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Abstract

Existing work on “rational cryptographic protocols” treats each party (or coalition of parties)
running the protocol as a selfish agent trying to maximize its utility. In this work we propose a
fundamentally different approach that is better suited to modeling a protocol under attack from
an external entity. Specifically, we consider a two-party game between an protocol designer and
an external attacker. The goal of the attacker is to break security properties such as correctness
or privacy, possibly by corrupting protocol participants; the goal of the protocol designer is to
prevent the attacker from succeeding.

We lay the theoretical groundwork for a study of cryptographic protocol design in this
setting by providing a methodology for defining the problem within the traditional simulation
paradigm. Our framework provides ways of reasoning about important cryptographic concepts
(e.g., adaptive corruptions or attacks on communication resources) not handled by previous
game-theoretic treatments of cryptography. We also prove composition theorems that—for the
first time—provide a sound way to design rational protocols assuming “ideal communication
resources” (e.g., broadcast or authenticated channels) and then instantiate these resources using
standard cryptographic tools.

Finally, we investigate the problem of secure function evaluation in our framework, where
the attacker has to pay for each party it corrupts. Our results demonstrate how knowledge of
the attacker’s incentives can be used to circumvent known impossibility results in this setting.

1 Introduction

Consider a cryptographic protocol carrying out some task. In traditional security definitions,
threats to the protocol are modeled by an explicit external entity—the adversary—who can corrupt
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some bounded number of protocol participants and make them behave in an arbitrary fashion. A
protocol is “secure” if it realizes the ideal specification of the task against any adversarial strategy.

While this approach yields strong security guarantees, it has been criticized as being overly pes-
simistic since it neglects the incentives that lead parties to deviate from their prescribed behavior;
this may result in protocols designed to defend against highly unlikely attacks. Motivated by this,
a recent line of work on “rational cryptography” has focused on using ideas from game theory to
analyze cryptographic protocols run by a set of rational parties [HT04, ADGH06, KN08a, FKN10,
HP10, ACH11, GK12].1 There, parties are no longer viewed as being “good” (honest) or “bad”
(corrupt); all parties are simply rational, motivated by some utility function. The goal of this line
of work is to design protocols for which following the protocol is a game-theoretic equilibrium for
the parties. It has been shown that by incorporating incentives one can circumvent impossibility
results (e.g., for fairness in the two-party setting [ACH11, GK12]), or design protocols with better
efficiency (e.g., using the notion of covert security [AL07]).

Game-theoretic models of the above sort are useful for modeling incentive-driven misbehavior of
mutually distrustful protocol participants, but they are not directly applicable to settings in which a
set of mutually trusting parties willing to follow a protocol are concerned about an external attacker
with its own set of preferences. In that context, it is more accurate to speak of a two-party game
between the attacker and a defender (i.e., the protocol designer and the participants themselves).
Note that, similar to traditional cryptographic definitions, the notion of a rational external attacker
is also suitable for capturing coalitions of rationally cheating protocol participants.

In this work we propose a framework—which we term rational protocol design—that is intended
to model exactly the setting just described. We prove a composition theorem for our framework
which allows us to analyze protocols assuming idealized communication resources (e.g., secure
point-to-point channels or a broadcast channel) are available, and then instantiate those idealized
assumptions using standard cryptographic primitives. (A composition theorem of this sort is not
known to hold in many existing rational-cryptography frameworks. See Section 4 for further dis-
cussion.) Finally, we showcase our framework by using it to model a scenario in which a protocol
for multi-party computation is run in the presence of an external attacker who gains utility by vi-
olating privacy or correctness but must pay for corruption of protocol participants. In that setting
we show how full security is attainable even with no a priori upper bound on the number of parties
that can be compromised by the attacker. We explain our results in greater detail in the sections
that follow.

1.1 Overview of our Framework

We provide a high-level overview of our framework, allowing ourselves to be somewhat informal.
Formal details of the model are given in Section 2.

At the most basic level, we propose a new way of modeling incentive-driven attacks via a two-
party game between a protocol designer D, who specifies a protocol Π for the (honest) participants
to run, and a protocol attacker A, who specifies a polynomial-time attack strategy A by which it
may corrupt parties and try to subvert execution of the protocol (uncorrupted parties follow Π as

1Our focus here is on applications of game theory to cryptography, where the protocol defines the game; another
line of work initiated by Dodis, Rabin, and Halevi [DHR00] focuses on applications of cryptography to game theory,
with the aims to design cryptographic protocols for playing a pre-existing game [LMPS04, LMS05, IML05, ILM08].
We refer to Appendix A for a short survey of the literature on rational cryptography.

2



prescribed). Both D and A are unbounded, and so this is a zero-sum extensive game with perfect
information and observable actions, or more concretely a Stackelberg game (cf. [OR94, Section 6.2]).

The goal of the attacker is to choose a strategy that maximizes its utility; see below for how
utility is defined. Since this is a zero-sum game, the goal of the defender is simply to minimize
the attacker’s utility.2 We are interested in ε-subgame-perfect equilibria in this game, a refinement
of subgame-perfect equilibria (the natural solution concept for Stackelberg games) that allows for
negligible deviation in the choice of the players’ strategies. We remark that although the notion of
subgame-perfect equilibria is the most natural notion of stability for game-theoretic protocols, this
notion is notoriously difficult to define in a computational setting [GK06, KN08b, KN08a, Hal08,
FKN10, GLR10]. We can use this notion cleanly here because the players in our game (namely, D
and A) are unbounded, and because our game tree has (fixed) depth two.

An additional novelty of our framework lies in the way we define the utility of the attacker. Fix
some desired functionality F to be realized by a protocol. Given some moves Π,A by the players of
our game, the utility of the attacker is defined using the traditional simulation paradigm in which
a real-world execution of protocol Π in the presence of attack strategy A is compared to an ideal-
world execution involving an ideal-world attack strategy (that is, a simulator) interacting with an
ideal functionality for the task at hand. In our ideal world, however, we allow the simulator to make
explicit queries to a “defective” ideal functionality 〈F〉 that allow the simulator to cause specific
“security breaches.” The utility of the attacker depends on the queries made by the simulator,3

and our initial game is specified by fixing a utility function that assigns values to events that occur
in the ideal world. Roughly speaking, then, the goal of the attacker is to generate an adversarial
strategy A that will “force” the simulator to cause certain security breaches in the ideal world in
order to complete a successful simulation; Π is “secure” (with respect to some utility function) if
the protocol can be simulated for any choice of A while generating utility 0 for the attacker.

Our choice to model utility by the occurrence of ideal-world events shares the same motivations
that lead to adoption of the simulation paradigm in the standard cryptographic setting: it allows
us, for example, to capture the fact that some information has been leaked without having to
specify precisely what that information corresponds to, or having to worry about the fact that the
information may correspond to different things in different executions. We remark that the “security
breaches” considered in this paper may be viewed as overly restrictive (making our definitions overly
conservative), but our framework is flexible enough to allow one to specify more fine-grained security
breaches and assign different utilities to each of them, if desired.

An important feature of our framework is that it also allows us to meaningfully compare two
insecure protocols by comparing the maximum achievable utility of the attacker when attacking
each of them. This, in turn, means we can speak of an “optimal” protocol (with respect to some
utility function) even when a “secure” protocol is impossible. Coming back to our original two-
party game, we show that a protocol Π is optimal if and only if having D choose that protocol yields
an ε-subgame-perfect equilibrium in that game.

1.2 Results in our Framework

The fact that our framework can be cast as a cryptographic maximization problem enables us to
prove a composition (subroutine replacement) theorem. Roughly speaking, this allows us to design

2There is some practical justification for assuming a zero-sum game. We leave consideration of nonzero-sum games
for future work.

3Utility need not be positive; some events, such as corrupting parties, might incur negative utility for the attacker.
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and analyze protocols in a hybrid world where certain ideal functionalities are available (such as
secure point-to-point channels or broadcast) and then draw conclusions about the resulting real-
world protocol when those ideal functionalities are instantiated with secure implementations.

In Section 5 we illustrate the benefits of our framework by investigating the problem of (multi-
party) secure function evaluation (SFE) in the presence of an attacker whose goal is to violate the
privacy of the uncorrupted parties’ inputs, by learning more information on them than allowed
by the inputs and outputs of corrupted parties, and/or correctness of their outputs. The attacker
may specify an adversarial strategy in which arbitrarily many parties may be adaptively corrupted,
though a cost is charged to the attacker for each corrupted party. We show the following results
(here, “secure” is meant in the rational sense outlined above):

1. We show a secure protocol for computing arbitrary functions assuming the cost of corrupting
parties is high compared to the attacker’s utility for violating privacy. (This assumes static
corruption only.) Conversely, we show that there are functions that cannot be computed
securely when the cost of corruption is low compared to the attacker’s utility for violating
privacy or correctness. We also show a secure protocol (even under adaptive corruption)
for computing arbitrary functions even under the assumption that the utility for breaking
privacy is high, but assuming that the utility for violating correctness is relatively low (both
compared to the corruption cost).

2. Perhaps more interestingly, we provide a generic two-party SFE protocol, i.e., a protocol for
evaluating any given function, when the utilities for both breaking privacy and/or correctness
are higher than the cost of corruption (this again assumes static corruption) and prove that
for a natural class of functions our protocol is in fact optimal, in the sense that it optimally
tames the adversary. Note that our impossibility result excludes the existence of a secure
protocol for this case.

3. Finally, for any function f in the class of functions for which 1/p-secure protocols exist [GK10,
BLOO11] (for some polynomial p), we provide an attack-payoff secure protocol for evaluating
f for any choice of the attacker’s utility.

We remark that only the last result requires the protocol designer to have exact knowledge of the
attacker’s utilities; the rest only require known bounds on the attacker’s utilities.

1.3 Comparison to Prior Work on Rational Cryptography

The main difference of our approach to rational cryptography compared to the traditional approach,
is that instead of defining security in a game among rational protocol participants, we define it in a
“meta”-game between the protocol designer—who decides the protocol to be executed by the (non-
rational) honest parties—and the attacker. Our approach provides a simpler, more intuitive, and
composable handling of incentive driven attacks to cryptographic protocols. Furthermore, it allows
to make optimality statements for cases for which security is impossible both in the traditional and
in the rational setting. In the following, we give an abridged comparison of our results to existing
results in rational cryptography. For completeness we include a short survey on these results and
a more detailed comparison in Appendix A.

To the best of our knowledge, our protocols are the first to consider incentives to deviate in SFE
while relying on the minimal assumptions of insecure channels and a PKI. In particular, existing
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rational protocols assume ideal communication resources such as access to a broadcast channel.
However, as demonstrated in Section 4, such implementations would fail if the ideal broadcast
channel were instantiated with a secure broadcast protocol.4 Similarly, the models from [LMPS04,
IML05, ILM08, ASV08, AKL+09, AKMZ12, CV12] require even stronger communication resources
which are unrealizable from standard cryptographic primitives [LMS05, AKMZ12].

Recently, Halpern and Pass [HP10] suggested a game-theoretic framework which is suitable
for modeling a protocol being run among a set of computationally bounded parties as a game.
They investigated the relationship between equilibria in such games and traditional cryptographic
notions of security. The motivation of our work is different, and in particular our aim is to analyze
protocols that are not secure in the standard cryptographic sense but still offer protection against
a rational attacker.

Aumann and Lindell [AL07] demonstrated how to take advantage of the adversary’s “fear” of
getting caught cheating to build more efficient protocols. Their model can be readily captured in
our framework by assigning a negative payoff to the event of (identifiable) abort. In work closer in
spirit to ours, Groce et al. [GKTZ12] investigated the feasibility of Byzantine agreement (BA) in a
setting where the parties are rational but are split into two categories: the “selfish corrupt” parties
that have some known utility function representing potential attacks to BA, and the “honest”
parties who wish to follow the protocol. Our model can be tuned (by appropriately instantiating
the utility function) to formalize the results of [GKTZ12] in a simulation-based manner.

1.4 Preliminaries and Notation

Our model is based on the simulation paradigm and the formalization follows Canetti’s UC frame-
work [Can05]. We specify our (synchronous) protocols and ideal functionalities in a way similar
to Canetti’s synchronous model [Can00], knowing that (most) security proofs in that model carry
over to the UC model, given that certain functionalities are available to the protocols [KMTZ13].
Before proceeding to the details of our model and our results, we recall the basics of this model and
specify some terminology and notation. Readers familiar with the [Can00, Can05] models can move
forward to the notational conventions at the end of this section and refer to it whenever necessary.

At a high level, simulation-based definitions use the real-world/ideal-world paradigm: In the
real world, the parties execute the protocol using channels and other functionalities defined by the
model, while in the ideal world, the parties securely provide their input to an ideal functionality F
that executes the task to be achieved by the protocol and returns the resulting outputs to the parties.
The protocol securely realizes the functionality F if, for any real-world adversary A attacking the
protocol execution, there is an ideal-world adversary S, also called the simulator, that emulates A’s
attack. The simulation is successful if no distinguisher Z—often called the environment—which
interacts, in a well-defined manner, with the parties and the adversary/simulator, can distinguish
between the two worlds.

All entities involved in a protocol execution are described by interactive Turing machines
(ITMs). The set of all efficient, i.e., composable polynomial time, ITMs is denoted by ITM. We
generally denote our protocols by Π and our (ideal) functionalities by F, the adversary by A, the
simulator by S, and the environment by Z. The term {execΠ,F,A,Z(k, z)}k∈N,z∈{0,1}∗ denotes the
random variable ensemble describing the contents of Z’s output tape after an execution with Π, F,

4Other rational works use simultaneous broadcast [HT04, GK06], which is hard to implement even in a traditional
(non-rational) cryptographic sense.
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and A, on auxiliary input z ∈ {0, 1}∗. We often drop the parameters k and z and simply refer to
the ensemble by execΠ,F,A,Z if the meaning is clear from the context. The view of an ITI in an
execution is the list of all “external write” requests (that is, input- and output operations of the
ITI) that involve the respective ITI—identified by the contents of its identity tape.

In the model of [Can05], a protocol is described by an arbitrary ITM that can in particular
instantiate ideal functionalities, cf. [Can05, Sections 3.2 and 4.5]. Consequently, an F-hybrid pro-
tocol (for some functionality F) is merely a special type of protocol, and by the way the invocation
is defined in [Can05] it is generally even hard to decide for some given protocol whether or not
it is an F-hybrid protocol for some functionality F. As this property impedes statements about
the nonexistence of protocols, we restrict ourselves to considering protocols of a specific type: we
require that each protocol explicitly specifies its hybrids (e.g., in a header of some specified format),
and does not instantiate any ITMs beyond those specified in the header.

