
Type-Based Analysis of Protected Storage
in the TPM (full version)

Jianxiong Shao, Dengguo Feng, and Yu Qin

Abstract. The Trusted Platform Module (TPM) is designed to enable
trustworthy computation and communication over open networks. The
TPM provides a way to store cryptographic keys and other sensitive val-
ues in its shielded memory and act as Root of Trust for Storage (RTS).
The TPM interacts with applications via a predefined set of commands
(an API). In this paper, we give an abstraction model for the TPM
2.0 specification concentrating on Protected Storage part. With identi-
fication and formalization of their secrecy properties, we devise a type
system with asymmetric cryptographic primitives to statically enforce
and prove their security.

Key words: TPM, Trusted computing, Type system, API analysis

1 Introduction

The Trusted Platform Module (TPM) is a system component designed to estab-
lish trust in a platform by providing protected storage, robust platform integrity
measurement, secure platform attestation and other security mechanisms. The
TPM specification is an industry standard [12] and an ISO/IEC standard [11]
coordinated by the Trusted Computing Group. The TPM is separate from the
system on which it reports (the host system) and the only interaction is through
the interface (API) predefined in its specification.

In the last few years, several papers have appeared to indicate vulnerabili-
ties in the TPM API designs. These attacks highlight the importance of formal
analysis of the API commands specifications. A number of efforts have analyzed
secrecy and authentication properties of protocols using model checkers, theorem
provers, and other tools. Backes et al. used ProVerif to obtain the first mech-
anized analysis of DAA protocol[2]. In [6], a TPM impersonation attack was
discovered when sharing authdata between users are allowed. Lin described an
analysis of various fragments of the TPM API using Otter and Alloy[10]. In [9],
an analysis of the TPM API was described by using finite state automata. De-
laune et al. used the tool ProVerif to analyze the API commands and rediscover
some known attacks and some new variations on them[7].

Most of the established work on formal analysis of TPM API commands and
protocols focus on the TPM 1.2 specification, whose latest revision [12] is in
2006. However, Trusted Computing Group (TCG) has published the TPM 2.0
specification on their website in 2012. The new version of the TPM specification
has several changes from previous versions especially on the protected storage

part. First of all, it has changed the method of identifying key properties. The
new version utilizes three Base Attributes (restricted, sign, and decrypt) in an
object to determine how the TPM may use it. The Boolean combination of
these attributes in a key can express the full range of its functionality which
is defined by the identification of the key in previous versions. Moreover, key
migration has been canceled and a new process denoted by duplication has been
proposed instead. Since Migration Key can be used as an ordinary Storage Key
in the new specification, there are two ways to duplicate a key to another storage
hierarchy. The new specification uses a pair of hierarchy attributes (FixedTPM
and FixedParent) to determine this behavior.

In this paper, we conduct a formal analysis of the protected storage part of
API commands in the TPM 2.0 specification w.r.t secrecy property. A formal
security proof of secrecy, in the presence of a Dolev-Yao attacker who have
complete control over all the existent sessions, is first proposed based on a core
type system statically enforcing API security.

Our present work extends the line of research by exploring a language-based,
static analysis technique that allows for proving the security of key management
API commands. In [4], Centenaro et al. devise a language to specify PKCS#11
key management APIs at a fine granularity. We utilize their abstraction of key
templates in our model but devise a new type system to check information flow
properties for cryptographic operations in security APIs. However, our methods
are different from theirs for several points. In fact, we extend their work to get
an imperative language which is more suitable for TPM 2.0 APIs. The terms of
values and expressions are modified to consume asymmetric cryptographic oper-
ations, HMAC computation, and the Key Derivation Function (KDFa) in TPM
2.0 APIs. Templates and handle-maps are expanded to formalize the Object
Structure Elements in the new specification. We also devise a new set of assign-
ment commands to specify the internal functions according to Trusted Platform
Module Library (TPML) 2.0, Part 4: Supporting Routines.

