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Abstract

In this paper, we present an efficient public-key broadcast encryption (PKBE) scheme with sub-
linear size of public keys, private keys, and ciphertexts and prove its adaptive security under standard
assumptions. Compared with the currently best scheme of Garg et al. (CCS 2010) that provides adaptive
security under standard assumptions and sub-linear size of various parameters, the ciphertext size of
our scheme is 94% shorter and the encryption algorithm of our scheme is also 2.8 times faster than the
scheme of Garg et al. To achieve our scheme, we adapt the dual system encryption technique of Waters.
However, there is a challenging problem to use this technique for the construction of PKBE with sub-
linear size of ciphertexts such as a tag compression problem. To overcome this problem, we first devise
a novel tag update technique for broadcast encryption. Using this technique, we build an efficient PKBE
scheme in symmetric bilinear groups, and prove its adaptive security under standard assumptions. After
that, we build another PKBE scheme in asymmetric bilinear groups and also prove its adaptive security
under simple assumptions.

Keywords: Public-key encryption, Broadcast encryption, Adaptive security, Standard assumption, Bilinear
maps.

1 Introduction

In broadcast encryption, a sender can efficiently send a ciphertext to the set of receivers S that is arbitrary
chosen by the sender, and a receiver can decrypt the ciphertext if he belongs to the set S [16]. A trivial
broadcast encryption system with linear size of ciphertexts can be built by using multiple instances of an
encryption system. Therefore, a non-trivial broadcast encryption system should have sub-linear size of
ciphertexts. Broadcast encryption is classified as public key or symmetric key depending on the type of keys,
stateful or stateless depending on the need of private key update, and fully-collusion resistant or t-collusion
resistant depending on the maximum number of collusion users.

Public-key broadcast encryption (PKBE) is a specific type of broadcast encryption such that anyone
can create a ciphertext by using the public key of broadcast encryption. Boneh, Gentry, and Waters [7]
proposed the first stateless and fully-collusion resistant PKBE scheme by using the algebraic structure of
bilinear groups. They first propose a simple PKBE scheme with linear size of public keys and constant size
of ciphertexts, and then they proposed a generalized PKBE scheme with sub-linear size of public keys and
ciphertexts. After the pioneering work of Boneh et al., many other PKBE schemes with different properties
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were proposed in bilinear groups [13, 14, 28]. However, these PKBE schemes were proven to be secure in
the static security model under q-type assumptions where the value q depends on the number of users in the
system. The static security model is a weaker security model since an adversary should commit the target
set S∗ before he receives a public key.

The right security model of PKBE is the adaptive security model where an adversary adaptively requests
private keys for arbitrary chosen indexes and later selects a target subset at the challenge step [18]. Generally,
a PKBE scheme in the static security model can be converted to a PKBE scheme in the adaptive security
model if a simulator predicts the target set S∗ of the adversary by simply selecting an arbitrary set S′.
However, this method has a problem such that the probability of S′ = S∗ is less than 1/2N where N is the
number of users in the system. To achieve the adaptive security, Gentry and Waters [18] proposed a new
method that converts a semi-statically secure PKBE scheme to an adaptively secure one by using the two-
key technique. In the semi-static security model, an adversary first commits an initial set S′, and it outputs
the target set S∗ that is a subset of S′ in the challenge step. The adversary of the semi-static security model
has more flexibility compared to the static security model. The two-key technique is a method to use two
keys in the private keys and the decryption algorithm succeeds if one of the two keys is given. However,
their adaptively secure PKBE scheme is still secure under q-type assumptions since the security of their
semi-static PKBE scheme is proven under q-type assumptions instead of standard assumptions.

In bilinear groups, q-type assumptions were widely used to build short signature schemes in standard
model [2, 3], hierarchical identity based encryption (HIBE) schemes with constant size of ciphertexts [4],
PKBE schemes with constant size of ciphertexts [7], attribute-based encryption (ABE) schemes [33]. How-
ever, the security of q-type assumptions is weaker than the standard assumptions as pointed by Cheon [11].
Therefore, constructing an efficient PKBE scheme that is adaptively secure under standard assumptions is a
very challenging problem.

1.1 Previous Methods

Currently, there are two methods that can be used to construct an adaptively secure PKBE scheme under
standard (or simple) assumptions. We briefly review these methods.

The first method is to use the dual system encryption technique of Waters [31]. In dual system encryp-
tion, a ciphertext and a private key can be normal or semi-functional. Additionally, it should be hard for an
adversary to distinguish the normal and semi-functional types, and the decryption process of any two pair
of a ciphertext and a private key should be successful except the pair of the semi-functional ciphertext and
the semi-functional private key. In [31], Waters proposed a hierarchical identity-based encryption (HIBE)
scheme with linear size of ciphertexts using the dual system encryption technique that employs random tags
in ciphertexts and private keys, and he proved its security under the decisional linear (DLIN) and decisional
bilinear Diffie-Hellman (DBDH) assumptions. Lewko and Waters [22] proposed an efficient HIBE scheme
with constant size of ciphertexts by using the dual system encryption technique. The dual system encryption
technique was widely adapted to prove the full model security of HIBE, ABE, and predicate encryption
(PE) [20, 23, 27]. For broadcast encryption, Waters presented a PKBE scheme with constant size of cipher-
texts by removing the random tags and proved its adaptive security under the DLIN and DBDH assumptions
in [31, 32]. However, this PKBE scheme cannot be used for a system with large number of users since the
size of public keys and private keys is O(N) where N is the number of total users in the system. Lewko et
al. [21] proposed a public-key revocation encryption (PKRE) that is a special type of PKBE such that the en-
cryption algorithm takes as input a revoked set R instead of a receiver set S, and proved its adaptive security
under standard assumptions. However, their PKRE scheme cannot be used for a system with large number
of revoked users since the size of ciphertexts and the cost of decryption are proportional to the number of
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Table 1: Comparison between previous PKBE schemes and ours

Scheme Adaptive Assumption PK Size SK Size CT Size Decrypt Time

BGW [7] No q-Type O(Nλ ) O(λ ) 3kp 2P

BGW [7] No q-Type O(
√

Nλ ) O(λ ) (
√

N +2)kp 2P

LSW [21] No q-Type O(λ ) O(λ ) (2r+2)kp 2rE + 3P

BW [9] Yes Static O(
√

Nλ ) O(
√

Nλ ) 7
√

Nk f 4P

GW [18] Yes q-Type O(
√

Nλ ) O(λ ) 5
√

Nkp 2P + 4E

Waters [31] Yes DBDH, DLIN O(Nλ ) O(Nλ ) 10kp 9P

LSW [21] Yes DBDH, DLIN O(λ ) O(λ ) (2r+8)kp r(2P+E)

GKSW [17] Yes D3DH, DLIN O(
√

Nλ ) O(
√

Nλ ) 15
√

Nkp 8P

Ours Yes DBDH, DLIN O(
√

Nλ ) O(
√

Nλ ) (2
√

N +9)kp 9P + 1E

λ = security parameter, N = the number of total users, r = the number of revoked users,

kp (k f ) = the bit size of prime-order (composite-order) group elements, E = exponentiation, P = pairing

revoked users.
The second method is to use the augmented broadcast encryption (AugBE) of Boneh and Waters [9].

AugBE is similar to PKBE except that the encryption algorithm takes as input the receiver set S and an
additional index i that is hidden. The decryption algorithm of AugBE can decrypt a ciphertext with a
receiver set S and an index i if the index d of a private key satisfies the relation ((d ∈ S)∧(i≤ d)). An AugBE
scheme is easily converted to an adaptively secure PKBE scheme if the message M and the index i in the
ciphertext are hidden. An additional bonus of AugBE is that trace and revoke systems that provide broadcast
encryption and traitor tracing can be easily derived from AugBE schemes. Boneh and Waters [9] proposed an
AugBE scheme with sub-linear size of public keys and ciphertexts in composite-order bilinear groups, and
they proved its security under simple static assumptions. Garg et al. [17] converted the AugBE scheme of
Boneh and Waters in composite-order bilinear groups to an AugBE scheme in prime-order bilinear groups,
and proved its adaptive security under standard (DBDH and DLIN) assumptions.

Although AugBE schemes provide sub-linear size of public keys, private keys, and ciphertexts, the
actual ciphertext size of AugBE schemes is quite large compared with that of PKBE schemes that are
statically secure under q-type assumptions. Therefore, in this paper, we ask the following question: “Can we
build a more efficient PKBE scheme that is adaptively secure under standard assumptions using a different
theoretical approach?” Note that Waters [31] already presented an adaptively secure PKBE scheme with
constant size of ciphertexts under standard assumptions, but this scheme is not practical if the maximum
number of users N is large since the size of pubic key and private key linearly depends on N.

