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Abstract. Cryptographic access control promises to offer easily distributed trust and broader ap-
plicability, while reducing reliance on low-level online monitors. Traditional implementations of cryp-
tographic access control rely on simple cryptographic primitives whereas recent endeavors employ
primitives with richer functionality and security guarantees. Worryingly, few of the existing crypto-
graphic access-control schemes come with precise guarantees, the gap between the policy specification
and the implementation being analyzed only informally, if at all.
In this paper we begin addressing this shortcoming. Unlike prior work that targeted ad-hoc policy
specification, we look at the well-established Role-Based Access Control (RBAC) model, as used in a
typical file system. In short, we provide a precise syntax for a computational version of RBAC, offer
rigorous definitions for cryptographic policy enforcement of a large class of RBAC security policies,
and demonstrate that an implementation based on attribute-based encryption meets our security
notions.
We view our main contribution as being at the conceptual level. Although we work with RBAC for
concreteness, our general methodology could guide future research for uses of cryptography in other
access-control models.

1 Introduction

Traditional enforcement of access-control policies relies on low-level mechanisms like operating-system
kernels and on-line monitors [5]. An appealing alternative that had received quite a bit of attention uses
cryptography [17, 20, 23]. An example that illustrates the general idea behind this approach is access control
through cryptographic sealing [17]. Here, a principal encrypts a file under some symmetric key and then
restricts access by ensuring that only appropriate parties can get hold of the key. Among other benefits,
cryptographic implementations extend the applicability of access controls to more settings, leverage already
existing setups (e.g. PKIs) for fast deployment, and offer more flexible distribution of trust through
mechanisms like threshold cryptography and/or multi-party computation (see [16] for a discussion of
appropriate application scenarios).

Since monitors grant only policy-compliant requests, in monitor-based implementations correct en-
forcement of policies holds by design. Unfortunately, such a direct link cannot be established for crypto-
graphically enforced access control. Policies are enforced indirectly through an associated key-management
strategy. Furthermore, cryptographic guarantees are probabilistic (an adversary can always guess keys with
non-zero probability), while policies are usually designed with an absolute semantics in mind (some party
does/does not have access to some object). This observation illustrates the gap between the type of seman-
tics usually associated to policies and typical cryptographic guarantees, which is unfortunately present in
existent research on cryptographic access control. For simple policies implemented with simple primitives
the lack of formal guarantees is perhaps justified since a) the translation between policies and the asso-
ciated key management is simple and b) the security of the primitives is well-understood. When policies
are complex or rely on primitives with advanced features, the absence of rigorously established guarantees
should be worrisome. Cryptographic definitions, even those that rely on straightforward intuition should
be used with great care as they tend to be subtle, lead to strange interactions, and are fragile in the pres-
ence of real-world attacks like adaptive corruption [13, 8]. Furthermore, even if the constructions rely on



clear intuition, a rigorous security proof may prove trickier than expected, may not be possible, or worse,
may reveal overlooked attacks. Finally, note that such proofs hinge on cryptographic definitions of secure
enforcement of security policies, which are almost never provided (see below for two notable exceptions).

Overview of Our Results

In this paper we start to address what we perceive to be a pervasive lack of computational security
guarantees in the area of cryptographically enforced access control. Our results are set in the context of
the popular role-based access control model (RBAC) [2, 14, 25], as applied to a file system.

In RBAC, users (from some set of users U) are allocated one or more roles (from some set of roles R).
In turn, each role has associated a set of permissions (from some set of permissions P ). In core RBAC the
underlying semantics is that a user u has permission p if there exists a role r such that u was assigned
to r and r has permission p. The RBAC model allows for dynamic changes to the state of the system
where users, roles and permissions are added and deleted; role membership may also change dynamically.
A more complex variant of RBAC is obtained by considering a role hierarchy as a partial-order relation on
R (hierarchical RBAC [2]). In this case, it is demanded that higher-level roles subsume permissions owned
by lower-level roles. For the sake of simplicity, in the rest of the paper we will only consider core RBAC.
This is not a limitation, since any hierarchical RBAC policy can be easily transformed into an equivalent
core RBAC policy.

The first ingredient of our framework is an execution model which in turn relies on a fixed (but
general) system architecture. We consider a set of users with unrestricted read access to the file system.
Each file is identified with a set of RBAC permissions: a user should be able to read the content of the
file if he has one of the permissions. A cryptographic RBAC system is defined by the algorithms executed
by parties when engaging in the different actions stipulated in the RBAC model (e.g. adding/deleting
users and permissions). In general, each such action could be implemented via a multi-party computation
between all parties and the manager. We model a scaled-down version where each RBAC management
command is a non-interactive protocol: the manager locally executes an algorithm and then (privately)
sends information to users who then locally update their state. Our model can be easily generalized and it
is sufficient for the analyses of the concrete implementations we consider. These details fix a general syntax
of a cryptographic RBAC implementation (henceforth we refer to such implementations as cRBAC).

We are interested in executions of cRBAC systems that are driven by some arbitrary adversary. The
adversary can corrupt users (but not the manager) and can demand that the manager execute arbitrary
RBAC commands, in arbitrary order, and with arbitrary parameters. For example, an adversary may
ask the manager to add arbitrary users to the system, create new permissions, assign users to roles, etc.
Intuitively, what is desired from any good implementation is that the adversary should only gain access,
via the users he corrupted, to those files which he can trivially access following the sequence of actions that
it dictates. For example, if the adversary demands that a corrupt user u be assigned to role r, and that
this role has permission p then u should clearly have access to the file to which p corresponds. Conversely,
if none of the users that the adversary controls has permission p then a file corresponding to p should be
secret for the adversary. We formulate this property via an indistinguishability-based cryptographic game,
and call a cRBAC implementation that satisfies it secure.

Next, we identify a class of RBAC policies for which we would like to define secure cryptographic
enforcement. The policies express restrictions on what permissions users may have, subject to certain con-
straints. The class is large enough to express policies like “separation of duties”, and “privilege escalation”.

We provide an interpretation for such policies being satisfied as follows. First, we use a standard
symbolic semantics for the execution of RBAC systems to define a notion of symbolic satisfaction for
policies. Then we consider executions of an adversary with a manager that enforces the policy in a symbolic
sense: the manager keeps track of the commands executed so far and only executes a new command if it
does not lead to a policy violation (again, in the symbolic sense). Notice that this is a minimal requirement
for the policy to hold. Computational satisfaction demands that in such executions, the access restrictions
expressed by the policy enforced by the manager hold, in a computational sense.

We then prove a theorem that establishes a relation between secure cRBAC implementations and
computational policy enforcement: in such implementations any policy from the class that we identified
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is satisfied under the assumption that the manager follows the policy. A different interpretation of the
theorem is that a secure cRBAC implementation provides a form of computational soundness [10]: policies
that are satisfied symbolically are also satisfied computationally.

Finally, we demonstrate the usability of our framework by applying it to a cRBAC implementation
based on attribute-based encryption [24, 18], a primitive designed with applications to access control in
mind3. Our somewhat technical security proof confirms the applicability of this type of encryption to
access control and also illustrates well an important point we made above: even constructions that rely on
obvious intuition hide significant challenges that are revealed only following a rigorous proof.

We conclude by remarking that we view the central contribution of this paper as being mainly con-
ceptual. We identify a problem which seems to have gone almost unnoticed (exception make [3] and [19],
who address this problem for more ad-hoc policy languages or with more demanding definitions based on
universal composability (UC) [9], respectively), and present a recipe that could be useful for follow-up
work on computational guarantees of cryptographically enforced access control.

2 Role-Based Access Control

In this section we recall some details regarding role-based access control (RBAC) [2, 14, 25]. This model
has emerged as a simple and effective access-control mechanism for large organizations. It simplifies policy
specification and the management of user rights using a two-tier management: it groups users into roles
and assigns permissions to each role. A permission represents an approval to perform an operation on an
object, i.e., a permission is an object-action pair. Specifically, a user u has permission p if there exists a
role r such that u is assigned to r and r has permission p.

The RBAC model allows for dynamic changes where users, roles, and permissions can be added and
deleted, and role membership may also change. Since the structure of any organization is usually stable,
in the rest of the paper we will consider the set of roles fixed. However, we allow users and permissions
to be added and deleted, and any changes to user-role and permission-role assignments, which typically
change quite frequently (e.g. employees moving across departments, reassignment of duties, etc.).