We use the following notational conventions throughout the paper. As usually, [n] denotes the
set {1, . . . , n}, and F denotes an arbitrary (but fixed) finite field. Most statements in this paper
are asymptotic with respect to an (often implicit) security parameter k ∈ N. Hence, f ≤ g means
that ∃k0 ∀k ≥ k0, f(k) ≤ g(k), and a function µ,N → R is negligible if for all polynomials p,
µ ≤ 1/p, and noticeable if there exists a polynomial p with µ ≥ 1/p. Furthermore, we introduce

the symbols f
negl
≈ g to denote that ∃ negligible µ such that |f − g| ≤ µ, and f

negl
≥ g to denote that

∃ negligible µ : f ≥ g − µ (analogously with “
negl
≤ ”). Unless stated otherwise, whenever we use

strict inequalities we imply that the two sides differ by a noticeable (i.e., non-negligible) portion;
that is, we write a < b (resp., a > b) to denote that a is strictly smaller than b − µ (resp., a is
strictly greater than b+ µ), for some noticeable function µ.

2 Cryptographic Security as a Game

In this section, we introduce our definition of protocol optimality in terms of a game—which we term
the attack game—between a protocol designer and an attacker, where the choice of the protocol
designer is the protocol code (to be executed by uncorrupted parties) and the choice of the attacker
is a concrete adversarial strategy for attacking the chosen protocol.

2.1 The Attack Game GM
The attack game is a two-player zero-sum extensive game of perfect information with a horizon of
length two (i.e., two sequential moves) and is formulated as a so-called Stackelberg game [OR94].
Informally, such a game involves two players, called the leader and the follower, and proceeds in
two steps. In the first step, the leader plays and the follower is (perfectly) informed about the
leader’s move; in the second step the follower plays and the game terminates. (We refer to [OR94,
Section 6.2] for a formal definition of extensive games of perfect information and a description of
Stackelberg games.)

In our attack game, we refer to the leader and the follower as the protocol designer D and the
attacker A, respectively. The game is parameterized by the (multi-party) functionality F to be
computed—the number n of parties is implicit in any such description, which is known to both
D and A. The designer D chooses a protocol for computing the functionality F from the set of
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all n-party (probabilistic and polynomial-time computable) protocols5, the protocol consists of the
code that the (honest) parties are supposed to execute. D sends to A the description Π ⊆ {0, 1}∗ of
this protocol in some predetermined encoding (in the form of interactive Turing machines (ITMs),
for example). Upon receiving Π, it is A’s turn to play its strategy. A chooses a polynomial-time
ITM A to attack protocol Π. We denote the corresponding game by GM, where the subscript M
in the above notation is referred to as the attack model, which specifies all the public parameters
of the game, namely, the functionality and the description of the action sets as well as the utilities
(see Section 2.2).

The standard (and most natural) solution concept for Stackelberg games (and, more generally,
extensive games with perfect information) is subgame-perfect equilibrium, where, informally, the
actions of each party at any point in the game (i.e., after any history) form a best response to
this history (cf. [OR94, Definition 97.2]). However, as we are interested in cryptographic security
definitions with negligible error terms, we need a refinement of this notion which we call ε-subgame
perfect equilibrium, and which considers as solutions all profiles in which the parties’ utilities are
ε-close to their best-response utilities.

We will denote a strategy profile of an attack game GM as a vector (Π, A). Note that, formally,
A is a function mapping efficient protocols to corresponding adversarial strategies. We use (real-
valued functions) uD(·) and uA(·) to denote the utilities of D and A, respectively (formal definitions
of these also in the next section). We are now ready to state the solution concept for our game.

Definition 1. Let GM be an attack game. A strategy profile (Π, A) is an ε-subgame perfect equilib-
rium in GM if the following conditions hold: (1) for any Π′ ∈ ITMn, uD(Π

′, A(Π′)) ≤ uD(Π, A(Π))+ ε,
and (2) for any A′ ∈ ITM, uA(Π, A

′(Π)) ≤ uA(Π, A(Π)) + ε.

2.2 Defining the Utilities

As sketched in Section 1.1, the methodology for defining the attacker’s utility with respect to a
given functionality F consists of three steps: (1) we “relax” the functionality F to a weaker version,
denoted as 〈F〉, which allows for the idealized counterparts of the “security breaches” the attacker
wants to provoke; (2) we define the payoff/score of any ideal-world adversary as a function v of
the view of and ideal evaluation of the relaxed functionality; and (3) we assign to each adversarial
strategy for a given protocol the expected payoff/score achieved by the best simulator (or ∞ if
no such simulator exists). We refer to the triple M = (F, 〈F〉, v) as the attack model. We next
elaborate on the three steps.

The first step is carried out by “relaxing” the ideal functionality F to obtain a (possibly) weaker
ideal functionality 〈F〉, which explicitly allows the attacks we wish to model. For example, 〈F〉
could give the simulator access to the parties’ inputs, or let it modify their outputs.

For the second step, we define a function v mapping the joint view of the relaxed functionality
〈F〉 and the environment Z to a real-valued payoff. We then define the real-valued random variable
ensemble {v〈F〉,S,Z(k, z)}k∈N,z∈{0,1}∗ (v〈F〉,S,Z for short) as the result of applying v to the views of
〈F〉 and Z in a random experiment describing an ideal evaluation with ideal-world adversary S. In
other words, v〈F〉,S,Z describes (as a random variable) the payoff of S in an execution using directly
the functionality 〈F〉. The (ideal) expected payoff of S with respect to the environment Z is defined

5As usual, to ensure that the running time of such a protocol is also polynomial in the security parameter, we
assume that inputs to machines include the security parameter in unary.
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to be the expected value of v〈F〉,S,Z , i.e.,

U
〈F〉
I (S,Z) = E(v〈F〉,S,Z).6

Finally (Step 3), we define the payoff of an adversarial strategy for a certain protocol Π based
on the above (ideal) expected payoff: The (real) expected payoff of a pair (A,Z) with respect to
Π, where Z is the environment, A is the adversarial strategy,7 and Π realizes 〈F〉, is taken to be
the payoff of the “best” simulator for A, that is, the simulator that successfully emulates A while
achieving the minimum score. The reason for considering a minimizing simulator that some events
(for example, obtaining a party’s input) can be provoked by the simulator without any effect in
the remaining execution: the simulator can provoke an event even if it could simulate all necessary
messages without doing so. The adversary, on the other hand, should be “rewarded” only if it forces
the simulator S to provoke the event; hence, we minimize over the set of all “good” simulators.
We remark that a non-uniform simulator can minimize the score for every value of the security
parameter.

Formally, for a functionality 〈F〉 and a protocol Π, denote by CA the class of simulators that
are “good” for A, i.e, CA = {S ∈ ITM | ∀Z : execΠ,A,Z ≈ exec〈F〉,S,Z}. The real expected payoff of
the pair (A,Z) is then defined as

UΠ,〈F〉(A,Z) = inf
S∈CA

{U 〈F〉I (S,Z)}.

In other words, UΠ,〈F〉 assigns to each pair (A,Z) ∈ ITM × ITM (and each value of the security
parameter k) a real number corresponding to the expected payoff obtained by A in attacking Π
within environment Z. For adversaries A with CA = ∅, i.e., adversaries that cannot be simulated
in the 〈F〉-ideal world, we define the score to be ∞, as these adversaries might break the security
of the protocol in ways that are not even incorporated in the model. This is just for completeness
of the definition, i.e., for incorporating arbitrary adversarial strategies, and will not be used in
this work, as all the considered protocols are required to be secure with respect to the relaxed
functionality 〈F〉.

Now, having defined the notion of real expected payoff, UΠ,〈F〉(A,Z), we can proceed to define
our main quantity of interest, namely, the (maximal) payoff of an adversarial strategy A, which,
intuitively, corresponds to its expected payoff when executing the protocol with the adversary’s
“preferred” environment, i.e., the one that maximizes its score. More formally, the (maximal)
payoff of an adversary A attacking the execution of protocol Π for realizing 〈F〉 with respect to a
certain payoff function v is defined as

ÛΠ,〈F〉(A) = sup
Z∈ITM

{UΠ,〈F〉(A,Z)}.

Finally, having defined the (maximal) payoff of any given adversarial strategy A, we can now
define the utility function uA of attacker A in the attack game GM as follows. Let (Π,A) be a
terminal history in GM, i.e., A = A(Π). Then

uA(Π,A) := ÛΠ,〈F〉(A).

6Using expectation to define U
〈F〉
I (S,Z) keeps the description simple and close to the notion of expected utility

from classical game theory. In fact, U
〈F〉
I (S,Z) can be any function (e.g., taking into account the variance of v〈F〉,S,Z).

7In slight overload of notation, we write A instead of A(Π) whenever the protocol Π is implicit by the context.
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As GM is a zero-sum game, the designer’s utility is defined as uD(·) := −uA(·).
We remark that we take the attacker’s utility to be the maximal utility over the class of all

environments, as (1) this is a natural worst-case assumption, and (2) it ensures that the achieved
solution is stable even when the cheating parties have prior information about other parties’ inputs.

A natural class of utility functions. As defined, the payoff function v can be arbitrary. In many
applications, however, including those in Section 5, meaningful payoff functions have the following,
simple representation: Let (E1, . . . , En) denote a vector of (disjoint) events defined on the views
(of S and Z) in the ideal experiment corresponding to the security breaches that contribute to the
attacker’s utility. Each event Ei is assigned a real number γi, and the payoff function v~γ assigns,
to each ideal execution, the sum of γi’s for which Ei occurred. The ideal expected payoff of a

simulator is computed according to our definition as: U
〈F〉
I (S,Z) =

∑
Ei∈ ~E,γi∈~γ γi Pr[Ei], where

the probabilities are taken over the random coins of S, Z, and 〈F〉. At times, to make the payoff

vector ~γ explicit in the specification of the payoff function we write U
〈F〉,~γ
I (S,Z).

3 The Attack Game as a Cryptographic (Maximization) Problem

We give a characterization of protocol optimality as a maximization problem using only crypto-
graphic language, which emerges from our formulation of the problem as a zero-sum game. Further-
more, we provide a notion of security of protocols which is suitable for incentive-driven attackers.
LetM = (F, 〈F〉, v) be an attack model andM be the corresponding utility. For any given n-party
protocol Π, we refer to the adversarial strategy A that achieves a (maximal) payoff ÛΠ,〈F〉(A) as
a M-maximizing adversary for Π (note that in GM, A is a best response of A to protocol Π).
Formally:

Definition 2. Let M = (F, 〈F〉, v) be an attack model and Π a protocol that realizes 〈F〉. We
say that an ITM A is a M-maximizing adversary for Π if

ÛΠ,〈F〉(A)
negl
≈ sup

A′∈ITM
ÛΠ,〈F〉(A′) =: ÛΠ,〈F〉.

Note that the notion of maximizing adversaries is specific to the protocol that is being attacked
(see Remark 2 in Appendix B.1). The notion of maximizing adversaries naturally induces a notion
of optimality for protocols. Intuitively, a protocol for implementing 〈F〉 is optimal with respect to
some attack model M if it minimizes the payoff with respect to M-maximizing adversaries. More
formally:

Definition 3. Let M = (F, 〈F〉, v) be an attack model and Π be a protocol that realizes func-
tionality 〈F〉. We say that protocol Π is attack-payoff optimal in M if for any other protocol Π′,

ÛΠ,〈F〉
negl
≤ ÛΠ′,〈F〉.

The above notion of optimality is only meaningful for comparing protocols that use the same
“hybrid” functionalities (otherwise the trivial protocol using the functionality F would always be
optimal, and the definition would coincide with Definition 5 below). We chose to nevertheless state
the definition in the above simplified form and refer to Section 1.4 for further discussion.

The quantities ÛΠ,〈F〉 and ÛΠ′,〈F〉 in Definition 3 denote the maximal payoffs of (different)
adversarial strategies that attack protocols Π and Π′, respectively. In the following we prove an
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equivalence theorem linking the above notion of protocol optimality to the equilibrium in the attack
game GM. The equivalence is stated in the following theorem:

Theorem 4. Let M = (F, 〈F〉, v) be an attack model and GM be the corresponding utility and
attack game.A protocol Π is attack-payoff optimal in M if and only if the strategy profile (Π, A)
is λ-subgame-perfect equilibrium in GM for some negligible λ, where for each Π ∈ ITMn, A(Π) is a
M-maximizing adversary attacking Π.

Proof. (⇒) The fact that (Π, A) is λ-subgame perfect follows by a simple backwards-induction
argument: The optimality of the attacker’s choice A(Π) follows from the definition of the M-
maximizing adversary; the optimality of Π follows from the assumption that it is attack-payoff
optimal in GM.

(⇐) For proving this direction we make use of Lemma 13 which states that the dummy adversary
strategy, i.e., the adversary which simply relays messages to and from its environment, is in fact
M-maximizing for any protocol. Assume that (Π, A) is λ-subgame perfect. Because the dummy
strategy D is best response to any protocol, and Π is D’s move in a subgame-perfect equilibrium,

it must be that for any protocol Π′, ÛΠ,〈F〉(D)
negl
≤ ÛΠ′,〈F〉(D). Lemma 13 now implies that

ÛΠ,〈F〉
negl
≤ ÛΠ′,〈F〉; hence Π is attack-payoff optimal.

At times protocols can “tame” the attacker completely, in the sense that the simulator is able to
perform the simulation without ever provoking the events that give the chosen adversarial strategy a
positive payoff. This is for example the case for protocols which securely realize the functionality F
in the standard cryptographic sense. Still, depending on the attack modelM = (F, 〈F〉, v)—recall
that this defines the attacker’s incentive—a protocol tailored to a particular attacker’s preference
can achieve this “best possible” security even for functionalities that cannot be implemented in
the traditional cryptographic sense. Intuitively, a protocol achieving this in some attack model M
enjoys full security in the presence of aM-maximizing adversary. We will call such protocols attack-
payoff secure. In fact, most of our feasibility results are for attack-payoff security. Nonetheless,
attack-payoff optimality is still a very interesting notion as it is achievable in settings where attack-
payoff security cannot be obtained, see Section 5.2.

Definition 5. Let M = (F, 〈F〉, v) be an attack model and let Π be a protocol that realizes

functionality 〈F〉. Protocol Π is attack-payoff secure in M if ÛΠ,〈F〉
negl
≤ ÛΦF ,〈F〉, where ΦF is the

“dummy” F-hybrid protocol (i.e., the protocol that forwards all inputs to and outputs from the
functionality F).

As protocol ΦF also implements 〈F〉—in the F-hybrid model—an attack-payoff secure protocol
Π is at least as useful for the honest parties as the ideal functionality F.

4 Protocol Composition

In this section we prove a composition theorem which, informally, allows for replacing an idealized
subroutine (within a higher-level “hybrid” protocol) by its cryptographic implementation, without
affecting the attack-payoff optimality of the higher-level protocols.