For the core type system, although Centenaro et al. considered the integrity
(they call it trust) for keys, the key with high integrity in their model must
be with high confidentiality. It cannot be used to formalize asymmetric cryp-
tographic primitives since the public key should be with high integrity but low
confidentiality. In our model, we devise a new type system with more specific
types for asymmetric cryptographic primitives. Actually in this sense our result
is more in the line of [13], in which Keighren et al. proposed a type system based
on the principles of information flow to investigate a much stronger property
noninterference for a general model. Yet they gave no language to express the
internal commands and did not consider the integrity level. We apply the types
of keys from [8, 1, 14], in which the types of the payload are determined by the
types of the key. We also consider the integrity level, which is different from [13].

The paper is organized as follows. In section 2 we give a brief introduction to
the protected storage part of the TPM 2.0 specification and describe the simple
language for modeling TPM commands, the attacker model, and the notion of
API security. In section 3 we introduce the core type system statically enforcing

API security. In section 4 we apply the type system to our model of the TPM
API commands, which we prove to be secure. We conclude in section 5.

2 A Language for Modeling TPM Commands

In this section, we first present an overview of the protected storage part of the
TPM 2.0 specification including the protected storage hierarchy and the object
structure elements. Then, a simple language is introduced, which is developed
from the framework of [4]. Actually we have extended the terms of values and
expressions, expanded the object attributes and handle-maps, and devised a
new set of internal functions which is more suitable to specify the protected
storage part of TPM 2.0 APIs. Finally we formalize the attacker model and give
a definition of security for APIs.

2.1 Overview of the TPM Protected Storage

Trusted Platform Module (TPM) is defined as the Root of Trust for Storage
(RTS) by TCG, since the TPM can be trusted to prevent inappropriate access
to its memory, which we call Shielded Locations. TPM protections are based
on the concept of Protected Capabilities and Protected Objects. A Protected
Capability is an operation that must be performed correctly for a TPM to be
trusted. A Protected Object is data (including keys) that can be accessed to
only by using Protected Capabilities. Protected Objects in the TPM reside in
Shielded Locations. The size of Shielded Locations may be limited. The effective
memory of the TPM is expanded by storing Protected Objects outside of the
TPM memory with cryptographic protections when they are not being used and
reloading if necessary.

Protected Storage Hierarchy In the TPM 2.0 specification, the TPM Pro-
tected Objects are arranged in a tree structure, which is called Protected Stor-
age Hierarchy. A hierarchy is constructed with storage keys as the connectors to
which other types of objects such as decryption keys, signing keys, data or other
connectors may be attached. A Storage Key, acting as a parent, provides secrecy
and integrity protection for its children when those objects are stored outside
of the TPM. Storage keys should be used in the process of creation, loading,
duplication, unsealing, and identity activation. However, such keys cannot be
used in the cryptographic support functions.

When creating a new object on the device, two commands are needed. In
the command TPM2 Create(), a loaded storage key should be provided as the
parent and a loadable creation blob protected by it is created. The protection of
the creation blob consists of a symmetric encryption for confidentiality and an
HMAC computation for integrity. The keys used in these protections are derived
from a secret seed in the sensitive area of the parent object. Then the command
TPM2 Load() may load the creation blob into the TPM with a handle returned.
The new key can be used by reference to its handle.

We focus on the process of duplication, which needs three commands. Dupli-
cation allows an object to be a child of an additional parent key. In the command
TPM2 Duplicate(), a loaded object for duplication and its new parent handle
should be provided and a duplication blob is returned. The duplication blob con-
tains the sensitive area of the object which is protected in a similar way to the
process of creation except that the secret seed is not in the sensitive area of the
new parent object but protected by its asymmetric methods to guarantee that
only the new parent may load it. In this way, the storage key must be asymmet-
ric. In the command TPM2 Import(), the duplication blob should be imported
to change to a loadable blob protected by the seed value in the sensitive area of
the new parent. Then the command TPM2 Load() may load it.

