,k
def= Pr[A = k] =

(
nN

k

)
P kaccept(1− Paccept)nN−k. (4)

The probability PFA that the adversary successfully completes the authentication protocol is given
by

PFA =
Nn∑

k=dNn(1−εnoise)e
pNn,k. (5)

3.3 Probabilistic number of quanta

We investigate what happens if the number of quanta in the challenge is not fixed. For instance,
the number of photons in the coherent challenges of [15] is Poisson-distributed. Another example
is a cheap single-photon source which occasionally creates multiple photons instead of a single one.
The protocol needs only one minor modification. Typically the verifier does not know n, but only
its distribution. The verification threshold can be set to Nnav(1 − ε), where ε must take into
account not only noise but also the variance of n.

Theorem 2 Let n, the number of quanta in the challenge, have a probability distribution with
mean nav. The single-quantum accept probability for the attacker is then bounded as

Paccept ≤ nav + 1
nav +K

. (6)

Proof: We have to average the acceptance probability over the number of quanta n. This gives
Paccept ≤ En n+1

n+K = 1− (K − 1)En 1
n+K . We use Jensen’s inequality for convex functions and get

En 1
n+K ≥ 1

Enn+K = 1
nav+K . �

Theorem 2 holds for arbitrary distributions. The result below is specific for the Poisson distribu-
tion.

Theorem 3 Let the number of quanta in the challenge be Poisson-distributed with mean nav. The
single-quantum accept probability for the attacker is then bounded as

Paccept ≤ 1− (K − 1)e−nav(−nav)−K [Γ(K)− Γ(K,−nav)] (7)

= 1− (K − 1)(K − 1)!
(−nav)K

[
e−nav −

K−1∑
b=0

(−nav)b

b!

]
, (8)

where Γ(·, ·) is the incomplete Gamma function. If nav < K then the bound can be written as

Paccept ≤ 1
K

+
∞∑
a=1

(−1)a+1(
nav

K
)a(1− 1

K
)

Ka

(K + 1)a
(9)

=
nav + 1
nav +K

−
∞∑
a=1

(
nav

K
)a(−1)a+1(1− 1

K
)[1− Ka

(K + 1)a
] (10)

=
nav + 1
nav +K

− 1
K

[
nav

K
− 3n2

av + 2nav

K2
+O(

n2
av + nav

K3
)
]
, (11)

where (K + 1)a = (K + a)!/K! is the Pochhammer symbol.
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Proof: We have Pmax
accept = En[1 − K−1

n+K ] = 1 −∑∞n=0 p(n)K−1
n+K , where p(n) = e−navnnav/n! is the

Poisson distribution. We write

Pmax
accept = 1− (K − 1)e−navn−Kav A(nav,K), with A(nav,K) =

∞∑
n=0

nn+K
av

(n+K)n!
. (12)

We note that A(0,K) = 0 and that

∂

∂λ
A(λ,K) =

∞∑
n=0

λn+K−1

n!
= λK−1eλ

∞∑
n=0

p(n) = λK−1eλ. (13)

This allows us to write

A(nav,K) =
∫ nav

0

dλ λK−1eλ =
∫ 0

−nav

dx (−x)K−1e−x = (−1)K−1[Γ(K,−nav)− Γ(K)]. (14)

Substitution into (12) yields (7). The integration can also be evaluated via integration by parts
K − 1 times, ∫ nav

0

dλ λK−1eλ = (−1)K−1(K − 1)!

[
eλ

K−1∑
b=0

(−λ)b

b!

]nav

λ=0

. (15)

For λ = 0, the expression between square brackets evaluates to 1. Substitution of (15) into (12)
yields (8). Eq. (9) directly follows from (8) by organizing the expression in powers of nav. Eq. (10)
follows by subtracting the Taylor expansion of nav+1

nav+K in the small parameter nav/K. Keeping
only the first two terms of the summation in (10) yields (11). �

From (11) we see that the difference between the bounds in Theorem 2 and 3 is minute, unless K
is small and nav is not small compared to K.
Fig. 1 shows the bound (7) as a function of nav and K. Fig. 2 shows the difference between
Theorem 2 and 3 for K = 20. It is visible but small, and becomes smaller with increasing K.
(K = 20 is on the low side, given that we need to satisfy the security assumption that the adversary
cannot losslessly realize arbitrary unitary operations. See Section 2.2.)