Subroutine replacement is essential for modular security proofs. In particular, modern crypto-
graphic frameworks support the design of protocols in “hybrid” models in which certain idealized
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subroutines or functionalities are available; these functionalities are then (implicitly or explicitly)
replaced by protocols relying on more realistic assumptions by invocation of composition theo-
rems [DM00, Can00, Can05, BPW03, BPW04, MR11]. For example, the overwhelming major-
ity of the SFE literature assumes ideally secure (i.e., authenticated and private) channels and/or
broadcast. Both these primitives can be implemented by use of cryptographic mechanisms, i.e.,
encryption and signatures, and/or appropriate protocols (e.g., the broadcast protocol from [DS82]
relying on digital signatures) using standard insecure communication links (e.g., the Internet) and
a public-key infrastructure (PKI). As we argue below, support of subroutine replacement has so
far been lacking in existing rational computation models.

Composition theorem(s). Our model admits for protocol composition (in the sense of subroutine
replacement). The composition theorem is stated informally below; the formal statement and proof
can be found in Appendix B. We point out that the proof relies on a “dummy adversary lemma”
(Lemma 13) akin to [Can05, Claim 10] which, as we show, also holds in our model (cf. Remark 2
in Appendix B). Such dummy adversary lemmas have proven to be of great use in traditional
cryptographic definitions.

Theorem 6 (informal). Let M = (F, 〈F〉, v) be an attack model and Π be a H-hybrid protocol,
and Ψ be a protocol that securely realizes H (in the traditional simulation-based notion of security).
Then replacing in Π calls to H by invocations of protocol Ψ does not (noticeably) increase the utility
of a M-maximizing adversary.

Theorem 6 can easily be extended to the case where Π is a {H1, . . . ,Hp(k)}-hybrid protocol,
for p a polynomial; this follows immediately from the same statement in the underlying model.
Furthermore, as a corollary of Theorem 4 by applying the above subroutine replacement theorem,
we show that such a replacement does not affect the stability of the solution in the corresponding
attack game GM. See Corollary 14 in Appendix B.

Our subroutine replacement theorem shows that in the underlying cryptographic model extends
to our definitions: the subroutine replacement operation can be applied to protocols that (fully,
e.g., UC-)implement a given functionality. If the underlying protocol is secure only in the sense that
we can upper-bound the payoff of maximizing adversaries, we obtain only a weaker composition
statement which, roughly speaking, establishes an upper bound on the utility loss of the designer
when using attack-payoff optimal protocols for replacing a subroutine. The formal statement and
its proof can be found in Appendix B (Theorem 15).

(In)Composability in existing rational frameworks. To our knowledge, existing works on
rational secure function evaluation make no statement about subroutine replacement. Although this
does not imply that such a replacement is not possible in general, we demonstrate that replacement
of a secure channel functionality in any of the rational function evaluation protocols/mechanisms
from [HT04, KN08b, KN08a, OPRV09, FKN10] by a natural cryptographic implementation in fact
destroys the equilibrium. In light of this observation, it seems there is no known way of replacing
the (arguably unrealistic) assumptions of secure channels in the above protocols by the simpler
assumption of existence of a PKI and insecure channels. The “incomposability” argument follows
by using the same backward induction argument as in [KN08a]. In the following we give an informal
description and refer to Appendix B.2 for details.

The above protocols have the following common structure: first, they use a cryptographic
SFE protocol for implementing some given functionality (the functionality is different in each
work); subsequently, the parties engage in an infinite-rounds revealment-protocol for computing
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their output from their SFE outputs. Assume that all message transmission in these protocol are
replaced by singcrypting the message and sending it over a non-private channel (i.e., a channel
that every party can read). Now every player has the following strategy: In each round of the
revealment protocol, he checks one cryptographic key for the corresponding sender (by using this
key to decrypt and then verify the signature on the signcrypted message which is transmitted
through the non-private channel). Clearly, after nK rounds (where n is the number of players and
K is the size of the key-space), this player will have checked all the keys and thereby will be able to
learn all the SFE (inputs and) outputs. Hence, in round nK every player is better off quitting and
using the corresponding key for learning the output. This makes round nK − 1 of the revealment
protocol the last round of the whole protocol, and players have an incentive to deviate (quit) for the
same reason. This process, known as backwards induction, can be repeated to show that players
will remain silent in rounds nK − 2, nK − 3, . . . , 1.

5 Scoring Privacy, Correctness, and the Cost of Corruption

In this section, we use our framework to study the feasibility of secure function evaluation
(SFE) [GMW87] with respect to a natural class of rational attackers. Recall that in SFE, a
set of n distrustful parties with indices from the set P = [n] are to correctly compute a common
function on their inputs, and in such a way that (to the extent possible) their individual inputs
remain private. We consider an attacker whose specific incentive is to violate those very basic two
properties. We additionally make the natural assumption that the act of corrupting parties is not
for free (cf. [GJKY13]) and that there is a cost (negative payoff) associated with it, which further
motivates the attacker to achieve its goals with as few corruptions as possible. Note that the “costly
corruption” assumption is orthogonal to the “costly computation” assumption explored in [HP10];
however, one could formulate such an assumption in the framework of [HP10] by considering an
appropriate “complexity function” which assigns different complexity to different sets. Similarly,
one can extend our results to consider (also) costly computation by using ideas from [GMPY06].
The implications of such an extension, and in particular on rational definitions of fairness, are the
subject of ongoing research.

The ideal functionality Ffsfe for SFE is parametrized by the function f : Fn → F (this form
is without loss of generality—see, e.g., [LP09]) to be computed, receives the inputs of all parties,
computes f , and hands all outputs back to the respective parties. Our protocols aim at realizing
the fully secure version of SFE (i.e., including robustness) in which the parties always obtain their
outputs (see Appendix C for a description of the SFE functionality).

Next, we specify how attacks with the above goals are modeled in our framework. Following
the methodology described in Section 2, we first describe a “relaxed” version of the ideal SFE
functionality, denoted as 〈Fsfe〉, to allow us to define events in the ideal experiment corresponding to
the adversary achieving those goals. More precisely, in addition to Fsfe’s standard communication,
〈Fsfe〉 accepts the following commands from the simulator:

Breaking correctness: Upon receiving message (out, y) from the simulator, replace the output of
the function by y. We let Ec denote the event that the simulator sends to 〈Fsfe〉 a (out, ·) and
assign payoff γc to it.

Breaking privacy: Upon receiving message (inp, ~xI), where ~xI is a vector containing inputs of
corrupted parties (with adaptive corruptions, the set I of corrupted parties grows between queries),
return to S the output y of the function evaluated on (~x−I , ~xI), where ~x−I denotes the inputs given
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by honest parties (if these inputs are not received yet, y := ⊥). To capture a minimal privacy-
breaking event (cf. Remark 1), the functionality restricts the class of queries it accepts from
the simulator. In particular, for a query (inp, ~xI), each pi ∈ I must fulfill one of the following
conditions: (1) this is the first time a query with pi ∈ I is made, or (2) a query with input x′i
for pi has been already made, and xi ∈ {x′i,⊥}. Note, however, that 〈Fsfe〉 does not register the
vector ~xI as the actual inputs of corrupted parties; i.e., the command (inp, ·) does not result in
〈Fsfe〉 computing the honest parties’ output. We let Ep denote the event that the simulator sends
to 〈Fsfe〉 a (inp, ~xI) message and assign payoff γp to it.

Costly Corruption: To model costly corruption, we define for each set I ⊆ P of (potentially)
corrupted parties the event EI , which occurs when the adversary corrupts exactly the parties in I
and assign payoff γI to it.8

For the above defined events, the adversary’s payoff is specified by the vector ~γ =
(γc, γp,−{γI}I⊆P). For convenience, we generally let the corruption costs γI be non-negative.
We denote the corresponding payoff function as v~γ . Following our methodology, the ideal expected
utility for a simulator in the above described attack model M = (Fsfe, 〈Fsfe〉, v~γ) is defined as:

U
〈Fsfe〉
I (S,Z) := γc Pr[Ec] + γp Pr[Ep]−

∑
I⊆P

γI Pr[EI ],

where the probabilities are taken over the random coins of S, Z, and 〈Fsfe〉.
Remark 1 (On breaking privacy). We choose one of the least severe ways for breaking privacy,
namely, being able to query the functionality on different inputs for corrupted parties. Depending
on how severe attacks one is willing to allow, alternative ways of breaking privacy can be considered
(the most extreme of which would be so-called passive corruption of Fsfe [KKZZ11]). The advantage
of proving optimality/security for our 〈Fsfe〉 is that our results remain secure/optimal in settings
where more severe privacy breaking occurs—indeed, a more severe privacy breaking capability
would give the simulator more power, thereby making the simulation easier.

In the remainder of this section we study feasibility of SFE in the above attack model. To
simplify our treatment, we restrict ourselves to the setting where the same cost γ$ is associated
with corrupting each party—i.e., for any set I of size t, γI = tγ$. For simplicity, in slight abuse
of notation we shall denote the corresponding payoff vector as ~γ = (γc, γp,−γ$). Our protocols
assume the availability of a public-key infrastructure (PKI) and a broadcast channel.9

5.1 Feasibility of Attack-Payoff SFE

We study attack-payoff SFE in the attack model described above, for various choices of the payoff
vector ~γ = (γc, γp,−γ$). We start in Section 5.1.1 with a possibility result for static corruptions10

and small payoff for breaking privacy, i.e., γp < dn2 eγ$. Subsequently, in Section 5.1.2, we prove
impossibility of attack-payoff security when, for some t ≥ n

2 , γp > tγ$ and γc > (n−t)γ$. Finally, in
Section 5.1.3, we show an attack-payoff secure protocol for a large class of ~γ’s that are not excluded
by the above impossibility, i.e., a protocol for γp + γc < tγ$ and γc < (n− t)γ$. We point out that

8The corruption of parties is evident from the transcript. The event EI corresponds to the situation where
corruptions requests for parties with (distinct) IDs in I have occurred.

9For simplicity, as with a PKI broadcast is achievable tolerating any number of corruptions [DS82, HZ10, GKKZ11].
10Note that this implies that the corresponding class of adversaries that can be chosen by A in the attack-game GM

is restricted to adversaries that statically choose the set of corrupted parties at the beginning of the protocol.
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this protocol is secure even with adaptive corruptions (where no erasures are assumed), and that
(in contrast to Section 5.3) the protocols described here do not depend on the exact value of the
score vector ~γ, but rather relations among its components. In contrast, most works on rational
computation rely on complete knowledge of the utility function (cf. [AL11]).

5.1.1 Feasibility for small privacy-breaking payoff: γp < dn eγ$
The general idea of the protocol achieving attack-payoff security for γp < dn2 eγ$ is that it suffices
for the protocol to satisfy the following two properties: (1) Full security if up to n/2 parties are
corrupted, and (2) correctness (i.e., the simulator never provokes the event Ec) for arbitrary many
corruptions. Indeed, if these properties are satisfied, then the simulator might only need to provoke
Ep, and this happens only when more than n/2 parties are corrupted. Therefore, if the adversary
corrupts any party, the payoff will be upper-bounded by γp − dn2 eγ$ < 0. As a result, the best
strategy is to not corrupt any party (in which case the payoff is 0).

In fact, as argued in [IKLP06], a “tweak” of their main SFE protocol achieves the following
security guarantees that are well-suited for our goals: (1) If less than n/2 parties are corrupted,
then the protocol is fully secure, and (2) for any t < n, any adversary corrupting t parties can be
simulated by querying the ideal functionality at most t times. Intuitively, our construction builds
on the idea of the above protocol with the following modifications:

We augment it by a mechanism using (perfectly hiding) commitments and signatures which
allows us to limit the privacy-breaking power of the adversary, i.e., the set of inputs on which
it can force S to query the functionality (see bellow for details). The security of commitments
and signatures relies the existence of enhanced trapdoor permutations (for formal definitions,
see Appendix C).

In [IKLP06], the protocol might abort only before the reconstruction of the output starts, in
which case the protocol is restarted. In contrast, to allow for robustness even when t ≥ n/2,
our protocol may restart even in the reconstruction phase. This modification is necessary for
ensuring that S does not need to provoke Ec.

Before providing the formal description of our protocol, denoted as Πf
St-SFE, we remind the

reader some concepts from the cryptographic protocols literature:

Security with identifiable abort. A protocol run by parties in some set P is said to be secure
with identifiable abort if it either computes according to its specification, or it aborts with the
index of some corrupted party pi ∈ P—i.e., every honest party learns pi. Note that the protocol
for adaptively secure multi-party computation by Canetti et al. [CFGN96], call it ΠCFGN, securely
realizes any functionality with identifiable abort.11

Authenticated d-sharing. Our protocols use Shamir’s secret sharing scheme augmented with
digital signatures as an authentication mechanism. More precisely, a value s ∈ F is authentically
d-shared among the parties in set P if there exists some polynomial g of degree d with g(0) = s
such that each pi ∈ P holds a share si = g(i). In addition to his share si, pi holds a signature on
si, where the public key is known to every pj ∈ P (but no party knows the secret key).12 Such an
authenticated d-sharing scheme has the following properties:

11Alternatively, the protocol in [CLOS02] for UC security or the protocol in [GMW87] for static, stand-alone
security.

12Here, the sharing is generated by (emulating) a functionality which also generates the key pairs and announces
the public keys.
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d-Privacy: The shares of any d parties give them no information on the shared value. This property
follows trivially from the privacy of Shamir sharings.

Commitment: No corrupted party can change its share, since modifying a share requires forging
a signature. (Signatures contain unique protocol- and message IDs to prevent parties from
“copying” shares.)

d-Robustness: The secret can be reconstructed by having all parties announce their shares; if
more than d parties announce valid (authenticated) shares, Lagrange interpolation reveals the
secret.

We can now proceed to the description of our SFE protocol that is attack-payoff secure in the
attack model (Ffsfe, 〈Ffsfe〉, v~γ) for any given function f . Recall that in this subsection we assume
static corruptions. The high-level idea is as follows. The players maintain a set D which includes
all parties that have been publicly detected to misbehave (initially D = ∅). The evaluation of the
function f proceeds in three distinct phases.

In a first phase, every party publicly commits to his input and broadcasts the commitment;
subsequently, every party computes and broadcasts his signature on each of the commitments. (We
use standard commitments and existentially unforgeable signatures for the static corruption case;
to tolerate adaptive corruptions, in Section 5.1.3 we assume equivocal commitments.) If in this
phase any party is caught misbehaving, it is disqualified from the computation and is included in D
(its input is set to some default value). Let ~S denote the vector of all commitments and signatures.
Observe that for each pi ∈ P \ D, ~S includes a commitment from pi along with signatures on it
from every party in P \D, and that ~S is publicly known, i.e., it is consistent among all parties in
P \ D. Hence, the signatures ensure that no corrupted party can create an ambiguity about the
input of any party, honest or corrupted; indeed, to produce a new commitment the corrupted party
will need the signatures of the honest parties on it.

