
A variant of Coppersmith’s Algorithm with Improved
Complexity and Efficient Exhaustive Search

Jean-Sébastien Coron1, Jean-Charles Faugère2, Guénaël Renault2, and Rina Zeitoun2,3

1 University of Luxembourg
jean-sebastien.coron@uni.lu

2 UPMC, Université Paris 6, INRIA, Centre Paris-Rocquencourt,
PolSys Project-team, CNRS, UMR 7606, LIP6
4 place Jussieu, 75252 Paris, Cedex 05, France

jean-charles.faugere@inria.fr

guenael.renault@lip6.fr
3 Oberthur Technologies

420 rue d’Estienne d’Orves, CS 40008, 92705 Colombes, France
r.zeitoun@oberthur.com

Abstract. Coppersmith described at Eurocrypt 96 a polynomial-time algorithm for finding small
roots of univariate modular equations, based on lattice reduction. In this paper we describe the first
improvement of the asymptotic complexity of Coppersmith’s algorithm. Our method consists in
taking advantage of Coppersmith’s matrix structure, in order to apply LLL algorithm on a matrix
whose elements are smaller than those of Coppersmith’s original matrix. Using the L2 algorithm,
the asymptotic complexity of our method is O(log6+εN) for any ε > 0, instead of O(log8+εN)
previously. Furthermore, we devise a method that allows to speed up the exhaustive search which
is usually performed to reach Coppersmith’s theoretical bound. Our approach takes advantage of
the LLL performed to test one guess, to reduce complexity of the LLL performed for the next
guess. Experimental results confirm that it leads to a considerable performance improvement.

Keywords: Coppersmith’s Method, LLL, Structured Matrix.

1 Introduction

The famous Diophantine problem of finding integer roots of polynomial equations is known
to be hard in general. In cryptology, many security assumptions are based on the ability to
solve specific diophantine equations. At Eurocrypt 96, Coppersmith used lattice reduction
to design a method that allows to retrieve small integer roots [1], with many applications
in cryptology, especially regarding RSA. Namely, for polynomials of the form: p(x) = xδ +
aδ−1x

δ−1+...+a0 ≡ 0 mod N where N has an unknown factorization, Coppersmith proved that
one can find any root x0 satisfying |x0| < N1/δ in polynomial time. The technique he designed
was latter simplified by Howgrave-Graham in [2]. Both methods have the same asymptotical
complexity, but since the latter one holds a more natural approach and is easier to implement, it
is commonly adopted. The method consists in building a lattice which contains polynomials that
admit x0 as a root modulo N `, where ` is a parameter related to the dimension of the lattice.
This lattice is then reduced using the well-known LLL algorithm [3] or an analogous algorithm
with improved complexity [4, 5]. Since the first resulting polynomial h(x0) ≡ 0 mod N ` is
provided with small coefficients, it is such that h(x0) equals to zero over the integers. The
solution x0 can therefore be retrieved by solving h(x) using a classical method for factoring
polynomials over finite fields (e.g. Berlekamp’s algorithm). The complexity of the method

2

depends almost exclusively on the LLL complexity. Namely, if we use the L2 algorithm which
is an improved version of the LLL algorithm due to Nguyen and Stehlé [4], the complexity
of the method is O(ω5+ε logB + ω4+ε log2B) where ω is the dimension of the lattice and the
bit-size of the elements is bounded by logB = O(log2N).

Coppersmith’s method brought forth many applications in cryptology, especially regarding
RSA cryptosystem. Namely, it has been used to factorize N = pq with partial knowledge of
p [6] or to factorize modulus of the form N = prq with large r [7]. It has also been used for
cryptanalysis of RSA with fixed pattern padding [8], with small secret CRT-exponents [9] or
with d < N0.29 [10].

As mentioned previously, the success of Coppersmith’s methods in [1] and [2], depends on
the size of the solution. More precisely, the largest the dimension of the lattice, the closest to
N1/δ the solution x0 can be. In order to reach the bound |x0| < N1/δ, one would need to use
a lattice of huge dimension. Thus, the computation would become prohibitive. Therefore in
practice, one uses lattices of reasonable dimension, which allows to retrieve most part of the
solution x0. Exhaustive search is performed to retrieve the other part α0. The exhaustive search
consists in testing all possible polynomials, each polynomial corresponding to one possible guess
for α0. For each guess, one builds a lattice associated to the polynomial according to [2], and
one applies LLL to reduce it. The solution x0 will be found for the right guess α0, i.e. for the
correct polynomial.

In this paper, we propose a variant of Coppersmith’s approach that allows to improve the
asymptotical complexity of the method. Our approach consists in applying LLL on a matrix
containing smaller elements than in the original matrix. This is done by taking the integer quo-
tient of all elements by a particular value. Then, one translates the obtained information back
into the original matrix. This allows to obtain an LLL-reduced matrix at reduced cost, namely
the bit-size of the elements is bounded by logB = O(logN) instead of logB = O(log2N).
We further exhibit a new approach to carry out the exhaustive search which consists in taking
advantage of the LLL performed to test one guess, to reduce complexity of the LLL performed
for the next guess. Namely, we show that matrices associated to both guesses are linked by a
specific transformation, which allows to report the obtained information from one to the other.
We also combine this method with the previous one, by truncating matrices before applying
LLL. This new approach is heuristic and provides a considerable speed up. Namely, for poly-
nomials of the form p(x) = x2 + ax + b ≡ 0 mod N and dlog2(N)e = 2048 the new method
performs more than 1000 times faster than the original one.

The paper is organized as follows: Section 2 gives an overview of the main principles in
Coppersmith’s algorithm (we use Howgrave-Graham’s variant [2]). Section 3 describes a method
to reduce complexity of the LLL computation performed in [2]. A new heuristic approach to
carry out exhaustive search is exhibited in Section 4. Experimental results are presented in
Section 5. They validate the efficiency of both improvements. Eventually, in Section 6, we
conclude our research.

2 Coppersmith’s Algorithm

We first recall Coppersmith’s algorithm. We use the Howgrave-Graham variant [2] which is
equivalent to Coppersmith’s method [1] since it has the same complexity as Coppersmith’s

3

method and has a more natural approach. Thus, in the sequel, by ”Coppersmith’s matrix”, we
mean the matrix depicted in [2].

Theorem 1 (Coppersmith). Let p(x) be a monic polynomial of degree δ in one variable
modulo an integer N of unknown factorization. Let X be such that X ≤ N1/δ. One can find
all integers x0 with p(x0) = 0 mod N and |x0| ≤ X, in time polynomial in (logN, 2δ).

The method is depicted hereafter. Given a parameter ` ≥ 1, we consider the polynomials:

qik(x) = xi ·N `−kpk(x) mod N `

with 0 ≤ i < δ for all 0 ≤ k < `, and i = 0 for k = `. We have:

qik(x0) = 0 mod N ` .

Let h(x) be a linear combination of the qik(x). Thusly, h(x) is such that h(x0) = 0 mod N ` .
The core idea of the method consists in noting that if the solution x0 and the coefficient of h(x)
are sufficiently small, i.e. they are such that h(x0) < N `, then h(x0) holds over the integers
and it can be solved using a classical method for factoring polynomials over finite fields (e.g.
Berlekamp’s algorithm). Beforehand, we need to recall the following lemma.