Next, we formally describe an RBAC system S over a set of roles R as a state-transition system. Let U ,
P be unbounded sets of users and permissions, respectively. A state of S is a tuple (U,P,UA,PA), where
U and P are finite subsets of U and P, respectively. The relation UA ⊆ U ×R is the user-role assignment
relation, and PA ⊆ P ×R is the permission-role assignment relation. A pair (u, r) ∈ UA means that user u
belongs to role r, and (p, r) ∈ PA means that role r has permission p. A user u is authorized for permission
p if there exists a role r ∈ R such that (u, r) ∈ UA and (p, r) ∈ PA.

We assume that the initial state is equal to s0 = (U0, P0,UA0,PA0).

Figure 1 shows a toy example state of an RBAC system representing a health-care facility. The example
is an instantiation of the RBAC case study available at [1].

Let RULES be the set of administrative commands. Given two states s = (U,P,UA,PA) and s′ =

(U ′, P ′,UA′,PA′), there is a transition from s to s′ with command q ∈ RULES (denoted as s
q−→S s′) if one

of the following conditions holds:

[AddUser(u)] The user u belongs to U \ U , U ′ = U ∪ {u}, P ′ = P, UA′ = UA, and PA′ = PA;

[DeleteUser(u)] The user u belongs to U , U ′ = U \ {u}, P ′ = P, UA′ = UA \ {(u, r) ∈ UA | r ∈ R} and
PA′ = PA;

[AddObject(p)] The permission p belongs to P \ P , U ′ = U , P ′ = P ∪ {p}, UA′ = UA, and PA′ = PA;

[DeleteObject(p)] The permission p belongs to P , U ′ = U , P ′ = P \ {p}, UA′ = UA and PA′ =
PA \ {(p, r) ∈ PA | r ∈ R};
[AssignUser(u,r)] The user u and role r belong respectively to U and R, U ′ = U , P ′ = P, UA′ =
UA ∪ {(u, r)}, and PA′ = PA;

3 There are different variants of attribute-based encryption (ABE), such as ciphertext-policy ABE and key-policy
ABE, both of which can be used for our implementation.
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Roles:

Doctor ; PrimaryDoctor ; Nurse; Patient ; Receptionist ;
. . .

Permissions:

p1 = (read ,MedicalRecord);
p2 = (read ,ListOfDoctors);
p3 = (read ,ListOfAppointments);
. . .

Users:

Mary ; Jim; Luke; Evelin; . . .

UA:

(Mary ,Receptionist);
(Jim,Doctor), (Jim,PrimaryDoctor);
(Luke,Patient);
(Evelin,Doctor);
. . .

PA:

(p1 ,Doctor);
(p1 ,PrimaryDoctor);
(p2 ,Patient);
(p3 ,Receptionist);
. . .

Fig. 1. RBAC Toy Example.

[DeassignUser(u,r)] The user u and role r belong respectively to U and R, U ′ = U , P ′ = P, UA′ =
UA \ {(u, r)}, and PA′ = PA;

[GrantPermission(p,r)] The permission p and role r belong respectively to P and R, U ′ = U , P ′ = P,
UA′ = UA, and PA′ = PA ∪ {(p, r)};
[RevokePermission(p,r)] The permission p and role r belong respectively to P and R, U ′ = U , P ′ = P,
UA′ = UA, and PA′ = PA \ {(p, r)};

An execution trace of an RBAC system s0
q0−→S s1

q1−→S . . .
qn−1−−−→S s is defined as usual.

Security Policies of RBAC Systems

The design of an RBAC system includes the specification of some security properties that must hold
during the entire evolution of the system. Such properties define security policies which express limits
on the access of users to permissions (e.g. users belonging to role r cannot be granted some permission
associated to role r̃). Examples of security properties of interest are the following [22]:

Separation of Duty: models conflict of interest. There is a separation of duty constraint between two
roles r and r̃ when each user is forbidden to simultaneously belong to both roles;

Privilege Escalation: models the requirement that lower-rank users cannot gain access to resources
meant for a higher rank. There is a privilege-escalation constraint from role r to role r̃ when each user
in r cannot acquire any permission associated to r̃.

Example 1. Examples of separation of duties and privilege escalation in the health-care facility from [1]
are respectively: 1) a user cannot be assigned both roles Receptionist and Doctor (e.g. to avoid fraud by
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preventing the user to falsely claim to treat a patient and billing the insurance company); 2) a patient
cannot have privileges of his own primary doctor.

To formally define such policies, we introduce a predicate HasAccess, which reflects when a user u
symbolically has access to a permission p. A user u has some permission p if u has been assigned a role
that has the permission:

HasAccess(u, p) ⇔ ∃r ∈ R : (u, r) ∈ UA ∧ (p, r) ∈ PA . (1)

The next definition identifies a class of RBAC security policies for which we will define (symbolic and)
cryptographic enforcement.

Definition 1 (Security Policy). Given an RBAC system S over a set of roles R, a Security Policy Φ
is a formula of the following form:

∀u ∈ U ∀p ∈ P : Cond(u, p) ⇒ ¬HasAccess(u, p) ,

where Cond(u, p) is a predicate over a user u ∈ U and a permission p ∈ P . We restrict Cond(u, p) to
predicates that can be evaluated over an RBAC state; satisfaction of a policy in an RBAC state and its
extension to traces are defined in the obvious way.

A security policy Φ is thus completely determined by the predicate Cond.

The class of security policies identified by Security-Policy formulas captures both separation of duties
and privilege escalation security constraints. Privilege escalation from role r to role r̃ requires that any
user who is assigned role r ((u, r) ∈ UA) does not have access to any permission p assigned to role r̃
((p, r̃) ∈ PA) and can be formulated as:

∀u ∈ U ∀p ∈ P : [(u, r) ∈ UA ∧ (p, r̃) ∈ PA)] ⇒ ¬HasAccess(u, p) .

Separation of duties between roles r and r̃ formalizes that no user u, assigned to role r should have
permissions associated to r̃, and the same should hold for r and r̃ swapped. This can be formulated as:

∀u ∈ U ∀p ∈ P :
[
(u, r) ∈ UA ∧ (p, r̃) ∈ PA] ∨ [(u, r̃) ∈ UA ∧ (p, r) ∈ PA

]
⇒ ¬HasAccess(u, p) .

As an example, let (U,P,UA,PA) be the RBAC state of Figure 1 and consider the security policies of
Example 1. It is easy to see that the predicate Cond holds for both security policies. Indeed, Mary belongs
to role Receptionist but does not belong to role Doctor. On the other hand, Jim and Evelin are doctors
but not receptionists. Also, Luke is a patient but he does not belong to role PrimaryDoctor. Moreover,
both security-policy formulas hold. Indeed, it holds that ¬HasAccess(Mary, p1), ¬HasAccess(Jim, p3),
¬HasAccess(Evelin, p3) and ¬HasAccess(Luke, p1).

Multiple Policies Without loss of generality we can restrict ourselves to a single policy, as a set of
policies defined by Cond1, . . . ,Condn is simultaneously satisfied if and only if the policy defined by

Cond1,...,n(u, p) :⇔ Cond1(u, p) ∨ . . . ∨ Condn(u, p)

is satisfied. This is because

n∧
i=1

[
∀u ∈ U ∀p ∈ P : Condi(u, p)⇒ ¬HasAccess(u, p)

]
is logically equivalent to

∀u ∈ U ∀p ∈ P :
[
Cond1(u, p) ∨ . . . ∨ Condn(u, p)

]
⇒ ¬HasAccess(u, p) .
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3 Cryptographic RBAC

In this section we introduce our notion of cryptographic RBAC used to protect access to a file system.

3.1 Syntax

We consider a system setup where a manager interacts with a set of users. The manager is in charge of
executing RBAC commands and monitors write access (but not read access!) to files. In our system we
identify a permission p ∈ P with read access to a file. By a slight abuse of notation we identify the file
with p.

At any point the global state of a cRBAC system CRBAC is given by the local states of the manager
(stM ) and of each user u (st[u]). Moreover, there is a file system FS , which is publicly accessible (formally,
FS is a bitstring, in implementations FS would be an array of encrypted files, each file corresponding to
a permission p ∈ P ). CRBAC is defined by the following algorithms: Init, AddUser, DelUser, AddObject,
DelObject, AssignUser, DeassignUser, GrantPerm, RevokePerm, Update, Write and Read.