In a second phase, the parties in P \ D pool the commitments and signatures gathered in
the first phase to compute the following functionality Fcom-sfe (see below) with identifiable abort
(by using protocol ΠCFGN, for example): Fcom-sfe receives the commitments and signatures; if
the inputs of all parties in P \D are uniquely defined by the received information, then Fcom-sfe

computes an authenticated (bn2 c − |D|)-sharing of the output of f on these inputs and outputs
the shares to the parties in P \D. Otherwise, Fcom-sfe uses the information it received to detect
some misbehaving party pi ∈ P \ D and halts by publicly announcing i; upon abort, the parties
update D to include the index i and repeat this step. As breaking privacy pays less than the cost
for corrupting dn2 e parties, a rational attacker will not corrupt enough parties to learn the secret
shared by Fcom-sfe in this phase (which requires bn2 c+ 1 corruptions).

In the third (and final) phase, the parties attempt to publicly reconstruct the sharing created
in the previous phase. If the reconstruction fails then the parties identify at least one party that
did not broadcast a valid share, include him in the set D and go back to the beginning of the
second phase with this updated setting. Because in each iteration a corrupt party is detected: if
less than n/2 parties are corrupted the reconstruction will succeed, as there will be enough honest
parties who announce correct shares, otherwise, the protocol rolls back to the second phase with a
smaller player set (this can happen at most n times). Hence, the simulator never needs to provoke
the event Ec.

For the remainder of the section, we consider a fixed commitment and a fixed signature scheme.
We first describe the protocol Πf

St-SFE and the functionality Fcom-sfe which is used in Phase 2 of
the protocols to compute sharings of the function f ’s output.
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Functionality Ffcom-sfe
(
P, t, (pk1, . . . , pk|P|)

)
The functionality is parametrized by a function f : F|P| → F, a player set P, a threshold
t ≤ |P|, a non-interactive commitment scheme, a signature scheme, and a vector of public
(verification) keys (pk1, . . . , pk|P|). Fcom-sfe proceeds in rounds/steps as described below,
keeping a set D of detected parties which is initialized to D := ∅.
1. Every pi ∈ P hands Fcom-sfe a vector (comi,1, . . . , comi,|P|) of commitments along

with signatures on each comi,j matching each of the keys pkk, k ∈ {1, . . . , |P|}; fur-
thermore, every pi ∈ P hands Fcom-sfe a decommitment deci. If some pi does not send
|P| commitments along with the all |P|2 corresponding valid signatures then output
(detect, pi) and halt (if there are many such pi’s output the one with the smallest
index).a Denote by ~S the set of all valid signed commitments.

2. Fcom-sfe computes the following set for each pi ∈ P:

Ci := {comj,i | comj,i ∈ ~S has valid signatures for every pkk, k ∈ [|P|]}

If for some pi : |Ci| 6= 1 then set (detect, pi) and halt (if there is many such pi’s
output the one with the smallest index). Otherwise, for each pi ∈ P denote by comi

the unique element of Ci.

3. For each pi use deci to open comi. If opening fails then issue (detect, pi) and halt.
Otherwise, let xi denote the opened value.

4. Compute y := f(x1, . . . , xn). Choose a polynomial g ∈ F[X] of degree at most t
uniformly at random so that g(0) = y; for each pj ∈ P set sj := g(j).

5. Use the key generation algorithm for generating a (fresh) signing/verification key-pair
(sk, pk); for each pj ∈ P compute a signature σj on sj using key sk.

6. For each pj ∈ P output (sj , σj , pk) to pj .

aThe signatures are assumed to have a unique party ID and message ID, which are checked to determine
their validity.

Figure 1: The functionality Fcom-sfe

Theorem 7. Let γp < dn2 eγ$. Assuming the existence of enhanced trapdoor-permutations, protocol

Πf
St-SFE is attack-payoff secure in the attack model (Ffsfe, 〈Ffsfe〉, v~γ) with static but arbitrarily many

corruptions.

Proof. We prove the statement in the hybrid world, where the protocol ΠSt-SFE uses a broadcast
functionality Fbc (see Appendix C) and the version of functionality Fcom-sfe that allows for (identi-
fiable) abort (i.e, in addition to those specified in its code, Fcom-sfe might accept from the adversary
a special input (abort, pi), where pi is a corrupted party; upon receiving this input, Fcom-sfe re-
turns (abort, pi) to every party and halts). The security statement for the setting where Fbc and
Fcom-sfe are replaced by invocations of protocols that securely realize them follows then directly by
application of Theorem 6 which implies that this replacement might only reduce the adversary’s
utility. Recall that we also assume trapdoor (or more generally equivocal, e.g., UC) commitments
and existentially unforgeable signatures, which we both obtain from the trapdoor permutations.
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Protocol Πf
St-SFE

Phase 1 (Input Commitment): The following steps are executed. Initially D := ∅:

1.1 Every party pi ∈ P computes a commitment on his input and broadcasts it. Denote this value
by comi and the corresponding decommitment information (known exclusively to pi) by deci. Any
party that does not broadcast a commitment is added to D.

1.2 Every pj signs (using his private signing key skj) all the commitments com`1 , . . . , com`|P\D| broad-
cast by the parties in P \ D = {p`1 , . . . , p`|P\D|}, and broadcasts these signatures. If some pj
broadcasts an inconsistent message or an invalid signature, then D := D ∪ {pj}.

Phase 2 (Computation): Let ~S|P\D denote the vector of all commitments and signatures from parties
in P\D. Using an SFE protocol which is secure with identifiable abort for arbitrarily many corruptions

(e.g., ΠCFGN), the parties in P \D = {p`1 , . . . , p`|P\D|} evaluate the functionality Ff
com-sfe(P \D, bn2 c−

|D|, (pk`1 , . . . , pk`|P\D|
)) on input ~S|P\D. If the evaluation outputs (detect, pi) or aborts with pi then

set D := D ∪ {pi} and repeat Phase 2 in this updated setting.

Phase 3 (Output): Let s`1 , . . . , s`|P\D| be the shares output in Phase 2.

3.1 Every party broadcasts his share si along with the corresponding signature.

3.2 If at least bn2 c−|D|+1 announced shares with valid signatures, then interpolate the corresponding
polynomial and output the shared value. Otherwise, let D′ denote the set of parties that announced
no share or an invalid signature. Set D := D ∪D′ and repeat Phase 2 in this updated setting.

When no party is corrupted then the protocol ΠSt-SFE is fully secure, i.e., can be simulated
without provoking any of the events Ep and Ec. Indeed, in that case all commitments and signatures
on the inputs handed by the environment are properly generated in phase 1, and the functionality
Fcom-sfe securely computes an authenticated bn2 c-sharing of the output in phase 2 (no abort or
detection occurs as there is no corrupted party) which is then robustly reconstructed in phase 3.
By the definition of the broadcast functionality Fbc, no messages are leaked to the adversary during
the protocol execution and the simulation is trivially perfect, so by corrupting no party the utility
of the adversary is 0. In the remainder of the proof, we show that the best choice for the attacker
is to refrain from corrupting any party, as this choice gives him 0 utility, in contrast to any other
choice which gives him negative expected utility. For any number 0 < c < n of corrupted parties
we design an 〈Ffsfe〉-hybrid simulator S that emulates the adversary’s behavior and has negative
expected ideal utility independent of the environment’s strategy. In the remaining case c = n, the
protocol can easily be simulated as the functionality does not provide guarantees; the expected
utility is −nγ$ < 0. Because the ideal expected utility of any S with the best environment upper-
bounds the maximal utility of the adversary, this proves that the utility of the adversary will also
be negative when c > 0.

In the following paragraphs we describe the simulator S which, when the adversary corrupts
c < n/2 parties, does not provoke any of the events Ep and Ec, and therefore A’s utility will be
−cγ$ < 0. If A corrupts c ≥ n/2 parties then S will provoke the event Ep (but not Ec) in which
case the utility of the adversary will again be at most γp − dn2 eγ$ < 0.

S invokes the adversary A as a black box (in particular it takes over A’s interfaces to the hybrids
Fbc and Fcom-sfe). We consider two cases depending on the number c of corrupted parties (recall
that we are in the static-corruption setting): (1) c < n/2, and (2) c ≥ n/2.

Case 1 (c < n/2):
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Simulation of Phase 1: S emulates the behavior of Fbc; S receives from A the commitments to
be broadcast and signed. For simulating the announcing of commitments and signatures of honest
parties, S computes (and outputs to the adversary) commitments to 0 for those inputs along with
corresponding signatures. Note that the privacy of the commitment scheme ensures that A’s view
is indistinguishable from the corresponding view in the protocol where the commitments are on
the actual inputs of the parties. Similarly to the protocol, S keeps track of parties that broadcast
invalid messages in a set D̃ (initially D̃ := ∅)
Simulation of Phase 2: S emulates the execution of Fcom-sfe as follows: it takes from A the
vector ~S|P\D̃ and does (for the corrupted parties) the checks defined in Fcom-sfe. If Fcom-sfe would

halt with output (detect, pi), then forward this output to the adversary and set D̃ := D̃ ∪ {pi}.
Otherwise, if Fcom-sfe would output the authenticated sharing of the output, S simulates the ad-
versary’s view on the output as follows: first invoke the key generation algorithm for generating
simulated signing/verification keys (s̃k, p̃k); for each corrupted party, pick a random share s̃i, com-
pute a signature σ̃i on s̃i using s̃k and output (s̃i, σ̃i, p̃k) to A. Note that as the adversary corrupts
c < n/2 parties, there will be at most n/2 − |D̃| corrupted parties in P \ D̃, which, as Fcom-sfe

outputs a (bn2 c − |D̃|)-sharing, implies that the adversary’s shares in the Fcom-sfe-hybrid protocol
look uniformly random, i.e., distributed as in the simulated execution. Finally, if in this phase S
receives (abort, pi) from the adversary, then it sets D̃ := D̃ ∪ {pi} and repeats the simulation of
the phase in this updated setting.

Simulation of Phase 3: S simulates opening of the sharing as follows: S hands the inputs of
the adversary to the ideal functionality 〈Ffsfe〉 and receives back the output y of the evaluation
(on the actual honest parties’ inputs). Subsequently, S emulates the shares of all honest parties
as follows (let C denote the set of corrupted parties): S constructs a polynomial g̃(·) of degree (at

most) bn−|D̃|2 c with g̃(0) = y and g̃(i) = s̃i for each pi ∈ C. S sets the share of each (simulated)

honest pi to s̃i := g̃(i) and computes corresponding signature σ̃i := ˜sig(s̃i) with the key s̃k of the
last iteration of Phase 2. Note that because c < n/2 parties (in total) are corrupted, the robustness
of the sharing scheme ensures that the output will be reconstructed at that point.

Case 2 (c ≥ n/2):

Simulation of Phase 1: The simulation of this phase is identical to case 1.

Simulation of Phases 2 and 3: S emulates the execution of Fcom-sfe as follows: it takes
from A the vector ~S|P\D̃ and does (for the corrupted parties) the checks defined if Fcom-sfe. If

Fcom-sfe would halt with output (detect, pi), then forward the output to the adversary and set
D̃ := D̃ ∪ {pi}. Otherwise, if Fcom-sfe would output the actual authenticated sharing, S simulates

the adversary’s view of the output as follows: S provokes the event Ep and queries 〈Ffsfe〉 on
the inputs corresponding to this execution: i.e., ⊥ for parties in D̃ and the actual input received
from the adversary for the remaining corrupted parties (observe that for those parties their input

commitments have been opened by A in this iteration). S then receives from 〈Ffsfe〉 the output
of the function evaluated on this inputs and computes (simulated) shares for both the corrupted
and the honest parties as in the simulation of the phase 3 in the previous case (case 1). Having
these shares, S can easily emulate the opening. If S receives (abort, pi) from the adversary, then it
sets D̃ := D̃ ∪ {pi} and repeats the simulation of the phase in this updated setting. Because each
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time phase 2 is repeated a sharing of a smaller degree is computed, after at most n iterations this
process will finish; the simulator will hand to 〈Ffsfe〉 the inputs of the corrupted parties that are
not in D̃ and halt.
S is a good simulator: in Phase 1, the only difference between the real and ideal world transcripts

is that the commitments of the honest parties are on 0 instead of the actual inputs, but as the
commitment scheme is perfectly hiding, the simulated transcript has (up to this point) the same
distribution as the protocol transcript. Furthermore, in Appendix D be prove a result about the
security of Πf,t

St-SFE (Claim 2) which ensures that (in each iteration of phase 2), unless a signature is

forged, Πf,t
St-SFE either aborts with an index of a corrupted party or provides the correct output—in

either case the simulator produces a transcript with the correct distribution. Moreover, unless
the adversary breaks the binding property of the commitment scheme, the inputs to the function
computed within Fcom-sfe remain the same in each iteration of phases 2 and 3, so the simulator
can use the privacy breaking capability of 〈Ffsfe〉. (A formal proof of course requires to construct
from an adversary that provokes these differences in the transcript an adversary against the binding
property of the commitment scheme or the unforgeability of the signature scheme, respectively.)

To conclude the proof, we observe that: (1) In Case 1, the simulator does not provoke any of
the events Ec or Ep and therefore his expected utility is −cγ$ < 0. In Case (2), the simulator
provokes Ep but not Ec and therefore his expected utility is γp − cγ$ < 0. Hence, in any case, if
the adversary corrupts at least one party his maximal utility will be negative, which implies that
a rational attacker will corrupt no party and obtain utility 0.

5.1.2 A Broad Impossibility Result

If γp ≥ dn2 eγ$, then for a large selection of payoff vectors ~γ, attack-payoff secure protocols for the

attack model (Fsfe, 〈Fsfe〉, v~γ) do not exist. We show this by showing impossibility for computing
a specific function. Our result makes use of the following impossibility result by Katz [Kat07].

Fact 1 ([Kat07, Theorem 1]). There is a finite, deterministic functionality FK07 for which there
is no polynomial-round protocol Π that simultaneously satisfies the following two properties: (1) Π
securely realizes FK07 in the presence of t corrupted parties, and (2) Π is (n− t)-private.

Unfortunately, we cannot use the result in [Kat07] directly as it uses a standard definition of
privacy (roughly speaking, it requires that just the output of an adversary attacking the protocol
can be simulated by an F-ideal simulator; for completeness, we include the formal definition as
Definition 19 in Appendix C). Still, it is not hard to show that if a protocol is simulatable by a
〈F〉-ideal simulator which never sends to 〈F〉 the command (query, ·), then it is private according
to the notion in [Kat07]. We state and prove this implication in Lemma 20 (see Appendix C),
which allows us to demonstrate that when γp ≥ dn2 eγ$ there are no attack-payoff secure protocols
for arbitrary functions. The proof idea is to show that existence of a protocol which is attack-payoff
secure in the respective attack model would contradict Fact 1.