1.2 Our Contributions

In this paper, we first propose an efficient PKBE scheme with sub-linear size of public keys and ciphertexts,
and prove its adaptive security under standard (DBDH and DLIN) assumptions. Our PKBE scheme can be
compared with the AugBE scheme of Garg et al. [17] since these two schemes are adaptively secure under
standard assumptions and provide similar asymptotic size of public keys, private keys, and ciphertexts.
Although the two schemes have the similar ciphertext size of O(

√
Nλ ) in big-O notation, there is a big
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difference in the constant value of the big-O notation. That is, the ciphertext size of our PKBE scheme
is 94% shorter and the encryption algorithm of ours is 2.8 times faster than those of Garg et al.’s AugBE
scheme if we consider the 80-bit security level. The comparison of PKBE schemes is given in Table 1. The
detailed efficiency comparison between PKBE schemes is also given in Section 5. Next, we propose another
efficient PKBE scheme in asymmetric bilinear groups of prime order to reduce the size of ciphertexts and
public keys, and prove its security under simple assumptions.

To construct our efficient PKBE schemes, we devised a novel tag update technique for broadcast encryp-
tion in dual system encryption. This technique is a variation of Waters’ dual system encryption technique
that uses random tags in ciphertexts and private keys. Though the technique of Waters cannot be used to
construct a PKBE scheme with sub-linear size of public keys and ciphertexts since the random tags cannot
be compressed in ciphertexts, our new technique enables the construction of PKBE with sub-linear size of
public keys and ciphertexts. This technique may have independent interest.

1.3 Related Work

As mentioned, broadcast encryption allows a sender to select an arbitrary receiver subset S in the encryption
algorithm and this concept was introduced by Fiat and Naor [16]. Naor, Naor, and Lotspiech [25] proposed
fully collusion resistant symmetric-key broadcast encryption schemes that use a tree structure and the subset
cover framework. Dodis and Fazio [15] showed that the NNL framework can be used to build a PKBE
scheme from an HIBE scheme by using the private key delegation property of HIBE. Recently, Lee et al. [19]
proposed an improved PKBE scheme from the NNL framework by using single revocation encryption. A
non-trivial PKBE scheme that does not rely on the NNL framework was proposed by Boneh, Gentry, and
Waters [7]. After the PKBE scheme of Boneh et al., various PKBE schemes were proposed in [14,28]. One
disadvantage of PKBE is that the total number of users in the system is limited to the polynomial value of
the security parameter. Identity-based broadcast encryption (IBBE) is a new type of PKBE that allows the
total number of users in the system can be exponential value of the security parameter. Delerablée [13],
Sakai and Furukawa [30] independently proposed the first IBBE scheme with constant size of ciphertexts.
Gentry and Waters [18] constructed an IBBE scheme with sub-linear size of public keys and ciphertexts and
proved its adaptive security.

Revocation encryption is another type of broadcast encryption that allows a sender to select a revocation
set R instead of selecting a receiver set S in the encryption algorithm. Revocation encryption is suitable
for group encryption environments where the revocation of users seldom occurs. Naor and Pinkas [26]
proposed a public-key revocation encryption (PKRE) scheme with t-collusion resistance. Lewko, Sahai,
and Waters [21] constructed an identity-based revocation encryption (IBRE) scheme with constant size of
public keys and private keys.

Traitor tracing solves the problem of traitor in broadcast encryption, and it was introduced by Chor,
Fiat, and Naor [12]. For example, a content distributor first broadcasts a ciphertext for legitimate receiver
decoders. If a traitor hacks a legitimate decoder and builds a pirate decoder, then the distributor can run
the tracing algorithm to extract an index of the traitor by interacting with the pirate decoder. After that, the
distributor can take legal actions against the traitor. Boneh, Sahai, and Waters [8] proposed a fully collusion
resistant traitor tricing scheme by introducing a new primitive called private linear broadcast encryption
(PLBE). Generally, traitor tracing is used with broadcast encryption, and this system is called a trace &
revoke (TR) system [26]. Boneh and Waters [9] presented a fully collusion resistant trace & revoke system
by introducing a new primitive called augmented broadcast encryption (AugBE). Garg et al. [17] and Park
et al. [29] obtained AugBE schemes in prime-order groups from the AugBE scheme of Boneh and Waters.
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2 Preliminaries

In this section, we first define PKBE and give the formal definition of its adaptive security model. Then we
define the bilinear groups in prime-order groups and introduce the complexity assumptions of our scheme.

2.1 Public-Key Broadcast Encryption

Public-key broadcast encryption (PKBE) is a specific type of broadcast encryption such that anyone can
create a ciphertext for a receiver set S by using a public key [7]. The following is the syntax of PKBE.

Definition 2.1 (Public-key broadcast encryption). A public-key broadcast encryption (PKBE) scheme for
the set of users N = {1, . . . ,N} consists of four algorithms Setup, KeyGen, Encrypt, and Decrypt, which
are defined as follows:

Setup(1λ ,N). The setup algorithm takes as input a security parameter 1λ and the maximum number of
users N. It outputs a public key PK and a master key MK.

KeyGen(d,MK,PK). The key generation algorithm takes as input a user index d ∈N , the master key MK,
and the public key PK. It outputs a private key SKd for the index d.

Encrypt(S,PK). The encryption algorithm takes as input a receiver set S ⊆ N and the public key PK. It
outputs a ciphertext header CHS and an encryption key EK.

Decrypt(CHS,SKd ,PK). The decryption algorithm takes as input a ciphertext header CHS for a receiver
set S, a private key SKd for an index d, and the public key PK. It outputs an encryption key EK or the
distinguished symbol ⊥.

The correctness property of PKBE is defined as follows: For all PK and MK generated by Setup(1λ ,N),
any index d ∈ N , any SKd generated by KeyGen(d,MK,PK), any S ⊆N , and any CHS and EK generated
by Encrypt(S,PK), it is required that:

• If d ∈ S, then Decrypt(CHS,SKd ,PK) = EK.

• If d 6∈ S, then Decrypt(CHS,SKd ,PK) =⊥ with all but negligible probability.

The security property of PKBE can be defined as similar to that of the key encapsulation mechanism
(KEM) of public-key encryption (PKE) with additionally consideration of the private key generation. We
follow the adaptive security definition of Gentry and Waters [18]. The following is the formal definition of
the security.

Definition 2.2 (CPA Security). The security property of PKBE under a chosen plaintext attack (CPA) is
defined in terms of the following game between a challenger C and a PPT adversary A:

1. Setup: C runs Setup and keeps the master key MK, then it gives the public key PK to A.

2. Query: A adaptively requests private keys for indexes d1, . . . ,dq for some q. C creates private keys
SKd1 , . . . ,SKdq by running KeyGen and gives these to A.

3. Challenge: A submits a challenge receiver set S∗ subject to the following restriction: For all indexes
di given out in the query stage, it is required that di /∈ S∗. C chooses a random bit γ ∈ {0,1} and
computes CH∗ and EK∗ by running Encrypt(S∗,PK). If γ = 0, then it gives CH∗ and EK∗ to A.
Otherwise, it gives CH∗ and a random session key to A.
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4. Guess: Finally A outputs a guess γ ′ of γ .

The advantage of A is defined as AdvPKBE
A (λ ) =

∣∣Pr[γ = γ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. A PKBE scheme is adaptively secure under a chosen plaintext attack if for all
probabilistic polynomial-time (PPT) adversaryA, the advantage ofA in the above game is negligible in the
security parameter λ .

Remark 2.3. In the above security game, the adversary is not allowed to query private keys after the
challenge stage. However, it is easy to show that the this security game is equal to the security game that
allows for the adversary to query private keys after the challenge stage since the maximum number of users
is fixed to a polynomial value N.

2.2 Bilinear Groups of Prime Order

Let G and GT be multiplicative cyclic groups of prime p order. Let g be a generator of G. The bilinear map
e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order p, that is, e(g,g) is a generator of GT .

We say that G,GT are bilinear groups if the group operations in G and GT as well as the bilinear map e are
all efficiently computable.

2.3 Complexity Assumptions

We introduce two standard assumptions in prime-order bilinear groups. The DLIN assumption was intro-
duced in [5]. The DBDH assumption was introduced in [1, 6].

Assumption 2.4 (Decisional Linear, DLIN [5]). Let (p,G,GT ,e) be a description of the bilinear group of
prime order p. The DLIN assumption is that if the challenge values

D = ((p,G,GT ,e), g, f ,d,ga, f b) and T

are given, no PPT algorithmA can distinguish T = T0 = da+b from T = T1 = dc with more than a negligible
advantage. The advantage of A is defined as AdvDLIN

A (λ ) =
∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) = 0]

∣∣ where
the probability is taken over the random choices of f ,d,∈G and a,b,c ∈ Zp.

