An Efficient Scheme for Centralized Group Key
Management in Collaborative Environments

Constantinos Patsakis®, Agusti Solanas®

@ Distributed Systems Group, School of Computer Science and Statistics, Trinity College,
College Green, Dublin 2, Ireland.
bUNESCO Chair in Data Priwacy, Dept. Computer Engineering and Mathematics,
Universitat Rovira i Virgili, Catalonia. (Spain).

Abstract

The increasing demand for on-line collaborative applications has sparked the
interest for multicast services, which in many cases have to guarantee proper-
ties such as authentication or confidentiality within groups of users. To do so,
cryptographic protocols are generally used and the cryptographic keys, in which
they rely, have to be managed (e.g. created, updated, distributed). The proce-
dures to perform these operations are determined by the so-called Group Key
Management Schemes. Many schemes have been proposed and some of them
have been proven to be vulnerable. This is the case of the Piao et al. scheme,
whose scalability /efficiency is very good but it is vulnerable to many attacks
because its security is based on a “weak” mathematical problem, so it can be
broken in polynomial time.

Inspired by the concepts proposed in the Piao et al. scheme we have re-
designed the protocol and we have founded it on a hard mathematical problem
and tweaked some of the procedures. This way, we propose a new scheme that
is efficient, collusion free, and provides backward and forward secrecy.

Keywords: Group key management, Rekeying, collaborative platforms, Secure
group communication, Access control

1. Introduction

Communication networks have become basic infrastructures in advanced so-
cieties, and their use is growing steadily throughout the world. Those networks
are mainly used to send and receive a variety of information in most cases
from producers (e.g. newspapers, web search engines, virtual shops, etc.) to
consumers (e.g end users). However, this classical model is witnessing the ap-
pearance of new actors that play the role of both producers and consumers,
those are the so-called prosumers.

Email addresses: patsakik@scss.tcd.ie (Constantinos Patsakis),
agusti.solanasQurv.cat (Agusti Solanas)

Preprint submitted to Cryptology ePrint Archive August 12, 2013

Currently, the users of communication networks like Internet, are not only
passive consumers of information but active creators of contents. A clear ex-
ample of this model could be found in social networks like facebook or twitter
in which users produce/create content and also consume the content created by
their friends (within the virtual social network).

In most cases the communications that take place in these networks are 1-
to-1 communications, this is, a message (m) is sent from user U; to user U
through a given channel consisting of routing nodes that propagate (m) from
the sender to the receiver. This kind of communication is generally referred to
as unicast communication. Although this is the most frequent communication
mode, the fact that users tend to gather in groups to access common services
! has popularized 1-to-n communications also known as multicast communica-
tions, in which a message (m) is sent from a user U; to a set/group of users
G={U;,Ug,---Up}.

Cryptography plays a fundamental role in making all these communications
secure. Thanks to the use of the proper protocols, users are provided with prop-
erties such as authentication, integrity, non-repudiation, etc. However, crypto-
graphic protocols are based on the use of cryptographic keys that could be
understood as a common secret that users could use to communicate privately
and securely. In the simple case of unicast communication, we could assume
that user U; shares a common secret, the key K, with a user u;. This way,
when U; wants to send a message m to Uj;, he/she encrypts the message using
K. By doing so, only U; will be able to decrypt m since he/she is the only
one who also knows K. Thus, to send a message securely from U; to U; one
encryption and one decryption operation are required and a single key K is
used.

Notwithstanding, the simple case described above does not scale well when
we consider a multicast group. In this case, since we have a number of users
n that want to securely communicate with each other, each user u; shares a
key with the other users in the group (i.e. n — 1 different keys), and the same
happens with the other members. Therefore, the total number of keys is n? —n
or(n—1)4+Mn—-2)4+---+1= ("_1)(1;("_1)) = "22_” if we consider that the
key used to communicate from u; to U; is equal to the one used to communicate
from u; to U;. Clearly, if the above approach is used, the number of keys grows
quadratically with a linear growth in the number of users. Thus, the scalability
of the system is poor.