An object might be connected to another hierarchy by two ways. One is to
duplicate it directly by the process above. The other is to duplicate one of its an-
cestors and it can be loaded by its creation blob. The hierarchy attributes of an
object, FixedParent and FixedTPM, indicate how the object can be connected
to another hierarchy. An object with FixedParent SET means it cannot be du-
plicated directly and with FixedTPM SET means all of its ancestors have Fixed-
Parent SET. Thus an object with FixedParent CLEAR must have FixedTPM
CLEAR. The attribute FixedTPM of an object depends on FixedTPM in its
parent and FixedParent in itself. The hierarchy attributes setting matrix are in
Table 1

Table 1. Allowed Hierarchy Settings

Parent’s FixedTPM Object’s FixedParent Object’s FixedTPM

CLEAR CLEAR CLEAR

CLEAR SET CLEAR

SET CLEAR CLEAR

SET SET SET

The consistency of the hierarchy settings is checked by internal function
PublicAttributesValidation() in object templates (when creating) and in
public areas for loaded objects (when loading) or duplicated objects (when im-
porting). The root of a hierarchy is denoted as the Primary Object which is
protected by a symmetric key and an HMAC key derived from a Primary Seed
and its attributes. The Primary Object can be seen as a child object of a virtual
object with FixedTPM SET.

Object structure elements. According to the TPM 2.0 specification, each
of the Protected Objects (keys and data) has two components: public area and
sensitive area. The former contains a field objectAttributes and a field type
which indicates the symmetric or asymmetric algorithm. For an asymmetric key
object, the public key should also be contained in the public area. The latter
contains the elements of the object that require TPM protections. These elements

include the field sensitiveType which has the same parameter with the field
type, an authorization value (authValue), a secret value used to derive keys for
protection of its child (seedValue), and the secret key (sensitive) dependant
on the type of the object.

For the public area, the attributes of the object (objectAttributes) are in 5
classes: hierarchy, usage, authorization, creation, and persistence. The hierarchy
attributes have been discussed above.

The usage of an object is determined by three attributes: restricted, sign, and
decrypt. An object with only decrypt SET may use the key in its sensitive area
to decrypt data blobs that have been encrypted by that key (for symmetric key)
or the public portion of the key (for asymmetric key). Thus we call it Decryption
Key Object. An object with both decrypt and restricted SET is used to protect
the other objects when they are created or duplicated. A restricted decryption
key is often referred to as a Storage Key Object. An object with sign SET may
perform signing operation and with both sign and restricted SET may only sign
a digest produced by the TPM. This two kinds of objects corresponds to the
secure platform attestation. On the viewpoint of the protected storage, they
act the same way as the Decryption Key Objects and could not be used as the
Storage Key Objects. It is the same case for a legacy key with both sign and
decrypt SET. It is not allowed for an object with all the three attributes SET.
Thus we divide all the objects into two groups: Decryption Key Object and
Storage Key Object which correspond to the leaf node and the branch node.

The authorization attributes (userWithAuth, adminWithPolicy, noDA) de-
termine the role-based access control strategy of the object. The creation at-
tribute (sensitiveDataOrigin) indicates whether the TPM generate the sensitive
area of the object. For asymmetric object, it is always SET. The persistence
attribute (stClear) indicates whether the object need to be reloaded after any
Startup (CLEAR).

For the sensitive area, seedValue is required for Storage Key Objects and
is the seed used to generate the protection values for the child objects of the
key, but for all other objects, this is an obfuscation value. For an asymmetric
key, sensitive will contain the private key. For an HMAC or symmetric key,
sensitive will be the key.

2.2 A language for protected storage commands in the TPM

Centenaro et al. have developed a type-based analysis to prove that the secrecy of
sensitive keys in PKCS#11 key management APIs is preserved under a certain
policy in [4]. The API was specified as a set of functions composed of simple
sequences of assignment commands. They have also formalized the capability of
the attacker model and defined API security.