The initialization procedure Init takes as input the security parameter λ and a set of roles R for the
RBAC and outputs the initial states of the manager and an initial state for the file system FS . The
remaining algorithms (with the exception of Write and Read) implement the commands of an RBAC
system, which were introduced in Section 2. Each algorithm takes as input the local state of the manager
stM , the file system FS and an additional parameter (such as the user u to be added for AddUser). In
executions these algorithms are run by the system manager and they output the updated file system, a
possibly updated state for the manager, and a message msgu for every user u. The message msgu (when
non-empty) is sent to user u, who then runs Update on her state st[u] and msgu to obtain an updated
state st[u]. In effect, we model the implementation of RBAC commands as non-interactive multi-party
computation where after some local computation the manager sends messages to all of the parties who
update their local states.

We model the idea that parties do not have write access to files by only giving the manager the
possibility to write to the file system. Algorithm Write takes as input a filename p and a content m to
be written to p. Upon execution, Write outputs an updated file system FS . Finally, Read is an algorithm
that users can use to read the file system. It takes as input a user u’s state st[u], the file system FS and
a filename p and retrieves the content of p (if u has access to p—see the correctness definition in the next
section).

3.2 Correctness

Intuitively, a cRBAC system CRBAC is correct if every user who according to the symbolic state of the
system has access to a permission p can obtain the content of p. More precisely, let (stM ,FS ) be the
output of Init. Now consider an arbitrary sequence of executions of algorithms of CRBAC, which induces
a symbolic RBAC state (U,P,UA,PA) by applying the RBAC commands corresponding to the algorithm
calls (we ignore the read and write commands as these are not defined in the symbolic world). Consider
the values stM ,FS , {st[u]}u∈U after the executions. Then whenever some content m was the last one to be
written to an object p via Write and whenever in the symbolic RBAC we have HasAccess(u, p) for some
user u ∈ U then Read(st[u],FS , p) should output m.

As usual in cryptography, we formalize this by a game between a challenger and a polynomial-time
adversary A. The latter has access to oracles to change the RBAC state and write content to objects/files.

The challenger, which simulates the manager and the users, keeps the state (U,P,UA,PA) of the sym-
bolic RBAC. For every RBAC command defined in Section 2, there is an oracle that executes the intended
RBAC command. The execution is as follows: when invoked, each oracle first modifies the symbolic RBAC
state accordingly and then executes the corresponding computational CRBAC algorithm and simulates the
updates of user states. The oracle Write executes Write.

The challenger keeps a table T and each time Write is called on (p,m), it sets T [p]← m. In the end
the adversary outputs a pair (u∗, p∗) and loses if HasAccess(u∗, p∗) = 0. Otherwise, the challenger runs
m∗ ← Read(st[u∗], p∗,FS ) and the adversary wins if m∗ 6= T [p∗].
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CRBAC satisfies correctness if for any polynomial-time adversary the probability of winning the above
game is 0.

3.3 Security

Intuitively, a cryptographic implementation of an RBAC system is secure if whenever a user u does not
have access to an object p, i.e. HasAccess(u, p) = 0, then the user should not be able to deduce anything
about the content of p from the file system FS .

Following cryptographic conventions, we formalize this via an indistinguishability-based definition: an
adversary A, who can impersonate users, chooses two messages m0 and m1, one of which is randomly
selected and written to an object p of A’s choice; the adversary must then determine which of the two
messages it was.

More precisely, we define a game that involves an adversary A interacting with the manager of a
cRBAC implementation. The game selects a random bit b← {0, 1}, which the adversary must guess. The
adversary can ask the manager to execute any of the cRBAC commands. We assume private channels
between the manager and the users. To model impersonation of users, we let the adversary corrupt users:
A obtains the state of the user it corrupts and from then on receives all the messages sent to that user
by the manager. Moreover, the adversary can ask for a challenge (m0,m1) for an object p. In response to
this query the experiments runs Write(p,mb).

The experiment prevents the adversary from winning trivially by making a corrupt user have access to
an object with a challenge content. (Otherwise, the adversary could simply use Read to read the message
and thereby determine the bit b.)

We define the following experiment, which maintains a symbolic representation of the RBAC as it
evolves through the adversary’s queries: (U,P,UA,PA) with U ⊆ U , P ⊆ P, UA ⊆ U×R and PA ⊆ P×R.
In addition to this, the experiment maintains two lists: Cr ⊆ U is the list of users which the adversary has
corrupted and Ch ⊆ P is the list of permissions in which the adversary has asked to be put a challenge.
We use these lists to characterize and prevent trivial wins by the adversary, e.g. by corrupting a user that
can access a file where a challenge has been written.

Definition 2. We define the security of a cryptographic RBAC through the following experiment:

Expind
CRBAC,A(λ)

b←$ {0, 1}; Cr,Ch← ∅
(stM ,FS , {st[u]}u∈U )←$ Init(1λ, R)

b′←$A(1λ,FS : O)

Return (b′ = b)

The oracles O to which the adversary has access are specified in Figure 2 (and discussed below). We say
that CRBAC is secure if for all probabilistic polynomial-time adversaries A, we have

Advind
CRBAC,A(λ) :=

∣∣Pr[Expind
CRBAC,A(λ)→ true]− 1

2

∣∣
is negligible in λ.

Using the first eight oracles, A can make the manager execute RBAC commands (each one of which
first checks whether its execution would let A win trivially, in which case it returns ⊥). The oracles run
the corresponding CRBAC algorithm and update the state of the RBAC system accordingly; using the
messages {msgu}u∈U output by the algorithm, the oracle then updates the state of each honest user and
sends messages for the corrupt users to A.

The oracle CorruptU lets the adversary take over a user: it sends to A the local state of that user and
adds him to the list Cr of corrupt users. Write simply executes Write and Challenge writes a challenge
into an object, which is then added to the list Ch.
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AddUser(u)

U ← U ∪ {u}
(stM ,FS , {msgu}u∈U )←$ AddUser(stM ,FS , u)

For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)

Return (FS , {msgu}u∈Cr)

DelUser(u)

U ← U \ {u}; Cr← Cr \ {u}; UA← UA \ ({u} × R)

(stM ,FS , {msgu}u∈U )←$ DelUser(stM ,FS , u)

For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)

Return (FS , {msgu}u∈Cr)

AddObject(p)

P ← P ∪ {p}
(stM ,FS , {msgu}u∈U )←$ AddObject(stM ,FS , p)

For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)

Return (FS , {msgu}u∈Cr)

DelObject(p)

P ← P \ {p}; Ch← Ch \ {p}; PA← PA \ ({p} × R)

(stM ,FS , {msgu}u∈U )←$ DelObject(stM ,FS , p)

For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)

Return (FS , {msgu}u∈Cr)

AssignUser(u, r)

If u ∈ Cr and if for any p ∈ Ch: (p, r) ∈ PA then return ⊥
UA← UA ∪ {(u, r)}
(stM ,FS , {msgu}u∈U )←$ AssignUser(stM ,FS , u, r)

For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)

Return (FS , {msgu}u∈Cr)

DeassignUser(u, r)

UA← UA \ {(u, r)}
(stM ,FS , {msgu}u∈U )←$ DeassignUser(stM ,FS , u, r)

For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)

Return (FS , {msgu}u∈Cr)

GrantPerm(p, r)

If p ∈ Ch and if for any u ∈ Cr: (u, r) ∈ UA then return ⊥
PA← PA ∪ {(p, r)}
(stM ,FS , {msgu}u∈U )←$ GrantPerm(stM ,FS , p, r)

For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)

Return (FS , {msgu}u∈Cr)

RevokePerm(p, r)

PA← PA \ {(p, r)}
(stM ,FS , {msgu}u∈U )←$ RevokePerm(stM ,FS , p, r)

For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)

Return (FS , {msgu}u∈Cr)

CorruptU(u)

If u /∈ U then return ⊥
For all p ∈ Ch: if HasAccess(u, p) then return ⊥
Cr← Cr ∪ {u}; Return st[u]

Write(p,m)

If p /∈ P then return ⊥
FS ←$ Write(FS , p,m); Return FS

Challenge(p,m0,m1)

If p /∈ P then return ⊥
For all u ∈ Cr: if HasAccess(u, p) then return ⊥
Ch← Ch ∪ {p}
FS ←$ Write(FS , p,mb); Return FS

Fig. 2. Oracles for Expind
CRBAC,A

Note that if p ∈ Ch then even after calling Write on p it still remains on the list Ch, as a corrupt user
must still not have access to it: otherwise, the adversary could store what was in p before the Write call
and later apply Read to it.