Theorem 8. Let t ≥ n/2. If γp > γ$t and γc > γ$(n− t), then there exists no (polynomial-round)

attack-payoff secure protocol Π in the attack model (FK07, 〈FK07〉, v~γ).

Proof. Assume, towards contradiction, that such a protocol Π exists. Because Π is attack-
payoff secure in the attack model (FK07, 〈FK07〉, v~γ), for any M-maximizing adversary we have

ÛΠ,〈FK07〉
negl
≤ 0. We consider two cases, depending on the actual number c of corrupted parties (we

assume that the adversary is static).
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(1) c ≤ n−t parties are corrupted. In this case, protocol Π must be simulatable by a simulator that
does not provoke any of the events Ep and Ec, as provoking any of those events (with noticeable

probability) would give the adversary a positive payoff, thus contradicting the fact that ÛΠ,〈FK07〉
negl
≤

0. But this implies that in this case Π is simulatable in the FK07-ideal model, which implies that
it securely realizes FK07.

(2) n− t < c ≤ t parties are corrupted. In this case, protocol Π must be simulatable by a simulator
that does not provoke the events Ep, as provoking this event (with noticeable probability) would

give the adversary positive payoff contradicting the fact that ÛΠ,〈FK07〉
negl
≤ 0. But, by Lemma 20,

this implies that Π is private according to the definition of privacy from [Kat07]. The existence of
such a protocol, however, contradicts Fact 1.

5.1.3 Feasibility with Adaptive Corruption

We now show an attack-payoff secure protocol for a large class of payoff vectors that are not
excluded by the above impossibility result, namely, γc + γp < tγ$ and γc < tγ$, for t ≥ n/2. The
protocol is even secure with respect to adaptive corruptions.

The protocol works similarly to the protocol ΠSt-SFE with the following differences:

In phase 2: the functionality Fcom-sfe is necessarily evaluated by use of an adaptively secure
protocol with identifiable abort (e.g., [CFGN96, CLOS02]). Furthermore, the computed shar-
ings are of degree t− |D|, where t is a parameter of the protocol (note that t can be computed
for the protocol using knowledge of ~γ). This will ensure that it is too expensive for the the
adversary to provoke the event Ep as this will require corrupting more than t parties.

In phase 3, if the reconstruction aborts, then the protocol also aborts (and every party outputs
a default value). This will ensure that when less than t parties are corrupted, the simulator
must at most provoke the less rewarding event Ec.

A detailed description of the adaptively attack-payoff secure protocol ΠAd-SFE along with its
security proof is given in the following.

The following theorem states the security achieved by protocol Πf,t
Ad-SFE. As a technical remark,

we note that we implicitly assume that the SFE functionality Fsfe that we aim in computing is
adaptively well-formed which, roughly speaking, means that, if all parties become corrupted, Fsfe

outputs all its inputs and randomness to the simulator (see [CLOS02] for a detailed description).

Theorem 9. Let t ≥ n/2 and let M = (Ffsfe, 〈Ffsfe〉, v~γ) be an attack model. Assuming enhanced

trapdoor-permutations, if γc+γp < tγ$ and γc < (n− t)γ$ then the protocol Πf,t
Ad-SFE is attack-payoff

secure in M.

Proof. As in the proof of Theorem 7 we prove that the utility of an M-maximizing adversary
attacking protocol Πf

Ad-SFE is 0. We provide the simulator for the protocol being executed in a
hybrid world where the parties have access to a broadcast functionality Fbc and the version of
functionality Fcom-sfe which allows for (identifiable) abort (i.e, in addition to its code Fcom-sfe

might accept from its adversary a special input (abort, pi), where pi is a corrupted party; upon
receiving this input, Fcom-sfe returns (abort, pi) to every party and halts). Recall that we assume
trapdoor (or more generally equivocal, e.g., UC) commitments. Note, also that Fbc can be fully
securely implemented by use of the protocol from [DS82].The original statement, for the setting
where Fbc and Fcom-sfe are replaced by invocations of protocols that securely realize them follows
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Protocol Πf,t
Ad-SFE

Phase 1 (Input Commitment): The following steps are executed. Initially D := ∅:

1.1 Every party pi ∈ P computes a commitment on his input and broadcasts it. Denote this value
by comi and the corresponding decommitment information (known exclusively to pi) by deci. Any
party that does not broadcast a commitment is added to D.

1.2 Every pj signs (using his private signing key skj) all the commitments com`1 , . . . , com`|P\D| broad-
cast by the parties in P \ D = {p`1 , . . . , p`|P\D|}, and broadcasts these signatures. If some pj
broadcasts an inconsistent message or an invalid signature, then D := D ∪ {pj}.

Phase 2 (Computation): Let ~S|P\D denote the vector of all commitments and signatures from
parties in P \ D. Using an SFE protocol which is secure with identifiable abort for arbitrarily many
corruptions (e.g., the protocol from [CFGN96]), the parties in P \D = {p`1 , . . . , p`|P\D|} evaluate the

functionality Ff
com-sfe(P \ D, t − |D|, (pk`1 , . . . , pk`|P\D|

)) on input ~S|P\D. If the evaluation outputs

(detect, pi) or aborts with pi then set D := D ∪ {pi} and repeat Phase 2 in this updated setting.

Phase 3 (Output): Let s`1 , . . . , s`|P\D| be the shares output in Phase 2.

3.1 Every party broadcasts his share si along with the corresponding signature.

3.2 If there are at least t − |D| + 1 announced shares with valid signatures, then interpolate the
corresponding polynomial and output the shared valuea. Otherwise, abort and have every party
output a default value, e.g. 0.

aNote that as long as there is an honest party, only correct shares can be announced, because to announce
a wrong share, the adversary has to forge the trusted party’s signature on it.

Figure 2: Adaptively attack-payoff secure protocol for γc + γp < tγ$ and γc < tγ$, t ≥ n/2.
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then directly by application of Theorem 6 which implies that this replacement might only reduce
the adversary’s utility.

By inspection of the protocol it is straightforward to verify that when no party is corrupted then the
protocol ΠAd-SFE is fully secure, i.e., can be simulated without provoking any of the events Ep and
Ec. Indeed, in that case all commitments and signatures on the inputs handed by the environment
are properly generated in phase 1, and the functionality Fcom-sfe securely computes a t-sharing of
the output in phase 2 (no abort or detection occurs as there is no corrupted party) which is then
robustly reconstructed in phase 3. Hence, by corrupting no party the utility of the adversary is
0. In the remainder of the proof, we show that if the adversary corrupts c > 0 parties, then his
expected utility is negative; hence a rational attacker will corrupt no party and obtain utility 0.

Let A be an adversary attacking protocol ΠAd-SFE. We describe a simulator S for this A. The
invariant in the simulation is that as long as A corrupts c < n− t parties, S does not provoke any
of the events Ep and Ec, and therefore the utility of A in this case will be at most −cγ$ < 0. If A
corrupts c parties where (n− t) < c ≤ t then S might at most provoke the event Ec in which case
the utility of the adversary will again be at most γc − cγ$ < 0. Else, if A corrupts c > t parties
then S might both Ep and Ec, but the utility will again be γc + γp− cγ$ < 0. Hence, the adversary
is always better off corrupting no party and obtaining utility 0. The description of S follows:

S invokes the adversaryA as a black box (in particular it takes overA’s interfaces to the hybrids Fbc

and Fcom-sfe). Similarly to the protocol, S keeps track of parties that broadcast invalid messages
in a set D̃ (initially D̃ := ∅). Note that, later on, S needs to keep track of when D̃ is updated but
he can do that by analyzing his view of the simulation.

Simulation of phase 1: S receives from A the commitments to be broadcast and the corre-
sponding signatures. If some party sends an invalid signature he is added in D̃. For simulating
the announcing of commitments and signatures of honest parties, S computes (and outputs to the
adversary) commitments to 0 for those inputs along with corresponding signatures.13 If A requests
to corrupt some party that has already sent his commitment (in the simulated protocol), S corrupts
this party in the ideal world, learns his input, and uses the trapdoor (or, more generally the equiv-
ocability) of the commitment scheme to open the commitment to this input. Note that the privacy
of the commitment scheme ensures that A’s view is indistinguishable from the corresponding view
in the protocol where the commitments are on the actual inputs of the parties. Also, S emulates
the behavior of the broadcast channel. Similarly to the protocol, S keeps track of parties that
broadcast invalid messages. However, unlike the protocol, S needs to keep track of the order in
which the parties were disqualified.

Simulation of phase 2: S emulates the execution of Fcom-sfe as follows: It takes from A the
vector ~S and does (for the corrupted parties) the same checks as Fcom-sfe would do: If Fcom-sfe

would halt with output (detect, pi), then forward the output to the adversary and set D̃ :=
D̃ ∪ {pi}. Otherwise, if Fcom-sfe would output the actual authenticated sharing, S simulates
the adversary’s view on the output as follows: first he invokes the key generation algorithm for
generating simulated signing/verification keys (s̃k, p̃k); as long as at most t parties have been
corrupted, for each corrupted party S picks a random share s̃i, computes a signature σ̃i on s̃i using
s̃k and outputs (s̃i, σ̃i, p̃k) to A. Note that as long as the adversary corrupts less than t parties,
there will be at most t − |D̃| corrupted parties in P \ D̃,14 which implies that the adversary’s

13Recall that S controls the PKI towards the adversary, and can therefore generate signatures on arbitrary messages.
14In slight abuse of notation we might at times use D̃ as the set of the parties included in any of its (sub)components.
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shares in the Fcom-sfe-hybrid protocol look uniformly random, i.e., distributed as in the simulated
execution. If the adversary, in this phase, exceeds the threshold of t corruption, then he might learn
the output of this and all past attempts to evaluate Fcom-sfe which resulted in abort (as a result of
learning one more sharing than the thresholds). Hence S needs to simulate this view (i.e., the share
of the extra party) for each such attempt. This is done as follows: Let D̃` denote the set of detected
parties at the at the beginning of the `th attempt. The binding property of the commitments and
the unforgeability of the digital signatures ensures that the adversary cannot arbitrarily modify
the input of parties he corrupts (the only thing he can do is have them added to D and set their
input to a default value). Hence S knows exactly on which corrupted-party inputs to query the
functionality and no extraction is required. In particular, S sends the command (query, ~x(`)) to the
relaxed functionality 〈Fsfe〉 (thereby provoking the event Ep), where ~x(`) is the vector containing
for the corrupted parties in P \ D̃` the inputs received from the adversary (observe, that for those
parties their input commitments are correctly opened by A in this iteration), and for all other
corrupted parties the input ⊥; S receives back the output y` of the evaluation of f on these inputs
(along with the honest inputs for all other parties). Using y`, S emulates the shares of all parties
that were not corrupted before the t-th corruption-request as follows: let C` denote the set of

(indices of) the first t corruptions and (s
(`)
i , σ

(`)
i , pk(`)) the value S has given to A for each of these

first t corrupted parties pi ∈ C`; S constructs a polynomial g̃(`)(·) of degree t−|D̃`| with g̃(`)(0) = y`

and g̃(`)(i) = s̃
(`)
i for each pi ∈ C. S sets the share of each simulated pi ∈ P\(C∪D̃`) as s̃

(`)
i := g̃`)(i)

and computes corresponding signature σ̃
(`)
i with the key s̃k

(`)
(matching the verification key p̃k

(`)

of this round) corresponding to this iteration of the evaluation of Fcom-sfe. For every corruption

request of some pi (beyond the t threshold) S hands (s̃
(`)
i , σ̃

(`)
i , p̃k

(`)
) to the adversary, and opens the

commitment corresponding to pi as xi (again using the equivocability of the commitment scheme).
Finally, if in this phase S receives (abort, pi) from the adversary,15 then it sets D̃ := D̃ ∪ {pi} and
repeats the simulation of the phase in this updated setting.

Simulation of phase 3: S simulates the openings of the sharing as follows (where D̃ denotes
the set of detected parties at the beginning of this phase): If there are c > t corrupted parties
at the beginning of this phase, then S has already provoked the event Ep, and has generated
simulated shares for all honest parties as described in the simulation of phase 2. Otherwise, S
hands the inputs of the adversary to the ideal functionality 〈Ffsfe〉 and receives back the output
y of the evaluation (on the actual honest parties’ inputs). Using y, S emulates the shares of all
parties that were not corrupted at the beginning of phase 3 similar to the simulation of phase 2.
Subsequently, for each honest pi, S simulates the opening of pi’s share by emulating towards A the
broadcasting of (s̃i, σ̃i). Note that as long as at least t− |D̃|+ 1 parties send validly signed shares
the robustness of the sharing scheme ensures that the reconstruction will succeed. Therefore, less
than(t − |D̃| + 1) − (n − c) corrupted parties announce (i.e., send to S) validly signed shares, S
sends F the command (modify-output, v) where v is the default value that the parties output
upon abort in this phase. Otherwise, allow the functionality to deliver the outputs. Observe, that
an adaptive adversary corrupting n − t < c ≤ t parties might force the protocol to abort, and
then perform some post-execution corruption of more than t parties (in total). In that case, the
adversary learns the actual function output (in particular the shares of the newly corrupted parties
that define those outputs) along with the outputs of all aborted iterations of phase 2. To simulate
this view, the simulators proceeds as in phase 2 (i.e., provokes Ep and emulates all sharings).

15Recall that we use a protocol for computing Fcom-sfe that is secure with abort.
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By inspection, one can verify that the above is a good simulator as he produces the same
transcript as the actual protocol, with the only difference that in phase 1 the commitments of the
honest parties are on 0 instead of the actual inputs. Indeed, the hiding property of the commitment
scheme ensures that the simulated transcript is indistinguishable from the protocol transcript.
Furthermore, Claim 2 ensures that as long as no signature is forged and no commitment is falsely
opened (i.e., with overwhelming probability) whenever Πf,t

Ad-SFE does not abort the sharing of the

protocol is identically distributed as the output of Ffsfe on the corresponding inputs
We show that the expected ideal utility of S, which is an upper-bound on the utility of the

adversary, is always negative when the adversary corrupts c > 1 parties:

1. If at the end of the protocol c < n− t then S does not provoke the events Ec or Ep during the
protocol simulation, and might be at most provoke the event Ep and this only if the adversary
corrupts c′ > t parties during a post-execution corruption phase. Hence the expected ideal
utility in this case is at most γp − c′γ$ < 0.

2. Otherwise (i.e. if at some point in the simulation c ≥ n− t) then we consider two subcases:

1. If the emulated protocol aborts in phase 3, then: if A never corrupts t + 1 parties (i.e,.
not even after the execution) then the simulator needs to provoke the event Ec but not
Ep (the expected utility will be at most γc−cγ$ < 0); otherwise, S might need to provoke
both events but as c′ > t parties are corrupted the expected utility is again negative.