To avert the aforementioned scalability problem, group keys are used. In
this case, when a group of users share information, they can share it securely by
encrypting it with a common group key K. This way, using a single key the
communications are secured. However, any modification of the group of users
implies a recalculation and redistribution of the key. Otherwise, new users could

I There are many services that are accessed in groups and have sense for multicast commu-
nications, namely video and audio streaming, vehicle-2-vehicle communications in platoons,
content sharing in p2p communications, etc.

read previous messages and “old” users could keep reading new messages (i.e.
backward and forward secrecy cannot be guaranteed).

There are many different schemes that tackled the problem of group key
management. Their goals are diverse and adapt to several types of multicast
communications requirements. According to [1] we can distinguish the following
main requirements for group key management schemes:

Security requirements: Forward secrecy, backward secrecy, collusion free-
dom, key independence and minimal trust;

Quality of Service requirements: Low bandwidth, no 1-affects-n, minimal
delays and service availability;

Key server requirements: Low storage and low computation;
Group users requirements: Low storage and low computation.

According to the methods used to distribute the key, group key management
schemes can be classified in three categories as follows:

Centralized: In these schemes there is a trusted third party, known as Key
Distribution Center (KDC), which is responsible for generating, distribut-
ing, renewing and revoking group keys. This kind of schemes can be
classified according to the way they share the key in pairwise, broadcast
or hierarchical. Some examples can be found in: [2, 3, 4].

Decentralized: In these schemes, the responsibilities of the KDC are shared
among several group members generally organized in a hierarchical struc-
ture that reduces the appearance of bottlenecks and eliminates the prob-
lem of a single point of failure. These schemes can be further classified into
membership-driven or time-driven depending on when the key is updated.
Examples of decentralized schemes can be found in: [5] and [6].

Distributed: In these schemes, each member of the group cooperates in the
generation of the group key and one member distributes it. These schemes
could be further classified according to the type of cooperation in Ring-
based cooperation, hierarchical cooperation and broadcast cooperation.
Typical examples of this kind of schemes can be found in: [7, §].

For further and more complete information on group key management schemes,
the reader may refer to [1, 9.

1.1. Contribution and Outline of the Article

The importance of properly managing keys within groups is apparent and
many efforts are being devoted to proposing new methods that guarantee secu-
rity (i.e. backward secrecy, forward secrecy and collusion freedom) while at the
same time efficiency and QoS are achieved.

Recently Piao’s et al. [10] proposed a scheme for group key management
that has proven to be very efficient in terms of scalability. However, it has been

shown that the scheme is not secure because the mathematical problem in which
it is based can be easily solved, in polynomial time. Although the scheme has
been broken, it has inspired us and we leverage some of its ideas to propose a
novel scheme that shares the efficiency but solves the security issues related to
the underlying mathematical problem, by setting it to a more solid ground. The
security of the scheme now is based on the finding roots of polynomials modulo
big composite numbers, for which the factorization is not known to the users.

The rest of the article is organized as follows: In §2 we recall the scheme
by Piao et al. [10] and show why it is not secure. Next, in §3 we propose our
scheme and we discuss its properties in §4. Finally, the article concludes in §5
with some final remarks.

2. Piao’s et al. scheme

2.1. A brief overview

Piao et al. in [10] proposed the following scheme: They assume a group G
with the initial users U, Us,...,U,,. These users send a message to the Key
Distribution Center (KDC) asking for the generation of a group key. The
KDC receives the request and generates m keys for the users i.e. the keys
ki,ka,....km € GF,, as well as the group key K¢ € GF,, where p is a large
prime. From these values, the KDC computes the following univariate polyno-

mial:
m

P(z) = H(m —k)+ Kg
i=1
Afterwards, the KDC sends the message [(k;, P(z))] to each user U; accordingly.
On receiving the message, each user may compute K¢, by simply calculating