Assumption 2.5 (Decisional Bilinear Diffie-Hellman, DBDH, [1, 6]). Let (p,G,GT ,e) be a description of
the bilinear group of prime order p. The DBDH assumption is that if the challenge values

D = ((p,G,GT ,e), g,ga,gb,gc) and T

are given, no PPT algorithmA can distinguish T = T0 = e(g,g)abc from T = T1 = e(g,g)d with more than a
negligible advantage. The advantage of A is defined as AdvDBDH

A (λ ) =
∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) =

0]
∣∣ where the probability is taken over the random choices of a,b,c,d ∈ Zp.

3 Main Construction

In this section, we present an efficient PKBE scheme based on prime-order bilinear groups and prove its
adaptive security under standard assumptions.
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3.1 Design Principle

We describe the main idea of our construction. Before presenting the main idea, we describe the proof
technique of dual system encryption since our construction rely on this technique.

Dual System Encryption. The security proof of dual system encryption consists of hybrid games that
replace a normal ciphertext or a normal private key with a semi-functional ciphertext or a semi-functional
private key one by one [31]. In the first game, a normal ciphertext is replaced with a semi-functional one. In
the next games, each normal private key of a private key extraction query with an index less than i is replaced
with a semi-functional one. In the final game, the semi-functional ciphertext and the semi-functional private
keys are given, and the session key is replaced with a random one.

However, there is a big problem in the security proof of dual system encryption. That is, the paradox
of dual system encryption should be solved. The paradox is described as follows: We consider the games
such that an adversary distinguishes whether the ith private key is normal or semi-functional. In this game,
the simulator can create the semi-functional challenge ciphertext of a subset S and decrypt that ciphertext
using the ith private key of an index d. If the ith private key is normal, then the decryption will succeed.
Otherwise, the decryption will fail. Therefore, the simulator can easily distinguish the type of ith private
key using the results of decryption without the help of the adversary.

We can solve this paradox of dual system encryption if we can set the decryption results of the normal
ith private key and the semi-functional ith private key are the same value. Waters [31] used random tags in
ciphertexts and private keys, and then changed the decryption logic of IBE from (IDc = IDk) to ((IDc =
IDk)∧ (tagc 6= tagk)) where tagc and tagk are random tags in the ciphertext of an identity IDc and the private
key of an identity IDk respectively. To solve the paradox, the simulator uses a fixed function f (x), and then
it sets tagc = f (IDc) for the semi-functional ciphertext and tagk = f (IDk) for the ith private key. Thus if
IDc = IDk, then the decryption always fails since tagc = tagk. For broadcast encryption, Waters proposed a
PKBE scheme with liner size of public keys and constant size of ciphertexts without using random tags [32].

Naive Approach. To construct a PKBE scheme with sub-linear size of public keys and ciphertexts, we
may consider to use parallel instances of the Waters’ PKBE scheme [32] by sharing the public key of one
instance to balance the size of public keys and ciphertexts. That is, a user is positioned in an index (i, j) of a
m×m matrix and each row is associated with one instance of the PKBE scheme. This parallel construction
technique is a standard way and introduced by Boneh et al. [7]. However, this technique does not work
well in the Waters’ PKBE scheme without random tags. The problem is that if one public key element is
shared among many users in the Waters’ PKBE scheme, then the paradox solving technique of Waters for
PKBE without random tags does not work since this technique crucially relies on the fact that one public
key element of the Waters’ PKBE scheme is tied to just one user.

To solve the previous problem, we may consider to employ the dual system encryption technique of
Waters [31] with random tags to solve the paradox and to use the PKBE scheme derived from the HIBE
scheme of Boneh et al. [4] to compress ciphertexts. However, this approach causes a tag compression
problem. That is, the number of group elements in a ciphertext header for one row except tags can be
constant, but the number of random tags in the ciphertext header is linear. To solve this new problem, we
may use a single tag instead of multiple tags in the ciphertext header. However, this simple method does not
solve the paradox. To solve the paradox, the simulator should set tagc in the ciphertext header of a subset S
and tagk in the private key of an index d as the same value if d ∈ S. However, the simulator can not set all
tagk of an index d where d ∈ S as the same value because it can not predict the challenge subset S with high
probability. Therefore, this simple method does not solve the paradox.

New Technique. To construct a PKBE scheme with sub-linear size of public keys and ciphertexts using dual
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system encryption, we devise a tag update technique. In this technique, we uses a single tag in a ciphertext
header and changes a tag in a private key into a new tag when the private key is used in the decryption
algorithm. At first, the private key of an index d contains tagk and {zi}1≤i 6=d≤m values. If the private key is
used in the decryption algorithm for a ciphertext header with a subset S where d ∈ S, then this tag is updated
to tag′k = tagk +∑i∈S\{d} zi. To solve the paradox, a simulator fixes a function f (S) = y+∑i∈S xi. Next, it
sets tagc = f (S) for the semi-functional ciphertext header with a subset S, and it also sets tagk = y+ xd and
z j = x j for the private key of an index d. If the index d is a member of the challenge subset S in the ciphertext
header, then the updated tag value tag′k that will be used for decryption is equal with tagc. Therefore, the
paradox of dual system encryption is solved even if it uses a single tag. The more detailed explanation will
be given in the security proof.

3.2 Construction

Let N be the total number of users and m = d
√

Ne. An index d ∈ {1, . . . ,N} is represented as a position
(dx,dy) in a m×m matrix where d = (dy−1)m+dx for some 1≤ dy≤m and 1≤ dx≤m. Let S be a subset of
{1, . . . ,N}, and define S′j = S∩{( j−1)m+1, . . . ,( j−1)m+m} and S j = {x−( j−1)m|x∈ S′j}⊆ {1, . . . ,m}.
A subset S is divided to subsets S1, . . . ,Sm. Our PKBE scheme is described as follows:

PKBE.Setup(1λ ,N): This algorithm first generates the bilinear group G of prime order p of bit size Θ(λ ).
It chooses random elements g,v,v1,v2,h1, . . . ,hm,u1, . . . ,um,w ∈ G and random exponents a1,a2,
b,α ∈ Zp. It outputs a master key MK =

(
ga1α ,g−α ,v,v1,v2

)
and a public key as

PK =
(

g,ga1 ,ga2 ,gb,ga1b,ga2b,vva1
1 ,vva2

2 ,(vva1
1 )b,(vva2

2 )b, h1, . . . ,hm, u1, . . . ,um,

w, Ω = e(ga1 ,gb)α

)
.

PKBE.KeyGen(d,MK,PK): This algorithm takes as input an index d = (dx,dy), the master key MK, and
the public key PK. It selects random exponents r1,r2,r3,r4 ∈ Zp and random values tagk,z1, . . . ,zm ∈
Zp. It outputs a private key by implicitly including d as

SKd =
(

D1 = ga1αvr1+r2 , D2 = g−αvr1+r2
1 gr3 , D3 = (gb)−r3 , D4 = vr1+r2

2 gr4 ,

D5 = (gb)−r4 , D6 = (gb)−r2 , D7 = g−r1 ,

K1 = (hdyudx)
r1wtagkr1 ,

{
K2,i = ur1

i wzir1
}

1≤i 6=dx≤m, tagk, {zi}1≤i6=dx≤m

)
.

PKBE.Encrypt(S,PK): This algorithm takes as input a receiver set S⊆N that divided to subsets S1, . . . ,Sm

and the public key PK. It first chooses random exponents s1,s2, t ∈ Zp and random values tagc,1, . . . ,
tagc,m ∈ Zp. It outputs a ciphertext header by implicitly including S as

CHS =
(

E1 = (gb)s1+s2 , E2 = (ga1b)s1 , E3 = (ga1)s1 , E4 = (ga2b)s2 ,

E5 = (ga2)s2 , E6 = (vva1
1 )s1(vva2

2 )s2 , E7 = ((vva1
1 )b)s1((vva2

2 )b)s2w−t ,

C1 = gt ,
{

C2, j = (h j ∏
i∈S j

ui)
twtagc, jt

}
1≤ j≤m, {tagc, j}1≤ j≤m

)
and an encryption key EK = Ωs2 .
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PKBE.Decrypt(CHS,SKd ,PK): This algorithm takes as input a ciphertext header CHS for a receiver set
S = S1∪ ·· ·∪Sm and a private key SKd for an index d = (dx,dy). If d 6∈ S, it outputs ⊥. Otherwise it
proceeds as follows:

1. It finds a subset Sdy from the set S such that dx ∈ Sdy and calculates tag′k = tagk +∑i∈Sdy\{dx} zi

from the private key.