Moreover, note that we do not provide the adversary with an oracle for Read for the corrupted users,
as the adversary holds their secret keys and has access to FS , and could thus run Read on its own.

4 Secure Policy Enforcement

In this section we define what it means for a cryptographic RBAC to enforce a policy, as defined in
Section 2. A security policy Φ is defined by a condition Cond and requires that for any user u and any
object p, when Cond is satisfied by u and p then HasAccess(u, p) = 0. That is, symbolically, the user u
should not have access to p, in the sense that for all r ∈ R : (u, r) /∈ UA ∨ (p, r) /∈ PA.

A cryptographic RBAC implementation enforces the policy if it guarantees that whenever Cond(u, p) =
1 then user u should also not have access to p “in reality”. We define computational access via an indis-
tinguishability game and define secure policy enforcement by demanding that whenever Cond is satisfied
for a user u and a permission p then no computational adversary impersonating user u can decide which
of two messages of his choice is the content of p.

We formalize this via the following game: An adversary impersonates user u and can interact with the
manager played by the challenger, who ensures that at any point the symbolic RBAC satisfies Φ. This
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models the necessary assumption that the manager enforces policy Φ symbolically. The adversary can
query the challenger to execute any RBAC command and to write content via the Write command.

At some point the adversary outputs two challenge messages m0 and m1, of which one is randomly
selected and written to p. The adversary wins the game if at this point we have Cond(u, p) = 1 (and thus
u should not have access to p symbolically) and nevertheless the adversary guesses which message was
written to p. If the probability of the adversary guessing correctly is essentially 1

2 then we say that the
system enforces the security policy.

Definition 3. A cRBAC enforces a security policy Φ of the form

∀u ∈ U ∀p ∈ P : Cond(u, p) ⇒ ¬HasAccess(u, p)

if for all u ∈ U and all p ∈ P , we have that for any probabilistic polynomial-time adversary A = (A1,A2)
the following is negligible in λ:

Adv
ind-Φ-(u, p)
CRBAC,A (λ) :=

∣∣Pr[Exp
ind-Φ-(u, p)
CRBAC,A (λ)→ true]− 1

2

∣∣
where for any fixed (u∗, p∗) ∈ U × P the experiment Exp

ind-Φ-(u∗, p∗)
CRBAC,A is defined as follows:

Exp
ind-Φ-(u∗, p∗)
CRBAC,A (λ)

b←$ {0, 1}
(stM ,FS , {st[u]}u∈U )←$ Init(1λ, R)

(m0,m1, stA)←$A1(1λ,FS , st[u∗] : O)

If Cond(u∗, p∗) = 0

b′←$ {0, 1}; return (b′ = b)

FS ←Write(FS , p∗,mb)

b′←$A2(stA,FS)

Return (b′ = b)

The adversary has access to oracles executing RBAC commands and a Write oracle. As the game repre-
sents an RBAC system maintained by a manager enforcing the policy Φ, RBAC commands which would
lead to a violation of Φ are not executed. Each oracle thus first checks whether the RBAC command
preserves validity of Φ. If this is not the case, it returns ⊥. Otherwise, the oracle updates the symbolic
state (U,P,UA,PA) and executes the corresponding CRBAC algorithm. The user messages output by the
algorithm are then used to update the states of the honest users, while msgu∗ is returned to the adver-
sary, together with the updated file system FS . The formal descriptions of A’s oracles O can be found in
Figure 3.4

We next show that it is sufficient for a cRBAC to be secure in the sense defined in Section 3, in order
to implement any security policy, as defined in Definition 3. The following theorem states that if CRBAC
is secure and the manager symbolically enforces policy Φ then policy Φ is satisfied computationally.

Theorem 1. If CRBAC is a secure cryptographic RBAC then for any security policy Φ, CRBAC securely
enforces Φ.

Proof: Let Φ be any security policy, u∗ ∈ U be any user and p∗ ∈ P be any permission; let A = (A1,A2)

be an adversary for Exp
ind-Φ-(u∗, p∗)
CRBAC . To prove the theorem, we need to show that Adv

ind-Φ-(u∗, p∗)
CRBAC,A (λ) is

negligible in λ. We construct an adversary B for Expind
CRBAC which wins this game with the same probability

as A.
After receiving (1λ,FS ) from its challenger, B queries CorruptU(u∗) to get stu∗ and runs A1 on

(1λ,FS , stu∗). B maintains the symbolic state (U,P,UA,PA) of the RBAC throughout the game. Whenever

4 For ease of exposition, we introduce an auxiliary routine UserUpdates, which updates all honest user states and
returns (FS ,msgu∗) to the adversary.
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UserUpdates

For all u ∈ U \ {u∗}:
st[u]← Update(st[u],msgu)

Return (FS ,msgu∗ )

AddUser(u)

U ′ ← U ∪ {u}
If (U ′, P,UA,PA) satisfies Φ

then U ← U ′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ AddUser(stM ,FS , u)

Return UserUpdates

DelUser(u)

U ′ ← U \ {u}; UA′ ← UA \ ({u} × R)

If (U ′, P,UA′,PA) satisfies Φ

then U ← U ′, UA← UA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ DelUser(stM ,FS , u)

Return UserUpdates

AddObject(p)

P ′ ← P ∪ {p}
If (U, P ′,UA,PA) satisfies Φ

then P ← P ′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ AddObject(stM ,FS , p)

Return UserUpdates

DelObject(p)

P ′ ← P \ {p}; PA′ ← PA \ ({p} × R)

If (U, P ′,UA,PA′) satisfies Φ

then P ← P ′, PA← PA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ DelObject(stM ,FS , p)

Return UserUpdates

AssignUser(u, r)

UA′ ← UA ∪ {(u, r)}
If (U, P,UA′,PA) satisfies Φ

then UA← UA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ AssignUser(stM ,FS , u, r)

Return UserUpdates

DeassignUser(u, r)

UA′ ← UA \ {(u, r)}
If (U, P,UA′,PA) satisfies Φ

then UA← UA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ DeassignUser(stM ,FS , u, r)

Return UserUpdates

GrantPerm(p, r)

PA′ ← PA ∪ {(p, r)}
If (U, P,UA,PA′) satisfies Φ

then PA← PA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ GrantPerm(stM ,FS , p, r)

Return UserUpdates

RevokePerm(p, r)

PA′ ← PA \ {(p, r)}
If (U, P,UA,PA′) satisfies Φ

then PA← PA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ RevokePerm(stM ,FS , p, r)

Return UserUpdates

Write(p,m)

If p /∈ P then return ⊥
FS ←$ Write(FS , p,m)

Return FS

Fig. 3. Oracles for Exp
ind-Φ-(u∗, p∗)
CRBAC,A

A1 queries Write, B relays the query to its challenger and the response to A1. For any other oracle call,
B first checks whether the call would violate Φ, in which case it returns ⊥, and otherwise queries its own

oracle. More precisely, B executes the first 3 lines in the description of the Exp
ind-Φ-(u∗, p∗)
CRBAC -oracle (see

Figure 3); and if it has not returned ⊥, it makes the corresponding query and forwards the reply to A1.

Note that B’s oracles never return ⊥, as in Expind
CRBAC,B, the list Ch remains empty throughout this

phase. B therefore perfectly simulates Exp
ind-Φ-(u∗, p∗)
CRBAC for A1.

Once A1 terminates and outputs (stA,m0,m1), B checks whether Cond(u∗, p∗) = 0 and if so, aborts
the simulation and outputs a random bit b′←$ {0, 1}. Otherwise, B queries Challenge(p∗,m0,m1) and,
upon receiving FS , runs A2 on (stA,FS ). When A2 outputs b′, B outputs the same.

Throughout the game, the state (U,P,UA,PA) which B maintains (and which always equals the state
maintained by B’s challenger) satisfies Φ, because B does not execute any RBAC command which would
lead to a violation of Φ. If B did not abort then Cond(u∗, p∗) = 1, and since Φ is satisfied, we have
¬HasAccess(u∗, p∗).

From this, and since Cr = {u∗}, we deduce that the call to Challenge(p∗,m0,m1) does not return ⊥.

Thus, B perfectly simulates Exp
ind-Φ-(u∗, p∗)
CRBAC for A and therefore wins Expind

CRBAC with the same probability

with which A wins Exp
ind-Φ-(u∗, p∗)
CRBAC .