2. If the protocol does not abort in phase 3: then: if A never corrupts t+ 1 parties (i.e,. not
even after the execution) then the simulator needs to provoke none of the events Ec and
Ep (the expected utility will be at most −cγ$ < 0); otherwise, S might need to provoke
both events but as c′ > t parties are corrupted the expected utility is again negative.

Note that in any case, if at any point in the simulation the adversary corrupts every party
in P, then the adaptive well-formedness of Fsfe ensures that S will receive all the inputs
and randomness and will therefore be able to complete his simulation without provoking any
additional events. Hence, corrupting all parties is also not a strategy of a rational attacker.

5.2 A Positive Result for an Impossible Case

So far we have given positive and negative results for attack-payoff secure function evaluation. Here,
we investigate attack-payoff optimality (cf. Definition 3) in settings where attack-payoff security
is provably unachievable. More precisely, consider the case of secure two-party computation (i.e.,
n = 2), where the values γp and γc are both greater than the cost γ$ of corrupting a party. Theorem 8
shows that in this setting it is impossible to get an attack-payoff secure protocol implementing
functionality Fsfe. We now describe a protocol that is attack-payoff optimal in (Fsfe, 〈Fsfe〉, v~γ),
assuming the adversary statically chooses the set of corrupted parties.
Our protocol, called ΠOp−SFE, consists of two phases; let f denote the function to be computed:

1. ΠOp−SFE uses a protocol for SFE with abort (e.g., [CFGN96, CLOS02]) to compute the following
function f ′: f ′ takes as input the inputs of the parties to f and outputs an authenticated 1-
sharing of the output of f along with an index i ∈R {1, 2} chosen uniformly at random. In
case of an unfair abort, the honest party takes a default value as the input of the corrupted
party and locally computes the function f—and the protocol ends here.

24



2. If the evaluation of f ′ did not abort, the second phase consists of two rounds. In the first round,
the output (sharing) is reconstructed towards pi, and in the second round it is reconstructed
towards p3−i.

The adversary’s payoff in the above protocol is upper-bounded by
min{γp,γc}

2 −γ$, which is stated
in the following theorem. The intuition of the proof is the following: If the adversary corrupts party
pi, which is the first to receive (information about) the output, then he can force the simulator
to provoke one of the events Ec and Ep. However, the simulator can choose which of the events
to provoke (and the best simulator will choose the one that pays less to the adversary) as at the
point when the index i is announced, the adversary has only seen a share of the output (hence,
the simulator can wait and query Fsfe at the very end). Because the index i of the party who first
learns the output is chosen at random, the simulator needs to provoke one of these events with
probability 1/2; with the remaining 1/2 probability the honest party receives the output first, in
which case the adversary can do nothing.

Theorem 10. Let M = (Fsfe, 〈Fsfe〉, v~γ) be an attack-model where min{γp, γc} > γ$. Then for

any static adversary attacking ΠOp−SFE in M, ÛΠOp−SFE,〈Fsfe〉
negl
≤ min{γp,γc}

2 − γ$.

Proof. As in Theorems 7 and 9 we prove the statement in the hybrid world, where the protocol

ΠOp−SFE uses the version of functionality Ff
′

sfe which allows for identifiable abort (denote it by Ff
′,⊥

sfe ).
The security statement for the setting where Fcom-sfe is replaced by invocation of a protocol that
securely realize it (e.g., [CFGN96, CLOS02]) follows then directly by application of Theorem 6
which implies that this replacement might only reduce the adversary’s utility.

If both parties are corrupted, then the adversary’s payoff is −2γ$; if no party is corrupted,
the payoff is 0. Assume for the remainder of the proof that the adversary corrupts p1 (the case
where the adversary corrupts p2 is dealt with symmetrically). Note that by assumption this is the
functionality that is securely realized in the first phase of our protocol. Let A denote the adversary’s
strategy and let SA denote the following (black-box straight-line) simulator. To emulate the output

of Ff
′,⊥

sfe , SA does the following (recall that the output consists of a share for p1 and a uniformly
chosen index i ∈ {1, 2}): SA generates a signature key pair (κs, κv), randomly picks an index
î ∈R {1, 2}, and outputs a random element ŝ1 ∈ F along with κv, a signature on s1, and the index
î. Subsequently, SA does the following to simulate the opening stage of ΠOp−SFE:

If i = 1, then SA sends to 〈Ffsfe〉 the value x̂1 which A inputs to Ff,⊥sfe and asks for the output16;
let y denote this output. SA computes a share for p2 which, together with the simulated share
of p1, results in a valid sharing of y, as ŝ2 := y − ŝ1 with a valid signature (using κs). SA then
sends the signed share to p1 for reconstructing the sharing of y. In the next round, receive from
A p1’s share; if SA receives a share other than ŝ1 or an invalid signature, then SA sends abort
to 〈Ffsfe〉, before the honest party is allowed to receive the output.

If i = 2 then SA receives from A p1’s share. If SA receives a share other than ŝ1 or an invalid
signature, then it sends a default value to 〈Ffsfe〉 (as p1’s input). Otherwise, it asks 〈Ffsfe〉 for
p1’s output y, and computes a share for p2 which, together with the simulated share of p1,
results in a valid sharing of y (as above). SA sends this share to A.

As the simulated keys and shares are distributed identically to the actual sharing in the protocol
execution, SA is a good simulator for A.

16Recall that we assume wlog that f has one global output.
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We argue that for any adversary A, the score of SA is (at most)
min{γp,γc}

2 − γ$ + µ for some

negligible function µ: If A makes Ff
′,⊥

sfe abort, the simulator sends to 〈Ffsfe〉 a default input and
delivers to the honest party, which results in a payoff of −γ$. (This is the worst outcome for A.)

Hence, with overwhelming probability, A makes Ff
′,⊥

sfe output the shares. Now, if î = 1 (i.e., the
corrupted party gets the value first), then A can get the input and abort; this makes p2 output a
value based on a default input of p1. The simulator S can account for this either by provoking the
privacy event and inputting the default value, or by inputting the intended value, obtaining the
output, and using the correctness event to adapt p2’s output. Hence, the payoff in this case will be
min{γp, γc}−γc. Otherwise (̂i = 2), the adversary can only either deliver the authenticated share (S
will provide the correct input) or not deliver it (S will provide the default input), either case leads to
a payoff of −γ$. Because î is uniformly chosen, the payoff of the adversary is 1

2(min{γp, γc}−γc)−
γ
$

2
(where the negligible quantity µ comes from the fact that there might be a negligible error in the
simulation of SA). This concludes the proof.

To prove attack-payoff optimality of the above protocol, we show that there are functions f

for which
min{γp,γc}

2 − γ$ is a lower bound on the adversary’s utility for any protocol in the attack

model (Ffsfe, 〈Ffsfe〉, v~γ). Roughly, we first observe that in any such protocol there must be a round
(not necessarily fixed; for each of the parties pi) in which pi “learns the output of the evaluation.”
An adversary corrupting one of the parties at random has probability 1/2 of corrupting the party
that receives the output first; in that case the adversary learns the output and can abort the
computation, forcing the simulator to provoke at least one of the events Ep or Ec. While we
state and prove the optimality statements for the particular swap function fswp(x1, x2) = (x2, x1),
the results carry over to a large class of functions (essentially those where 1/p-security [GK10] is
impossible).

Theorem 11. Let fswp be the swap function described above, and for the attack-model M =

(Ffswpsfe , 〈F
fswp
sfe 〉, v~γ), let A be the adversary described above. For every protocol Π which securely

implements functionality 〈Ffswpsfe 〉, it holds that ÛΠ,〈Ffswpsfe 〉
negl
≥ min{γp,γc}

2 − γ$.

Proof. Toward proving the above lower bound we first show the following intermediate result
(Claim 1), which will prove useful later on, and from which the lower bound for a generic adver-
sarial strategy will be derived. We remark that Claim 1 is similar to the main theorem in [Cle86,
Section 2.2]. We consider two specific adversarial strategies A1 and A2, which are valid against

any protocol for implementing Ffswpsfe . In strategy A1, the adversary (statically) corrupts p1, and
proceeds as follows: In each round `, receive all the messages from p2. Check whether p1 holds
his actual output (A1 generates a copy of p1, simulates to this copy that p2 aborted the protocol,
obtains the output of p1 and checks whether the output of p1 is the default output—this strategy
works since the environment is universally quantified and we can assume that it tells the honest
party’s input to the adversary); if so, record the output and abort the execution before sending p1’s
`-round message(s).17 Otherwise, let p1 correctly execute its instructions for round `. The strategy
A2 is defined analogously with exchanged roles for p1 and p2. In the following, for i ∈ {1, 2} we let
pī denote the player p3−i.

17This attack is possible because the adversary is rushing.
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Claim 1. Let fswp be the swap function described above, A1 and A2 be the strategies defined above,

and ~γ > 0. For every protocol Π which securely implements functionality 〈Ffswpsfe 〉 the following
inequality holds:

ÛΠ,〈Ffswpsfe 〉~γ(A1) + ÛΠ,〈Ffswpsfe 〉,~γ(A2)
negl
≥ min{γp, γc} − 2γ$.

Proof. For i ∈ {1, 2} we consider the environment Zi that is executed together with Ai. The
environment Zi will initially choose a fixed value xī, which it provides as an input at the interface
of pī (and also communicates to Ai). Subsequently, Zi admits the execution between pī and Ai
until it is either finished or Ai aborts.

For compactness, we introduce the following two events in the protocol execution: We denote
by L the event that the adversary aborts at a round where the honest party holds the actual
output, and by L̄ the event that the adversary aborts at a round where the honest party does not
hold the actual input (i.e., if the corrupt party aborts, the honest party outputs some value other
than xi). Observe that, in case of L̄, with overwhelming probability the simulator needs to send
to the functionality a “corrupt” message, which will result in payoff min{γp, γc} − γ$; indeed, the
environment will choose the honest party’s input with high entropy such that the event L̄ will force
the simulator to allow for the payoff. On the other hand, in case of L, the simulator must (with

overwhelming probability) allow p2 to obtain the output from 〈Ffsfe〉, resulting in payoff−γ$. Hence,
except with negligible probability, whenever the adversary provokes the event L or L̄, it obtains a
payoff of −γ$ and min{γp, γc} − γ$, respectively. Therefore, the payoff of these adversaries is (at
least) (−γ$) Pr[L] + (min{γp, γc}− γ$) Pr[L̄]− µ′′, where µ′′ is a negligible function (corresponding
to the difference in the payoff that is created due to the simulation error of the optimal simulator).

To complete the proof, we compute the probability of each of the events L and L̄ for A1 and A2.
One important observation for both strategies A1 and A2, the adversary instructs the corrupted
party to behave honestly until the round when he holds the actual output, hence all messages
in the protocol execution have exactly the same distribution as in an honest execution until that
round. For each party pi, the protocol implicitly defines the rounds in which the honest, hence also
honestly behaving, pi holds the actual output (i.e., the test sketched above returns the output; note
that, as the adversary learns the inputs from the environment, it can detect when this occurs). In
such an execution, let Ri denote the first round where pi holds the actual output. There are two
cases: (i) R1 = R2 and (ii) R1 6= R2. In case (i), both A1 and A2 provoke the event L̄. In case (ii),
if R1 < R2, then A1 always provokes the event L̄, while for A2, with some probability (denoted as
qL̄), the honest party does not hold the actual output when the A2 aborts, and with probability
1− qL̄ it does.18 (Of course, the analogous arguments with switched roles hold for R1 > R2.

For the particular adversaries A1 and A2, the considered values R1 and R2 are indeed relevant,
since the adversaries both use the honest protocol machine as a “black box” until it starts holding
the output. The probability of L̄ for A1 is Pr[R1 = R2] + Pr[R1 < R2] · (1 − qL), and the overall
probability of L is Pr[R1 < R2] · qL + Pr[R1 < R2], the probabilities for A2 are analogous. Hence,

18The reason is that we don’t exclude protocols in which the output of a party which has been locked in some
round gets unlocked in a future round.
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we obtain

ÛΠ,〈Ffswpsfe 〉,~γ(A1) + ÛΠ,〈Ffswpsfe 〉,~γ(A2)

≥ PrA1 [L] · (−γ$) + PrA1 [L̄] · (min{γp, γc} − γ$) + PrA2 [L] · (−γ$) + PrA2 [L̄] · (min{γp, γc} − γ$)
≥ (2 · Pr[R1 = R2] + (Pr[R1 < R2] + Pr[R1 > R2]) · (1 + qL̄)) · (min{γp, γc} − γ$)

+ ((Pr[R1 < R2] + Pr[R1 > R2]) · (1− qL̄)) · (−γ$)
≥ (Pr[R1 = R2] + Pr[R1 < R2] + Pr[R1 > R2]) · (min{γp, γc} − γ$)

+ (Pr[R1 = R2] + Pr[R1 < R2] + Pr[R1 > R2]) · (−γ$)
≥ (min{γp, γc} − γ$) + (−γ$)− µ,

which was exactly the statement we wanted to prove.

The lower bound in the above claim does not provide a bound for a single adversary (it is merely
a statement that “either A1 or A2 must be good”). In the following, we prove a lower bound on the
payoff of a fixed adversarial strategy, which we call Agen. This strategy is the random “mixture” of
the two strategies A1 and A2 described above: The adversary corrupts one party chosen at random,
checks (in each round) whether the protocol would compute the correct output on abort, and stops
the execution as soon as it obtains the output. The lower bound is proven as follows: Since the
adversary Agen chooses one of the strategies A1 or A2 uniformly at random, it obtains payoff the
average of the payoffs of A1 and A2. Hence, using Claim 1, we obtain

ÛΠ,〈Ffswpsfe 〉,~γ(A) =
1

2
· ÛΠ,〈Ffswpsfe 〉,~γ(A1) +

1

2
· ÛΠ,〈Ffswpsfe 〉,~γ(A2)

negl
≥ 1

2
· (min{γp, γc} − 2γ$).

5.3 Feasibility for any (Given) Payoff Vector

We finally consider the case where the payoffs for breaking privacy and/or correctness may be
arbitrarily large constants. As Theorem 8 suggests, for this case it is impossible to have an attack-
payoff secure protocol for arbitrary functions. Nonetheless, we show possibility of such protocols
for a large class of functions which, roughly speaking, correspond to the ones for which we can
construct a 1/p-secure (partially fair) protocol [GK10, BLOO11]. We state the result informally
below and refer to Appendix D for a formal statement and proof. The general idea is the following:
1/p-secure protocols securely realize their specification, within an error smaller than the inverse
of an arbitrary polynomial p (in the security parameter). Because ~γ is a vector of (constant) real
values, we can choose the error 1/p to be small enough so that it is not in the adversary’s interest
to corrupt even a single party.

Theorem 12 (informal). Let f be a (two-party or multi-party) function which can be evaluated

by a 1/p-secure protocol [GK10, BLOO11] and M = (Ffsfe, 〈Ffsfe〉, v~γ) be an attack model where
the elements γp, γc, and γ$ of ~γ are arbitrary (known) positive constants. Then there exists an
attack-payoff secure protocol in M.
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A Related Literature

In this section we briefly survey some prior work on rational cryptography.