Lemma 1 (Howgrave-Graham). Let h(x) ∈ Z[x] be the sum of at most ω monomials.
Assume that h(x0) = 0 mod N ` where |x0| ≤ X and ‖h(xX)‖ < N `/

√
ω. Then h(x0) = 0 over

the integers.

Proof. We have:

|h(x0)| =
∣∣∣∑hix

i
0

∣∣∣ =

∣∣∣∣∑hiX
i
(x0
X

)i∣∣∣∣
≤
∑∣∣∣∣hiXi

(x0
X

)i∣∣∣∣ ≤∑∣∣hiXi
∣∣

≤
√
ω‖h(xX)‖ < N ` .

Since h(x0) = 0 mod N `, this gives h(x0) = 0. ut

We consider the matrix M of dimension

ω = δ · `+ 1

whose row vectors are the coefficients of the polynomials qik(xX). For p(x) = x2 + ax+ b and
` = 1, we have:

M =

N 0 0
0 NX 0
b aX X2

 .
The matrix M is triangular and diagonal elements of the matrix M are given by:

Xδ·k+i ·N `−k

for 0 ≤ i < δ for all 0 ≤ k < `, and i = 0 for k = `. Therefore the determinant of the matrix is
given by:

detM = Xω·(ω−1)/2 ·N δ·`·(`+1)/2 .

We acknowledge the following theorem:

4

Theorem 2 (LLL). Let L be a lattice spanned by (u1, . . . , uω) ∈ Zn, where the Euclidean
norm of each vector is bounded by B. The LLL algorithm, given (u1, . . . , uω), finds in time
O(ω5n log3B) a vector b1 such that:

‖b1‖ ≤ 2(ω−1)/4 det(L)1/ω .

Remark 1. In order to obtain a better complexity, one can use enhanced versions of LLL which
achieve the same bound on ‖b1‖ but with improved complexity. Namely, the L2 algorithm due
to Nguyen and Stehlé [4], terminates in time O(ω5+ε logB+ω4+ε log2B) and the L̃1 algorithm
from Novocin, Stehlé and Villard [5] has a complexity O(ω5+ε logB + ω1+u+ε log1+εB) where
u = 2.376 is a valid exponent for matrix multiplication.

Coppersmith’s method consists in applying the LLL algorithm (or an equivalent) on the
matrix M with dimension ω = δ · `+ 1. According to Theorem 2, the first resulting polynomial
h(xX) is such that:

‖h(xX)‖ ≤ 2(ω−1)/4(detM)1/ω = 2(ω−1)/4X(ω−1)/2N δ·`·(`+1)/(2δ`+2) .

In order to fulfill the condition ‖h(xX)‖ < N `/
√
ω and neglecting the term

√
ω and 2(ω−1)/4,

we have the following inequality which yields a condition on the bound X:

Xδ·`/2N δ·`·(`+1)/(2δ`+2) < N `

which gives:
Xδ·`/2 < N (δ·`2+2`−δ·`)/(2δ`+2) .

Therefore we get the following upper-bound on X:

X < N (δ·`+2−δ)/(δ·(δ·`+1)) .

More precisely we get:
X < N1/δ−ε ,

where

ε =
1

δ
− δ · `+ 2− δ
δ · (δ · `+ 1)

=
δ − 1

δ · (δ · `+ 1)
≤ 1

δ · `+ 1
=

1

ω
.

By taking ω = dlogNe, the LLL algorithm is applied on a lattice of dimension ω = ` · δ + 1
and the bit-size of the elements is bounded by logB = O(` · logN) = O(log2N). The root
x0 can be recovered by applying the previous algorithm in a constant number of intervals. In
the sequel, we give the asymptotic complexity of the method and we denote by Õ(logkN) the
complexity O(logk+εN), for any ε > 0.
Using the L2 algorithm with complexity O(ω5+ε logB+ω4+ε log2B) the asymptotic complexity
of the algorithm is therefore:

Õ(log8N) .

Using the L̃1 algorithm with complexity O(ω5+ε logB+ω1+u+ε log1+εB) the asymptotic com-
plexity is therefore:

Õ(log7N) .

In the sequel we propose a method that reduces the asymptotic complexity of Coppersmith’s
method.

5

3 A variant of Coppersmith’s Algorithm with Improved Complexity

The general idea of the improvement consists in applying LLL on a matrix with shorter ele-
ments. More precisely, we apply LLL on Coppersmith’s matrix where only the most significant
bits of all coefficients are considered. To this end, the method is composed by two stages. In
a first step, one makes sure that all the coefficients in M are smaller than a particular value
by performing modular reductions. In a second step, one truncates coefficients in M , then one
applies LLL on this truncated matrix. Finally, one translates the obtained information back
into the matrix M . The resulted matrix will be LLL-reduced.

3.1 The New Method

In the sequel, we highlight the two stages of the method. Then we justify our choices and
exhibit a proof validating them.

First step: It consists in making sure that all the coefficients in M are less than N `+1. Thereby,
in a given column one should reduce all coefficients with the coefficient on the diagonal. More
precisely, this can be done by reducing the elements in turn, starting from the bottom right
and ending by the top left of the matrix M , row after row.

Second step: It consists in LLL-reducing the matrix M at low cost by considering a trun-
cated matrix. To this end, one takes the integer quotient of all the matrix coefficients by an
integer c that will be determined later. We denote by M ′ =

⌊
M
c

⌋
this truncated matrix. Thus,

one applies LLL on M ′ and one obtains an LLL-reduced matrix M ′R. We denote by U the
unimodular matrix such that U ·M ′ = M ′R. Eventually, applying the unimodular matrix U to
the matrix M gives an LLL-reduced matrix MR.

We now prove the consistency of both steps.

For the first step, we consider Coppersmith’s bound on X:

X < N1/δ−1/ω .

As mentioned previously the diagonal elements in M are:

dik = Xδ·k+i ·N `−k ,

for 0 ≤ i < δ for all 0 ≤ k < `, and i = 0 for k = `.
Therefore, for all such i, k, we have:

N `−1 ≤ Xδ·` ≤ dik ≤ Xδ−1N ` ≤ N `+1 . (1)

As a consequence, all diagonal elements of matrix M lie between N `−1 and N `+1. Thus, by
reducing all coefficients in M with the coefficient on the diagonal, one makes sure that all
coefficients in M are less than N `+1.

6

For the second step, one must ensure that taking the integer quotient of all matrix co-
efficients by c, leaves the matrix invertible. Using (1), one knows that the smallest diagonal
coefficient of M is Xδ·` = Xω−1. Therefore, by taking

c ≤ Xω−1

all diagonal elements of M ′ are lower-bounded by 1, which ensures that det(M ′) 6= 0. Eventu-
ally, one shows the following proposition:

Proposition 1. Let M ′ =
⌊
M
c

⌋
be the matrix containing the integer quotient by c of coefficients

in matrix M , and U be the unimodular matrix such that U ·M ′ = M ′R. By multiplying matrix
U with matrix M , the first vector of the resulting matrix MR[1] has a norm bounded by

2(ω−1)/4X(ω−1)/2N δ·`·(`+1)/(2δ`+2)

(
1 +

2ω−2 · ω2 · c
Xω−1

)
.