In this section, we expand their work to get an imperative language which is
more suitable to specify the protected storage part of TPM 2.0 APIs. First, we
extend the terms of values and expressions to include asymmetric cryptography
and the HMAC computation which are required by the process of duplication
in TPM 2.0 APIs. Key diversification is modified to match the usage of Key

Derivation Function (KDFa) in the cryptography subsystem in the TPM 2.0
specification. Second, templates and the handle-maps are expanded to formalize
the hierarchy attributes and the structure of sensitive and public area in an ob-
ject. Third, we devise a new set of assignment commands to specify the internal
functions according to Trusted Platform Module Library (TPML) Family 2.0,
Part 4: Supporting Routines.

Values and expressions. Let C and F respectively denote the set of atomic
constant and fresh values with C⋂F = ∅. The former specifies any public data,
including the templates of the key objects and the usage of the key derivation
function (kdf). The latter is used to model the generation of new fresh values such
as the sensitive values and the seed values of the key objects. We introduce the
extraction operator f ← F in [4] to represent the extraction of the first ’unused’
value f from F . It is obvious that the extracted values are always different. We
define the values in Table 2. For the sake of readability, we let ṽ denote a tuple
(v1, · · · , vk) of values.

Table 2. Definition of Values and Expressions

v, v′, h ::= values e ::= expressions
val atomic fresh value x, y variables
tmp template kdf(usg, x) key diversification
usg {STORAGE, INTEGRITY } ek(x) encryption key
kdf(usg, v) key diversification senc(x, ỹ) sym encryption
senc(v′, ṽ) sym encryption aenc(x, ỹ) asym encryption
ek(v) encryption key hmac(x, ỹ) hmac computation
aenc(v′, ṽ) asym encryption
hmac(v′, ṽ) hmac computation

We use template to describe the properties of the key objects. Denoted by
tmp, a template is represented as a set of attributes. Set an attribute for a key
object is to include such an attribute in its template set. First, as we have dis-
cussed in section 2.1, key objects managed by the TPM can be divided into two
groups by their capability: the Storage Key Object (with restricted and decrypt
SET) and the Decryption Key Object (otherwise). Two attributes are used to
identify it: W (wrap) for Storage Key Object; E (encryption) for Decryption
Key Object. Second, we use A (Asymmetric) and S (Symmetric) to specify the
field type in the public area of the key object. Third, for the hierarchy attributes
FixedTPM and FixedParent, we use N (Non-FixedParent) to denote FixedPar-
ent CLEAR and F to denote FixedTPM SET. We do not specify the other
attributes since they are irrelevant to the protected storage hierarchy. Formally,
a template tmp is a subset of {W,E, A, S, N, F}. As in section 2.1, (W,E), (A,S),
(N, F), and (W,S) are on the list of conflicting attribute pairs. These attributes

cannot be reset. Actually, the allowable combination of the attributes can only
be of the form {W,A, N/F}, {E, A,N/F}, and {E, S, N/F} where N/F means
N , F or neither. We have 3 kinds of key objects which is denoted by mode:
the Storage Key Object, the Symmetric Decryption Key Object, and the Asym-
metric Decryption Key Object. We abstract such restrictions and focus on a
particular set of all allowable templates of keys denoted by ℘, which we call the
security policy. In our model, ℘ contains the above 9 possible templates.

Constant value usg ∈ {STORAGE, INTEGRITY } is a label to specify
the usage of the key derived from the Seed stored in a Storage Key Object.
STORAGE means a symmetric key and INTEGRITY means an HMAC key.
kdf(usg, v) is different from the key diversification denoted in [4]. We use it
to denote a new key obtained via key derivation function from label usg and
a seed value v. senc(v′, ṽ) is expanded to perform symmetric encryption on a
tuple of values ṽ. ek(v) denotes the public encryption key value corresponding
to the private key v and can be published. Notice that we model a crypto-
graphic scheme where the encryption key can be recovered from the correspond-
ing decryption key, which means decryption keys should be seen as key-pairs
themselves. aenc(v′, ṽ) and hmac(v′, ṽ) denote, respectively, the asymmetric en-
cryption and the HMAC computation of the tuple ṽ with the key v′.