2. If tag′k 6= tagc,dy
, then it outputs an encryption key as

EK =
7

∏
i=1

e(Ei,Di) ·
(

e(C1,K1 ∏
i∈Sdy\{dx}

K2,i) · e(C2,dy ,D7)
)−1/(tag′k−tagc,dy )

.

Otherwise, it outputs ⊥.

3.3 Correctness

Let tag′k = tagk +∑i∈Sdy\{dx} zi. If tag′k 6= tagc,dy
, then the correctness of the above PKBE scheme is easily

verified as (
7

∏
i=1

e(Ei,Di)

)
·

(
e(C1,K1 ∏i∈Sdy\{dx}K2,i)

e(C2,dy ,D
−1
7 )

)− 1
tag′k−tagc,dy

=
(

e(gb,ga1)s2α · e(wt ,gr1)
)
·

(
e(gt ,wtag′kr1)

e(wtagc,dy ,gr1)

)− 1
tag′k−tagc,dy

=
(

e(gb,ga1)s2α · e(wt ,gr1)
)
· e(gt ,wr1)−1 = e(ga1 ,gb)αs2 = Ω

s2 .

Note that we have tag′k 6= tagc,dy
with 1− 1/p probability since tagk,z1, . . . ,zm, tagc,dy

are randomly chosen
in Zp.

3.4 Security Analysis

Theorem 3.1. The above PKBE scheme is adaptively secure under a chosen plaintext attack if the DLIN
and DBDH assumptions hold. That is, for any PPT adversary A, there exists a PPT algorithm B such that
AdvPKBE

A (λ )≤ (N+1) ·AdvDLIN
B (λ )+AdvDBDH

B (λ ) where N is the maximum number of users in the system.

Proof. To prove the security of our scheme, we use the dual system encryption technique of Waters [31].
We first define semi-functional private keys and semi-functional ciphertext headers. Although we describe
semi-functional algorithms as algorithms that are carried out with some secret exponents that are not given
in the master key, it does not matter since the semi-functional types of private keys and ciphertext headers
are only defined for security proof and they are not used in a real scheme.

PKBE.KeyGenSF. This algorithm first creates a normal private key SK′d =(D′1, . . . ,D
′
7,K

′
1,{K′2,i}, tagk,{zi}).

It chooses a random exponent r5 ∈ Zp and outputs a semi-functional private key as

SKd =
(

D1 = D′1 · (g−a1a2)r5 , D2 = D′2 · (ga2)r5 , D3 = D′3, D4 = D′4 · (ga1)r5 ,

D5 = D′5, D6 = D′6, D7 = D′7, K1 = K′1, {K2,i = K′2,i}, tagk, {zi}
)
.

9



PKBE.EncryptSF. This algorithm first creates a normal ciphertext header CH ′S = (E ′1, . . . ,E
′
7,C
′
1,{C′2, j},

{tagc, j}) and an encryption key EK′. It chooses a random exponent s3 ∈ Zp and outputs a semi-
functional ciphertext header as

CHS =
(

E1 = E ′1, E2 = E ′2, E3 = E ′3, E4 = E ′4 · (ga2b)s3 , E5 = E ′5 · (ga2)s3 ,

E6 = E ′6 · (v
a2
2 )s3 , E7 = E ′7 · (v

a2b
2 )s3 , C1 =C′1, {C2, j =C′2, j}, {tagc, j}

)
and an encryption key EK = EK′.

Note that if a semi-functional private key is used to decrypt a semi-functional ciphertext header, then the
decryption algorithm will fail to produce a valid encryption key since it is multiplied by an additional random
element e((ga2b)s3 ,(ga1)r5). We should note that two elements ga1a2 and va2b

2 that are not given in the public
key and the master key are needed to generate the semi-functional types of private keys and ciphertext
headers.

The security proof consists of the following sequence of hybrid games. The first game is the original
security game and the last one is a game such that the adversary has no advantage. We define the games as
follows:

Game G0 This game is the original adaptive security game in Section 2. In this game, the private keys and
the challenge ciphertext header are normal.

Game G1 This game is almost identical to G0 except that the challenge ciphertext header is semi-functional.

Game G2 This game is almost the same with G1 except that the private keys will be semi-functional. At this
moment, the private keys and the challenge ciphertext header are all semi-functional. Suppose that
an adversary makes at most q private key queries. We define a sequence of games G1,0,G1,1, . . . ,G1,q
where G1,0 = G1. In G1,i, for all jth private key queries such that j > k, a normal private key is given
to the adversary. However, for all jth private key queries such that j ≤ k, a semi-functional private
key is given to the adversary. It is obvious that G1,q is equal with G2.

Game G3 We now define the final game G3. This game differs from G2 in that the challenge encryption
key EK∗ for EK0 is replaced by a random element. Note that in this game, the challenge ciphertext
header and the challenge encryption key gives no information about the random coin γ . Therefore,
the adversary can win this game with probability 1/2. That is, the advantage of the adversary is zero.

Let AdvG j
A be the advantage of A in G j. It is obvious that AdvPKBE

A = AdvG0
A and AdvG3

A = 0. From the
following three lemmas, we have that it is hard to distinguish Gi−1 from Gi under the given assumptions.
Therefore, we have

AdvPKBE
A (λ ) = AdvG0

A = AdvG0
A +

2

∑
i=1

(AdvGi
A −AdvGi

A )+AdvG3
A ≤

3

∑
i=1

∣∣AdvGi−1
A −AdvGi

A
∣∣

≤ AdvDLIN
B (λ )+NAdvDLIN

B (λ )+AdvDBDH
B (λ ).

This completes our proof.

Lemma 3.2. If the DLIN assumption holds, then no polynomial-time adversary can distinguish between G0
and G1 with a non-negligible advantage.
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Proof. Suppose there exists an adversary A that distinguishes between G0 and G1 with a non-negligible
advantage. A simulator B that solves the DLIN assumption using A is given: a challenge tuple D =
((p,G,GT ,e),g, f ,d,gc1 , f c2) and T where T = dc1+c2 or T = dc1+c2+c3 . Then B that interacts with A is
described as follows:

Setup: B first chooses random exponents b,v′,v′1,v
′
2,α ∈Zp and random elements h1, . . . ,hm,u1, . . . ,um,w∈

G. It sets the master key as MK = (ga1α = f α ,g−α ,v = gv′ ,v1 = gv′1 ,v2 = gv′2) and publishes the public key
PK as

g, ga1 = f , ga2 = d, gb, ga1b = f b, ga2b = db, vva1
1 = gv′ f v′1 , vva2

2 = gv′dv′2 ,

(vva1
1 )b = (gv′ f v′1)b, (vva2

2 )b = (gv′dv′2)b, h1, . . . ,hm, u1, . . . ,um, w, Ω = e( f ,gb)α .

Query: A adaptively requests a private key query for an index d. To response this query, B simply runs the
key generation algorithm to create a normal private key using the master key. Note that B can only create
the normal private keys since it does not know a1,a2.
Challenge: In the challenge step, A submits a challenge set S∗ = S∗1 ∪ ·· ·∪S∗m. B first creates a normal ci-
phertext header and an encryption key by calling Encrypt(S∗,PK). Let CH ′S =(E ′1, . . . ,E

′
7,C
′
1,{C′2, j},{tagc, j})

and EK′ be the normal ciphertext header and the encryption key under random exponents s′1,s
′
2, t
′. It

first modifies the normal ciphertext header to a semi-functional one by implicitly setting s1 = s′1 − c2,
s2 = s′2 + c1 + c2, and s3 = c3. The semi-functional challenge ciphertext header CH∗ is described as fol-
lows:

E1 = E ′1 · (gc1)b, E2 = E ′2 · ( f c2)−b, E3 = E ′3 · ( f c2)−1, E4 = E ′4 · (T )b,

E5 = E ′5 ·T, E6 = E ′6 · (gc1)v′( f c2)−v′1(T )v′2 , E7 = E ′7 · ((gc1)v′( f c2)−v′1(T )v′2)b,

C1 =C′1, {C2, j =C′2, j}, {tagc, j}.

Next, it sets EK0 = EK′ · (e(gc1 , f ) · e(g, f c2))bα and EK1 = Ωs̃ by choosing a random exponent s̃ ∈ Zp. It
flips a random coin γ internally, and gives the tuple (CH∗,EKγ) to A. If T = dc1+c2 , then B is playing G0.
Otherwise, it is playing G1.
Guess: Finally B receives a guess γ ′ from A. If γ = γ ′, it outputs 0. Otherwise, it outputs 1.

