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Abstract

The GHS attack is known as a method to map the discrete loga-
rithm problem(DLP) in the Jacobian of a curve C0 defined over the
d degree extension kd of a finite field k to the DLP in the Jacobian
of a new curve C over k which is a covering curve of C0, then solve
the DLP of curves C/k by variations of index calculus algorithms. In
this paper, we classify or present a complete list of all elliptic curves
and hyperelliptic curves C0/kd of genus 2, 3 which possess (2, ..., 2)
covering C/k of P1 under the isogeny condition (i.e. g(C) = d · g(C0))
in odd characteristic case. Our main approach is analysis of ramifica-
tion points and representation of the extension of Gal(kd/k) acting on
the covering group cov(C/P1). All explicit defining equations of such
curves C0/kd and existential conditions of a model of C over k are also
obtained.
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1 Introduction

Let q be a power of an odd prime, k := Fq, kd := Fqd . We consider in this
paper algebraic curves C0/kd used in cryptographic applications, i.e. elliptic
and hyperelliptic curves of genera g0 := g(C0) = 1, 2, 3.

For these algebraic curve-based cryptosystems, the GHS attack was pro-
posed by Gaudry, Hess and Smart[12] based on idea of Frey[7] to apply Weil
descent to elliptic curve cryptosystems. The GHS attack has been then
extended and analyzed by many authors [3][9][15][16][17][23][24][25][33][34]
and conceptually generalized to cover attack by Frey and Diem[5]. The GHS
attack, in terms of cover attack, can be described as to map the DLP in the
Jacobian of C0/kd to the DLP in the Jacobian of a covering curve C/k of
C0/kd, then apply either the index calculus algorithms [13][29] when C is
hyperelliptic and or the algorithm in [4] when C is non-hyperelliptic or C is
hyperelliptic but has been transformed to a non-hyperelliptic one.

After the first proposal of the GHS attack, a major effort has been ob-
served to find particular classes of curves which have covering so are sub-
jected to the GHS attack. However, exhaustive search of such curves seemed
to be difficult. Besides, in practice of cryptography, it is more important to
know if a random curve is secure or not against the GHS attack.

Analysis of the GHS attack for arbitrary curves turned out to be non-
trivial. A main approach until now is to investigate the genus g(C) of the
covering curve C as a function of the extension degree d of the definition field
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kd of C0. The genus g(C) of C was calculated on definition finite fields of
characteristic 2 for elliptic curves C0 using Artin-Schreier theory in [12] and
generalized to arbitrary Artin-Schreier extensions in [15][16]. In [23][24] and
[25], lower bounds of the above g(C) of C were calculated for elliptic curves
with prime or composite extension degrees in certain ranges which are cryp-
tographically meaningful. When the lower bound of g(C) is large enough
the DLP will be infeasible but when the lower bound is small, the definition
field therefore all curves defined on it are recommended to be avoided. In
[3], Diem generalized the GHS attack to odd characteristic cases and by
genus analysis using Kummer theory, he showed that on definition fields
with prime extension degrees d, for all d ≥ 11, the genus g(C) will be very
large when C exists, therefore, attacks to C become impractical. [3] also
showed examples for C0 such that the covering curves exist for d = 3, 5, 7.

These results based on genus analysis are very impressive and useful. On
the other hand, the problem about when and for which C0 such covering
curves C actually exist still remained open. Besides, the approach using
genus analysis dealt only with defintion field kd, or the extension degrees d.
The curves C0 defined on the field which may be with or without covering,
were not distinguished. In fact, even when the extension degree d of the
definition field of a curve fallen in the ”weak” extent, it is still possible that
it has no covering curve or every curve on the definition field is without
covering so is perfectly secure to use in cryptosystems. In practice, cryp-
tosystems often need to use particular finite fields or curves with certain
properties in order to obtain efficient implementation, which however could
be shut out by the above false-alarm of the GHS attack.

Thus, both theoretically and practically it is interesting and important to
know which curve C0/kd possesses covering C/k so is subjected to the GHS
attack. It should be useful for cryptosystem designers to have a complete
list or a classification of all such ”weak ” curves C0.

In order to transfer the DLP of Jkd
(C0) to Jk(C), the genus of C is

bounded from below: g(C) ≥ d · g0 and is often very large as shown in [3].
The equality holds in the above inequality when the Jacobians of C0 and C
are isogenous. Then the Jacobian of C has the smallest possible size which is
the most favorable situation for attackers. In the GHS paper, it was stated
that “we wish the genus of C is linear in n(= d in this paper), but it is
highly unlikely such a curve exists at all”.

In this paper, we present an analysis of C0 on existence of the covering
curves C in the above situation in odd characteristic case.