When the group of users G changes (i.e. either one or more users leave or one
or more users join) the procedure is essentially the same. In the case of a new
user Uy, +1 joining the group, the KDC picks a new group key K., creates a key
km+1 for Up,aq and calculates a new polynomial P’'(x) as follows:

m—+1
P'(z) = H (x — ki) + K¢
i=1
This new polynomial is sent to all the users in the group (so that they can com-
pute the new group key), and the new user receives the message [(km+1, P'(x))].
In the case in which a user Uy leaves the group the procedure is almost
the same. A new group key K, is generated by the KDC, and the resulting
polynomial P’(x) is sent to all the remaining users. Note that since the keys
of the remaining users have not changed, they can obtain the group key by
calculating P’(k;).
For further details on the generation of the polynomials in each case we refer
the interested reader to the original article of Piao et al. [10].

2.2. Security of the scheme

Although the above scheme is very efficient, it is not secure. Independently,
in [11] and [12] the scheme has been analyzed and proven to be insecure. Initially,
Kamal in [11] showed that the scheme does not provide forward and backward
secrecy. In addition, Liu et al. in [12] describe the linchpin of the security
problem present in the scheme, i.e. the underlying mathematical problem in
which the security of the scheme is based is not hard. Actually, the problem does
not belong to the class of N P-hard problems and there are several deterministic
and probabilistic algorithms that can efficiently solve it in polynomial time.

The security of the above scheme is based on the wrong assumption that
users cannot find the keys of other users. Given that we have a univariate
polynomial in a finite field, the problem falls down to finding it’s roots. If we
assume that there is a malicious user Uy in G, he knows P(z), K¢ and his own
key kjs, then Up; may calculate the following polynomial:

P(l’)*KG
.Z‘—kM

flz) =

Thus, to obtain the keys of the other users, Uy, simply has to factorize f(x) in
a finite field by using any of the algorithms that solve this problem efficiently
[13, 14, 15]. For more on the topic of factoring polynomials over finite fields,
the reader may refer to [16].

Ups can recover all the keys of the other users with a cost in the order of
O((m — 1)3log(m — 1) logp), where m is the degree of the polynomial (in this
case, equal to the number of users) and p the order of the finite field GF(p) used.
This means that for as long as Ujy; belongs to the group, he might compute the
keys of the other users. Even after leaving the group, Uy might still find the
new group key if he intercepts the new polynomial P’(z), as he known the keys
of the other users.

Liu et al. assume that in the Piao’s et al. scheme, the authors mistook
the problem of super-sparse univariate polynomials, which are known to be NP-
hard [17, 18], for the problem of normal univariate polynomials. The reason
why this assumption seems valid is that Piao’s et al. cite Gao et al. in [19],
which correctly states which classes of univariate polynomial problems belong
in each complexity class.

3. Our proposed scheme

3.1. Main actors and desiderata

In our scheme, we consider two main actors, the Key Distribution Center
(KDC) and a set of users that want to form a group by sharing a common
key i.e. the group key. Each user is denoted as U; and the group key is K.
The proposed scheme does not handle the messages between users to form their
group or between users and the KDC. We assume that there is a secure channel
that can be used once, on the first contact of a user with the KDC, so that their
first key can be exchanged securely. Afterwards, all the messages that the KDC

creates can be multicast. Also, the initial messages or the agreement about
which users join the group is beyond the scope of this article.

The scheme that we propose takes for granted that all the operations are
authenticated. This means that during the initialization phase the group of users
(that requested the creation of the group) have already been authenticated by
another party. Also, we assume that the admission or exclusion of a user is
already approved. Hence, our scheme provides strictly key management.