Lemma 3.3. If the DLIN assumption holds, then no polynomial-time adversary can distinguish between
G1,k−1 and G1,k with a non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes between G1,k−1 and G1,k with a non-negligible
advantage. A simulator B that solves the DLIN assumption using A is given: a challenge tuple D =
((p,G,GT ,e),g, f ,d,gc1 , f c2) and T where T = dc1+c2 or T = dc1+c2gc3 . Then B that interacts with A is
described as follows:

Setup: B first chooses random exponents a1,a2,v′1,v
′
2,h
′
1, . . . ,h

′
m,u

′
1, . . . ,u

′
m,w

′, B1, . . . ,Bm,A1, . . . ,Am,α ∈
Zp and sets v = d−a1a2 ,v1 = da2gv′1 ,v2 = da1gv′2 . It sets the master key as MK = (ga1α ,g−α ,v,v1,v2) and
publishes the public key PK as

g, ga1 , ga2 , gb = f , ga1b = f a1 , ga2b = f a2 , vva1
1 = gv′1a1 , vva2

2 = gv′2a2 ,

(vva1
1 )b = f v′1a1 , (vva2

2 )b = f v′2a2 , h1 = gh′1 f−B1 , . . . ,hm = gh′m f−Bm ,

u1 = gu′1 f−A1 , . . . ,um = gu′m f−Am , w = gw′ f , Ω = e(ga1 , f )α .

Query: A adaptively requests a private key query for an index d. If this is a ρ-th private key query for an
index d = (dx,dy), then B handles this query as follows:
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• Case ρ < k : It first creates a normal private key by choosing random values tagk,{zi}1≤i6=dx≤m ∈ Zp

since it knows MK. Next, it converts the normal private key to a semi-functional one since it knows
a1 and a2.

• Case ρ = k : It first creates a normal private key SK′d = (D′1, . . . ,D
′
7,K

′
1,{K′2,i}, tagk,{zi}) by setting

tagk = Bdy +Adx , {zi = Ai}1≤i 6=dx≤m since it knows MK. Let r′1,r
′
2,r
′
3,r
′
4 be the random exponents used

in the normal private key. Next, it modifies the normal private key by implicitly setting r1 = r′1 + c1,
r2 = r′2 + c2, r3 = r′3− c2v′1, r4 = r′4− c2v′2 and r5 = c3. The modified private key is described as
follows:

D1 = D′1 · (T )−a1a2 , D2 = D′2 · (T )a2(gc1)v′1 , D3 = D′3 · ( f c2)v′1 , D4 = D′4 · (T )a1(gc1)v′2 ,

D5 = D′5 · ( f c2)v′2 , D6 = D′6 · ( f c2)−1, D7 = D′7 · (gc1)−1,

K1 = K′1 · (gc1)
h′dy+u′dx+w′tagk , {K2,i = K′2,i · (gc1)u′i+w′zi}, tagk,{zi}.

If T = dc1+c2 , then B is playing G1,k−1. Otherwise, it is playing G1,k. Note that the fixed tag setting
tagk = Bdy +Adx and z j = A j allow us to create the private key elements K1,{K2,i} by the cancellation
of f c1 .

• Case ρ > k : It creates a normal private key by choosing random values tagk,{zi}1≤i 6=dx≤m since it
knows MK.

Challenge: In the challenge step,A submits a challenge receiver set S∗ = S∗1∪·· ·∪S∗m. B first creates a nor-
mal ciphertext header by setting {tagc, j = B j +∑i∈S j Ai}1≤ j≤m. Let CH ′ = (E ′1, . . . ,E

′
7,C
′
1,{C′2, j},{tagc, j})

and EK′ be the normal ciphertext header and the encryption key under random exponents s′1,s
′
2, t
′. It se-

lects a random s3 ∈ Zp and modifies this ciphertext header by implicitly setting t = t ′+ logg(d)a1a2s3. The
modified semi-functional ciphertext header CH∗ is described as follows:

E1 = E ′1, E2 = E ′2, E3 = E ′3, E4 = E ′4 · ( f )a2s3 ,

E5 = E ′5 ·ga2s3 , E6 = E ′6 · v
a2s3
2 , E7 = E ′7 · (d)−w′a1a2s3( f )a2v′2s3 ,

C1 =C′1 · (d)a1a2s3 ,
{

C2, j =C′2, j · (d
h′j+∑i∈S j u′i+tagc, jw

′
)a1a2s3

}
, {tagc, j}.

Next, it sets EK0 = EK′ and EK1 = Ωs̃ by choosing a random exponent s̃ ∈ Zp. It flips a random coin γ

internally, and gives the tuple (CH∗,EKγ) toA. Note that it can create the semi-functional ciphertext header
since t and the fixed tag setting tagc, j = B j +∑i∈S j Ai enable the cancellation of f logg(d).
Guess: Finally B receives a guess γ ′ from A. If γ = γ ′, it outputs 0. Otherwise, it outputs 1.

As mentioned before, the paradox of dual system encryption should be solved in this proof. The paradox
can be solved since 1) tagk = Bdy +Adx and {zi = Ai} of kth private key for an index d = (dx,dy) is fixed,
2) tagc,dy

= Bdy +∑i∈S j Ai of the semi-functional challenge ciphertext header for a subset S = S1∪ ·· · ∪ Sm

is also fixed, and 3) tag′k derived from the kth private key for decryption and tagc,dy
of the semi-functional

ciphertext header are the same if d ∈ S. Additionally, the adversary cannot detect any relationship between
tagc, j of the challenge ciphertext header and tagk of the kth private key since the function B j +∑i∈S j Ai is
pairwise independent, {B j} and {Ai} are information theoretically hidden to the adversary, and the adversary
cannot request a private key for d such that d ∈ S∗ in the security game.

Lemma 3.4. If the DBDH assumption holds, then no polynomial-time adversary can distinguish between
G2 and G3 with a non-negligible advantage.
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Proof. Suppose there exists an adversary A that distinguishes between G2 and G3 with a non-negligible
advantage. A simulator B that solves the DBDH assumption using A is given: a challenge tuple D =
((p,G,GT ,e), g,gc1 ,gc2 ,gc3) and T where T = e(g,g)c1c2c3 or T = e(g,g)c4 . Then B that interacts with A
is described as follows:

Setup: B first chooses random exponents a1,b,v′,v′1,v
′
2 ∈Zp and random elements h1, . . . ,hm,u1, . . . ,um,w∈

G. It sets v = gv′ ,v1 = gv′1 ,v2 = gv′2 and publishes the public key PK by implicitly setting α = c1c2 as

g, ga1 , ga2 = gc2 , gb, ga1b, ga2b = (gc2)b, vva1
1 , vva2

2 = v(gc2)v′2 ,

(vva1
1 )b, (vva2

2 )b = (v(gc2)v′2)b, h1, . . . ,hm, u1, . . . ,um, w, Ω = e(gc1 ,gc2)a1b.

Query: A adaptively requests a private key query for an index d. To response the query for an index d =
(dx,dy), B first selects random exponents r1,r2,r3,r4,r′5 ∈ Zp and random values tagk,{zi}1≤i 6=dx≤m ∈ Zp.
Next, it implicitly sets r5 = c1 + r′5 and creates a semi-functional private key as

D1 = vr1+r2(gc2)−a1r′5 , D2 = vr1+r2
1 gr3(gc2)r′5 , D3 = (g−b)r3 , D4 = vr1+r2

2 gr4(gc1)a1ga1r′5 ,

D5 = (g−b)r4 , D6 = (g−b)r2 , D7 = (g−1)r1 ,

K1 = (hdyudx)
r1wtagkr1 , {K2,i = ur1

i wzir1}1≤i 6=dx≤m, tagk,{zi}.

Note that it can only create a semi-functional private key since r5 = c1 + r′5 enables the cancellation of gc1c2 .
Challenge: In the challenge step, A submits a challenge receiver set S∗ = S∗1∪ ·· ·∪S∗m. B chooses random
exponents s1,s′3, t ∈Zp and random values {tagc, j}1≤ j≤m ∈Zp. Next, it implicitly sets s2 = c3,s3 =−c3+s′3
and creates a semi-functional ciphertext header CH∗ as

E1 = gbs1(gc3)b, E2 = ga1bs1 , E3 = ga1s1 , E4 = (gc2)bs′3 ,

E5 = (gc2)s′3 , E6 = (vva1
1 )s1(gc3)v′(gc2)v′2s′3 , E7 = (vva1

1 )bs1(gc3)v′b(gc2)v′2bs′3w−t ,

C1 = gt ,
{

C2, j = (h j ∏
i∈S j

ui)
twtagc, jt

}
1≤ j≤m, {tagc, j}.