In particular, we assume the following condition which we call ”the
isogeny condition”: There is a covering map between C/k and C0/kd

π/kd : C � C0 (1)

such that for

π∗ : J(C) � J(C0), (2)
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Re(π∗) : J(C) −→ Rekd/kJ(C0) (3)

defines an isogeny over k, here J(C) is the Jacobian variety of C and
Rekd/kJ(C0) is its Weil restriction with respect to the field extension kd/k.
Obviously g(C) = d · g0 under this condition.

In fact, there could be a large number of the curves satisfying the isogeny
condition subjected to the GHS attack. E.g. a half of random elliptic curves
E defined over k3 in the Legendre form possess covering curves therefore a
160-bit system only has strength of 107 bits key-length[28].

In this paper, we classify the elliptic and hyperelliptic curves of odd
characteristic which are subjected to the GHS attack or have covering curves
under the isogeny condition. In particular, we classify all (2, ..., 2)-covering
of C0/kd, i.e. those with covering groups of order 2n for 1 < n ≤ d. Our
main approach is analysis of intrinsic structure of coverings, in particular
ramification points and representation of the extension of Gal(kd/k) acting
on the covering group cov(C/P1). Furthermore, existential conditions of a
model of C over k are discussed. As a result, a complete list and explicit
defining equations of such weak curves C0/kd are obtained, which is included
in the section 7.

2 The GHS and cover attack

We suppose that the Frobenius automorphism σkd/k extends to an auto-
morphism σ in the separable closure of kd(x). It is showed by Diem[3] that
σkd/k can extend to an automorphism of order d on the Galois closure of
kd(C0)/k(x) when C0 is a hyperelliptic curve and d is odd in the odd char-
acteristic case. In the section 6, we will show a generalization of the result.

Under the assumption that σ has order d, the Galois closure of kd(C0)/k(x)
isK := kd(C0)·σ(kd(C0)) · · ·σd−1(kd(C0)) and the fixed field ofK by the au-
tomorphism σ is K ′ := {ζ ∈ K | σ(ζ) = ζ}. The original GHS attack maps
the DLP in Cl0(kd(C0)) ∼= J(C0)(kd) to the DLP in Cl0(K ′) ∼= J(C)(k)
using the following composition of conorm and norm maps

NK/K′ ◦ ConK/kd(C0) : Cl0(kd(C0)) −→ Cl0(K ′)

for elliptic curves in characteristic 2 case [12]. This attack has been extended
to various classes of curves. It is also conceptually generalized to the cover
attack by Frey and Diem [5] as described briefly as follows. When there
exist an algebraic curve C/k and a covering π/kd : C −→ C0, the DLP in
J(C0)(kd) can be mapped to the DLP in J(C)(k) by a pullback-norm map,
as in the following diagram.

J(C)(kd)

N
��

J(C0)(kd)
π∗

oo

N◦π∗
xxpppppppppp

J(C)(k)
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Unless otherwise noted, we consider the following hyperelliptic curves with
g(C0) ∈ {1, 2, 3} given by

C0/kd : y2 = c · f(x) (4)

where c ∈ k×d and f(x) is a monic polynomial in kd[x] such that

C0
2−→ P1(x) (5)

is a degree 2 covering over kd . Then, we have a

n︷ ︸︸ ︷
(2, . . . , 2) covering or a

covering π/kd : C −→ P1 such that cov(C/P1) ≃ Fn
2 , here n ≤ d,

cov(C/P1) := Gal(kd(C)/kd(x)). (6)

In language of function fields, it can be described by a tower of extensions of

function fields such that kd(x, y, σ
1
y, . . . , σ

n−1
y) ≃ kd(C) is a

n︷ ︸︸ ︷
(2, ..., 2) type

extension.

Lemma 2.1. The isogeny condition is equivalent to the each of following
two statements.
(A)

∀I ⊂ cov(C/P1), [cov(C/P1) : I] = 2,

g(C/I) =

{
0 I ̸= σi

H, ∀i

g0 I ≃ σi
H, ∃i

or CI = C/I =

{
P1 I ̸= σi

H, ∀i
σi
C0 I ≃ σi

H, ∃i

here C/H = C0.

(B) There is a subgroup H of index 2 in cov(C/P1) such that the Tate module
of J(C) has the following decomposition

Vl(J(C)) = ⊕d−1
i=0 Vl(J(C))

σi
H . (7)

3 Galois representation

We will classify all n-tuple (2, ..., 2) coverings C/P1 with the degree 2 sub-
covering C0/P1 as below.

n︷ ︸︸ ︷
(2, · · · , 2)︷ ︸︸ ︷

C −→ C0 −→ P1(x)︸ ︷︷ ︸
2

(8)
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In order to do that, we consider and classify the representation of Gal(kd/k)
on cov(C/P1) ≃ Fn

2 . For simplicity, we denote hereafter σkd/k as σ.

Gal(kd/k) × cov(C/P1) −→ cov(C/P1) (9)

(σi, ϕ) 7−→ σi
ϕ := σiϕσ−i (10)

Here, one has a map into Aut(cov(C/P1)).