Rational secret sharing and SFE. Capturing incentives in security definitions has been the
goal of a long line of exciting results on rational cryptography, initiated by the work of Dodis,
Rabin, and Halevi [DHR00], which put forward the vision of bridging Game-theory and Cryp-
tography. The seminal work of Halpern and Teague [HT04] considered rational secret sharing
and (secure) function evaluation, where parties are rational with a “curious-then-exclusive” utility
function: everyone prefers primarily learning the output and secondarily, if he learns it, hav-
ing as few other parties learning it as possible. The solution concept suggested in [HT04] for
such a setting is the notion of Nash equilibrium surviving iterated deletion of weakly dominated
strategies. Refinements of this solution concept which are more robust (e.g., take coalitions into
consideration) and/or more suitable for modeling security in a computational world were later on
presented [GK06, ADGH06, KN08b, KN08a, Hal08, ADH08, FKN10], along with protocols im-
plementing them. This fully rational model was also extended in various ways: from considering,
in addition to rational, adversarial (non-rational) parties [LT06] or honest parties [OPRV09], to
incorporating cost of computation [HP10].

Implementing the mediator in mediated games (cryptographic cheap talk). In a separate
line of research, initiated by Dodis et al. [DHR00], the problem of implementing the mediator in
mediated games by a cryptographic protocol was considered. In a series of papers, Micali et
al [LMPS04, LMS05, IML05, ILM08] provided robust rational security definitions for the problem
and implementations using physical communication primitives such as ballot-boxes and physical
envelopes. Following up, Micali and shelat looked at the problem of rational secret sharing under
physical communication assumptions [MS09]. Solutions in a more computational setting, where
parties and resources are implemented as interactive Turing machines and an untrusted mediator
is assumed, were also given [ASV08, AKL+09, AKMZ12, CV12]. Although they rely on strong
communication primitives the solutions from [ILM08] and [AKL+09, CV12] explicitly deal with the
issue of protocol composition in their respective models.

Cryptographic properties in rational frameworks. Recently, Asharov and Lindell [AL11]
initiated a translation of the security of rational secret sharing in terms of cryptographic properties
such as correctness and fairness. Following up, Asharov, Canetti, and Hazay [ACH11] provided
rational cryptography notions of fair, correct, and private two-party SFE (by defining appropriate
utilities for the parties and corresponding protocols) and showed an equivalence between these
notions and natural cryptographic counterparts. Their results on fairness were extended in [GK12].

In comparison to these works, our simulation-based approach to defining the utilities allows us
to trivially deal with multi-party computation and to have a more fine-grained definition of the
utility function. For example, traditional notions of fairness in the rational setting [ACH11, GK12]
define the utilities of the parties based on whether or not they obtain considerable information on
each other’s output, e.g., the first bits or the whole output. However, it would be natural to consider
a protocol unfair if some party obtains noticeable, i.e., not negligible, information about the output
and the other does not. This is not necessarily a well-defined event in the (real-world) protocol
execution, but if one looks at the ideal world, then it corresponds to the simulator obtaining the
output from the ideal functionality. By using the simulation-based paradigm, we are able to score
even such events.

34



Covert and rational adversaries. A different line of work incorporates several types of incentives
into standard cryptographic definitions. Aumann and Lindell [AL07] demonstrated how to take
advantage of the adversary’s “fear” of getting caught cheating to build more efficient protocols.
Their model can be trivially captured in our framework by assigning a negative payoff to the event of
(identifiable) abort. In a recent work closer in spirit to our own, Groce at al. [GKTZ12] investigated
feasibility of Byzantine Agreement (BA) in a setting where the parties are rational but are split
in two categories: the “selfish corrupt” parties that have some known utility function representing
potential attacks to BA, and the “honest” parties who are guaranteed to follow the protocol. Their
results show how to circumvent well-established cryptographic impossibility results by making
plausible assumptions on the knowledge of the corrupt parties’ preferences, thus confirming the
advantages of incorporating incentives in the model when building practical protocols. However,
their approach and security definitions are ad hoc and tailored to the specifics of the property-
based definition of BA. In fact, our model can be tuned (by appropriately instantiating the utility
function) to formalize the results of [GKTZ12] in a simulation-based manner, providing a further
demonstration of the applicability of our model. The FlipIt model of [BvDG+12] also considers
a game between one honest and one adversarial entity to model persistent threats; the entities
are there called defender and attacker. In their model, however, the game itself is a perpetual
interaction between those two entities, whereas in our case the game only consists of two steps of
choosing strategies, and the interaction between those strategies occurs in a cryptographic model.

B Additional Details on Protocol Composition

This section includes supplementary material to Section 4.

B.1 Composition Theorems

The following discussion clarifies the dependency of the M-maximizing adversary strategy to the
protocol which is attacked and discusses the optimality of the “dummy” adversary (underlying the
dummy lemma which follows).

Remark 2 (Protocol specific adversary and the “dummy” lemma). The notion of maximizing ad-
versaries is specific to the protocol that is being attacked: An adversary that is optimal with
respect to one particular protocol is not necessarily optimal with respect to some other protocol.
Consequently, when talking about “the M-maximizing adversary” we formally refer to the family
{AΠ}Π∈ITM of ITMs such that AΠ isM-maximizing with respect to protocol Π, according to Defini-
tion 2. However, the fact that we consider an environment that maximizes the adversary’s expected
payoff allows us to shift all the adversary’s maximization effort to the environment. This leads to
a type of “maximizing dummy adversary” result, which is useful when composing protocols.

The following lemma follows states that the dummy adversary performs at least as well as any
other adversarial strategy against any protocol.

Lemma 13. Let (F, 〈F〉, v) be an attack model.Then for any M-maximizing adversary A:

ÛΠ,〈F〉(A)
negl
≤ ÛΠ,〈F〉(D),

where D denotes the dummy adversary that simply forwards messages to and from its environment.
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The proof follows easily from the definition of the maximal utility. Indeed, because we consider
the environment which maximizes the adversary’s payoff, we can shift all the maximization effort
to Z.

Theorem 6 (Utility-preserving subroutine replacement). Let M = (F, 〈F〉, v) be an attack model.
Let Π be a H-hybrid protocol, and Ψ be a protocol that securely realizes H (in the traditional
simulation-based notion of security). Then

ÛΠΨ,〈F〉(A)
negl
≤ ÛΠH,〈F〉(Â)

for any M-maximizing adversaries A and Â, where ΠΨ denotes the protocol where all calls to H
are replaced by invocations of the sub-protocol Ψ and Â is the corresponding hybrid-model adversary
guaranteed by the composition theorem. In particular for the “dummy” adversary D who simply
forwards messages to and from its environment,

ÛΠΨ,〈F〉(D)
negl
≤ ÛΠH,〈F〉(D).

Proof. The composition theorems in the considered frameworks provide us with the guarantee that
for every A attacking Πψ there exists an adversary Â attacking ΠH, and the security of Π means
that there also exists a simulator Ŝ such that

execΠψ ,A,Z
negl
≈ execΠH,Â,Z

negl
≈ exec〈F〉,Ŝ,Z (1)

for any environment Z. Now

ÛΠH,〈F〉(Â) = sup
Z∈ITM

{UΠH,〈F〉(Â,Z)} = sup
Z∈ITM

inf
Ŝ∈CÂ

{UΠH,〈F〉
I (Ŝ,Z)}.

But as by equation (1) any simulator S̄ for Â is also a good simulator for A, this also holds for any

simulator S̄ε with ε > 0 and supZ∈ITM{U
ΠH,〈F〉
I (Ŝε,Z)} < ÛΠH,〈F〉(Â) + ε and we conclude that

ÛΠψ ,〈F〉(A) = sup
Z∈ITM

inf
S∈CÂ

{UΠH,〈F〉
I (S,Z)} ≤ sup

Z∈ITM
{UΠH,〈F〉

I (S̄ε,Z)} < ÛΠH,〈F〉(Â) + ε

and the theorem follows.

The following corollary show that such a replacement does not affect the stability of the solu-
tion in the corresponding attack game GM. The proof follows in a straightforward manner from
Theorem 4 by applying the above subroutine replacement theorem (Theorem 6).

Corollary 14. Let M = (F, 〈F〉, v) be an attack model and GM be the corresponding attack game.
Assume a strategy profile (ΠR,A(·)) is λ-subgame perfect in GM, where ΠR is an R-hybrid protocol
for some functionality R. Then for any protocol ρ which securely realizes R, (Πρ,A(·)) is also
λ-subgame-perfect in GM, where Πρ is the protocol that is derived by replacing in ΠR the call to R
by invocation of ρ.19

19Recall that A is here a mapping of protocols to adversary strategies.
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Theorem 6 shows that the composition of the underlying cryptographic model extends rationally
designed protocols: the subroutine replacement operation can be applied for protocols that (fully,
e.g. UC-)implement a certain assumed functionality. If the underlying protocol is not (fully, e.g. UC-
)secure, but only secure in the sense that we can upper-bound the utility of the attacker, we obtain
(of course) only a weaker composition statement.

Theorem 15. Let M1 = (F, 〈F〉, v1) and M2 = (H, 〈H〉, v2) be attack models, and let the payoff
functions v1 and v2 be defined via event vectors ~E∗ (for 〈F〉) and ~E∗∗ (for 〈H〉), where the events in
~E∗∗ are real-world decidable, together with the score vectors ~γ∗ and ~γ∗∗, respectively, such that every

difference in behavior between 〈F〉 and F (with respect to the same random tapes) is captured by
some E∗i . Let Π1 be a protocol implementing 〈F〉, and let Π2 be an 〈F〉-hybrid protocol implementing
〈H〉. Assume that ~γ∗ ≥ 0. Then,

ÛΠ
Π1
2

negl
≤ ÛΠ1

γ̌∗i
· γ̂∗∗i + min

{
ÛΠF2 ,

(
1− ÛΠ1

γ̌∗i

)
· γ̂∗∗i

}
,

where γ̌∗ := min1≤i≤m γ
∗
i and γ̂∗ := max1≤i≤m γ

∗
i .

Intuitively, whenever the underlying functionality fails, no guarantees can be inferred for the
composed protocol—and we have to assign the maximum utility to the adversary. Furthermore,
even for the cases in which the underlying protocol indeed implements the given functionality (i.e.,
none of the “weakened” events occur; we infer a lower bound on this from the security statement
for Π1), we have to assume that these cases correspond to the ones where Π2 shows the worst
performance.

Proof. The inequality with respect to the second term of the minimization is trivial. To argue for
the first term, we—intuitively—have to grant full Π2-advantage to the cases whenever a weakness of
〈F〉 is provoked, and we still have to assign “the worst part” of the Π2-advantage to the case where
nothing happens. The following arguments say that if the composed protocol ΠΠ1

2 performs even
worse, then we can use the respective adversary (and environment) to construct a distinguisher for
the protocol Π2. Assume, toward a contradiction, that

ÛΠ
Π1
2 > ÛΠF2 + γ̂∗∗ · Û

Π1

γ̌∗i
+ 1/q

for some polynomial q. For any ε, ε′ > 0, we construct distinguishers Z̃i,ε,ε′ with 1 ≤ i ≤ m for Π
〈F〉
2

and 〈H〉 with 〈S2,ε′〉 as follows: Z̃i,ε,ε′ executes the environment Zε,ε′ for the “generic” simulator
Sε′ built from S1,ε′ and 〈S2,ε′〉 as well as S1,ε′ , forwarding the parties’ communication and the
communication between S1,ε′ and the adversarial “interface” of the connected setting (either real
or ideal) More explicitly, the simulator S1,ε′ ∈ CA is chosen such that

sup
Z∈ITM

UΠ1
I (S1,ε′ ,Z) < ÛΠ1 + ε′,

and the analogous condition holds for 〈S2,ε′〉. Likewise, the condition for Zε,ε′ is that

UΠ1
I (S1,ε′ ,Zε,ε′) > supZ∈ITM U

Π1
I (S1,ε′ ,Z)− ε. Z̃i,ε,ε′ then outputs 1 if the event E∗∗i occurs—here
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we assume that these events are real-world decidable. Overall, we obtain

ÛΠ
Π1
2 = sup

Z̄∈ITM
inf
S̄∈CA

∑
1≤i≤m

γ∗∗i · Pr〈H〉,S̄,Z̄ [E∗∗i ]

≤ sup
Z̄∈ITM

∑
1≤i≤m

γ∗∗i · Pr〈H〉,Sε′ ,Z̄ [E∗∗i ] =
∑

1≤i≤m
γ∗∗i · Pr〈H〉,Sε′ ,Zε,ε′ [E∗∗i ] + ε

=
∑

1≤i≤m
γ∗∗i · Pr〈H〉,〈S2,ε′ 〉,Z̃i,ε,ε′ [E∗∗i ] + ε,

by the way we chose environment Zε,ε′ and simulator Sε′ . Similarly,

ÛΠF2 + γ̂∗∗ · Û
Π1

γ̌∗i
≥ sup
Z̄∈ITM

∑
1≤i≤m

γ∗∗i ·
(

Pr〈H〉,S2,ε′ ,Z̄ [E∗∗i ]− ε′
)

+ γ̂∗∗ ·
(

PrΠF2 ,S1,ε′ ,Z
[
~E∗
]
− ε′

)
negl
≥

∑
1≤i≤m

γ∗∗i ·
(

PrΠ
〈F〉
2 ,S1,ε′ ,Zε,ε′

[
E∗∗i ∧ ¬ ~E∗

]
− ε′

)
+ γ̂∗∗ ·

(
PrΠ

〈F〉
2 ,S1,ε′ ,Zε,ε′

[
~E∗∗ ∧ ~E∗

]
− ε′

)
≥

∑
1≤i≤m

γ∗∗i ·
(

PrΠ
〈F〉
2 ,S1,ε′ ,Zε,ε′ [E∗∗i ]− ε′

)
=

∑
1≤i≤m

γ∗∗i ·
(

PrΠ
〈F〉
2 ,Z̃i,ε,ε′ [E∗∗i ]− ε′

)
.

If there is a noticeable gap between the two sums, then at least one of the Z̃i,ε,ε′ must be good.
For ε, ε′ → 0, this proves the claim.

B.2 (In)composability in Rational Frameworks

Existing works on rational secure function evaluation make no statement about sub-routine re-
placement. Although this does not imply that such a replacement is not possible, in this section
we demonstrate that replacement of secure channel in any of the rational function evaluation pro-
tocols/mechanisms from [HT04, KN08b, KN08a, OPRV09, FKN10] by their natural cryptographic
implementation destroys the equilibrium. In light of this observation, there is no known way of re-
placing the (arguably unrealistic) assumptions of secure channels in the above protocols by simpler
assumption of a PKI and insecure channels.