Next, it sets EK0 = (T )a1b and EK1 = Ωs̃ by choosing a random exponent s̃ ∈ Zp. It flips a random coin γ

internally, and gives the tuple (CH∗,EKγ) to A. If T = e(g,g)c1c2c3 , then B is playing G2. Otherwise, it is
playing G3. Note that it can only create a semi-functional ciphertext header since s3 =−c3 + s′3 enables the
cancellation of gc2c3 .
Guess: Finally B receives a guess γ ′ from A. If γ = γ ′, it outputs 0. Otherwise, it outputs 1.

3.5 Discussions

Chosen-Ciphertext Security. In the standard security against chosen-ciphertext attacks (CCA), an adver-
sary is allowed to query the decryption of ciphertexts. To achieve the CCA security, we may try to use the
technique of Canetti, Halevi, and Katz [10], but we cannot directly use the technique of Canetti et al. since
the CCA secure scheme is derived from an identity-based encryption (IBE) scheme and the PKBE scheme
is not related with an IBE scheme. However, we can achieve the CCA security of our PKBE scheme by
modifying our PKBE scheme to include the structure of the Boneh and Boyen IBE scheme [1] and then
applying the CHK method.
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4 Asymmetric Construction

In this section, we present an efficient PKBE scheme based on asymmetric bilinear groups of prime order
and prove its adaptive security under three simple assumptions.

4.1 Asymmetric Bilinear Groups

Let G,Ĝ, and GT be multiplicative cyclic groups of prime p order where G 6= Ĝ. Let g, ĝ be generators of
G,Ĝ, respectively. The bilinear map e : G× Ĝ→GT has the following properties:

1. Bilinearity: ∀u ∈G,∀v̂ ∈ Ĝ and ∀a,b ∈ Zp, e(ua, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g, ĝ such that e(g, ĝ) has order p, that is, e(g, ĝ) is a generator of GT .

We say that G,Ĝ,GT are asymmetric bilinear groups if the group operations in G,Ĝ, and GT as well as the
bilinear map e are all efficiently computable.

4.2 Complexity Assumptions

We introduce three simple assumptions under asymmetric bilinear groups of prime order.

Assumption 4.1 (eXternal Diffie-Hellman, XDH [5]). Let (p,G,Ĝ,GT ,e) be a description of the asymmet-
ric bilinear group of prime order p. The XDH assumption is that if the challenge values

D = ((p,G,Ĝ,GT ,e), g,ga,gb, ĝ) and T

are given, no PPT algorithm A can distinguish T = T0 = gab from T = T1 = gc with more than a negligible
probability. The advantage of A is defined as AdvXDH

A (λ ) =
∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) = 0]

∣∣ where
the probability is taken over the random choices of a,b,c ∈ Zp.

Assumption 4.2 (Asymmetric 3-Party Diffie-Hellman, A3DH). Let (p,G,Ĝ,GT ,e) be a description of the
asymmetric bilinear group of prime order p. The A3DH assumption is that if the challenge values

D = ((p,G,Ĝ,GT ,e), g,ga,gb, ĝ, ĝa, ĝab, ĝc) and T

are given, no PPT algorithmA can distinguish T = T0 = ĝabc from T = T1 = ĝd with more than a negligible
probability. The advantage of A is defined as AdvA3DH

A (λ ) =
∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) = 0]

∣∣ where
the probability is taken over the random choices of a,b,c,d ∈ Zp.

Assumption 4.3 (Decisional Bilinear Diffie-Hellman, DBDH). Let (p,G,Ĝ,GT ,e) be a description of the
asymmetric bilinear group of prime order p. The DBDH assumption is that if the challenge values

D = ((p,G,Ĝ,GT ,e), g,ga,gb,gc, ĝ, ĝa, ĝb, ĝc) and T

are given, no PPT algorithmA can distinguish T = T0 = e(g, ĝ)abc from T = T1 = e(g, ĝ)d with more than a
negligible probability. The advantage of A is defined as AdvDBDH

A (λ ) =
∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) =

0]
∣∣ where the probability is taken over the random choices of a,b,c,d ∈ Zp.

14



4.3 Construction

Our PKBE scheme in asymmetric bilinear groups is described as follows:

PKBE.Setup(1λ ,N): This algorithm first generates the asymmetric bilinear groups G,Ĝ of prime order
p of bit size Θ(λ ). Let g, ĝ be the generator of G,Ĝ respectively. Next, it chooses random expo-
nents a,v′,v′1,h

′
1, . . . ,h

′
m,u

′
1, . . . ,u

′
m,w

′,α ∈Zp and sets v = gv′ ,v1 = gv′1 ,{hi = gh′i ,ui = gu′i}1≤i≤m,w =
gw′ , v̂ = ĝv′ , v̂1 = ĝv′1 ,{ĥi = ĝh′i , ûi = ĝu′i}1≤i≤m, ŵ = ĝw′ . It outputs a master key MK = (ĝα , v̂, v̂1,
{ĥi, ûi}1≤i≤m, ŵ) and a public key as

PK =
(

g, ga, vva
1, h1, . . . ,hm, u1, . . . ,um, w, Ω = e(g, ĝ)α

)
.

PKBE.KeyGen(d,MK,PK): This algorithm takes as input an index d = (dx,dy), the master key MK, and
the public key PK. It selects a random exponent r1 ∈ Zp and random values tagk,z1, . . . ,zm ∈ Zp. It
outputs a private key by implicitly including d as

SKd =
(

D1 = ĝα v̂r1 , D2 = v̂r1
1 , D3 = ĝ−r1 ,

K1 = (ĥdy ûdx)
r1ŵtagkr1 ,

{
K2,i = ûr1

i ŵzir1
}

1≤i 6=dx≤m, tagk, {zi}1≤i6=dx≤m

)
.

PKBE.Encrypt(S,PK): This algorithm takes as input a receiver set S that divided to subsets S1, . . . ,Sm and
the public key PK. It first chooses random exponents s1, t ∈ Zp and random values tagc,1, . . . , tagc,m ∈
Zp. It outputs a ciphertext header by implicitly including S as

CHS =
(

E1 = gs1 , E2 = (ga)s1 , E3 = (vva
1)

s1w−t ,

C1 = gt ,
{

C2, j = (h j ∏
i∈S j

ui)
twtagc, jt

}
1≤ j≤m, {tagc, j}1≤ j≤m

)
and an encryption key EK = Ωs1 .

PKBE.Decrypt(CHS,SKd ,PK): This algorithm takes as input a ciphertext header CHS for a receiver set
S = S1∪ ·· ·∪Sm and a private key SKd for an index d = (dx,dy). If d 6∈ S, it outputs ⊥. Otherwise it
proceeds as follows:

1. It finds a subset Sdy from the set S such that dx ∈ Sdy and calculates tag′k = tagk +∑i∈Sdy\{dx} zi

from the private key.

2. If tag′k 6= tagc,dy
, then it outputs an encryption key as

EK =
3

∏
i=1

e(Ei,Di) ·
(

e(C1,K1 ∏
i∈Sdy\{dx}

K2,i) · e(C2,dy ,D3)
)−1/(tag′k−tagc,dy )

.

Otherwise, it outputs ⊥.
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4.4 Correctness

Let tag′k = tagk +∑i∈Sdy\{dx} zi. If tag′k 6= tagc,dy
, then the correctness of the above PKBE scheme is easily

verified as (
3

∏
i=1

e(Ei,Di)

)
·

e(C1,K1 ∏
i∈Sdy\{dx}

K2,i) · e(D7,C2)

− 1
(tag′k−tagc,dy )

=
(

e(gs, ĝα) · e(wt , ĝr1)
)
· e(gt , ŵr1)−1 = e(g, ĝ)αs.

Note that we have tag′k 6= tagc,dy
with 1− 1/p probability since tagk,{zi}1≤i6=dx≤m,{tagc, j}1≤ j≤m are ran-

domly chosen in Zp.

4.5 Security Analysis

Theorem 4.4. The above PKBE scheme is adaptively secure under a chosen ciphertext attack if the XDH,
A3DH, and DBDH assumptions hold. That is, for any PPT adversary A, there exists a PPT algorithm B
such that AdvPKBE

A (λ ) ≤ AdvXDH
B (λ )+NAdvA3DH

B (λ )+AdvDBDH
B (λ ) where N is the maximum number of

users in the system.

Proof. To prove the security of our scheme in dual system encryption, we first define the semi-functional
private keys and ciphertext headers.

PKBE.KeyGenSF. This algorithm first creates a normal private key SK′d =(D′1,D
′
2,D

′
3,K

′
1,{K′2,i}, tagk,{zi}).