In order to prove this proposition, one first needs to exhibit a bound on the first vector
M ′R[1] in the LLL-reduced matrix M ′R, as depicted in the following Lemma.

Lemma 2. The first vector M ′R[1] obtained by applying LLL on M ′ is such that:

||M ′R[1]|| ≤ 2(ω−1)/4X(ω−1)/2N δ·`·(`+1)/(2δ`+2)

c
. (2)

Proof. Since elements in matrix M ′ are the integer quotient by c of elements in matrix M , and
since M and M ′ are triangular matrices, one has the relation

detM ′ ≤ detM

c ω
. (3)

Furthermore, the first vector M ′R[1] has a norm bounded by 2(ω−1)/4(detM ′)1/ω. Therefore,
using inequality (3) one gets the bound:

||M ′R[1]|| ≤ 2(ω−1)/4 · (detM)1/ω

c
.

Moreover, substituting (detM)1/ω by X(ω−1)/2N δ·`·(`+1)/(2δ`+2) in previous equation, allows to
retrieve bound (2).

ut

With the aim of proving Proposition 1 one also needs to have a bound on the matrix norm
||M ′−1||, as depicted in the following Lemma.

Lemma 3. The matrix norm of M ′−1 is upper-bounded as follows

||M ′−1|| < ω · 2ω−2 · c
Xω−1 .

7

Proof. see proof in Annex.

One can now prove Proposition 1.

Proof. The matrix M can be decomposed as M = c · M ′ + R where all elements in R are
upper-bounded by c. Therefore one has the relation

U ·M = c · U ·M ′ + U ·R .

Using the fact that U ·M ′ = M ′R, and considering only the first vector U [1] of the matrix U ,
one gets the following equation

U [1] ·M = MR[1] = c ·M ′R[1] + U [1] ·R .

Moreover, still using U ·M ′ = M ′R, the vector U [1] can be rewritten U [1] = M ′R[1] ·M ′−1 ,
which leads to the equation:

MR[1] = c ·M ′R[1] +M ′R[1] ·M ′−1 ·R . (4)

Furthermore, applying Lemma 2 which provides an upper-bound (2) for ||M ′R[1]||, and using
the triangular inequality, one gets the following relation:

||MR[1]|| ≤ 2(ω−1)/4X(ω−1)/2N δ·`·(`+1)/(2δ`+2)

(
1 +
||M ′−1 ·R||

c

)
.

As the norm of matrix R is upper-bounded by ω · c, and again, using the triangular inequality,
one obtains

||MR[1]|| ≤ 2(ω−1)/4X(ω−1)/2N δ·`·(`+1)/(2δ`+2)
(
1 + ω · ||M ′−1||

)
.

Moreover, using Lemma 3, one has the following upper-bound for the value ||(M ′)−1||:

||M ′−1|| < ω · 2ω−2 · c
Xω−1 .

Our previous inequality becomes

||MR[1]|| ≤ 2(ω−1)/4X(ω−1)/2N δ·`·(`+1)/(2δ`+2)

(
1 +

2ω−2 · ω2 · c
Xω−1

)
which concludes the proof.

ut

On one side, the larger the integer c, the smaller the elements in M ′, and consequently,
the less costly the LLL-reduction of M ′. One can see on the other side that, the smaller the
integer c, the smaller the upper-bound on the norm of the first vector MR[1]. More precisely,
one needs to find a first vector that is upper-bounded by N `/

√
ω so that the corresponding

polynomial h(x0) holds over the integers. Ideally, one would like to hold a value c so that the
corresponding bound on X remains the same as before, i.e. X < N1/δ−1/ω. In the following, we
show that there exists such a value c which enables to find, with reduced complexity, a short
vector bounded by N `/

√
ω with X < N1/δ−1/ω. More precisely, we show that taking c = Xω−1

22·ω

is a good trade-off.

8

Proposition 2. Let M ′ be such that M ′ =
⌊
M
c

⌋
with

c =
Xω−1

22·ω
,

and U be the unimodular matrix such that U · M ′ = M ′R. By multiplying matrix U with
matrix M , the first vector of the resulting matrix MR has a norm bounded by N `/

√
ω, for

X < N1/δ−1/ω.

Proof. By taking c = Xω−1

22·ω , and using Proposition 1, one gets the bound

||MR[1]|| ≤ 2(ω−1)/4 ·X(ω−1)/2 ·N δ·`·(`+1)/(2δ`+2)

(
1 +

ω2

2ω+2

)
.

From the condition ||MR[1]|| ≤ N `/
√
ω, and since for all ω ≥ 1 we have ω2

2ω+2 < 1, one gets a
relation which induces a bound for X:

2(ω+3)/4 ·X(ω−1)/2 ·N δ·`·(`+1)/(2δ`+2) ≤ N `

√
ω
.

The factors
√
ω and 2(ω+3)/4 may, as in Section 2, be omitted since they have little effect on

subsequent bound. As a consequence, performing the same calculations as in Section 2 allows
to retrieve the bound X < N1/δ−1/ω. Therefore, when considering a solution x0 bounded by
X < N1/δ−1/ω, the first vector obtained by applying the unimodular matrix U to the matrix
M , has a norm bounded by N `/

√
ω.

ut

Since this vector has a norm bounded by N `/
√
ω, using Lemma 1 the corresponding polynomial

equation h(x) is such that h(x0) = 0 over integers. As a consequence, one can solve it and
retrieve the solution x0. Thus, we have the following Corollary:

Corollary 1. Let p(x) be a polynomial of degree δ in one variable modulo an integer N of
unknown factorization. Let X be such that X ≤ N1/δ. By performing the approach described
in Section 3.1, one can find all integers x0 with p(x0) = 0 mod N and |x0| ≤ X, in time
polynomial in (logN, 2δ).

Eventually, the overall method is depicted in Algorithm 1.
In the sequel, we show that following this approach allows to decrease the asymptotical

complexity of the method by a non-negligible factor.

3.2 The Asymptotic Complexity

Accordingly to our method, it is sufficient to apply the LLL algorithm on a lattice of dimension
ω = ` · δ + 1 and with elements bounded by

N `+1

c
=
N `+1

Xω−1 <
N `+1

N `−1 < N2

instead of N `+1. Therefore, the elements have a bit-size bounded by logB = O(logN) instead of
O(log2N). Using the L2 algorithm with complexity O(ω5+ε logB+ω4+ε log2B) the asymptotic

9

Algorithm 1 Solving p(x) ≡ 0 mod N

Input: Polynomial equation p(x) ≡ 0 mod N , upper-bound X on x0, dimension ω, divisor c = Xω−1

22·ω

Construct Coppersmith matrix M of dimension ω associated to p(x)
Perform modular reductions on M using diagonal elements
M ′ :=

⌊
M
c

⌋
M ′R, U ′ := LLL(M ′)
MR := U ′ ·M
First polynomial in MR provides the solution x0
return x0

complexity of the algorithm is therefore Õ(log6N) . Using the L̃1 algorithm with complexity
O(ω5+ε logB+ω1+u+ε log1+εB) with u = 2.376, the asymptotic complexity is again Õ(log6N) .
We notice that both asymptotic complexities are similar. This is due to the fact that the L̃1

algorithm was designed in such a way that it is quasi-linear in the bit-length logB of the entries.