We therefore have Adv
ind-Φ-(u∗, p∗)
CRBAC,A = Advind

CRBAC,B, thus the former is negligible whenever the latter
is, which proves the theorem.

Two remarks are in order. The first one is on the fact that the above proof might seem quite straightfor-
ward. The security requirement for cRBAC (Definition 2) formalizes that whenever in the symbolic RBAC
state we have ¬ HasAccess(u, p) then this is also the case computationally: an adversary having corrupted
u cannot distinguish challenge messages in p, meaning that its content is hidden from the adversary.
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It then follows almost immediately that in a cRBAC for a policy that models requirements of users not
having permissions (which are precisely the kind of policies we consider), as long as the policy is enforced
symbolically, the policy is also enforced computationally.

One then may question if the above result (and the notion of a policy being computationally satisfied)
is even worth stating: it is in some sense obvious that policies that are symbolically satisfied are also
computationally satisfied (if the cRBAC is secure). We emphatically believe that this is not the case. The
main aim of this paper is to present a rigorous approach to the analysis of cryptographic enforcement of
access control and a formal definition of computational enforcement of a policy is an important (if not the
most important) part of such an approach. Furthermore, although in this paper computational satisfaction
of policies is closely related to the notion of a secure cRBAC, in other settings similar relations may not
exist (for example, if one considers a larger class of policies than the one considered here). In such settings,
proving secure enforcement of policies may need to go a different route.

5 Implementation of cRBAC

5.1 Predicate Encryption

We choose to describe our implementation of cryptographic RBAC in terms of predicate encryption [21],
as this allows us to encompass all of the different kinds of attribute-based encryption (ABE) schemes [24,
18]. In predicate encryption (PE) a ciphertext is associated to an element y from a set Y, whereas keys
are associated to elements x from a set X . In a PE scheme for a predicate pred ⊆ X × Y, keys for x can
decrypt ciphertexts for y if and only if pred(x, y) = 1.

For our purpose, having a universe of attributes A = {1, . . . , nmax}, we let X and Y be the power set
of A. For x, y ⊆ A, the predicate is defined as pred(x, y) = 1 if and only if x ∩ y 6= ∅. Thus a ciphertext
w.r.t. a set of attributes can be decrypted by a key if it shares an attribute with the ciphertext. We call
this predicate encryption for non-disjoint sets (PE-NDS).

In (key-policy) ABE [18] messages are encrypted w.r.t. a set of attributes; keys, which are issued for a
policy over the attributes, can decrypt those ciphertexts whose attributes satisfy the policy. In the dual
notion of ciphertext-policy (CP) ABE [7] messages are encrypted w.r.t. policies and keys are issued for
sets of attributes.

Predicate encryption for non-disjoint sets is a special case of both flavors of ABE: In CP-ABE by
defining the policy for a ciphertext w.r.t. a set of attributes y = {a1, . . . , an} as

φy ≡ a1 ∨ . . . ∨ an . (2)

Then any key for a set of attributes x satisfies the policy if and only if x∩ y 6= ∅, that is, if pred(x, y) = 1.
For key-policy ABE, it suffices to define the policies for the keys analogously.

Thus, any instantiation of CP-ABE and KP-ABE whose policies include disjunctions of predicates (i.e.,
for all y ⊆ A, φy as in (2) is admitted as a policy) immediately yields an instantiation of PE-NDS. We
now formalize PE-NDS.

A PE scheme for the predicate pred ⊆ P(A)× P(A),

pred(x, y) = 1 ⇔ x ∩ y 6= ∅

is a tuple of algorithms PENDS = (Setup,KeyGen,Enc,Dec). The setup algorithm Setup on input the
security parameter λ and the attribute universe A returns a key pair (pk,msk), the master public and
secret keys. The key-generation algorithm KeyGen on inputs msk and x ⊆ A returns a secret key skx
for the set of attributes x. The encryption algorithm Enc on inputs pk and y ⊆ A as well as m returns a
ciphertext c. The decryption algorithm Dec on inputs skx and a ciphertext c returns a string m. A PE-NDS
scheme PENDS is correct if for all λ, x, y,m, r satisfying x ∩ y 6= ∅, all (pk,msk) output by Setup(1λ) and
all skx output by KeyGen(msk, x) it holds that

Dec(skx(Enc(pk, y,m; r)) = m .

Since when knowing msk one can always derive a key for x := A and then decrypt, we also directly write
Dec(msk, c).
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Security of PE-NDS Security of our predicate encryption is defined by the following game in which the
adversary A must guess a bit b. A is given the public key and has access to a challenge oracle LR (“left
or right”), which on input (y,m0,m1) returns an encryption of mb w.r.t. the set of attributes y, and an
oracle KeyGen, which returns a secret key for the queried set x. The oracles maintain two sets X,Y ⊆ A.
X contains the union of all values x ⊆ A queried to KeyGen, and Y ⊆ A contains the union of all values
y ⊆ A for which the adversary requested challenge ciphertexts. As long as these two sets are disjoint, the
adversary cannot win trivially. Otherwise the adversary could ask for a challenge w.r.t. some y and a key
for some x with x ∩ y 6= ∅ and could then decrypt the challenge ciphertext.

Definition 4. Define the following game:

Expind
PENDS,A(λ)

b←$ {0, 1}, X,Y ← ∅
(pk,msk)←$ Setup(1λ, A)

b′←$A(pk : LR,KeyGen)

Return (b′ = b)

LR(y,m0,m1)

If X ∩ y 6= ∅ then return ⊥
Y ← Y ∪ y
Return c←$ Enc(pk, y,mb)

KeyGen(x)

If Y ∩ x 6= ∅ then return ⊥
X ← X ∪ x
Return skx←$ KeyGen(msk, x)

We say that PENDS has indistinguishability if for all probabilistic polynomial-time adversaries A, we
have that

Advind
PENDS,A(λ) :=

∣∣Pr[Expind
PENDS,A(λ)→ true]− 1

2

∣∣
is negligible in λ.

We remark that in this context CPA-security (that is, when the adversary does not have access to a
decryption oracle) is sufficient. This is because since in cRBAC the manager monitors write access, in our
instantiation it is the manager who produces encryptions (when running Write), meaning the adversary
cannot inject maliciously created ciphertexts.

Finally, note that a PE-NDS implemented by any key-policy (or ciphertext-policy) ABE satisfies Def-
inition 4 if the underlying ABE satisfies the standard indistinguishability notion for ABE.

5.2 Implementation of cRBAC with PE-NDS

We implement cryptographic RBAC with predicate encryption by associating roles to attributes and
permissions to ciphertexts. Users receive keys which correspond to the set of roles {r1, . . . , rn} they are
associated with. A file is encrypted w.r.t. the set of attributes/roles which have a permission for it. We
also deal with revocation (in that users can be deassigned and permissions revoked). This is implemented
as follows: We keep a table RT which keeps associations of roles and attributes. Whenever a user u∗ is
deassigned from a role r∗, the role is associated with a new attribute. The files associated with r∗ are
then re-encrypted under the new attribute, so that the u∗’s key will not decrypt them anymore (except
of course when u∗ still has access to them via other roles). We then reissue keys to all users which are
assigned r∗.

We now give our cRBAC implementation CRBAC[PE ] based on a PE-NDS scheme PE and start with the
initialization algorithm. It sets up the PE-NDS for a sufficiently large attribute universe A = {1, . . . , nmax}
and initializes the file system FS (for simplicity, we store the PE-NDS public key pk in FS [0]). It then
initializes the role table RT by associating attributes to all roles sequentially.

Init(1λ, R)
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(pk,msk)←$ SetupPE(1
λ, A)

FS ,RT ← ∅; ctr← 1

For all r ∈ R:

RT [r]← ctr; ctr← ctr + 1
(U,P,UA,PA)← (∅, ∅, ∅, ∅)
FS [0]← pk; stM ← (msk,RT , ctr, (U,P,UA,PA))

Return (stM ,FS , {st[u]}u∈U )

We next specify how we implement RBAC commands. The corresponding algorithms are given stM (which
we assume is always parsed as (msk,RT , ctr, (U,P,UA,PA))) and FS , and some command-specific input,
and output a new manager state stM , the modified file system FS and messages msgu for all users u ∈ U .