It chooses a random exponent r2 ∈ Zp and outputs a semi-functional private key as

SKd =
(

D1 = D′1 · (ĝa)−r2 , D2 = D′2 · ĝr2 , D3 = D′3, K1 = K′1, {K2,i = K′2,i}, tagk, {zi}
)
.

PKBE.EncryptSF. This algorithm first creates a normal ciphertext header CH ′S = (E ′1,E
′
2,E

′
3,C
′
1,{C′2, j},

{tagc, j}) and an encryption key EK′. It chooses a random exponent s2 ∈ Zp and outputs a semi-
functional ciphertext header as

CHS =
(

E1 = E ′1, E2 = E ′2 · (ga)s2 , E3 = E ′3 · (va
1)

s2 , C1 =C′1, {C2, j =C′2, j}, {tagc, j}
)

and an encryption key EK = EK′.

Note that if a semi-functional private key is used to decrypt a semi-functional ciphertext header, then the
decryption algorithm will fail to produce a valid encryption key since it is multiplied by an additional term
e((ga)s2 , ĝr2).

The security proof also consists of the sequence of hybrid games that are defined in Theorem 3.1. From
the following three lemmas, we have that it is hard to distinguish Gi−1 from Gi under the given assumptions.
This completes our proof.

Lemma 4.5. If the XDH assumption in G holds, then no polynomial-time adversary can distinguish between
G0 and G1 with a non-negligible advantage.
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Proof. Suppose there exists an adversary A that distinguishes between G0 and G1 with a non-negligible
advantage. A simulator B that solves the XDH assumption in G using A is given: a challenge tuple D =
((p,G,Ĝ,GT ,e),g,gc1 ,gc2 , ĝ) and T where T = gc1c2 or T = gc1c2+c1c3 . Then B that interacts with A is
described as follows:

Setup: B first chooses random exponents v′,v′1,{h′i,u′i}1≤i≤m,w′,α ∈Zp and sets {hi = gh′i ,ui = gu′i}1≤i≤m,w=
gw′ , v̂= ĝv′ , v̂1 = ĝv′1 ,{ĥi = ĝh′i , ûi = ĝu′i}1≤i≤m, ŵ= ĝw′ . It sets the master key as MK =(ĝα , v̂, v̂1,{ĥi, ûi}1≤i≤m, ŵ)
and publishes the public key PK by implicitly setting a = c1 as

g, ga = gc1 , vva
1 = gv′(gc1)v′1 , h1, . . . ,hm, u1, . . . ,um, w, Ω = e(g, ĝ)α .

Query: A adaptively requests a private key query for an index d. To response this query, B simply runs the
key generation algorithm to create a normal private key using the master key. Note that it can only create
the normal private keys since it does not know a.
Challenge: In the challenge step, A submits a challenge receiver set S∗ = S∗1 ∪ ·· · ∪ S∗m. B first creates
a normal ciphertext by calling Encrypt(S∗,PK). Let CH ′S = (E ′1,E

′
2,E

′
3,C
′
1,{C′2, j},{tagc, j}) and EK′ be

the normal ciphertext header and the encryption key under random exponents s′1, t
′ ∈ Zp. It modifies the

ciphertext header by implicitly setting s1 = s′1 + c2 and s2 = c3. The modified semi-functional ciphertext
header CH∗ is described as follows:

E1 = E ′1 ·gc2 , E2 = E ′2 ·T, E3 = E ′3 · (gc2)v′(T )v′1 , C1 =C′1, {C2, j =C′2, j}, {tagc, j}.

Next, it sets EK0 = EK′ and EK1 = Ωs̃ by choosing a random exponent s̃ ∈ Zp. It flips a random coin γ

internally, and gives the tuple (CH∗,EKγ) to A. If T = gc1c2 , then B is playing G0. Otherwise, it is playing
G1.
Guess: Finally B receives a guess γ ′ from A. If γ = γ ′, it outputs 0. Otherwise, it outputs 1.

Lemma 4.6. If the A3DH assumption holds, then no polynomial-time adversary can distinguish between
G1,k−1 and G1,k with a non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes between G1,k−1 and G1,k with a non-negligible
advantage. A simulator B that solves the A3DH assumption in Ĝ using A is given: a challenge tuple
D = ((p,G,Ĝ,GT ,e),g,gc1 ,gc2 , ĝ, ĝc1 , ĝc1c2 , ĝc3) and T where T = ĝc1c2c3 or T = ĝc1c2c3 ĝc4 . Then B that
interacts with A is described as follows:

Setup: B first chooses random exponents a,v′1,h
′
1, . . . ,h

′
m,u

′
1, . . . ,u

′
m,w

′, B1, . . . ,Bm,A1, . . . ,Am,α ∈ Zp and
sets {hi = gh′i(gc1)−Bi ,ui = gu′i(gc1)−Ai},w = gw′gc1 , v̂ = (ĝc1c2)−a, v̂1 = (ĝc1c2)ĝv′1 ,{ĥi = ĝh′i(ĝc1)−Bi , ûi =
ĝu′i(ĝc1)−Ai}, ŵ = ĝw′ ĝc1 . It sets the master key MK = (ĝα , v̂, v̂1,{ĥi, ûi}, ŵ) and publishes the public key PK
as

g, ga, vva
1 = gv′1a, h1, . . . ,hm, u1, . . . ,um, w, Ω = e(g, ĝ)α .

Query: A adaptively requests a private key query for an index d. If this is a ρ-th private key query for an
index d = (dx,dy), then B handles this query as follows:

• Case ρ < k : It first creates a normal private key by choosing random values tagk,{zi}1≤i 6=dx≤m ∈ Zn

since it knows MK. Next, it converts the normal private key to a semi-functional one since it knows a.
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• Case ρ = k : It first creates a normal private key SK′d = (D′1,D
′
2,D

′
3,K

′
1,{K′2,i}, tagk,{zi}) by setting

tagk = Bdy +Adx ,{zi = Ai}1≤i 6=dx≤m since it knows MK. Let r′1 be the random exponent used in the
normal private key. Next, it modifies the private key by implicitly setting r1 = r′1 + c3 and r2 = c4.
The modified private key is described as follows:

D1 = D′1 · (T )−a, D2 = D′2 ·T (ĝc3)v′1 , D3 = D′3 · (ĝc3)−1,

K1 = K′1 · (ĝc3)
h′dy+u′dx+w′tagk , {K2,i = K′2,i · (ĝc3)u′i+w′zi}, tagk,{zi}.

If T = ĝc1c2c3 , then B is playing G1,k−1. Otherwise, it is playing G1,k. Note that tagk = Bdy +Adx and
z j = A j enables the cancellation of ĝc1c3 .

• Case ρ > k : It creates a normal private key by choosing random values tagk,{zi}1≤i 6=dx≤m ∈ Zp since
it knows MK.

Challenge: In the challenge step, A submits a challenge receiver set S∗ = S∗1 ∪ ·· · ∪ S∗m. B first creates a
normal ciphertext by setting {tagc, j = B j +∑i∈S j Ai}1≤ j≤m. Let CH ′S = (E ′1,E

′
2,E

′
3,C
′
1,{C′2, j},{tagc, j}) and

EK′ be the normal ciphertext header and the encryption key under random exponents s′1, t
′ ∈ Zp. It selects

a random exponent s2 ∈ Zp and modifies this ciphertext header by implicitly setting t = t ′+ c2as2. The
modified semi-functional ciphertext header CH∗ is described as follows:

E1 = E ′1, E2 = E ′2 · (ga)s2 , E3 = E ′3 · (gc2)−w′as2gv′1as2 ,

C1 =C′1 · (gc2)as2 ,
{

C2, j =C′2, j · (gc2)
as2(h′j+∑i∈S j u′i+tagc, jw

′)}
1≤ j≤m, {tagc, j}.

Next, it sets EK0 = EK′ and EK1 = Ωs̃ by choosing a random exponent s̃ ∈ Zp. It flips a random coin γ

internally, and gives the tuple (CH∗,EKγ) to A. Note that it can create a semi-functional ciphertext header
since t = t ′+ c2as2 and {tagc, j = B j +∑i∈S j Ai} enable the cancellation of gc1c2 .
Guess: Finally B receives a guess γ ′ from A. If γ = γ ′, it outputs 0. Otherwise, it outputs 1.

The paradox of dual system encryption is solved since tag′k derived from the kth private key for an index
d = (dx,dy) and tagc,dy

of the semi-functional ciphertext header for a subset S = S1∪·· ·∪Sm are the same if
d ∈ S. Additionally, the adversary cannot detect any relationship between tagc, j of the challenge ciphertext
header and tagk of the kth private key since the function B j +∑i∈S j Ai is a pairwise independent function,
{B j} and {Ai} are information theoretically hidden to the adversary, and the adversary cannot request a
private key for d such that d ∈ S∗ in the security game.