Gal(kd/k) ↪→ Aut(cov(C/P1)) ≃ GLn(F2) (11)

The representation of σ for given n, d has the following form in general. (We
use the same notation for σ and its representation in the rest of this paper):

σ =


∆1 O · · · O

O ∆2
. . .

...
...

. . . . . . O
O · · · O ∆s


}
n1}
n2

}
ns

, n =
s∑

i=1

ni (12)

where O stands for the zero matrix. The indecomposable subrepresentations

∆i :=


Ωi Ωi Ô · · ·

Ô Ωi
. . . . . .

...
. . . . . . Ωi

Ô · · · Ô Ωi


}
ni/li}
ni/li
...}
ni/li

(13)

is an ni×ni matrix which has a form of an li×li block matrix. The sub-block
Ωi is an ni/li × ni/li matrix and Ô also the zero matrix. Here, we denote
the characteristic polynomial of Ωi as fi(x), the characteristic polynomial
of ∆i is Fi(x) := fi(x)li , F (x) := LCM{Fi(x)} is the minimal polynomial
of σ. Denoting di :=ord(∆i), one has d = LCM{di}.

Now define the minimal polynomial of σ as F (x) := xn + an−1x
n−1 +

· · · + a1x + a0 ∈ F2[x]. Then σn = an−1σ
n−1 + · · · + a1σ + a0. The Galois

action of Gal(kd/k) on y induces the following action:

σn
y ≡

n−1∏
j=0

(
σj
y
)aj

mod kd(x)×.

Therefore

σn
y2 ≡

n−1∏
j=0

(
σj
y2

)aj

mod
(
kd(x)×

)2
.

As a result, we obtain the following necessary and sufficient condition for
existence of a model of C over kd given n, d, σ :
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C has a model over kd if and only if

F (σ)y2 ≡ 1 mod (kd(x)×)2 and
G(σ)y2 ̸≡ 1 mod (kd(x)×)2 for ∀G(x) | F (x), G(x) ̸= F (x). (14)

4 Classification of C0/kd with covering C/k

Below, we show that, under the isogeny condition, the following pairs of n
and d are all possible cases for genus 1, 2, 3 hyperelliptic curves C0/kd with
(2, .., 2) covering C/k therefore subjected to the GHS attack.

g0 (n, d)
1 (2, 2), (2, 3), (3, 3), (3, 7), (4, 5)
2 (2, 2), (2, 3)
3 (2, 2), (2, 3), (3, 7), (4, 15)

Hereafter, let S be the set of the ramification points in P1 of the covering
C/P1. Then according to the Riemann-Hurwitz genus formula,

2g(C) − 2 = 2n(0 − 2) + #S · 2n−1(2 − 1) · 1. (15)

Here ramification indices equal 2, and the number of fibres on C over a
ramification point on P1 is 2n−1, since the ramification group is cyclic for
gcd(char(k), 2) = 1.

Therefore,

#S =
2g(C) − 2 + 2n+1

2n−1
= 4 +

d · g0 − 1
2n−2

. (16)

These coverings can be classified to the following four cases.

4.1 The case when σ is indecomposable

We will treat the cases when d is even and odd separately.

4.1.1 When d is even

Assume d = 2r · d′ (2 - d′). Representation of an indecomposable σ is in the
form of the following block matrix:

σ =


Ω Ω Ô · · ·

Ô Ω
.. . . . .

...
. . . . . . Ω

Ô · · · Ô Ω


n (17)
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Here n = l ·m, Ω is in Mm(F2) such that Ωd′ = I, and

σ2r
=


Ω̃ Ô Ô · · ·

Ô Ω̃
. . . . . .

...
. . . . . . Ô

Ô · · · Ô Ω̃


1

...

l

, σd = (σ2r
)d′ =


I Ô Ô · · ·

Ô I
. . . . . .

...
. . . . . . Ô

Ô · · · Ô I

 . (18)

Then, we have 2r−1 < l ≤ 2r and Ω ∈ Mm(F2), Ω /∈ Mm′(F2) for 1 ≤
∀m′ ≤ m − 1. Here Mm(F2) stands for m ×m binary matrices. Since the
minimal polynomial of Ω is in the form of xm + ãm−1x

m−1 + · · ·+ ã1x+ ã0,
we have

d′|(2m − 1), d′ - (2m′ − 1), 1 ≤ m′ ≤ m− 1. (19)

As we showed in the previous section, the number of the ramification
points of C/P1 is #S = 4 + d·g0−1

2n−2 . The numerator d · g0 − 1 of the fraction
part in #S is odd since d is even. Then the denominator 2n−2 must be 1
since #S ∈ N. Therefore n = 2.

Now from n = 2 and l > 1, one has m = 1, l = n = 2. By (19), d′ = 1
and d = 2r. Since 2r−1 < 2 ≤ 2r = d and r = 1, therefore d = 2. Thus we
know that (d, n) = (2, 2) is the only possibility.