A first obstacle in formalizing the above statement (which is also due to the distance between
traditional rational and cryptographic models) is that it is not even clear how to model an insecure
channel, as (with the exception of [LT06]) there is no adversary in existing rational frameworks.
However, for our argument we do not need a formal specification. In the following, we will refer to
any resource which allows two parties to exchange a message so that any of the other parties can
learn it as a non-private channel. Our argument shows that by replacing in any of the protocols
in [HT04, KN08b, KN08a, FKN10] the secure channels assumption by a protocol sending messages
signed and encrypted over any non-private channel (assuming a PKI) makes the protocols in the
above rational cryptography works instable.

The argument follows by the same backward induction argument as in [KN08a]: The above pro-
tocols first use a cryptographic SFE protocol for implementing some given functionality (the func-
tionality is different in each work); subsequently, the parties engage in an infinite-rounds revealment-
protocol for computing their output from their SFE outputs. Assume that every player has the
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following strategy: In each round of the revealment protocol, he checks one cryptographic key for
the corresponding sender (by using this key to decrypt and then verify the signature on the sign-
crypted message which is transmitted through the non-private channel). Clearly, after sufficiently
many rounds (bounded by nK where n is the number of players and K is the size of the key-space,
this player will have checked all the keys and thereby will be able to learn all the SFE (inputs and)
outputs. Hence, in round nK every player is better off quitting and using the corresponding key
for learning the output. This makes round nK − 1 of the revealment protocol the last round of the
whole protocol, and players have an incentive to deviate (quit) for the same reason. This process,
known as backwards inductions, can be repeated to show that players will remain silent in rounds
nK − 2, nK − 3, . . . , 1. This proves the following:

Lemma 16 (informal). Let f be a multi-party NCC function and Π be any of the protocols for
evaluating f from [HT04, KN08b, KN08a, FKN10] inducing the corresponding stable solution. Let
Π′ denote the protocol which results by replacing in Π all (bilateral) message transmissions by a
protocol which signs-then-encrypts the message to be sent and then has the result transmitted over
a non-private channel. Protocol Π′ does not induce the corresponding solution.

It should be noted that in the model suggested by Halpern and Pass [HP10], the above impos-
sibility argument would not go through as they construct protocols with a finite number of rounds.
In fact, [HP10, Theorem 4.2] proves an equivalence of (a version of) their security definition to
standard cryptographic security. Although it might seem that such an equivalence directly pro-
vides a game-theoretic notion supporting subroutine replacement (hence, allowing secure channels
to be replaced by insecure communication and a PKI), this is not the case as: (1) insecure commu-
nication is not captured in traditional game-theoretic frameworks (as there is no adversary), and
(2) the above equivalence theorem holds only for subclasses of games or under “arguably unnatu-
ral” (cf. [HP10, Page 10]) assumptions about their complexity functions.20 Note that a subroutine
replacement theorem would use both directions of the equivalence, as one would need to translate
the equilibrium into an equivalent cryptographic security statement, perform the replacement using
a composition theorem, and, finally, translate the resulting protocol into an equilibrium statement.
Hence, proving a composition theorem for the model of [HP10] is an open problem.

C Some Ideal Functionalities and Security Definitions

Ideal functionalities. The following functionality is essentially taken from [Can05]. To simplify
notation, however, we generally drop the session IDs from the messages with the understanding
that the messages implicitly contain the session ID and the functionalities (as ITMs) treat different
sessions independently.

20In fact, the authors state that their equivalence results can be seen as an impossibility that considering only
rational players does not facilitate protocol design, except if only subclasses of games are assumed.
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Functionality Ffsfe(P)

Ffsfe proceeds as follows, given a function f : ({0, 1}∗∪{⊥})n×R→ ({0, 1}∗)n and a player
set P. Initialize the variables x1, . . . , xn, y1, . . . , yn to a default value ⊥.

• Upon receiving input (input, v) from some party pi with i ∈ P, set xi := v and send
a message (input, i) to the adversary.

• Upon receiving input (output) from some party pi with i ∈ P, do:

– If xj has been set for all j ∈ H, and y1, . . . , yn have not yet been set, then choose

r
R← R and set (y1, . . . , yn) := f(x1, . . . , xn, r).

– Output yi to pi.

Our protocols assume the existence of a broadcast channel, which is formalized by the func-
tionality Fbc below. In particular, if no party is corrupted, the adversary does not obtain the
transmitted messages. This property is important for our protocols to be secure.

Functionality Fbc(P)

The broadcast functionality Fbc is parametrized by a player set P.

• Upon input xs from ps ∈ P, Fbc sends xs to every p ∈ P. (If Fbc is considered a UC
functionality, the output is given in a delayed manner, cf. [Can05].)

Definitions from the literature. Our protocols make use of (standard) commitment and signa-
ture schemes, which we define below.

Definition 17. A commitment scheme is a pair of two (efficient) algorithms commit : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ and open : {0, 1}∗ × ({0, 1}∗)2 → {0, 1} such that open(commit(m, r), (m, r)) = 1
for any m, r ∈ {0, 1}∗. We will often use the notation com ← commit(m, r) and dec ← (m, r).

Definition 18. A signature scheme is a triple (keygen, sign, verify) of (efficient) algorithms
keygen : ∅ → {0, 1}∗, sign : {0, 1}∗×{0, 1}∗ → {0, 1}∗, and verify : ({0, 1}∗)3 → {0, 1}, such that
with (pk, sk)← keygen, it holds that verify(pk,m, sign(sk,m)) = 1.

D Scoring Privacy, Correctness, and the Cost of Corruption

This section includes complementary material to Section 5.

A useful claim for the proof of Theorem 7
The following claim states what is achieved by invocation of the ideal functionality Fcom-sfe on

page 16.

Claim 2 (Informal). Let P ⊆ [n], let (pk1, . . . , pk|P|) be a vector of public (verification) keys for

the signature scheme. Consider the functionality F = Ffcom-sfe(P, t, (pk1, . . . , pk|P|)) invoked on the

inputs (~Si, deci)—with

~Si = ((comi,1, σ
(i)
1,1, . . . , σ

(i)
1,|P|), . . . , (comi,1, σ

(i)
|P|,1, . . . , σ

(i)
|P|,|P|)),
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and with21 deci = (xi, ri) and ri ∈ {0, 1}∗—from each pi. Assume that

(i) (at least) one p ∈ P remains uncorrupted,

(ii) for all honest pi, pj: open(comi,i, deci) = 1, verify(pkk, comi,l, σ
(i)
l,k) = 1 for all l, k ∈ [|P|],

and ~Si = ~Sj,

(iii) for each honest pi ∈ P and each pj ∈ P: if comj,i 6= comi,i, then there is some pk ∈ [|P|] such

that verify(pkk, comj,i, σ
(j)
i,k ) = 0.

Then, F either outputs a random authenticated t-sharing of y = f(x1, . . . , xn) or it outputs
(detect, pj), for some corrupted pj ∈ P.

Intuitively, the above claim means that to attack the protocol, an adversary must either break
the binding property of the commitment scheme (to replace the input by a different value) or forge
a signature on a fake commitment.

Proof (sketch). Fcom-sfe outputs (detect, pj) only when pj is corrupted: In step 1., honest parties
will not be “detected” by assumption (ii). In step 2., no honest party will be “detected” because
assumptions (ii) and (iii) imply that for comj,i 6= comi,i, pj would have been “detected” in step 1.
already, and step 3, follows exactly as step 1. If Fcom-sfe does not output (detect, ·), then all
commitments have been opened successfully in step 3. and the output is as described by the
definition of the functionality.

The definition of t-privacy from [Kat07] For completeness we have included a definition of
t-privacy from [Kat07]

Definition 19. Let F be an n-party randomized functionality, and Π be an n-party protocol. Then
Π t-privately computes f in the presence of malicious adversaries if for any PPT adversary A there
exists a PPT adversary A′ such that for any I ⊂ [n] with |I| ≤ t:

outputπ,A,I ≈ outputF,A′,I .

Here, the random variables outputπ,A,I and outputF,A′,I denote the output of the adversary in
the real and ideal models, respectively, and ≈ denotes computational indistinguishability.

The following lemma shows that if a protocol is simulatable by a 〈F〉-ideal simulator who
never sends to the functionality the command (inp, ·), then it is private according to the notion
in [Kat07]. We use the following notation: for a relaxed functionality 〈F〉 we denote by 〈F〉S the
“strengthened” version of 〈F〉 which ignores any (inp, ·) command. I.e., the difference between
〈F〉S and F is that the former may only accept (modify output, ·) commands.

Lemma 20. Let 〈F〉S be as above. If a protocol Π securely realizes 〈F〉S while tolerating t corrup-
tions, then Π is t-private according to Definition 19.

21We implicitly assume an encoding of group elements as bit strings.
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Proof. Towards a contradiction, we assume that there is an input vector ~x, an auxiliary string
z ∈ {0, 1}∗, and an adversary A such that for each A′ there is a distinguisher D that tells
outputπ,A,I(k, ~x, z) and outputF,A′,I(k, ~x, z) apart (with noticeable probability for k → ∞).
Let I ⊂ [n] with |I| ≤ t be the set of corrupted parties.

From ~x, z, A, and D we construct an environment for Π and 〈F〉S as follows: the environment
provides input xi to party i ∈ [n] \ I and instantiates A with input z. Z then executes A on the
protocol: all messages obtained in the execution are given to A, and all messages that A intends to
deliver or inject in the execution are handled accordingly. As soon as A provides output, Z feeds
this output into D and provides the output of D as its local output.

To conclude the proof, we need to show that any simulator S for 〈F〉S can be used to build an
adversary A′ such that the output of A′ given to D is the same in Katz’s model an within Z. In
more detail, this A′ is constructed from A and S (formally A′ instantiates both A and S, forwards
the messages between them as well as S’s interaction with the ideal functionality, and outputs the
same as A). Consequently, the input to D in Katz’s model is distributed exactly as the input to
the simulated D within Z in an ideal model execution with simulator S, so the advantage of D
directly translates into an advantage of Z.

Feasibility for any (Given) Payoff Vector (cont’d). In the following, we formalize the state-
ments from Section 5.3. Roughly speaking, we show that for any function f for which there exist a
1/p-secure protocol implementing f , we can construct an attack-payoff secure protocol with respect
to an arbitrary score vector ~γ.

More specifically, recall the notion of ε-security introduced by Gordon and Katz [GK10]: Infor-
mally, a protocol is ε-secure if it securely realizes the corresponding ideal functionality except with
probability 1−ε 22. Further, it was shown in [GK10] that 1/p-security for an arbitrary polynomial p
is possible for a large class of interesting two-party functions. These results were later extended by
Beimel et al. [BLOO11] to the multi-party setting. Note that as these results hold for an arbitrary
polynomial p, they also imply ε-security for an arbitrary small constant ε.

We now show that for any possible choice of γp and γc, if there exists an ε-secure protocol
protocol for an arbitrarily small ε > 0 for computing a function f , then there exists a protocol
which is attack-payoff secure in the attack-model (Ffsfe, 〈Ffsfe〉, v~γ). In order for this to work we
need some additional requirements that the simulator for Π should satisfy than what is required
by the protocols in [GK10, BLOO11]:

Non-Triviality: When every party is honest, S can simulate Π in the Ffsfe-ideal world (i.e.,
without provoking any of the events Ep or Ec).

Taming: Let t > 0 be the number of corrupted parties at the end of the protocol execution. For

any environment Z, the expected ideal utility of S, U
Π,〈Ffsfe〉
I (S,Z)

negl
≤ ε(γp + γc)− tγ$.

We say that a protocol is enhanced ε-secure in the attack-modelM if it is ε-secure with a simulator
that satisfies the above properties. Intuitively, the goal of the taming property is to ensure that
there exists a simulator in the ε-secure protocol which only uses his extra power (i.e., the relaxation
commands) in the executions that would otherwise not be simulatable. As we argue below, the
protocols in [GK10, BLOO11] are indeed enhanced ε-secure for the corresponding attack model.

22 Technically, the notion introduced in [GK10] is called “1/p-security,” where p is some polynomial of the secu-
rity parameter; the notion of ε-security is trivially obtained from their definition by replacing p with the constant
polynomial p = ε−1.

42



Theorem 21. Let f be a function and let M = (Ffsfe, 〈Ffsfe〉, v~γ) be an attack model where the
elements of ~γ, γp, γc, and γ$ are arbitrary (known) positive constants. Then if there exists an
enhanced ε-secure protocol Π in M for arbitrarily small ε > 0, then there exists an attack-payoff
secure protocol in M.

Proof. Let ε0 be such that ε0(γp + γc) < γ$. We show that a protocol Π which is enhanced
ε0-secure in M (guaranteed to exist by the theorem’s premise) is also attack-payoff secure in

M = (Ffsfe, 〈Ffsfe〉, v~γ). Indeed, the enhanced ε0-security of Π guarantees that there exists a
simulator S such that:

If no party is corrupted then for any environment Z the ideal expected utility of the simulator

UΠ,〈Ffsfe〉(Z,S) = 0. This follows directly from the non-triviality property of enhanced ε-
security.

If t > 0 parties are corrupted during the protocol execution, then for every environment Z,

the ideal expected utility of S is U
Π,〈Ffsfe〉
I (S,Z)

negl
≤ ε0(γp + γc) − tγ$ < 0. Note that this

property also implies that Π securely realizes 〈Ffsfe〉, as otherwise we would, by definition, have

U
Π,〈Ffsfe〉
I (S,Z) =∞.

Because the maximal (over the set of all Z’s) expected utility of any S is an upper bound on the
adversary’s utility, the best strategy of the adversary is not to corrupt any party, which proves that
the protocol is attack-payoff secure.

We conclude this section by arguing that the 1/p-secure protocols from [GK10, BLOO11] are
indeed enhanced 1/p-secure in the corresponding attack model. (We defer a formal statement and
proof to the full version of the paper.) The proof idea is as follows: These protocols start by
generating many sharings of either “dummy” outputs or of the real output using a protocol which
can be simulated without ever querying the functionality Ffsfe for evaluating the corresponding
function f . Furthermore, the protocols choose a round r∗ in which the output should be actually
revealed, and encode this round into the sharings sequence. Subsequently, these sharings are
reconstructed in multiple sequential rounds.

The key observation is that because the sharings from the first phase are authenticated, the
only way that the adversary might cheat in the reconstruction is by aborting prematurely. Further,
the simulator samples the actual round r∗ himself, and can therefore identify (by seeing whether or
not the adversary aborts in this round) whether the simulation might fail, which would require him
to invoke the events Ec and Ep. This means that the simulator only invokes these events with the
probability that the simulation might fail, which for a ε-secure protocol is ε±λ, for some negligible
λ. Hence, the adversary’s utility is upper-bounded by ε(γp + γc)− tγ$ + λ.
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