The proposed scheme is designed to:

e Be secure.
e Scale easily, providing keys for thousands of users.
e Be collusion free

e Provide forward & backward secrecy

3.2. Initialization phase

As in the original scheme by Piao at al., we assume that we have a set of
initial users Uy, Us, ..., U, that want to build a group G and they send the proper
message to the KDC. The KDC receives these messages from the requesting
users, generates two prime numbers (p, ¢) and calculates their product n = pg.
After that, the KDC picks m + 1 random values ki, k2, ..., k41 € Zy, so that
the following two conditions are satisfied:

ki > /n,Vie{l,...,m+1}
ki — kj| >nt/4 Vi # 4, i,5 € {1,..,m+ 1}

The KDC then generates a random value K¢ € Z,, and calculates the following

polynomial:
m+1

P(z) = H (x — ki) + Kg mod n
i=1
Finally, the KDC sends a message with the triple: [(k;,n, P(z))] to each user
Ui,i € {1,...,m}. Note that like in the Piao et al. scheme, each user U; can
extract Kg by computing P(k;).

Our scheme always calculates an additional key (k,,+1) that we denote as
ks and that does not belong to any user. This additional key is used for salting
the polynomial so that the scheme can be collusion free. Its role is discussed in
detail in the next section.

3.3. User addition

If a new user Uy is accepted to join the group G, the KDC calculates a new
group key by using a secure hash function h as follows:

Kg = h(Ke)

Then, it sends the message [kn,K(] to the new user Uy through a secure
channel and an update message to all the current users. Upon receiving the

update message, each user U;,i € {1,...,m} can determine the new group key,
by calculating K, = h(K¢). Note that this is possible because the hash function
h is public and all the former users in the group already know the “old” group
key K. Also, note that since h is a secure hash function it is not possible to
compute K¢ from K, thus, the new user cannot obtain any information from
the messages sent using the “old” group key.

For security reasons that are going to be discussed in the next section, if
KDC wants to publish the new polynomial P(z), then the salting polynomial
has to be rekeyed.

3.4. User revocation

Without loss of generality, we assume that user U, leaves the group or
he/she is expelled from the group. In this situation, the KDC selects a new
group key K(,, a new random k,, € Z,, that is kept secret, and a new salt
ks € Z,, and calculates the new polynomial as follows:

s

P'(z) = (z— k%) | |(z — k) + Kz mod n

2

Il
-

Then, the KDC distributes the polynomial P’(x) to all the users that remain in
the group U;,i € {1,2,...,m — 1}.

From the above, it becomes apparent that in our scheme the degree of the
polynomial P(z) will never decrease (in fact, it increases when a new user joins
and remains equal when a user leaves the group). This procedure might work
fine if few users decide to leave the group. Notwithstanding, the degree of the
polynomial will increase rapidly if the group is very dynamic, as a result the
ratio between the degree of the polynomial and number of actual users in the
group will grow (which is not good for efficiency). With the aim to mitigate
this problem, we propose the following workaround.

Since the KDC always knows how many keys belong to legitimate users
and how many are used for coverings, it can easily control the growing of the
latter. To do so, we propose to fix a threshold T. When the number of covering
keys reaches the threshold, the KDC picks a random number r between 1 and
T — 1 and removes r covering keys from the polynomial. This will allow the
polynomial’s degree to be only slightly above the number of users, on average
T/2.

4. Discussion and Experimental Results

In this section we discuss the security properties of our proposed scheme
and provide the necessary proofs regarding backward and forward secrecy, as
defined in [20]. Finally, we discuss the experimental results obtained with a real
implementation of the proposed scheme.

4.1. Security analysis

In opposition to the original work by Piao et al. which is based on a weak
mathematical problem, our approach is founded on a strong one, i.e. finding
the roots of univariate polynomials modulo large composite numbers, for which
the factorization is not known. For the security of our scheme, we pick the
composite number n with the same criteria as those for RSA moduli numbers.
This constraint keeps the factorization of n secret, thus, preventing any attacker
from reducing the problem to finding the roots of univariate polynomials modulo
prime numbers, which can be solved efficiently.