In fact, the general form of σ only appear in cases when the isogeny
condition does not hold, which will be reported elsewhere.

4.1.2 When d is odd

(a) d = 2n − 1
By the Riemann-Hurwitz genus formula, 2dg0 − 2 = 2n(−2) + 2n−1 · #S.
Therefore

#S =
2d(g0 + 1)

2n−1
=
d(g0 + 1)

2n−2
. (20)

Now, since d is odd, there exists a natural number t ∈ N such that g0 + 1 =
t · 2n−2. Then #S = d · t. Below we consider cases in which g0 has different
values:

• g0 = 1
In this case, t = 2

2n−2 ∈ N. It is obvious that only n = 2, 3 are possible.
Therefore we have (n, d) = (2, 3), (3, 7) since d = 2n − 1.

• g0 = 2
In the similar manner, t = 3

2n−2 ∈ N therefore (n, d) = (2, 3).

• g0 = 3
t = 4

2n−2 ∈ N therefore (n, d) = (2, 3), (3, 7), (4, 15).
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In the above cases, the representations of σ are n×n matrices whose orders
are d. Then we have the following minimal polynomial F (x) as a degree n
irreducible factor of xd + 1 for each σ:

• (n, d) = (2, 3)
Since x3 + 1 = (x+ 1)(x2 + x+ 1), we obtain F (x) = x2 + x+ 1.

• (n, d) = (3, 7)
F (x) = x3 + x+ 1 or F (x) = x3 + x2 + 1 since x7 + 1 = (x+ 1)(x3 +
x+ 1)(x3 + x2 + 1).

• (n, d) = (4, 15)
F (x) = x4 + x+ 1 or F (x) = x4 + x3 + 1 since x15 + 1 = (x+ 1)(x2 +
x+ 1)(x4 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1).

(b) d ̸= 2n − 1
For given n and d, we know that

σ ∈Mn(F2), σ /∈Ml(F2) for 1 ≤ ∀l ≤ n− 1. (21)

Since σn = an−1σ
n−1 + · · · + a1σ + a0, we have

d|(2n − 1), d - (2l − 1). (22)

Then 3d ≤ 2n − 1. Obviously, n ≥ 4. From the Riemann-Hurwitz formula,

#S = 4 +
dg0 − 1
2n−2

. (23)

Therefore, g0 is odd, which means that g0 = 1 or 3. On the one hand, we
have

#S = 4 +
dg0 − 1
2n−2

≥ 2g0 + 3 (24)

dg0 − 1 ≥ 2n−1(2g0 − 1) (25)
2n−2 − 1 ≥ 2n−1g0 − dg0 = (2n−1 − d)g0. (26)

From now, we consider the two cases when g0 = 1 and g0 = 3 :

• g0 = 1
Since #S = 4 + d−1

2n−2 ∈ N, there exists a natural number t ∈ N such
that d = 1 + 2n−2t. We have already known that 2n − 1 ≥ 3d, which
does not hold if t ≥ 2. Therefore, only t = 1 is possible. Now, as
d|(2n − 1), we have

d = (1 + 2n−2)|(2n − 1). (27)

Then d |
{
4(2n−2 + 1) − 5

}
since 2n − 1 = 4(2n−2 + 1)− 5. Therefore,

(n, d) = (4, 5) is the only possibility. In this case, σ is a 4 × 4 matrix
whose order is 5 and the minimal polynomial F (x) is x4+x3+x2+x+1.
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• g0 = 3
We have 2n−2 − 1 ≥ (2n−1 − d)3 = 3 · 2n−1 − 3d.
Furthermore,

3d ≥ 3 · 2n−2 − 2n−2 + 1 = 2n + 2n−2 + 1, (28)

which is against

2n − 1 ≥ 3d, (29)

so this case does not exist.

4.2 The case when σ is decomposable

As a Gal(kd/k)-module, the representation of σ is a direct sum of indecom-
posable subrepresentations Ai.

cov(C/P1) = A1 ⊕ · · · ⊕Ar, r ≥ 2, #Ai = 2ni (30)

Define

A′
i :=

⊕
j ̸=i

Aj . (31)

Under the isogeny condition, we know that

Aj ∩ σi
H = {0} and Aj ̸⊂ σi

H for i = 0, ..., n− 1. (32)

Therefore, it follows that

g(C/Aj) = 0 for j = 1, ..., r. (33)

A similar argument also apply to A′
i, therefore we have

C/Aj = C/A′
i = P1 for i, j = 1, ..., r. (34)

If r ≥ 3,

C/(A′
i ∩A′

j) = C/(⊕l ̸=i,jAl) = P1 for ∀i, j. (35)

Thus, one obtains the following covering.