Lemma 4.7. If the DBDH assumption holds, then no polynomial-time adversary can distinguish between
G2 and G3 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes between G2 and G3 with a non-negligible
advantage. A simulator B that solves the DBDH assumption using A is given: a challenge tuple D =
((p,G,Ĝ,GT ,e), g,gc1 ,gc2 ,gc3 , ĝ, ĝc1 , ĝc2 , ĝc3) and T where T = e(g, ĝ)c1c2c3 or T = e(g, ĝ)c4 . Then B that
interacts with A is described as follows:

Setup: B first chooses random exponents v′,v′1,{h′i,u′i}1≤i≤m,w′ ∈Zp and sets {hi = gh′i ,ui = gu′i}1≤i≤m,w =
gw′ , v̂ = ĝv′ , v̂1 = ĝv′1 ,{ĥi = ĝh′i , ûi = ĝu′i}1≤i≤m, ŵ = ĝw′ . It implicitly sets a = c2,α = c1c2 and publishes the
public key PK as

g, ga = gc2 , vva
1 = v(gc2)v′1 , h1, . . . , hm, u1, . . . , um, w, Ω = e(gc1 , ĝc2).
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Table 2: The size of groups and the cost of operations in bilinear groups

Type Len(Zp) Len(G) Len(Ĝ) Len(GT ) Exp(G) Exp(Ĝ) Exp(GT ) Pair

(bits) (bits) (bits) (bits) (ms) (ms) (ms) (ms)

Symmetric 160 512 - 1024 4.2 - 0.8 6.2

Asymmetric 168 176 528 1056 1.6 20.3 5.5 15.6

Symmetric = supersingular curve, Asymmetric = MNT curve

Len(−) = the bit size of group elements, Exp(−) = exponentiation, Pair = pairing

Query: A adaptively requests a private key query for an index d. To response this query for an index
d = (dx,dy), B selects random exponents r1,r′2 ∈ Zp and random values tagk,{zi}1≤i 6=dx≤m ∈ Zp. Next, it
implicitly sets r2 = c1 + r′2 and creates a semi-functional private key as

D1 = v̂r1(ĝc2)−r′2 , D2 = v̂r1
1 (ĝ

c1)ĝr′2 , D3 = ĝ−r1 ,

K1 = (ĥdy ûdx)
r1ŵtagkr1 , {K2,i = ûr1

i ŵzir1}1≤i 6=dx≤m, tagk, {zi}.

Note that it can only create a semi-functional private key since r2 = c1 + r′2 enables the cancellation of ĝc1c2 .
Challenge: In the challenge step, A submits a challenge receiver set S∗ = S∗1∪ ·· ·∪S∗m. It chooses random
exponents s1,s′2, t ∈Zp and random values {tagc, j}1≤ j≤m ∈Zp. Next, it implicitly sets s1 = c3,s2 =−c3+s′2
and creates a semi-functional ciphertext header CH∗ as

E1 = gc3 , E2 = (gc2)s′2 , E3 = (gc3)v′(gc2)v′1s′2w−t ,

C1 = gt , {C2, j = (h j ∏
i∈S j

ui)
twtagc, jt}1≤ j≤m, {tagc, j}.

Next, it sets EK0 = T and EK1 = Ωs̃ by choosing a random exponent s̃ ∈ Zp. It flips a random coin γ

internally, and gives the tuple (CH∗,EKγ) to A. If T = e(g, ĝ)c1c2c3 , then B is playing G2. Otherwise, it is
playing G3. Note that it can only create a semi-functional ciphertext header since s2 =−c3 + s′2 enables the
cancellation of gc2c3 .
Guess: Finally B receives a guess γ ′ from A. If γ = γ ′, it outputs 0. Otherwise, it outputs 1.

5 Efficiency Comparison

In this section, we compare the efficiency of our schemes with that of other schemes. For symmetric bilinear
groups that achieves the 80-bit security level, we select the supersingular curve with embedding degree 2 for
large prime characteristic. For asymmetric bilinear groups that achieves the 80-bit security level, we select
the Miyaji-Nakabayashi-Takano (MNT) curve with embedding degree 6. To compare the performance of
schemes, we used the Pairing Based Cryptography (PBC) library of Lynn [24] to measure the cost of each
operations in these bilinear groups1. The detailed information of these bilinear groups is given in Table
2. Note that we can assume that the cost of 160 multiplications is approximately less than the cost of one
exponentiation.

Symmetric Bilinear Groups. In symmetric bilinear groups, we compare our PKBE scheme with the PKBE
scheme of Waters [32], the PKRE scheme of Lewko et al. [21], and the AugBE scheme of Garg et al. [17].

1We measured the cost of each operations under a laptop computer with an Intel Core i5-460M 2.53 GHz CPU.
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Table 3: The efficiency comparison of schemes in symmetric bilinear groups

Scheme PK Size SK Size CT Size KeyGen Encrypt Decrypt

(kbits) (kbits) (kbits) (sec) (sec) (sec)

Waters [32] 5.1∗105 5.1∗105 5.6 4.2∗103 26.3 26.3

LSW [21] 7.2 4.1 10.2∗103 0.05 126.0 132.0

GKSW [17] 2.6∗103 0.5∗103 8.2∗103 4.2 98.4 0.08

Ours 1.0∗103 0.7∗103 0.5∗103 8.4 34.6 0.08

N = 106 = the number of total users, r = 104 = the number of revoked users

Table 4: The efficiency comparison of schemes in asymmetric bilinear groups

Scheme PK Size SK Size CT Size KeyGen Encrypt Decrypt

(kbits) (kbits) (kbits) (sec) (sec) (sec)

GKSW [17] 1.9∗103 0.5∗103 4.2∗103 20.3 146.9 0.22

PRL [29] 2.5∗103 0.5∗103 2.8∗103 20.3 123.4 0.19

Ours 0.4∗103 0.7∗103 0.3∗103 40.6 13.2 0.21

N = 106 = the number of total users, r = 104 = the number of revoked users

Suppose that the number of total users N is 106 and the number of revoked users r is 104. To measure the
performance of each algorithms, we assume that these algorithms are naively implemented by just using
the basic operations in Table 2. The detailed efficiency comparison of these schemes in symmetric bilinear
groups is given in Table 3. As mentioned, the PKBE scheme of Waters [32] is not appropriate for the system
with the large number of total users N since the public key size, the private key size, and the cost of the key
generation algorithm are huge compared with other schemes. The PKRE scheme of Lewko et al. [21] is also
not appropriate for the system with the large number of revoked users since the ciphertext size, the cost of the
encryption and decryption algorithms are proportional to the value r. Our scheme and the AugBE scheme
of Garg et al. [17] provide the reasonable size of public keys, private keys, and ciphertexts. Additionally,
the cost of these algorithms in these two schemes is constant. However, the ciphertext size of our scheme is
94% shorter and the encryption algorithm of our scheme is 2.8 times faster than those of the AugBE scheme
of Garg et al.

Asymmetric Bilinear Groups. In asymmetric bilinear groups, we compare our PKBE scheme with AugBE
schemes of Garg et al. [17] and Park et al. [29]. The main advantage of asymmetric bilinear groups is that it
provide shorter representation in G and efficient exponentiations in G. The detailed efficiency comparison
of these schemes in asymmetric bilinear groups is given in Table 4. The AugBE scheme of Park et al. [29]
performs better than the AugBE scheme of Garg et al. [17] in terms of ciphertext size and encryption cost.
However, the ciphertext size of our PKBE scheme is 90% shorter and the encryption algorithm of our PKBE
scheme is 9.3 times faster than those of the AugBE scheme of Park et al.
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6 Conclusion

In this paper, we proposed efficient PKBE schemes with sub-linear size of public keys, private keys, and ci-
phertexts, and proved their adaptive security under standard (or simple) assumptions. To enable our schemes,
we first devised a novel tag update technique for dual system encryption, and then we applied this technique
for our PKBE schemes to improve the efficiency of schemes.

One interesting open problem is to construct an adaptively secure PKBE scheme under standard as-
sumptions with constant size of private keys. Note that our PKBE schemes and the AugBE schemes only
provide sub-linear size of private keys since private keys should be randomized. Previously, PKBE schemes
with constant size of private keys were achieved by generating a private key deterministically and employ-
ing q-type assumption [7]. To devise a PKBE scheme with constant size of private keys under standard
assumptions, we may need to invent a new technique.
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