Additionally, in order to prevent attacks based on Coppersmith’s theorems,
the keys of each user are selected accordingly. The first theorem of Coppersmith
[21] states:

Theorem 1. Let N be an integer and f € Z[x] a monic polynomial of degree
d. Set X = Na—¢ for some € > 0. Given N and f, one can efficiently find all
integers xo, with |xo| < X, satisfying

f(xo) =0 mod N

The running time is dominated by the time it takes the Lentra-Lenstra-Lovdsz
(LLL) algorithm on a lattice of dimension O(w) with w = min(,logN).

Therefore, an attack based on this theorem will rely on the fact that one
can find efficiently the roots of univariate polynomials modulo n using lattice
based methods, even when the factorization of n is not known if the roots are
quite small. Hence, in our scheme the KDC selects all the keys k;s so that
k; > v/n,Vie{l,..,m+1}.

Extending the theorem above, Coppersmith [22] proved the following theo-
rem for bivariate polynomials.

Theorem 2. Let p(x,y) be an irreducible polynomial in two variables over Z,
of mazimum degree & in each variable separately. Let X and Y be upper bounds
on the desired integer solution (xo,yo), and let

W = maxi7j|pij|Xin

If XY < W?2/3% then in time polynomial in (logW, 2%), one can find all integer
pairs (xg,yo) such that p(xo,yo) =0, |xo| < X, and |yo| < Y.

Therefore, in our scheme the KDC selects all the keys k;s so that: |k; —k;| >
nAt i #£ g, 0,5 €{1,...,m+1}.

Thanks to this two constrains that we force ib the selection of the keys k;s
allow them to be adequately large and at the same time separated enough from
each other, so that our solution is immune against lattice-based attacks founded
on the above Coppersmith theorems.

4.1.1. Attack models

The attack models for group key management schemes, depending on the
nature of the attacker, can be generally divided into insider attacks and outsider
attacks. In the first class we consider attackers who are legitimate users that
want to curiously find the key of another user in the group. The attackers may
form subgroups, within the whole group, aiming at one or more users. In this
scenario, we find the so-called collusion attacks, which are going to be analysed
latter in this section. Another insider attack scenario takes place when a new
member tries to determine the previously used group keys. For this scenario we
demand from our scheme to fulfil the so-called backward secrecy property.

In the second class of attacks, we face outsiders who are not legitimate users.
Since the KDC makes a broadcast of the information that allows legitimate users
to compute the group key, outsiders can access it and try to obtain the keys
of legitimate users. Generally, the strength of such attacks depends on the
hardness of the underlying mathematical problem (which in our case has been
proved to be NP-Hard). However, in this class of attacks, given the nature of
the scheme, we have the case of users that were legitimate in the past, which
have their old keys and try to access the new content. For these attacks we
demand from our scheme to fulfil the so-called forward secrecy property.

Both backward and forward secrecy, that are going to be discussed in the
following section, guarantee that the group key is available only to the legitimate
users. In other words, the new users cannot derive the old keys and the past
users cannot derive the new ones.

4.1.2. Backward and forward secrecy
Theorem 3. The proposed scheme provides backward secrecy.

Proof. Let’s assume that user Uy is accepted to join group G, then we must
prove that he cannot find the previous key of the group. Uy has access to
the new group key K., for which we have K}, = h(K¢). Therefore, Uy has
to calculate the preimage of K, for a given secure hash function h, which is
computationally infeasible. O

Theorem 4. The proposed scheme provides forward secrecy.

Proof. Let’s assume that user U, wants to leave group G with users Uy, ..., Upy,.
All users know either:

e The initial triplet (k;,n, P(x)), where k; is their key, if they were on the
initial formation of group G and the current group key K.

e The current group key K¢ and their own key k.., if they joined afterwards.