It leads to the following theorem:

Theorem 3. The asymptotic complexity of Algorithm 1 for finding small roots of p(x) ≡ 0
mod N using L2 or L̃1 algorithms is Õ(log6N) .

We recall that complexities with the original method were Õ(log8N) using the L2 algorithm
and Õ(log7N) using the L̃1 algorithm.

In the sequel, we devise a method that allows to speed up the exhaustive search which is
usually performed to reach Coppersmith’s theoretical bound.

4 Efficient Exhaustive Search

According to Coppersmith’s Theorem (see Section 2), one can retrieve the solution x0 if x0 <
X = N1/δ−1/ω. When the solution is close to N1/δ, it is well known that in practice the bound
X < N1/δ should not be reached by taking a very large ω, i.e. by using a very large dimension.
Indeed, it is better to use a lattice of reasonable dimension and to perform exhaustive search
on most significant bits of x until finding the solution x0. This is done by writing

x0 = 2k · α0 + x′0

and considering α polynomials pα(x′), where α is such that 0 6 α 6 X
2k

, and we have:

pα(x′) = p(2k · α+ x′) .

For the case α = α0, the solution x′0 satisfies x′0 < 2k = X ′ = N1/δ−1/ω and it has a correct
size for LLL to find it using a lattice of dimension ω (where ω is relatively small). For each
polynomial pα, one performs LLL on the corresponding Coppersmith’s matrix (see Section 2).
The solution x0 is then found for the right value α0, i.e. for the right polynomial pα0 .
In Section 4.1, we describe a method that allows to take advantage of the LLL performed for the
case α = i to reduce complexity of the LLL performed for the case α = i+ 1. More precisely,

10

one considers matrices which are equivalent to Coppersmith’s matrices. One uses the fact that
for different instances α = 0, . . . , i those matrices can be linked one to another by the relation
Mi = Mi−1 ·P = · · · = M0 ·P i where P is a well-known structured matrix. Our method consists
in LLL-reducing M0, which gives MR

0 . Then, instead of LLL-reducing M1 = M0 · P , we apply
LLL on MR

0 · P . We expect this matrix to be almost reduced already since it is the product of
an LLL-reduced matrix MR

0 with a matrix P containing small coefficients. This gives matrix
MR

1 . Next step consists in applying LLL on MR
1 ·P instead of M2 = M0 ·P 2. Thus, we perform

this process incrementally, until the solution x′0 is found, i.e. until α = α0.
Thereafter, in Section 4.2 we combine this improvement with the truncation approach described
in Section 3.

4.1 Exploiting Relations Between Matrices

We start by highlighting the following proposition that gives a relation between two matrix
instances for the case α = i and α = i+ 1.

Proposition 3. We denote by Mi the matrix used to solve the polynomial pi(x
′) = p(2k · i+x′)

for the case α = i. Let P denote the lower triangular Pascal matrix defined as follows:

Ps,t =

(
s

t

)
s, t = 0, ..., ω − 1

The matrix

Mi+1 = Mi · P

is a suitable matrix to solve the polynomial pi+1(x
′) for the case α = i+ 1.

Proof. In Coppersmith’s method, the matrix Mi represents the following ω polynomials :

Mi ·

(
1 ,

x′

X ′
,

(
x′

X ′

)2

, . . . ,

(
x′

X ′

)ω−1)T
.

All those polynomials would admit x0 as a solution modulo N ` if α = α0 = i.
For the case α = i+ 1, one tries to solve the polynomial

pi+1(x
′) = p(2k · (i+ 1) + x′) = p(2k · i+ x′ + 2k) = pi(x

′ + 2k) = pi(x
′ +X ′) .

Therefore, for the case α = i+1, the polynomials are the same as for the case α = i, but written
in a different basis, i.e. the basis (1, x

′+X′

X′ , (x
′+X′

X′)2, . . . , (x
′+X′

X′)ω−1). Thus, the polynomials are
the following:

Mi ·

(
1 ,

x′ +X ′

X ′
,

(
x′ +X ′

X ′

)2

, . . . ,

(
x′ +X ′

X ′

)ω−1)T
. (5)

11

Yet, we need to return to the original representation of the polynomials, i.e. in the basis
(1, x

′

X′ , (
x′

X′)
2, . . . , (x

′

X′)
ω−1). To this end, we use the following property regarding the lower

triangular Pascal matrix P : 

1
x′+X′

X′(
x′+X′

X′

)2
...(

x′+X′

X′

)ω−1


= P ·



1
x′

X′(
x′

X′

)2
...(

x′

X′

)ω−1


. (6)

Therefore, combining (5) and (6) allows to get the following equivalence:

Mi ·



1
x′+X′

X′(
x′+X′

X′

)2
...(

x′+X′

X′

)ω−1


= Mi · P ·



1
x′

X′(
x′

X′

)2
...(

x′

X′

)ω−1


.

As a consequence, the matrix Mi+1 = Mi · P is a suitable matrix to solve the polynomial
pi+1(x

′) since it contains ω polynomials that would admit x0 as a solution modulo N ` if
α = α0 = i+ 1.

ut

Remark: The matrix Mi+1 considered here is not identical to the matrix that would have been
used in Coppersmith’s method. However, one can show that both matrices are linked by row
linear combinations.

Now that we hold a relation between matrices Mi and Mi+1, we enlighten the core idea of
the method in the following proposition:

Proposition 4. The multiplication of the reduced matrix MR
i by the Pascal matrix P

M̃i+1 = MR
i · P

gives a matrix M̃i+1 to test the case α = i+ 1. This matrix contains vectors whose norms are
close to vector norms of the LLL-reduced matrix MR

i . Namely, for all 1 6 j 6 ω we have:

||M̃i+1[j]|| <
√
ω · 2ω · ||MR

i [j]|| .

In particular, for the case i = α0 the first vector of M̃i+1 has a norm bounded by 2ω ·N `.

Proof. The application of LLL on matrix Mi provides matrices Ui and MR
i such that

Ui ·Mi = MR
i .

12

Therefore, one has

Ui ·Mi · P = MR
i · P .

Furthermore, using Proposition 3, one gets the following relation:

Ui ·Mi+1 = MR
i · P . (7)

Since matrix Ui is unimodular, the matrix product Ui ·Mi+1 remains a basis of the lattice
spawned by the original matrix Mi+1. Therefore, using equality 7, one deduces that matrix
M̃i+1 = MR

i · P yields the same lattice as Mi+1 and can be used to solve the polynomial
pi+1(x

′).
Eventually, since matrix M̃i+1 is the product of MR

i with a matrix P composed of relatively
short elements, the elements in M̃i+1 remain close to those in the reduced matrix MR

i . Indeed,
the largest element in P is

(ω−1
ω−1
2

)
which is less than 2ω−1. More precisely, the maximal norm of

column vectors in P is equal to:√
22·(

ω−1
2

) + 22·(
ω−1
2

+1) + · · ·+ 22·(ω−1) <
√

22ω−1 < 2ω .