C/
∩
l ̸=i

A′
l

iiiiiiiiiiiiiiiiiiiiii

ssssssssss

KKKKKKKKKK

UUUUUUUUUUUUUUUUUUUUUU

C/A′
1

VVVVVVVVVVVVVVVVVVVVVVVVV · · ·C/A′
i−1

NNNNNNNNNNNN
C/A′

i+1 · · ·

pppppppppppp
C/A′

r

hhhhhhhhhhhhhhhhhhhhhhhhh

P1
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Since C/
∩
l ̸=i

A′
l = P1, this implies one has a (2,..,2)-covering P1/P1 of

degree 2
∑
l̸=i

nl

. Now we consider a

ν︷ ︸︸ ︷
(2, ..., 2)-covering P1 −→ P1. By the

Riemann-Hurwitz genus formula, when char(k) ̸= 2, the number of the
ramification points of this covering is 4 − 1

2ν−2 . It follows that ν ≤ 2.
Therefore, we obtain

∑
l ̸=i

nl ≤ 2 for ∀i. Thus, r = 2. Consequently,

the only possibility is n = n1 + n2 = 1 + 2 = 3, d = 3, g0 = 1 when σ is
decomposable. This means that σ decomposes into a tensor product of 1
and a 2 × 2 matrix whose order is 3 :

σ =

1 0 0
0 1 1
0 1 0

 . (36)

5 Defining equations of C0/kd for c = 1 or a square

Now we wish to determine the defining equations of C0/kd for given n, d.
Hereafter, we assume that C is a model over kd. In this section, we also
assume that c = 1 (i.e. c ∈ (k×d )2) in (4). Then, it is sufficient to find
a monic f(x) in (4) such that C has a model over kd (i.e. F (σ)f(x) ≡ 1
mod (kd(x)×)2). For d = 2, 3, it is possible to find f(x) by using the Venn
diagram to describe the sets of ramification points of σi−1

C0/P1. In the
section 6, we will treat explicit conditions for c ∈ k×d such that the curve C
has a model over k, then determine the defining equations with a non-square
c.

5.1 σ : indecomposable

5.1.1 d : even

From the section 4.1.1, the only possibility here is d = 2, n = 2. Thus,
#S = 2g0 + 3. Let Si be the set of ramification points of σi−1

C0/P1 for
i = 1, 2. Then S = S1 ∪ S2. For d = 2, n = 2, the ramification points of
σi−1

C0/k2 for i = 1, 2 and C/k on P1 can be represented by the following
Venn diagram.

a ab

S1 S2
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Here, b := #(S1 ∩ S2), a := #S1 − b = #S2 − b. As a result, we obtain the
following simultaneous equations :{

a+ b = 2g0 + 2
2a+ b = #S.

(37)

From the Riemann-Hurwitz genus formula, #S = 5, 7, 9 for g0 = 1, 2, 3. By
solving the above simultaneous equations, one obtains (a, b) = (1, 3), (1, 5), (1, 7)
for g0 = 1, 2, 3 respectively. Consequently, the defining equations C0/k2 are

y2 = (x− α)h(x) (38)

where h(x) ∈ k[x], α ∈ k2 \ k, deg h(x) = 2, · · · , 7.

5.1.2 d : odd

(a) d = 2n − 1
In this case, all possibilities for (n, d) are (2, 3)(3, 7)(4, 15) from the section
4.1.2. Recall that F (x) := xn + an−1x

n−1 + · · · + a1x + a0 ∈ F2[x] is the
minimal polynomial of σ. Then σn = an−1σ

n−1 + · · · + a1σ + a0. Here, we
define a homomorphism L of kd(x)× as follows:

L : kd(x)× −→ kd(x)× (39)

µ 7−→
d−1∏
i=0

(
σi
µ
)bi

. (40)

Here, the sequence {bi ∈ F2|i = 0, . . . , d− 1} is defined as follows:

b0 = b1 = · · · = bn−1 = 1, (41)

bn+j :=
n−1∑
i=0

an−ibn+i for j = 0, 1, . . . , d− 1 − n. (42)

Then one can verify that

F (σ)

{
d−1∏
i=0

(
σi
µ
)bi

}
≡ 1 mod

(
kd(x)×

)2
. (43)

Consequently, we have the following defining equation of C0/kd. Recall that
#S = d · t. Assume t is decomposed into t := t1 + t2 + · · · + tr, αi ∈ kd·ti ,
kd(αi) = kd·ti ,

{
σι
αi

}
ι
∩

{
σι
αj

}
ι
= ∅ (i ̸= j). Then we have

f(x) =
r∏

i=1

Nkd·ti/kd
(L(x− αi)) =

r∏
i=1

Nkd·ti/kd

d−1∏
j=0

σj
(x− αi)bj

 . (44)

Recall the following minimal polynomial F (x) for each (n, d):
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• (n, d) = (2, 3) : F (x) = x2 + x+ 1

• (n, d) = (3, 7) : F (x) = x3 + x+ 1 or F (x) = x3 + x2 + 1

• (n, d) = (4, 15) : F (x) = x4 + x+ 1 or F (x) = x4 + x3 + 1 .