AddUser(stM ,FS , u
∗)

U ← U ∪ {u∗}
Return (stM ,FS , {∅}u∈U )

AddObject(stM ,FS , p
∗)

P ← P ∪ {p∗}
Return (stM ,FS , {∅}u∈U )

When receiving a message msg, a user runs Update on her state (which in our implementation is a
secret key for PE) and the message.

Update(st[u],msgu)

If msgu 6= ∅ then st[u]← msgu
Return st[u]

To assign a role r∗ to a user u∗, first (u∗, r∗) is added to the user-role assignment relation UA. Then the
user is given a secret key for the set x of attributes which (via RT ) currently correspond to the user’s new
set of roles:

AssignUser(stM ,FS , u
∗, r∗)

If u∗ /∈ U or r∗ /∈ R or (u∗, r∗) ∈ UA

Return (stM ,FS , {∅}u∈U )

UA← UA ∪ {(u∗, r∗)}
x← {RT [r] | (u∗, r) ∈ UA}
sku∗ ← KeyGenPE(msk, x); msgu∗ ← sku∗

For all u ∈ U \ {u∗}:
msgu ← ∅

Return (stM ,FS , {msgu}u∈U )

To grant a permission p∗ to a role r∗, the manager adds (p∗, r∗) to PA, and then re-encrypts the content
of FS [p∗] under the attributes corresponding to the roles r for which (p∗, r) ∈ PA:

GrantPerm(stM ,FS , p
∗, r∗)

If p∗ /∈ P or r∗ /∈ R or (p∗, r∗) ∈ PA

Return (stM ,FS , {∅}u∈U )

PA← PA ∪ {(p∗, r∗)}
y ← {RT [r] | (p∗, r) ∈ PA}
FS [p∗]← EncPE(FS [0], y,DecPE(msk,FS [p∗]))

Return (stM ,FS , {∅}u∈U )

For convenience, we define the following auxiliary algorithm, which assigns a new attribute to a role r∗ and
updates the user keys and FS accordingly. It writes the current counter value to RT [r∗], then re-encrypts
all files associated to r∗ and re-issues all user keys associated to r∗.
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RoleUpdate(stM ,FS , r
∗)

RT [r∗]← ctr; ctr← ctr + 1

For all p ∈ P :

If (p, r∗) ∈ PA:

y ← {RT [r] | (p, r) ∈ PA}
FS [p]← EncPE(FS [0], y,DecPE(msk,FS [p]))

For all u ∈ U :

If (u, r∗) ∈ UA:

x← {RT [r] | (u, r) ∈ UA}
sku ← KeyGenPE(msk, x); msgu ← sku

Else msgu ← ∅
Return (stM ,FS , {msgu}u∈U )

Now to deassign a user u∗ from a role r∗, it suffices to erase (u∗, r∗) from UA and then update the role
r∗, so the role is associated to a new attribute for which u∗ will not have a key anymore. To delete a user
u∗, we first deassign all its roles and then remove u∗ from U .

DeassignUser(stM ,FS , u
∗, r∗)

If (u∗, r∗) /∈ UA then return (stM ,FS , {∅}u∈U )

UA← UA \ {(u∗, r∗)}
Return RoleUpdate(stM ,FS , r

∗)

DelUser(stM ,FS , u
∗)

If u∗ /∈ U then return (stM ,FS , {∅}u∈U )

For all r ∈ R:

If (u∗, r) ∈ UA:

(stM ,FS , {msgu}u∈U )
← DeassignUser(stM ,FS , u

∗, r)

U ← U \ {u∗}
Return (stM ,FS , {msgu}u∈U )

To revoke a permission p∗ from role r∗, we delete (p∗, r∗) from PA and then re-encrypt the content of p∗

under the reduced set of attributes. To delete an object p∗, we revoke it from all roles and erase it from P .

RevokePerm(stM ,FS , p
∗, r∗)

If (p∗, r∗) /∈ PA then return (stM ,FS , {∅}u∈U )

PA← PA \ {(p∗, r∗)}
y ← {RT [r] | (p∗, r) ∈ PA}
FS [p∗]← EncPE(FS [0], y,DecPE(msk,FS [p∗]))

Return RoleUpdate(stM ,FS , r
∗)

DelObject(stM ,FS , p
∗)

If p∗ /∈ P then return (stM ,FS , {∅}u∈U )

For all r ∈ R:
If (p∗, r) ∈ PA:

(stM ,FS , {msgu}u∈U )
← RevokePerm(stM ,FS , p

∗, r)

P ← P \ {p∗}; FS [p∗]← ∅
Return (stM ,FS , {∅}u∈U )

Finally, we give the two algorithms for writing and reading content in the file system. (Recall that FS [0]
contains the encryption key.)
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Write(FS , p∗,m)

y ← {RT [r] | (p∗, r) ∈ PA}
FS [p]← EncPE(FS [0], y,m)

Return FS

Read(sku,FS , p
∗)

m← DecPE(sku,FS [p∗])

Return m

A few remarks are in order. After deassigning a user, the attribute corresponding to a role has to be
renewed, so that future files cannot be decrypted by the deassigned user anymore. It may appear less
natural to renew a role’s attribute when we revoke a permission, as it seems sufficient to re-encrypt the file
without the revoked role’s attribute. However, consider a corrupt user u trying to gain access to a file p.
If p was encrypted as c under a role r, which is later revoked (resulting in a ciphertext c′), then assigning
u to r is allowed, as HasAccess(u, p) = 0 at all times. However, u would be able to read the content of p,
as after being assigned r, she could use the resulting secret key to decrypt, not the current content c′ of
p, but c.

This attack is thwarted in our instantiation, as the attribute for r under which p had been encrypted
was changed when revoking r from p; thus when u is assigned r later, her key will be associated to the
new attribute, meaning that she cannot decrypt c′.

5.3 Security of Our Implementation

Theorem 2. If PE satisfies indistinguishability then CRBAC[PE ], as defined above, is a secure implemen-
tation, as defined in Definition 2.

Proof: We prove the security of CRBAC[PE ] by reduction to indistinguishability of PE . Let A be an
adversary against CRBAC[PE ], which we will from now on denote CRBAC for simplicity. We construct an
adversary B against PE such that Advind

PE,B(·) = Advind
CRBAC,A(·). Thus if PE is secure then so is CRBAC.

In Expind
PE , B is given pk and has access to two oracles LR and KeyGen. B starts the simulation of

Expind
CRBAC,A by initializing Cr,Ch ← ∅. However, B does not choose a bit b, as it simulates Expind

CRBAC,A
with the bit b set to the one its own challenger chose in Expind

PE,B. Next, B simulates Init, except that
instead of running SetupPE , it uses the received pk and leaves msk blank in stM .
B then answers A’s oracle calls by running the algorithms of CRBAC as specified, with three exceptions:

B does not create any user secret keys sku for honest users; only when the adversary corrupts a user, B
calls its KeyGen oracle to obtain a key. As B does not hold the master secret key, it cannot decrypt as
required by the subroutine RoleUpdate. It therefore stores all plaintexts in a table MS (“message system”,
in analogy to FS ), where it can look them up instead of decrypting.

Finally, when A queries its Challenge oracle for (p,m0,m1), B forwards the encryption request to
its own LR oracle to obtain an encryption of mb. B simulates thus Expind

CRBAC for A with the same bit b
that was chosen by B’s own challenger. As B does not know b, it stores both m0 and m1 in MS and calls
LR whenever it requires an encryption of mb. Finally, B outputs the same bit b′ that A outputs.

The more technical part of the proof is to show that B’s queries to LR and KeyGen never return ⊥,
as then B’s simulation of Expind

CRBAC is perfect and B’s probability of outputting b′ = b is the same as A’s.
We formally specify B:

B(pk : LR,KeyGen)

Cr,Ch← ∅
FS ,RT ← ∅; ctr← 1

For all r ∈ R:

RT [r]← ctr; ctr← ctr + 1

(U,P,UA,PA)← (∅, ∅, ∅, ∅); FS [0]← pk
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b′←$A(1λ,FS : O)

Return b′

B answers A’s oracle calls by following their description from Figure 2, using the implementation specified
in Section 5.2—except for the changes discussed above.