If U, does not belong to the initial formation of group G, he cannot find the
new group key K, as he doesn’t have any other information. Alternatively, if
U, belongs to the initial formation of group G and intercepts P’(z), he cannot
calculate K¢,. Clearly, P'(k,,) # K{;. Moreover:

d(z) = P(z) — P'(z)

m—+1 m
= ((x — ks) H (x — ki) + KG) - ((- k/s)H(w — ki) +K/G>

=1
= (@ = k)@ = ka) = (@ = Ks)l] [(& = k) + (K - KG)

From the equation above we see that the presence of the two salting polynomials
(r—kg) and (z—k}) make common multiplier of [, (x—Fk;) non-linear. Hence,
if U, evaluates d(k,), he will not gain any information.

In the case where the KDC decides to make multiple deletions (to avoid
the unnecessary growth of the degree of the polynomial), the calculations are
almost the same, with the only difference that the common multiplier is of
smaller degree.

Therefore, U, cannot find the new value of K., so the scheme provides
forward secrecy. O

Remark 1. In the above proof, the utility of the salting factor x — ks becomes
apparent. Also, it is important to emphasize the need for rekeying ks after each
user removal as well (if it wasn’t rekeyed the polynomial would be linear).

4.1.83. Security against collusion attacks

In the worst case scenario, we would have m — 1 from the m members of G
cooperating to reveal the key of the m!” member. Without loss of generality, we
assume that the m — 1 members are the first ones and they try to determine the
key of user U,,. Clearly, the colluded members can calculate the polynomial:

m—1

G(z) = 1:[(x — k;) mod n

=1

Therefore, in order to recover U,,’s key, they have to factor the polynomial:

_Pa) Ko [N e—k) _
g(x) = G(ﬂf) - l—Im—l(aj _ k’z) - (x k‘s)(a? km)

i=1

It can be observed that g(z) is a univariate polynomial of degree two. Since
the values k,,, and 2 — kg have not been disclosed to the colluded members of the
group, they must find the roots of a univariate polynomial modulo a composite
integer n, for which the factorization is not known (As we already stated above,
this is an NP-hard problem). With proper transformations, the problem can
be reduced to finding the square root of a number modulo n. However, this
problem, as proved by Rabin, is equivalent to factoring n [23], hence the key of
U, is secure against collusion attacks from the members of G.

Remark 2. The importance of the salting factor x — ks and the rekeying of
values becomes apparent once more. If the salting factor was not used, then the
recovery of the key of user Uy, would be trivial.

10

In a different collusion attack scenario, all users decide to recover the key of
user U, that leaves the group. To do this they decide to disclose their keys to
each other. If there was no rekeying of kg, then the key of U, could be easily
recovered by the rest of the users. To understand this, the attackers could
calculate:

oy~ PO Ko '@ —k) _ (@ —ks)x—k) _
A R VAN | GRCET N S R

i=1

Thus recovering the k,. By rekeying the salting polynomial, the scheme not
only provides backward and forward secrecy, but provides secrecy to the leaving
users, by protecting their keys.

4.2. Ezxperimental results

An implementation of our proposed scheme has been made in Sage 5.9. The
experiments were carried out on a machine with Intel® Core " i7-2600 CPU at
3.40GHz processor with 16GB of RAM, running on 64 bit Ubuntu GNU/Linux
kernel 3.2.0-29. The results that are presented represent the average timings of
100 experiments for groups of up to 100,000 users.

From the conducted experiments, it can be observed that the major time
constraint resides in the initialization of the protocol. Notwithstanding, the
performance is remarkable, for example it takes around 9 seconds to generate
the polynomial for 100,000 users. It has to be noted that this process can be par-
allelized, which in practical applications leads to much faster implementations.
Figure 1 illustrates the performance of the polynomial generation procedure for
different key sizes. The generation of the RSA-like modulo 7 is in all cases
1024 bits, so the cost is independent of the users and the average cost is around
seconds.