Then one obtains the defining equations C0/k3 as follows:

• g0 = 1, d = 3, n = 2
#S = d · t = 3 · 2, F (x) = x2 + x+ 1
Then we have the following two cases.

1. t = t1 + t2 = 1 + 1
α1, α2 ∈ k3, {α1, α

q
1, α

q2

1 } ∩ {α2, α
q
2, α

q2

2 } = ∅
f(x) =

∏2
i=0

(
σi

(x− α1)bi

) ∏2
j=0

(
σj

(x− α2)bj

)
Since b1 = b2 = 1, a0 = a1 = a2 = 1, b2 = a2b0 + a1b1 = 0,
C0/k3 : y2 = (x− α1)(x− αq

1)(x− α2)(x− αq
2)

2. t = t1 = 2
α1 ∈ k6, k(α1) = k6

C0/k3 : y2 = Nk6/k3

(∏2
i=0

σi
(x− α1)bi

)
= (x− α1)(x− αq

1)(x− αq3

1 )(x− αq4

1 )

• g0 = 1, d = 7, n = 3
Since #S = d · t = 7 · 1 = 7, then t = t1.
α ∈ k7, k(α) = k7

C0/k7 : y2 = L(x− α) =
6∏

i=0

(σi
(x− α))bi

=

{
(x− α)(x− αq)(x− αq2

)(x− αq4
) if F (x) = x3 + x+ 1

(x− α)(x− αq)(x− αq2
)(x− αq5

) if F (x) = x3 + x2 + 1

Lists of all defining equations for g0 = 2, 3 are given in the table of the
final section.

(b) d ̸= 2n − 1
Since x5 + 1 = (x + 1)(x4 + x3 + x2 + x + 1), when (n, d) = (4, 5), σ has
the minimal polynomial F (x) = x4 + x3 + x2 + x+ 1. Recall that we need
F (σ)f(x) ≡ 1 mod (kd(x)×)2 in order that C is a model over kd. If this
condition is satisfied, f(x) has the following three possibilities for α ∈ k5 \k:

(x− α)(x− αq) | f(x) or

(x− α)(x− αq2
) | f(x) or

(x− α)(x− αq)(x− αq2
)(x− αq3

) | f(x).
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For g0 = 1 and #S = 4 + 1 = 5, it follows that

C0/k5 : y2 = (x− α)(x− αq)(x− αq2
)(x− αq3

). (45)

5.2 σ : decomposable

Recall that there exists only one case in which g0 = 1, n = 3, d = 3 when σ
is decomposable and #S is the number of ramification points of C/P1. By
the Riemann-Hurwitz genus formula, #S = 4 + dg0−1

2n−2 = 5. Let Si be the
set of ramification points of σi−1

C/P1. Then, #S = #(S1 ∪ S2 ∪ S3). Now,
#S1 = #S2 = #S3 = 2g0 + 2 = 4 since g0 = 1. Here, we define a, b, c as
follows:

c := #(S1 ∩ S2 ∩ S3),
b := #(S1 ∩ S2) − c = #(S2 ∩ S3) − c = #(S3 ∩ S1) − c,

a := #S1 − (2b+ c) = #S2 − (2b+ c) = #S3 − (2b+ c).

ab

S1

S3

a

a

b b
c

S2

Then we obtain the simultaneous equations as follows :{
a+ 2b+ c = 2g0 + 2
3a+ 3b+ c = #S.

(46)

In the case of g0 = 1, n = 3, d = 3,#S = 5, the solution of the equation is
a = 0, b = 1, c = 2. Thus the defining equation is

C0/k3 : y2 = (x− α)(x− αq)h(x) (47)

where α ∈ k3 \ k, h(x) ∈ k[x],deg h(x) = 2 or 1. In fact, C is a hyperelliptic
curve (see [28]). Notice that there do not exist other cases besides g0 =
1, n = 3, d = 3 when σ is decomposable.

6 Existence of a model of C over k and defining
equations of C0

6.1 Existential condition of a model of C over k

Finally, we discuss conditions for existence of a model of C over k. One
knows that a model of C over k exists if and only if the extension σ of the
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Frobenius automorphism σkd/k is an automorphism of order d on kd(C) in
the separable closure of kd(x). In this section, we define F̂ (x) ∈ F2[x] as the
polynomial such that xd + 1 = F (x)F̂ (x) ∈ F2[x].

Lemma 6.1. Assume that F (σ)f(x) ≡ 1 mod (kd(x)×)2. When F̂ (1) = 0,
if c is a square element in (k×d )2 then C has a model over k. When F̂ (1) = 1,
if σ does not have order d, there is a ϕ ∈ cov(C/P1) such that σϕ has order
d so we can adopt σϕ instead of σ. Therefore C always has a model over k
when F̂ (1) = 1.