This allows us to write

A(nav, K) =
∫ nav

0

dλ λK−1eλ =
∫ 0

−nav

dx (−x)K−1e−x = (−1)K−1[Γ(K,−nav)− Γ(K)]. (11)

Substitution into (9) yields (7). The integration can also be evaluated via integration by parts
K − 1 times, ∫ nav

0

dλ λK−1eλ = (−1)K−1(K − 1)!

[
eλ

K−1∑
b=0

(−λ)b

b!

]nav

λ=0

. (12)

For λ = 0, the expression between square brackets evaluates to 1. Substitution of (12) into (9)
yields (8). !

Fig. 1 shows the bound (7) as a function of nav and K. It turns out that it differs little from
Theorem 2. In Fig. 2 we show the difference for K = 2. For larger K the difference between the
curves becomes even smaller.
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Figure 1: log10 Paccept as a function of nav, for different K, in case of the Poisson distribution.
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Proof: We have Pmax
accept = En[1 − K−1

n+K ] = 1 −∑∞
n=0 p(n) K−1

n+K , where p(n) = e−navnn
av/n! is the

Poisson distribution. We write

Pmax
accept = 1− (K − 1)e−navn−K

av A(nav, K), with A(nav, K) =
∞∑

n=0

nn+K
av

(n + K)n!
. (12)

We note that A(0, K) = 0 and that

∂

∂λ
A(λ, K) =

∞∑
n=0

λn+K−1

n!
= λK−1eλ

∞∑
n=0

p(n) = λK−1eλ. (13)

This allows us to write

A(nav, K) =
∫ nav

0

dλ λK−1eλ =
∫ 0

−nav

dx (−x)K−1e−x = (−1)K−1[Γ(K,−nav)− Γ(K)]. (14)

Substitution into (12) yields (7). The integration can also be evaluated via integration by parts
K − 1 times, ∫ nav

0

dλ λK−1eλ = (−1)K−1(K − 1)!

[
eλ

K−1∑
b=0

(−λ)b

b!

]nav

λ=0

. (15)

For λ = 0, the expression between square brackets evaluates to 1. Substitution of (15) into (12)
yields (8). Eq. (9) follows by Taylor expanding (8) in the small parameter nav/K. Eq. (10) follows
by subtracting the Taylor expansion of nav+1

nav+K . Keeping only the first two terms yields (11). !

From (11) we see that the difference between the bounds in Theorem 2 and 3 is minute, unless K
is small and nav is not small compared to K.
Fig. 1 shows the bound (7) as a function of nav and K.
In Fig. 2 we show the difference for K = 2.
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We have made use of a fundamental result by Bruß and Macchiavello [19] to bound the success
probability of a challenge estimation attack on QR-PUF authentication. Their bound F ≤ n+1

n+K
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Figure 2: The bound on the attacker’s single-quantum acceptance probability, according to Theo-
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4 Discussion

We have made use of a fundamental result by Bruß and Macchiavello [19] to bound the success
probability of a challenge estimation attack on QR-PUF authentication. Their bound F ≤ n+1

n+K
on the fidelity immediately leads to Theorems 1 and 2. A bit more effort is needed to obtain
Theorem 3 (Poisson distribution), but the result hardly differs from Theorem 2.
For multiple-quantum QR-PUF challenges, these are the first security proofs that do not require
assumptions about the type of measurement performed by the adversary. It is interesting to note
that the result for quadrature-based attacks [18] almost achieves equality in Theorem 2; quadrature
measurements yield the optimal challenge estimation in practice.
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[8] P. Tuyls, B. Škorić, and T. Kevenaar (Eds.). Security with Noisy Data: Private Biometrics,
Secure Key Storage and Anti-Counterfeiting. Springer, London, 2007.

[9] A.-R. Sadeghi and D. Naccache (Eds.). Towards Hardware-Intrinsic Security. Springer, 2010.
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[18] B. Škorić, A.P. Mosk, and P.W.H. Pinkse. Security of Quantum-Readout PUFs against
quadrature-based challenge-estimation attacks. International Journal of Quantum Informa-
tion, 11(4):1350041–1 – 1350041–15, 2013.

[19] D. Bruß and C. Macchiavello. Optimal state estimation for d-dimensional quantum systems.
Phys. Lett. A, 253(5-6):249–251, 1999.

8