Adding or removing a user in our scheme is very fast, the cost is in the
scale of milliseconds, even for thousands of users. To generate a new key in
our experiments we have used the SHA-2 function, so the time in Figure 2 is
the sum of hashing and caching the new polynomial. The latter has been added
here as in many cases the KDC may choose to calculate the polynomial, in order
to decrease the cost of calculating the new polynomial when someone decides
to leave the group. The performance of this process can be seen in Figure 3.

Figure 4 illustrates the amount of information that has to be multicast/distributed
from the KDC, depending on the number of legitimate users. Since the KDC
has to broadcast the polynomial and the modulo n integer, most of which are
numeric data, we compressed the information using the bz2 library, which man-
ages to shrink the file with a factor around 2.

Finally, in Figure 5, the time needed for a client to recover the key is illus-
trated. Quite remarkably, the time even for keys of thousands of users can be
considered of the scale of decrypting an AES message.

All the figures indicate that the amount of time required for deleting or
creating a user, the amount of information to multicast, as well as the size
of the key to multicast, is almost linear with the number of users, making it
efficient for practical applications.

11

15

10 +

0.4

0.3 1

0.2

0.1}

1Time in secs

/ ‘ ‘ ‘ _ Users_
20,000 40,000 60,000 80,000 1.105

Figure 1: Time to create polynomial

Time in secs y

/ ‘ ‘ ‘ ‘ Users
20,000 40,000 60,000 80,000 1.105

Figure 2: Time to add one user. This is hashing the old key and cache the new

polynomial.

12

0.5 1

0.4

0.3+

0.2 1

0.1}

12

10 |

Time in secs

‘ ‘ ‘ ‘ Users
20,000 40,000 60,000 80,000 1.105

Figure 3: Time to remove one user

| Size in M B /

‘ ‘ ‘ ‘ Usersv
20,000 40,000 60,000 80,000 1.105

Figure 4: Size of key to multicast in MB.

13

Time in secs p
1.5-1072 ¢ L
-
,
/
1-1072 ¢
/
/
/

5-1073 | .7

Users_

20,000 40,000 60,000 80,000 1.10°

Figure 5: Time needed for client to recover the key

5. Conclusions

Group key management is a complex problem that is gaining increasing
importance. Since users tend to gather in groups, it has been shown that to
secure the communications within those groups it is much more efficient to share
a common traffic encryption key than maintaining a key for each pair of users.
However, managing a group key is not straightforward specially when the group
is very dynamic (i.e. users join and leave the group frequently). In this case, the
group key has to be changed frequently so as to guarantee security properties
such as backward secrecy and forward secrecy.

In this article we have briefly described the state of group key management.
We have recalled a scheme by Piao et al. that is efficient but has been broken
because the underlying mathematical problem, in which the scheme is based,
can be solved in polynomial time. Inspired by the lessons learnt from the Piao’s
scheme, we have proposed a novel scheme that has been proved to be efficient
and secure since it is based on a mathematical problem that is know to be NP-
Hard. Our proposed scheme has proven to guarantee forward and backward
secrecy and collusion freedom.

In addition to the theoretical proofs, we have discussed the properties of our
scheme and we have shown the experimental results of a real implementation to
prove its efficiency and feasibility in practice.

Disclaimer and acknowledgments

Agusti Solanas is partly supported by the Government of Catalonia under
grant 2009 SGR 1135, by the Spanish Government through projects TIN2011-
27076-C03-01 “CO-PRI-VACY” and CONSOLIDER INGENIO 2010 CSD2007-

14

00004 “ARES”, by the European Comission under FP7 projects “DwB” and
“Inter-Trust”, and by La Caixa under program RECERCAIXA 2012.

Agusti Solanas is with the UNESCO Chair in Data Privacy, but he is solely

responsible for the views expressed in this paper, which do not necessarily reflect
the position of UNESCO nor commit that organisation.

Bibliography

1]

2]

3]

4]

[5]

[6]

7]

8]

[9]

[10]

[11]

Y. Challal, H. Seba, Group key management protocols: A novel taxonomy,
International Journal of Information Technology 2 (1) (2005) 105-118.