Proof: Let Q := { b(x)
a(x) |kd[x] ∋ a(x), b(x) : monic}.

Since F (σ)f(x) ≡ 1 mod (kd(x)×)2, we have

F (σ)y2 ≡ F (σ)c = cF (q) mod (kd(x)×)2 (48)
F (σ)y ≡ ϵc

F (q)
2 mod Q, here ϵ = ±1 (49)

F̂ (σ)F (σ)y ≡ F̂ (σ)ϵc
F̂ (q)F (q)

2 (50)

σd+1y ≡ ϵF̂ (1)c
qd+1

2 (51)

σd
y ≡ ϵF̂ (1)c

qd−1
2 y (52)

We first consider two possibilities of F (1) = 1 and F (1) = 0 respectively.

• Case F (1) = 1 :

We notice F̂ (1) = 0 in this case. Now, σd
y ≡ c

qd−1
2 y. In order that σ

has order d (i.e. σd
y ≡ y), c needs to be a square c ∈ (k×d )2.

• Case F (1) = 0 :
Here, we consider further two possibilities of F̂ (1) = 0 and F̂ (1) = 1.
(a) F̂ (1) = 0

Similarly, σd
y ≡ c

qd−1
2 y. c should be a square element in k×d .

(b) F̂ (1) = 1

Then σd
y ≡ ϵc

qd−1
2 y.

If ϵ = +1 and c ∈ (k×d )2, then σ has order d (i.e. σd
y = y).

If ϵ = −1 or c /∈ (k×d )2, then σ has order 2d.
However, we can show that in this case there is a ϕ ∈ cov(C/P1) such
that (σϕ)d = 1.
Indeed, suppose d = 2r · d′ (2 - d′). Since σϕ := σϕσ−1, we have

(σϕ)d = σϕσ−1 · σ2ϕσ−2 · · ·σdϕσ−d · σd (53)

= σϕ σ2
ϕ · · · σd

ϕ σd (54)

= σϕ σ2
ϕ · · · σ2rd′

ϕ σd. (55)
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Now, we choose ϕ := t(
m︷ ︸︸ ︷

0, 0, . . . , 1, 0, . . . , 0) ∈ cov(C/P1). Define

I as the identity matrix, J :=


0 1 O
...

. . . . . .
... O

. . . 1
0 . . . . . . 0


m ≤ 2r .

Then Jm = O. We notice that the representation of σ is(
∆ O
O ∗

)
where ∆ := I + J. (56)

Here, σi
ϕ corresponds to (I + J)i · t(

m︷ ︸︸ ︷
0, . . . 0, 1). Now, since σ2r

ϕ = ϕ,
(σϕ)d = (ϕ σϕ σ2

ϕ · · · σ2r−1
ϕ)d′ σd. Furthermore, since

I+(I+J)+· · ·+(I+J)2
r−1 =



O if m < 2r
0 . . . 0 1
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

 if m = 2r,
(57)

where O is the zero matrix, it follows that

ϕ σϕ σ2
ϕ · · · σ2r−1

ϕ =
{

t(0, 0, . . . , 0) if m < 2r

ψ := t(1, 0, . . . , 0) if m = 2r.
(58)

On the one hand, define K as the Galois closure of kd(C0)/k(x), σd is
an element in the center of Gal(K/k(x)), i.e., σd ∈ Z(Gal(K/k(x))) =
{1, ψ}. When ord(σ) = 2d, σd = ψ. Furthermore, notice that m = 2r

in the case of (b). Thus, in the multiplicative notation,

(σϕ)d = (ϕ σϕ σ2
ϕ · · · σ2r−1

ϕ)d′ σd = ψd′ · ψ = 1 (59)

As a result, we can adopt the above σϕ instead of σ.

Consequently, we can determine defining equations of all classes of C0/kd :
y2 = c · f(x) whose covering curves C has a model over k under the isogeny
condition. When F̂ (1) = 0, c has to be a square in kd or can be regarded as
1, which has been treated in previous section.
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6.2 Defining equations of C0 with a non-square c

In this section, we will treat only the defining equations of C0 with a non-
square c . The defining equations of all classes of C0/kd can be found in the
table in the section 7.

6.2.1 σ : indecomposable

• g0 = 1, n = 2, d = 2
Here, x2 + 1 = (x+ 1)2, thus F (x) = (x+ 1)2, F̂ (x) = 1.
Since F̂ (x) = 1, F̂ (1) = 1. From Lemma 6.1, c can be an arbitrary element
in k×2 in order that the curve C has a model over k. Extending the result of
the section 5, we obtain

C0/k2 : y2 = η(x− α)h(x) (60)

where h(x) ∈ k[x], α ∈ k2 \ k, deg h(x) = 3 or 2, η = either 1 (i.e. a square)
or a non-square element in k2.