AddUser(u∗)

U ← U ∪ {u∗}
Return (FS , {∅}u∈Cr)

AddObject(p∗)

P ← P ∪ {p∗}
Return (FS , {∅}u∈Cr)

CorruptU(u∗)

If u∗ /∈ U then return ⊥
For all p ∈ Ch: if HasAccess(u∗, p) then return ⊥
Cr← Cr ∪ {u∗}
x← {RT [r] | (u∗, r) ∈ UA}
sku∗ ← KeyGen(x)

Return sku∗

AssignUser(u∗, r∗)

If u∗ ∈ Cr and if for any p ∈ Ch: (p, r∗) ∈ PA

then return ⊥
If u∗ /∈ U or r∗ /∈ R or (u∗, r∗) ∈ UA

Return (FS , {∅}u∈Cr)

UA← UA ∪ {(u∗, r∗)}
If u∗ ∈ Cr:
x← {RT [r] | (u∗, r) ∈ UA}
sku∗ ← KeyGen(x); msgu∗ ← sku∗

For all u ∈ Cr \ {u∗}:
msgu ← ∅

Return (stM ,FS , {msgu}u∈Cr)

Write(p∗,m)

If p∗ /∈ P then return ⊥
MS ← (m, ·)
y ← {RT [r] | (p∗, r) ∈ PA}
FS [p∗]← EncPE(FS [0], y,m)

Return FS

Challenge(p∗,m0,m1)

If p∗ /∈ P then return ⊥
For all u ∈ Cr: If HasAccess(u, p∗) then return ⊥
Ch← Ch ∪ {p∗}
MS ← (m0,m1)

y ← {RT [r] | (p∗, r) ∈ PA}
FS [p∗]← LR(y,m0,m1)

Return FS

GrantPerm(p∗, r∗)

If p∗ ∈ Ch and if for any u ∈ Cr: (u, r∗) ∈ UA

then return ⊥
If p∗ /∈ P or r∗ /∈ R or (p∗, r∗) ∈ PA

Return (FS , {∅}u∈Cr)
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PA← PA ∪ {(p∗, r∗)}
y ← {RT [r] | (p∗, r) ∈ PA}
If p∗ ∈ Ch:

FS [p∗]← LR(y,MS [p∗][0],MS [p∗][1])

Elseif FS [p∗] 6= ∅:
FS [p∗]← EncPE(FS [0], y,MS [p∗][0])

Return (FS , {∅}u∈Cr)

The next auxiliary algorithm simulates RoleUpdate, except that it only updates the keys of corrupt users.
(Recall that B does not query keys for honest users.)

RoleUpdateCr(r∗)

RT [r∗]← ctr; ctr← ctr + 1

For all p ∈ P :

If (p, r∗) ∈ PA:

y ← {RT [r] | (p, r) ∈ PA}
If p ∈ Ch:

FS [p]← LR(y,MS [p][0],MS [p][1])

Elseif FS [p] 6= ∅:
FS [p]← EncPE(FS [0], y,MS [p][0])

For all u ∈ Cr:

If (u, r∗) ∈ UA:

x← {RT [r] | (u, r) ∈ UA}
sku ← KeyGen(x); msgu ← sku

Else msgu ← ∅
Return (FS , {msgu}u∈Cr)

DeassignUser(u∗, r∗)

If (u∗, r∗) /∈ UA then return (FS , {∅}u∈Cr)

UA← UA \ {(u∗, r∗)}
Return RoleUpdateCr(r∗)

DelUser(u∗)

If u∗ /∈ U then return (FS , {∅}u∈Cr)

For all r ∈ R:

If (u∗, r) ∈ UA:

(FS , {msgu}u∈Cr)← DeassignUser(u∗, r)

U ← U \ {u∗}; Cr← Cr \ {u∗}
Return (FS , {msgu}u∈Cr)

RevokePerm(p∗, r∗)

If (p∗, r∗) /∈ PA then return (FS , {∅}u∈Cr)

PA← PA \ {(p∗, r∗)}
y ← {RT [r] | (p∗, r) ∈ PA}
If p∗ ∈ Ch:

FS [p∗]← LR(y,MS [p∗][0],MS [p∗][1])

Elseif FS [p∗] 6= ∅:
FS [p∗]← EncPE(FS [0], y,MS [p∗][0])

Return RoleUpdateCr(r∗)

DelObject(p∗)

If p∗ /∈ P then return (FS , {∅}u∈Cr)

For all r ∈ R:
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If (p∗, r) ∈ PA:
(FS , {msgu}u∈Cr)← RevokePerm(p∗, r)

P ← P \ {p∗}; Ch← Ch \ {p∗}; FS [p∗]← ∅
Return (FS , {∅}u∈Cr)

Below we show the following:

Lemma 1. In the above simulation, A’s oracles LR and KeyGen never return ⊥.

Based on this lemma, we argue that B’s simulation is perfect: this follows, as B simply implements the
oracles by definition, except that it keeps a table of clear messages MS instead of decrypting the ciphertexts
(which, by correctness of PE , amounts to the same); it uses its LR oracle to generate encryptions of mb,
and generates user keys only when they are corrupted. The latter is perfectly indistinguishable from
A’s perspective. It follows thus that B guesses b correctly whenever A does, and thus Advind

PE,B(·) =

Advind
CRBAC,A(·), which completes the proof.

Proof:[Proof of Lemma 1] In order to prove that B’s oracles do not return ⊥, it suffices to show that the
following condition is an invariant of the experiment:

X ∩ Y = ∅ , (C1)

where X contains all x queried to KeyGen and Y contains all y queried to LR (these are precisely the
sets which B’s challenger keeps in Expind

PE ).
We prove by induction over the number of oracle calls in Expind

CRBAC that (C1) is always satisfied, which
proves the lemma. To do so, we simultaneously prove that three more conditions are also satisfied. The
first asserts that, symbolically, a corrupt user never has access to a challenge permission:

∀u ∈ Cr ∀p ∈ Ch : ¬HasAccess(u, p) , (C2)

with HasAccess(u, p)⇔ ∃r ∈ R : (u, r) ∈ UA∧ (p, r) ∈ PA. At any point in the game, let Z := {RT [r] | r ∈
R} denote the set of current attributes associated to roles. For all a ∈ Z, let ra denote the role s.t.
RT [r] = a (since RoleUpdateCr increases ctr after assigning its value to an element of RT , ra is unique).
We also prove that the following two conditions hold throughout the simulation:

a ∈ X ∩ Z ⇔ ∃u ∈ Cr : (u, ra) ∈ UA (C3)

a ∈ Y ∩ Z ⇔ ∃p ∈ Ch : (p, ra) ∈ PA (C4)

Intuitively, (C3) means that if a currently-in-use attribute is in X then it is because there is a corrupt
user who is assigned the corresponding role. Analogously, (C4) means that if a current attribute is on the
list Y then it is because its role ra is associated to a challenge permission.

It is immediate that at the beginning of the game all four conditions are satisfied, as X = Y = Cr =
Ch = ∅.

Below we will show that oracle calls only add elements to X and Y which are also in Z. Thus if
X ∩ Y = ∅ before the oracle call then to show (C1), it suffices to show that (X ∩ Z) ∩ (Y ∩ Z) = ∅
afterwards.

If there was an element a in this set then by (C3) and (C4) we would have

∃u ∈ Cr ∃p ∈ Ch : (u, ra) ∈ UA ∧ (p, ra) ∈ PA ,

which contradicts (C2). In order to show (C1) (and thus prove the lemma), it therefore suffices to show
(C2), (C3), (C4) and:

All elements added to X and Y are also in Z. (C5)

We now show that whenever conditions (C2), (C3), (C4) and (C5) are satisfied before an oracle call then
they still are afterwards.
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(C5): The above is easily verified by looking at the implementations of the oracles: LR is always called
with an argument y s.t. y ⊆ {RT [r] | r ∈ R} = Z; likewise, KeyGen is always called with x ⊆ Z. Note
also that RoleUpdateCr updates the table RT before calling the oracles.

(C2): We next show if (C2) is satisfied before an oracle call then so it is afterwards: (C2) states that
∀u ∈ Cr ∀p ∈ Ch ∀r ∈ R : (u, r) /∈ UA∨ (p, r) /∈ PA. This can only cease to hold if an oracle adds elements
to Cr, Ch, UA or PA, respectively. However, the only oracles doing this are CorruptU, Challenge,
AssignUser and GrantPerm, respectively, which all first detect whether they would cause a violation
of (C2), in which case they return ⊥.