C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, M. Yung,
Perfectly-secure key distribution for dynamic conferences, in: Advances in
cryptology-CRYPTO’92, Springer, 1993, pp. 471-486.

A. T. Sherman, D. A. McGrew, Key establishment in large dynamic groups
using one-way function trees, Software Engineering, IEEE Transactions on
29 (5) (2003) 444-458.

C. K. Wong, M. Gouda, S. S. Lam, Secure group communications using
key graphs, Networking, IEEE/ACM Transactions on 8 (1) (2000) 16-30.

S. Mittra, Iolus: A framework for scalable secure multicasting, in: ACM
SIGCOMM Computer Communication Review, Vol. 27, ACM, 1997, pp.
277-288.

R. Molva, A. Pannetrat, Scalable multicast security in dynamic groups, in:
Proceedings of the 6th ACM conference on Computer and communications
security, ACM, 1999, pp. 101-112.

M. Burmester, Y. Desmedt, A secure and efficient conference key distribu-
tion system, in: Advances in Cryptology-EUROCRYPT’94, Springer, 1995,
pp- 275-286.

Y. Kim, A. Perrig, G. Tsudik, Tree-based group key agreement, ACM
Transactions on Information and System Security (TISSEC) 7 (1) (2004)
60-96.

S. Rafaeli, D. Hutchison, A survey of key management for secure group
communication, ACM Computing Surveys (CSUR) 35 (3) (2003) 309-329.

Y. Piao, J. Kim, U. Tariq, M. Hong, Polynomial-based key management for
secure intra-group and inter-group communication, Computers & Mathe-
matics with Applications.

A. A. Kamal, Cryptanalysis of a polynomial-based key management scheme
for secure group communication, International Journal of Network Security
15 (1) (2013) 68-70.

15

[12] N. Liu, S. Tang, L. Xu, Attacks and comments on several recently proposed
key management schemes, TACR Cryptology ePrint Archive 2013 (2013)
100.

[13] E. R. Berlekamp, Factoring polynomials over large finite fields, Mathemat-
ics of Computation 24 (111) (1970) 713-735.

[14] D. G. Cantor, H. Zassenhaus, A new algorithm for factoring polynomials
over finite fields, Mathematics of Computation (1981) 587-592.

[15] V. Shoup, On the deterministic complexity of factoring polynomials over
finite fields, Information Processing Letters 33 (5) (1990) 261-267.

[16] J. von zur Gathen, D. Panario, Factoring polynomials over finite fields: A
survey, Journal of Symbolic Computation 31 (1-2) (2001) 3 — 17.

[17] D. A. Plaisted, New np-hard and np-complete polynomial and integer di-
visibility problems, Theoretical Computer Science 31 (1) (1984) 125-138.

[18] D. Plaisted, Some polynomial and integer divisibility problems are np-hard,
STAM Journal on Computing 7 (4) (1978) 458-464.

[19] S. Gao, M. van Hoeij, E. Kaltofen, V. Shoup, The computational complex-
ity of polynomial factorization, American Institute of Mathematics (2006)
364.

[20] W. Diffie, P. Oorschot, M. Wiener, Authentication and authenticated
key exchanges, Designs, Codes and Cryptography 2 (2) (1992) 107-125.
doi:10.1007/BF00124891.

[21] D. Coppersmith, Small solutions to polynomial equations, and low expo-
nent rsa vulnerabilities, Journal of Cryptology 10 (4) (1997) 233-260.

[22] D. Coppersmith, Finding a small root of a bivariate integer equation; fac-
toring with high bits known, in: Advances in cryptology-EUROCRYPT’96,
Springer, 1996, pp. 178-189.

[23] M. O. Rabin, Digitalized signatures and public-key functions as intractable
as factorization, Tech. rep., Massachusetts Institute of Technology (1979).

16