In the same manner, we can determine c also for g0 = 2, 3 as follows.
• g0 = 2, n = 2, d = 2

C0/k2 : y2 = η(x− α)h(x) (61)

where h(x) ∈ k[x], α ∈ k2 \ k, deg h(x) = 5 or 4, η = either 1 (i.e. a square)
or a non-square element in k2.
• g0 = 3, n = 2, d = 2

C0/k2 : y2 = η(x− α)h(x) (62)

where deg h(x) = 7 or 6.

Thus the curves (60)(61)(62) contain (38) as a subcase.

6.2.2 σ : decomposable

Here, there exists only the case of g0 = 1, n = 3, d = 3. Since x3 + 1 =
(x + 1)(x2 + x + 1), F (x) = x3 + 1, F̂ (x) = 1, then F̂ (1) = 1. Therefore
c is either 1 or a non-square element in k3. Then we obtain the defining
equation of C0/k3 as

C0/k3 : y2 = η(x− α)(x− αq)h(x) (63)

where η = either 1 or a non-square element in k3, α ∈ k3 \ k, h(x) ∈
k[x],deg h(x) = 2 or 1. Notice that the curves (63) extends the class of (47).
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7 A complete list of C0/kd with (2,...,2)-covering
C/k

Curves in the following list are all classes of hyperelliptic curves C0/kd for
g(C0) ∈ {1, 2, 3} which possess (2, ..., 2) covering C/k of P1 under the isogeny
condition. Here, C0/kd : y2 = c · hd(x)h(x), hd(x) ∈ kd[x] \ ku[x], u||d,
h(x) ∈ k[x], α ∈ kd \ kv, v||d (here a||b means a|b and a ̸= b ), η = either 1
or a non-square element in kd.
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C0/kd : y2 = c · hd(x)h(x)

g0 n, d c hd(x) deg(h(x))
1 2, 2 η x− α 3 or 2

2, 3 1 (x− α1)(x− αq
1)(x− α2)(x− αq

2) 0
Either α1, α2 ∈ k3 \ k or α1 ∈ k6 \ (k2 ∪ k3), α2 = αq3

1

C:Hyper ⇐⇒ ∃A ∈ GL2(k), α2 = A · α1, T r(A) = 0 [28]
3, 3 η (x− α)(x− αq) 2 or 1
4, 5 1 (x− α)(x− αq)(x− αq2

)(x− αq3
) 0

3, 7 1 (1) (x− α)(x− αq)(x− αq2
)(x− αq4

) 0
(2) (x− α)(x− αq)(x− αq2

)(x− αq5
)

2 2, 2 η x− α 5 or 4
2, 3 1 (x− α1)(x− αq

1)(x− α2)(x− αq
2)(x− α3)(x− αq

3) 0
Either α1, α2, α3 ∈ k3 \ k or

α1 ∈ k6 \ (k2 ∪ k3), α2 = αq3

1 , α3 ∈ k3 \ k or
α1 ∈ k9 \ k3, α2 = αq3

1 , α3 = αq6

1

3 2, 2 η x− α 7 or 6
2, 3 1 (x− α1)(x− αq

1)(x− α2)(x− αq
2)(x− α3)(x− αq

3) 0
×(x− α4)(x− αq

4)
Either α1, α2, α3, α4 ∈ k3 \ k or

α1 ∈ k6 \ (k2 ∪ k3), α2 = αq3

1 , α3, α4 ∈ k3 \ k or
α1 ∈ k6 \ (k2 ∪ k3), α2 = αq3

1 , α3 ∈ k6 \ (k2 ∪ k3), α4 = αq3

3 or
α1 ∈ k9 \ k3, α2 = αq3

1 , α3 = αq6

1 , α4 ∈ k3 \ k or
α1 ∈ k12 \ (k6 ∪ k4), α2 = αq3

1 , α3 = αq6

1 , α4 = αq9

1

3, 7 1 (1) (x− α1)(x− αq
1)(x− αq2

1 )(x− αq4

1 ) 0
×(x− α2)(x− αq

2)(x− αq2

2 )(x− αq4

2 )
(2) (x− α1)(x− αq2

1 )(x− αq3

1 )(x− αq4

1 )
×(x− α2)(x− αq2

2 )(x− αq3

2 )(x− αq4

2 )
Either α1, α2 ∈ k7 \ k or

α1 ∈ k14 \ (k2 ∪ k7), α2 = αq7

1

4, 15 1 (1) (x− α)(x− αq)(x− αq2
)(x− αq3

) 0
×(x− αq7

)(x− αq10
)(x− αq11

)(x− αq13
)

(2) (x− α)(x− αq)(x− αq2
)(x− αq3

)
×(x− αq5

)(x− αq7
)(x− αq8

)(x− αq11
)

α ∈ k15 \ (k3 ∪ k5)
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