Therefore the norm of each vector of M̃i+1 is at most enlarged by a factor
√
ω ·2ω compared to

the norm of the corresponding vector in MR
i , i.e. for all 1 6 j 6 ω we have ||M̃i+1[j]|| <

√
ω ·

2ω · ||MR
i [j]|| . In particular, for i = α0, since the first vector of MR

i has a norm bounded by
N `/
√
ω, the norm of the first vector of MR

i · P is bounded by 2ω ·N ` which is relatively close
to N `/

√
ω.

ut

As a consequence of Proposition 4, one can use matrix M̃i+1 to test the case α = i + 1.
We expect the LLL-reduction of M̃i+1 to be less costly than the one of Mi+1 since it contains
elements relatively close to the ones in the LLL-reduced matrix MR

i . Thus, one can use this
property iteratively to elaborate a new method which consists in LLL-reducing M0 for the case
α = 0 (using the method described in Section 3). This gives a reduced matrix MR

0 . Then,
one performs a multiplication by P and an LLL-reduction of M̃1 = MR

0 · P , which gives MR
1 .

Then, we multiply MR
1 by P , and perform LLL on M̃2 = MR

1 · P , which gives MR
2 . We then

reiterate this process until the solution x′0 is found, i.e. until α = α0. The method is depicted
in Algorithm 2.

In Section 3 we depicted a method which consisted in truncating the matrix before apply-
ing LLL. In the sequel, we outline a heuristic approach which consists in performing similar
truncations during the improved scheme of the exhaustive search described in Section 4.1.

4.2 Combining Coppersmith’s Algorithm Variant and Improved Exhaustive
Search: A Heuristic Approach

During the exhaustive search described in Section 4.1, we perform the LLL algorithm on the
matrix M̃i+1 = MR

i · P for 0 6 i 6 α0 − 1. In the sequel we analyze the properties of the
matrix M̃i+1. We enlighten that one can truncate elements in matrix M̃i+1 for all i and apply
LLL on the truncated matrix M̃ ′i+1, as performed in Section 3. However, as discussed below,

13

Algorithm 2 Solving p(x) ≡ 0 mod N with exhaustive search on α

Input: Equation p(x) ≡ 0 mod N , upper-bound X’ on x′0, dimension ω, divisor c := X′ω−1

22·ω

Construct Coppersmith matrix M0 of dimension ω associated to p0(x′) = p(x′)
Perform modular reductions on M0 using diagonal elements
M ′0 :=

⌊
M0
c

⌋
M ′R0 , U ′0 := LLL(M ′0)
MR

0 := U ′0 ·M0

α := 0
Construct lower triangular Pascal Matrix P
while First polynomial in MR

α does not provide the solution x′0 do
M̃α+1 := MR

α · P
MR
α+1 := LLL(M̃α+1)

α := α+ 1
end while
x0 := X ′ · α+ x′0
return x0

this approach is heuristic. Indeed, in order to prove the consistency of truncation method in
Section 3, two lemmas (Lemma 2 and 3) were required. In our case, one cannot apply those
lemmas straightforwardly since matrix M̃i+1 does not have the same properties as matrix M0

(considered in Section 3). However, in order to justify our method, we will assume the following
assumption that is confirmed in practice.

Assumption 1 a) We denote by M̃ ′i+1 the matrix where the elements are the integer quotients

of elements in M̃i+1 by c. One has the following bounds on the determinant of M̃ ′i+1 for all
i:

1

21/ω
· |det M̃i+1|

c ω
≤ | det M̃ ′i+1| ≤ 21/ω · | det M̃i+1|

c ω
.

b) For all i, the matrix norm of (M̃i+1)
−1 is upper-bounded as follows:

||(M̃i+1)
−1|| < 1

ω ·X ′ ω−β
,

where β is a parameter that lies between 0 and 1, as discussed in the sequel.

Discussion on Assumption 1.a: For the first matrixM0, one can say that | det M̃ ′0| ≤ |det M̃0|/c ω
since M0 is upper triangular (see Lemma 2). However for i ≥ 0, matrix M̃i+1 is not triangular,
and the truncation by c could have a considerable effect on the determinant of M̃ ′i+1. Yet, we

emphasize in Assumption 1.a that the truncation by c affects M̃i+1 and M0 in a quasi-similar
way regarding determinants.

Discussion on Assumption 1.b: In practice, one can see that elements in the LLL-reduced ma-
trix MR

i are balanced. Based on this fact, one acknowledges that the smallest element in matrix
M̃i+1 lies in the last column. Indeed, the product MR

i by P affects and increases the bit-size
of elements in all columns of MR

i apart from the last one that remains untouched since last
column of P is (0, 0, . . . , 0, 1)T . Moreover, using Coppersmith’s matrices properties, one knows

14

that elements in last column of MR
i are all divisible by X ′ ω−1. Therefore, the smallest element

in M̃i+1 is larger than X ′ ω−1. As a consequence, one can expect that elements in (M̃i+1)
−1

are likely to be smaller than a value close to 1/X ′ ω−1. In practice, the elements are far smaller
than 1/X ′ ω−1 and the bound is rather 1/(ω ·X ′ ω−β) where 0 < β 6 1. In Assumption 1.b, the
value β is left unspecified. We will see in Section 5 a suitable instantiation of the parameter β.

Under Assumption 1.a, by taking c ≤ (| det M̃i+1|)1/ω/21/ω
2
, we have | det M̃ ′i+1| > 0 and

the truncated matrix M̃ ′i+1 remains invertible. As before, one applies LLL on M̃ ′i+1. We
obtain an LLL-reduced matrix M ′Ri+1. We denote by Ui+1 the unimodular matrix such that

Ui+1 ·M̃ ′i+1 = M ′Ri+1. Thus, one needs to justify the following proposition which enlightens that

applying the unimodular matrix Ui+1 to the matrix M̃i+1 gives an LLL-reduced matrix MR
i+1.

In particular, under Assumption 1, for α = α0 one gives a norm upper-bound on the the first
vector MR

α0
[1] resulting from the application of the unimodular matrix Uα0 to the matrix M̃α0 .

Proposition 5. Let M̃ ′α0 be such that M̃ ′α0 =
⌊
M̃α0
c

⌋
and Uα0 be the unimodular matrix such

that Uα0 · M̃ ′α0 = M ′Rα0
. Under Assumption 1, by multiplying matrix Uα0 with matrix M̃α0, the

first vector of the resulting matrix MR
α0

has a norm bounded by

2
(ω−1)

4
+ 1
ω2X ′(ω−1)/2N δ·`·(`+1)/(2δ`+2)

(
1 +

c

X ′ ω−β

)
.

Proof. If we follow the proof of Proposition 1 until equation (4), one gets the following relation:

Uα0 · M̃α0 = c ·M ′Rα0
+M ′

R
α0
· (M̃ ′α0)−1 ·Rα0 . (8)

Since Pascal matrix P has determinant equal to 1, and since the LLL-reduction of a matrix
does not change the absolute value of its determinant we have:

|detMR
α0
| = | det M̃α0 | = | det M̃α| = detM0 . (9)

Furthermore, using Assumption 1.a and relation (9) one gets:

|detM ′
R
α0
| ≤

21/ω · | detMR
α0
|

c ω
≤ 21/ω · detM0

c ω
.