(C3) and (C4): These two statements are about X,Y,Cr,Ch and RT (the latter defining Z). Oracles
AddUser, AddObject, Write do not modify any of these sets, thus the conditions hold whenever they
held before the call. We analyze the remaining oracles one by one.
• CorruptU: If (C3) holds before the call then it also holds after: Z is not modified and all a which were
in X before still correspond to users in Cr; for all attributes which were added to X, the corresponding
user is u∗ ∈ Cr. Conversely, if (u∗, r) ∈ UA then RT [r] is now in X. (C4) is not affected, as neither Y ,
RT , Ch, nor PA are modified.
• AssignUser: Again, (C4) is not affected, as none of the relevant sets change. Validity of (C3) is also
maintained: if u∗ /∈ Cr then X is not modified and UA is only extended by a non-corrupt user, which
together do not affect (C3). If u∗ ∈ Cr then (as for CorruptU), (C3) is still valid: for all a which were in
X ∩ Z before there still exists a corrupt user such that (u, ra) ∈ UA and vice versa. Any new a is added
to X if and only if (u∗, ra) ∈ UA.
• Challenge: We show validity of (C4) is maintained: all a which were in Y ∩Z still correspond to their
p ∈ Ch, and vice versa; and any new a is added to Y if and only if (p∗, ra) ∈ PA, so these a’s correspond
to p∗ ∈ Ch. Condition (C3) is not affected, since X, RT , Cr and UA are unaffected.
• GrantPerm: Again, (C3) is not affected, for the same reasons as above. If p∗ /∈ Ch then Y is not
modified and PA is only extended by a non-challenge policy p∗, which together do not affect (C4). If
p∗ ∈ Ch then (as for Challenge), (C4) is still valid: for elements which were in Y ∩Z and Ch before the
oracle call, both implications of (C4) still hold. Moreover, any a is added to Y if and only if (p∗, ra) ∈ PA.
• RoleUpdateCr: This subroutine, run on r∗, replaces aold by anew in RT [r∗]. Thus after the call, aold is
not in Z anymore. If for some p ∈ Ch: (p, r∗) ∈ PA, the routine then queries LR, which adds anew to Y ;
thus (C4) still holds with aold replaced by anew. Otherwise, ∀p ∈ Ch : (p, r∗) /∈ PA, so as (C4) held before
the call: aold /∈ Y ∩ Z. As in this case, LR is not called, we have anew /∈ Y , thus (C4) holds as before.

Completely analogously, (C3) is maintained, since if aold was in X ∩ Z because of some user u then
now anew is in X ∩ Z and still associated to the same user via r∗ = ranew ; and if aold was not in X ∩ Z
then anew is not added to it either.
• DeassignUser: This oracle removes (u∗, r∗) from UA and then calls RoleUpdateCr on r∗. If for some
u ∈ Cr, u 6= u∗ : (u, r∗) ∈ UA then (C3) still holds, as aold is replaced by anew in X ∩ Z, which is then
associated to u. On the other hand, if after the revocation we have ∀u ∈ Cr : (u, r∗) /∈ UA then anew is
not added to X ∩ Z and again, (C3) still holds.

(C4) is not affected by DeassignUser as it only changes UA and RoleUpdateCr preserves validity of
(C4).
• DelUser: This oracle first runs DeassignUser for all roles held by the user. We have already shown
that this preserves validity of (C3) and (C4). After this we have ∀r ∈ R : (u∗, r) /∈ UA. Thus (C3)
holds independently of u∗, which means that after removing u∗ from U (and possibly Cr) (C3) still holds.
Moreover, (C4) is not affected by this either.
• RevokePerm: If p∗ /∈ Ch then this does not affect (C4), as Y is not modified and PA is only reduced by
a pair not containing a challenge permission. Executing RoleUpdateCr does not affect (C4) either, as shown
above. If p∗ ∈ Ch then, by (C4), we have: ∀r : (p∗, r) ∈ PA ⇒ RT [r] ∈ Y ∩ Z, so the LR call leaves Y
unchanged, so (C4) still holds. Now RoleUpdateCr is called, but with (p∗, r∗) being erased from PA. Thus,
while aold gets removed from Y ∩ Z, anew only gets added if for some p ∈ Ch, p 6= p∗: (p, r∗) ∈ PA; in this
case (C4) holds afterwards, as this p is associated with anew. If after the revocation ∀p ∈ Ch : (p, r∗) /∈ PA
then anew /∈ Y ∩ Z and (C4) still holds as well.

(C3) is not affected by RevokePerm, as it only changes PA and RoleUpdateCr preserves validity of
(C3), as above.
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• DelObject: This oracle first runs RevokePerm for all roles associated to p∗, which, as just shown,
preserves validity of (C3) and (C4). After this, we have ∀r : (p∗, r) /∈ PA. Thus (C4) (and (C3)) holds
independently of p∗; therefore, they still hold after removing p∗ from P and Ch. This concludes the proof
of the lemma and thereby the proof of the theorem.

5.4 Further Implementations of PE-NDS

We chose to describe our implementation using a predicate-encryption (PE) scheme for the simple predicate
pred(x, y) ⇔ x ∩ y 6= ∅ (non-disjoint sets (NDS) of attributes), because it closely models the minimal
functionality required for our cryptographic RBAC.

To implement PE-NDS, the most natural choice is attribute-based encryption, of which it is a special
case. Here we mention other possible implementations of PE-NDS, which in turn would lead to alternative
cryptographic RBAC implementations.

Parallel Encryption This implementation is the least efficient, but uses only a very basic cryptographic
primitive: public-key encryption (PKE). The setup creates a PKE key pair (pka, ska) for every attribute
a in the attribute universe A. The master public and secret keys are defined as pk = {pka}a∈A and
msk = {ska}a∈A. KeyGen, on input msk and x ⊆ A returns skx = {ska}a∈x and Enc, on input (pk, y,m)
returns a set {ca}a∈y, where ca is a PKE encryption of m under pka.

This can be made more efficient using a hybrid-encryption approach [26], where Enc(pk, y,m) first
chooses a key K for symmetric encryption, then encrypts m under K and uses PKE to encrypt K under
every key in {pka}a∈y.

Broadcast Encryption Another implementation, situated somehow between ABE and hybrid encryp-
tion, uses broadcast encryption [15]. In broadcast encryption (BE) there is a set of receivers holding secret
keys and a message can be broadcast to any subset of receivers such that only users in the subset can
decrypt.

Associating attributes a ∈ A to receivers in a BE scheme, we get the following implementation of PE-
NDS: Running the BE setup returns a public key pk, which is used as the public key for the PE-NDS and
a set of secret receiver keys {ska}a∈A which we define as msk. As for parallel encryption, key generation is
done by selecting the keys {ska}a∈x which correspond to the set x; encryption w.r.t. a set y is broadcast
encryption to the corresponding set y of receivers.

Since the goal of BE is to minimize the size of a ciphertext sent to many receivers, this approach might
lead to smaller ciphertexts and thus consequently minimizes the size of FS in the resulting implementation
of CRBAC. On the downside, the user secret keys are sets of BE receiver secret keys, which in general may
be bigger than ABE secret keys.

6 Discussion and Future Work

In this paper we use well-established methodologies in modern cryptography to formulate precise syntax
and security requirements for cryptographic access control. Besides the definition for secure cryptographic
implementations, our results include a security proof for a cryptographic RBAC based on attribute-based
encryption and a theorem that shows that in such systems a policy is satisfied (computationally) as long
as the manager ensures that the policy is satisfied symbolically.

There are several directions in which our work can be extended. An obvious target is to provide a similar
treatment to other variants of RBAC (e.g. hierarchical RBAC [2] and attribute-based RBAC [4, 27]). Much
more ambitiously, it would be interesting to cast our results as instances of a more general framework
with abstract notions of symbolic and computational access-control enforcement. Flexible mechanisms for
policy specification, e.g. through general logics would also be desirable, but one would have to deal with
the difficulties associated with formalizing general computational satisfaction of logic formulas [12, 11, 6].
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Our analysis identifies predicate encryption for non-disjoint sets as a sufficient primitive for meeting
the functionality and security goals of cRBAC. This allows avoiding general attribute-based encryption
(or even worse, general predicate-encryption schemes) for the implementation. From this perspective,
a rigorous analysis of cryptographic access-control implementations can also serve for identifying and
choosing a trade-off between the efficiency, functionality and the security of the primitives and that of the
resulting access-control system.

Finally, it would be interesting to understand and formally relate the approach that we take here with
the simulation-based approach, as applied to access control by Halevi, Karger and Naor [19].
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