As a consequence, the first vector M ′Rα0
[1] has a norm bounded by:

||M ′Rα0
[1]|| ≤ 2(ω−1)/4 · | detM ′

R
α0
|1/ω ≤ 2(ω−1)/4 · 21/ω

2 · (detM0)
1/ω

c
.

Since the determinant of M0 ie equal to X ′(ω−1)/2N δ·`·(`+1)/(2δ`+2), one gets:

||M ′Rα0
[1]|| ≤ 2(1/ω

2)+(ω−1)/4 ·X ′(ω−1)/2 ·N δ·`·(`+1)/(2δ`+2)

c
.

15

Combining relation (8) with previous inequality, and using the triangular inequality, one has
the following:

||Uα0 [1] ·M̃α0 || = ||MR
α0

[1]|| ≤ 2
(ω−1)

4
+ 1
ω2 ·X ′(ω−1)/2 ·N δ·`·(`+1)/(2δ`+2)

(
1 +
||(M̃ ′α0)−1 ·Rα0 ||

c

)
.

As the norm of matrix Rα0 is upper-bounded by ω ·c, and again, using the triangular inequality,
one obtains

||MR
α0

[1]|| ≤ 2
(ω−1)

4
+ 1
ω2 ·X ′(ω−1)/2 ·N δ·`·(`+1)/(2δ`+2)

(
1 + ω · ||(M̃ ′α0)−1||

)
.

Furthermore, using Assumption 1.b one has

||(M̃ ′α0)−1|| ≤ c

ω ·X ′ ω−β
.

Finally, one gets

||MR
α0

[1]|| ≤ 2
(ω−1)

4
+ 1
ω2X ′(ω−1)/2N δ·`·(`+1)/(2δ`+2)

(
1 +

c

X ′ ω−β

)
.

which concludes the proof.
ut

As explained earlier, one has to find a trade-off for the value c which allows to find, with
reduced-complexity, a short vector bounded by N `/

√
ω. Ideally, one would like to hold a value

c so that the corresponding bound on X ′ remains the same as before, i.e. X ′ < N1/δ−1/ω. In
the following, we show that taking c = X ′ ω−β is a good trade-off.

Proposition 6. Let M̃ ′α0 be such that M̃ ′α0 =
⌊
M̃α0
c

⌋
with

c = X ′
ω−β

, 0 < β 6 1

and Uα0 be the unimodular matrix such that Uα0 · M̃ ′α0 = M ′Rα0
. Under Assumption 1, by

multiplying matrix Uα0 with matrix M̃α0, the first vector of the resulting matrix MR
α0

has a

norm bounded by N `/
√
ω for X ′ < N1/δ−1/ω.

Proof. By taking c = X ′ ω−β and using Proposition 5, one gets the bound

||MR
α0

[1]|| ≤ 2
(ω−1)

4
+ 1
ω2

+1 ·X ′(ω−1)/2 ·N δ·`·(`+1)/(2δ`+2) .

From the condition ||MR
α0

[1]|| ≤ N `/
√
ω, one gets a relation which induces a bound for X:

2
(ω+3)

4
+ 1
ω2 ·X ′(ω−1)/2 ·N δ·`·(`+1)/(2δ`+2) ≤ N `

√
ω
.

The factors
√
ω and 2

(ω+3)
4

+ 1
ω2 may, as in Section 2, be omitted since they have little effect on

subsequent bound. As a consequence, performing the same calculations as in Section 2 allows
to retrieve the bound X ′ < N1/δ−1/ω. Therefore, when considering a solution x0 bounded by
X ′ < N1/δ−1/ω, the first vector obtained by applying the unimodular matrix Uα0 to the matrix
M̃α0 , has a norm bounded by N `/

√
ω.

ut

16

Since this first vector has a norm bounded by N `/
√
ω, the corresponding polynomial h is

such that h(x0) = 0 over integers. Therefore, one can solve it and retrieve the solution x0.

As a consequence, each LLL-reduction applied to matrix M̃i+1 in while loop of Algorithm 2
can be performed on a truncated matrix M̃ ′i+1, with c = X ′ ω−β. It results in Algorithm 3.

Algorithm 3 Solving p(x) with exhaustive search on α and variant of Coppersmith’s Algorithm

Input: Equation p(x) ≡ 0 mod N , upper-bound X’ on x′0, dimension ω, divisors c1 := X′ω−1

22·ω and c2 := X ′
ω−β

Construct Coppersmith matrix M0 of dimension ω associated to p0(x′) = p(x′)
Perform modular reductions on M0 using diagonal elements

M ′0 :=
⌊
M0
c1

⌋
M ′R0 , U ′0 := LLL(M ′0)
MR

0 := U ′0 ·M0

α := 0
Construct lower triangular Pascal Matrix P
while First polynomial in MR

α does not provide the solution x′0 do
M̃α+1 := MR

α · P
M̃ ′α+1 :=

⌊
M̃α+1

c2

⌋
M ′Rα+1, U

′
α+1 := LLL(M̃ ′α+1)

MR
α+1 := U ′α+1 · M̃α+1

α := α+ 1
end while
x0 := X ′ · α+ x′0
return x0

5 Experimental results

We have implemented the methods using Howgrave-Graham’s variant, on Magma Software
V2.19-5 for N being 1024-bit and 2048-bit moduli. We used polynomials of the form p(x) =
x2 + ax+ b ≡ 0 mod N with degree δ = 2. According to Coppersmith’s Theorem (see Section
2), one can retrieve the solution x0 if x0 < X = N1/2. More precisely, Coppersmith’s method
allows to find the solution x′0 if x0 < X ′ = N1/2−1/ω. We have performed several tests depending
on the dimension ω. Results are depicted in Table 1 for the case dlog2(N)e = 1024 and in Table
2 for the case dlog2(N)e = 2048. In both tables, the bit-size of Coppersmith’s theoretic upper-
bound X = N1/2 is given in last column. We have noted the bit-size of the bound X ′ associated
to a dimension ω for which the solution x′0 is found in practice. We give corresponding timings
for different applications:

– Time for LLL execution on original Coppersmith’s matrix M0 (never performed in our
method)

– Time for LLL execution on truncated Coppersmith’s matrix (applied to reduce M ′0 only)
– Time for LLL execution on truncated quasi LLL-reduced matrix (applied on M̃ ′i for i =

1, ..., α0 during exhaustive search)
– Time for the multiplication with the unimodular matrix (Ui ·M̃i performed for i = 1, ..., α0

during exhaustive search after each LLL-computation of matrix M̃ ′i).

17

We choose to set the divisor c2 to the value X ′ω−(1/δ), i.e. to set the parameter β to 1/δ.
Experimentally, we conjecture that it is a good trade off (see discussion on Table 4).
It is worth noticing that since the value c is not significant in itself, one can truncate matrices
at negligible cost by taking c := 2blog2(c)c and performing shifts of blog2(c)c bits.

Table 1. Timings (in seconds if not specified) as a function of the dimension for dlog2(N)e = 1024.

log2(X′) 492 496 500 503 504 505 log2(X) = 512

Dimension 29 35 51 71 77 87 N/A

Original
Method

LLL (M0) 10.6 35.2 355 2338 4432 11426 N/A

Total Timing (days) 128.6 d. 26.7 d. 16.8 d. 13.9 d. 13.1 d. 16.9 d. N/A

New
Method

Truncated LLL (M ′0) 1.6 3.5 18.8 94 150 436 N/A

Truncated Exhaus. LLL (M̃ ′i) 0.04 0.12 1.4 9.9 15.1 46.5 N/A

Multiplication Unimodular 0.04 0.08 0.4 1.2 1.7 3.6 N/A

Total Timing (hours) 23.3 h. 3.6 h. 2.1 h. 1.6 h. 1.2 h. 1.9 h. N/A

Table 2. Timings (in seconds if not specified) as a function of the dimension for dlog2(N)e = 2048.

log2(X′) 994 1004 1007 1011 1012 1013 log2(X) = 1024

Dimension 35 51 63 85 91 101 N/A

Original
Method

LLL (M0) 164 1617 5667 39342 60827 125498 N/A

Total Timing (years) 5584 y. 53.8 y. 23.6 y. 10.2 y. 7.9 y. 8.2 y. N/A

New
Method

Truncated LLL (M ′0) 9 48 146 825 1200 2596 N/A

Truncated Exhaus. LLL (M̃ ′i) 0.15 1.6 6.2 33 48 104 N/A

Multiplication Unimodular 0.12 0.6 1.5 5.4 6.5 11.5 N/A

Total Timing (days) 3355 d. 26.7 d. 11.7 d. 3.7 d. 2.6 d. 2.8 d. N/A

As depicted in Tables 1 and 2, by increasing the dimension, one can retrieve solutions x0
that get ever closer to X = N1/2. However, beyond a certain point, it is not profitable to
increase the dimension since an exhaustive search would end up faster. In our case, the best
dimension to use is depicted in bold on both tables. Indeed, one can see that using a larger
dimension allows to find a solution which is one bit longer only, for LLL-executions that take
more than twice as much time. As a consequence, for dlog2(N)e = 1024, the best trade-off
is to use lattices of dimension 77, and perform an exhaustive search on 512 − 504 = 8 bits.
The exhaustive search then takes 150 + (28 − 1)(15.1 + 1.7) ≈ 1.2 hours, which is about 262
times faster than the original method which takes 28 × 4432 ≈ 13.1 days. More generally,
performing a single LLL-execution takes 150 seconds when truncating the matrix, compared to
4332 seconds using the original method. In the same way, for dlog2(N)e = 2048, the best trade-

18

off is to use lattices of dimension 91, and perform an exhaustive search on 1024−1012 = 12 bits.
The exhaustive search then takes 1200 + (212 − 1)(48 + 6.5) ≈ 2.6 days, which is about 1109
times faster than the original method which takes 212 × 60827 ≈ 7.9 years. More generally,
performing a single LLL-execution takes 1200 seconds when truncating the matrix, compared
to 60827 seconds using the original method. As depicted in Table 3, the larger the modulus N ,
the more significant the speed-up.

Table 3. Global exhaustive search timing using original/new methods for dlog2(N)e = 1024 and 2048.

dlog2(N)e = 512 dlog2(N)e = 1024 dlog2(N)e = 1536 dlog2(N)e = 2048

Original method 47 minutes 13.1 days 108.5 days 7.9 years

New method 52 seconds 1.2 hours 5.2 hours 2.6 days

Speed up 54 262 502 1109

Furthermore, we emphasize that Assumption 1 is confirmed in 100% of the cases in practice.
We give in Table 4, bounds afforded in Assumption 1 and bounds obtained in practice, for the
case dlog2(N)e = 1024 and ω = 77. One can see that practical bounds are always contained
within hypothetical bounds. More precisely, for Assumption 1.a, there is a factor 222 between
practical and hypothetical bounds. The factor is more considerable for Assumption 1.b, where
it is up to 2153. This induces that one could use a larger value for c2 (i.e. a smaller value for
β). However, experimental tests yield that the benefit would remain small.

Table 4. Bounds obtained in Assumption 1 and in practice (100% of cases) for dlog2(N)e = 1024 and ω = 77.

Assumption Practice

Assumption 1.a: c ω · | det M̃
′
i+1|

| det M̃i+1|
∈ [2

−1
ω , 2

−1
ω] ∈ [2

−1
99 , 2

−1
99]

Assumption 1.b: ||(M̃i+1)−1|| ·X ′ω−(1/δ) 6 1
ω

6 1
2160

Eventually, in order to visualize what happens in practice, we have depicted in Figures
1 and 2 the norm of each row vectors in different matrices for the case dlog2(N)e = 1024
with dimension ω = 77. In Figure 1, we give the norm of each row vector in the original
Coppersmith’s matrix M0 and in the reduced matrix MR

0 . Namely, the norm of vectors in M0

(resp. in MR
0) lies between 238000 and 258250 (resp. between 238853 and 238855). We recall that

matrix M0 is never reduced in our method. In Figure 2, we give the norm of each row vector
in four different matrices that are processed in our method: the first truncated matrix M ′0, the
reduced matrix M ′R0 , the next truncated matrices M̃ ′i and the reduced matrices M ′Ri . One can
see that elements of all four matrices are far smaller than elements in original matrices (Figure
1). The vectors norm lies around 21250 in M ′0 (resp. around 2700 in M ′R0) and it ranges up to
2370 in M̃ ′i (resp. to 2300 in M ′Ri). It is worth noting that elements in matrix M̃ ′i are smaller
than the ones in M ′R0 because the divisor c is taken larger for the case α > 0 (i.e. we take
c2 > c1). It is also interesting to notice that elements in M̃ ′i are close to elements in M ′Ri .

19

This allows to illustrate part of Proposition 4 which yields that matrix M̃ ′i is almost reduced
already.

0

10000

20000

30000

40000

50000

60000

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 77

lo
g
2

o
f

v
ec

to
rs

n
o
rm

Index of vector

Reduced Coppersmith Matrix MR
0

Original Coppersmith Matrix M0

Fig. 1. Norm of vectors in Original Method

0

200

400

600

800

1000

1200

1400

1600

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 77

lo
g
2

o
f

v
ec

to
rs

n
o
rm

Index of vector

Reduced Truncated Matrix M
′R
i

Truncated Matrix M ′i
Reduced Truncated Matrix M

′R
0

Truncated Matrix M ′0

Fig. 2. Norm of vectors in New Method

6 Conclusion

This article brings two improvements that allow to reduce time to find small solutions to
polynomial equations. In a first stage, we show that it is not necessary to apply LLL on
the original Coppersmith’s matrix, but considering a matrix where elements are truncated is
sufficient. This allows to divide the asymptotic complexity of the method by a factor O(log2N)
using the L2 algorithm. In a second phase, we exhibit a new approach to carry out the exhaustive
search. It enables to considerably speed up its processing. Experimental results yield that some
computations that were completely prohibitive with the original approach are made achievable.

References

1. D. Coppersmith. Finding a small root of a univariate modular equation. In Maurer [11], pages 155–165.
2. Howgrave-Graham. Finding small roots of univariate modular equations revisited. In Cryptography and

Coding, 1355/1997:131–142, 1997.
3. A.K. Lenstra, H.W. Lenstra, and L. Lovasz. Factoring Polynomials with rational coefficients. Math. Ann.,

pages 515–534, 1982.
4. P. Nguyen and D. Stehlé. Floating-point LLL revisited. In R. Cramer, editor, Advances in Cryptology –

EUROCRYPT 2005, volume 3494 of LNCS, pages 215–233. Springer, 2005.
5. P. Novocin, D. Stehlé, and G. Villard. An LLL-Reduction Algorithm with Quasi-linear Time Complexity.

In Symposium on Theory of Computing, 2011.
6. D. Coppersmith. Finding a small root of a bivariate integer equation; factoring with high bits known. In

Maurer [11], pages 178–189.
7. D. Boneh, G. Durfee, and N.A. Howgrave-Graham. Factoring N = prq for large r. In M.J. Wiener, editor,

Advances in Cryptology – CRYPTO ’99, volume 1666 of LNCS. Springer, 1999.
8. É. Brier, C. Clavier, J.-S. Coron, and D. Naccache. Cryptanalysis of RSA Signatures with Fixed-Pattern

Padding. In J. Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of LNCS, pages
433–439. Springer, 2001.

20

9. D. Bleichenbacher and A. May. New attacks on RSA with Small Secret CRT-Exponents. In Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography – PKC 2006, volume
3958 of LNCS. Springer, 2006.

10. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0.292. In J. Stern, editor,
Advances in Cryptology – EUROCRYPT ’99, volume 1592 of LNCS. Springer, 1999.

11. U. Maurer, editor. Advances in Cryptology – EUROCRYPT ’96, volume 1070 of LNCS. Springer, 1996.

A Proof of Lemma 3

Proof. We denote by M ′i,j (resp. M ′−1i,j) the element in M ′ (resp. M ′−1) situated at the i-th
row and j-th column.
We start by showing that, for all i such that 2 ≤ i ≤ ω, we have the inequality

−M ′−1i,i < M ′−1i,i−1 ≤ 0 . (10)

Indeed, from the relation M ′−1 ·M ′ = Id and since both matrices are lower triangular, one can
write the following equation:

M ′−1i,i−1 ·M
′
i−1,i−1 +M ′−1i,i ·M

′
i,i−1 = 0 .

Therefore one has

M ′−1i,i−1 = −
M ′−1i,i ·M ′i,i−1
M ′i−1,i−1

. (11)

Moreover, since the first step of the method consisted of successive modular reductions with
diagonal elements of M , in a given column, all elements are smaller than the diagonal element.
Besides, the same is true for M ′. Therefore, for all j > i one has the relation 0 ≤M ′j,i < M ′i,i,
or equivalently,

0 ≤
M ′j,i
M ′i,i

< 1 . (12)

Therefore, combining (11) and (12), one gets the relation −M ′−1i,i < −M ′−1
i,i ·M

′
i,i−1

M ′i−1,i−1
≤ 0 which

leads to (10).

We now show by recurrence on j that, for all i such that 3 ≤ i ≤ ω and for all j such that
j ≤ i− 2, one has the following relation:

−2i−j−2 ·M ′−1i,i < M ′−1i,j < 2i−j−2 ·M ′−1i,i . (13)

Base case: For j = i− 2, one would like to show that

−M ′−1i,i < M ′−1i,i−2 < M ′−1i,i . (14)

From the relation M ′−1 ·M ′ = Id and since both matrices are lower triangular, one can write
the following equation:

M ′−1i,i−2 ·M
′
i−2,i−2 +M ′−1i,i−1 ·M

′
i−1,i−2 +M ′−1i,i ·M

′
i,i−2 = 0 .

21

Therefore one has the relation

M ′−1i,i−2 = −
M ′−1i,i−1 ·M ′i−1,i−2

M ′i−2,i−2
−
M ′−1i,i ·M ′i,i−2
M ′i−2,i−2

.

Moreover, using (10) and (12), one gets

0 ≤ −
M ′−1i,i−1 ·M ′i−1,i−2

M ′i−2,i−2
< M ′−1i,i ,

and from (12) one gets

−M ′−1i,i < −
M ′−1i,i ·M ′i,i−2
M ′i−2,i−2

≤ 0 .

Therefore, cumulating these two inequalities, one retrieves relation (14).

Inductive step: We assume that j ≤ i − 2 and that the following relation is true for all
k such that j + 1 ≤ k ≤ i− 2

−2i−k−2 ·M ′−1i,i < M ′−1i,k < 2i−k−2 ·M ′−1i,i . (15)

We show that (13) is confirmed when k = j.

Using the fact that M ′−1 ·M ′ = Id, one can write the following equation:

M ′−1i,j ·M
′
j,j+M

′−1
i,j+1·M

′
j+1,j+M

′−1
i,j+2·M

′
j+2,j + . . . +M ′−1i,i−2·M

′
i−2,j+M

′−1
i,i−1·M

′
i−1,j+M

′−1
i,i ·M

′
i,j = 0

Therefore one has

M ′−1i,j =
M ′−1i,j+1 ·M ′j+1,j

M ′j,j
+
M ′−1i,j+2 ·M ′j+2,j

M ′j,j
+ . . . +

M ′−1i,i−2 ·M ′i−2,j
M ′j,j

+
M ′−1i,i−1 ·M ′i−1,j

M ′j,j
+
M ′−1i,i ·M ′i,j

M ′j,j
(16)

Following the same argumentation as for the base case, one deduces a relation for the last two
elements in (16):

−M ′−1i,i <
M ′−1i,i−1 ·M ′i−1,j

M ′j,j
+

M ′−1i,i ·M ′i,j
M ′j,j

< M ′−1i,i (17)

Moreover, the assumption (15) is separately applicable to all the other elements in (16), which
gives:

−(

u=i−j−3∑
u=0

2u) ·M ′−1i,i <
M ′−1i,j+1 ·M ′j+1,j

M ′j,j
+ . . . +

M ′−1i,i−2 ·M ′i−2,j
M ′j,j

< (

u=i−j−3∑
u=0

2u) ·M ′−1i,i (18)

Eventually, from (17) and (18), one gets the relation (13), which concludes the inductive proof
of relation (13).

Since the value j that maximize bounds in (13) is j = 0, one has the relation

−2i−2 ·M ′−1i,i < M ′−1i,j < 2i−2 ·M ′−1i,i . (19)

22

Furthermore, since M ′ is triangular, one gets for all i ≤ ω

M ′−1i,i =
1

M ′i,i
.

Besides, the smallest diagonal element in M ′ is M ′ω,ω = Xδ·`

c . Consequently the largest element
in M ′−1 is met for i = ω and is equal to

M ′−1ω,ω =
c

Xδ·` . (20)

Therefore, using (19) and (20) one gets the following relation

−2ω−2 · c
Xδ·` < M ′−1i,j <

2ω−2 · c
Xδ·` . (21)

Eventually, one gets the final bound

||M ′−1|| < ω · 2ω−2 · c
Xδ·` ,

which concludes the proof.
ut