As in [4], we use a set of expressions to manipulate the above values. Ta-
ble 2 gives the formalization of expressions which are similar to those of values.
Expressions are based on a set of variables V. We introduce the memory envi-
ronment M : x 7→ v in [4] to denote the evaluation of variables. For simplicity,
we let x̃ denote a tuple (x1, · · · , xn) of variables and M(x̃) = ṽ the evaluation
M(x1) = v1, · · · ,M(xn) = vn. Expression e in an environment M evaluating to
v is denoted by e ↓M v. It is trivial to derive the semantics of evaluation for the
expressions in Table 2.

Handle-map. In the TPM 2.0 specification, access to the objects loaded on
the device is under control. Objects are referenced in the commands via handles.
We use a key handle-map H : h 7→ (tmp, vs, vk) from a subset of atomic fresh
values F to tuples of templates, seed values and key values. The pair (vs, vk)
can be seen as the sensitive area in a key object. As we have discussed in section
2.1, the sensitive area consists of sensitiveType, authValue, seedValue, and
sensitive. The field sensitiveType is the same with the field type in the
public area, which is included in the templates. The field authValue describe
the authorization property. However, we do not consider the Authentication
mechanisms in the TPM. This corresponds to a worst-case scenario in which
attackers may gain access to all keys available in the TPM without knowing
their values. Thus, we only need to model the field seedValue and sensitive
respectively by vs and vk. In a Storage Key Object with W,A ∈ tmp, the seed
value vs can be used in a key derivation function (kdf) to generate the protection
values for its child objects. For a Decryption Key Object with E ∈ tmp, vs is just
an obfuscation value and not used. The type of sensitive value vk is dependant
on whether A or S is in tmp.

API commands and semantics. We exploit the framework of API commands
and semantics in [4] but devise a new set of internal functions according to
the supporting routines in Trusted Platform Module Library 2.0 for object and
hierarchy.

An API is specified as a set A = {c1, · · · , cn} of commands. Each command
contains a binding of values to variables and a sequence of inner execution of
clauses as follows:

c ::= λx̃.p
p ::= ε| x := e| return ỹ| p1; p2| (xt, xs, xk) := checkTemplate (yh, tmp)|xk :=
genKey (yt)|

xs := genSeed (yt)|xh := ObjectLoad (ys, yk, yt)|(xpA, xinA) :=PAV (ypA, yinA)|x̃ :=
f
f ::= sdec (yk, yc)| adec (yk, yc)| checkHMAC (yk, yhmac, ỹv).

All of the free variables (variables that have no evaluation) in clauses p appear
in input parameters x̃ = (x1, · · · , xn). We will only focus on the API commands
in which return ỹ can only occur as the last clause. Intuitively, ε denotes the
empty clause; x := e is an evaluation of variable x; p1; p2 recursively specifies the
sequential execution of clauses. chechTemplate retrieves ks, kv, and tmp′ of a key
object loaded on the device, given its handle by requiring the template to match
some pattern tmp. genKey and genSeed generate a new key value or seed value,
given its template yt. ObjectLoad loads a new key object with its sensitive values
and an allowable template. PAV checks the hierarchy attributes in the template
ypA of the parent object should be compatible with that in the template yinA

of an input object according to Table 1. The other three internal functions f
are cryptography operations provided by the TPM and cannot be used directly
by user applications. sdec and adec respectively specify the symmetric and
asymmetric decryption. The decrypting function fails (ie. is stuck) if the given
key is not the right one. checkHAMC checks whether yhmac = hamc(yk, ỹv) and
if so, ỹv is evaluated to x̃, or otherwise, it fails. A call to an API command
c = λ(x1, · · · , xk).p, written as c(v1, · · · , vk), binds variables x1, · · · , xk to values
v1, · · · , vk, executes p and outputs the value given by return ỹ.

For convenience, it is required that all the variables on the left side of the
assignment clauses may appear only once. It means that all the variables can be
evaluated only once. This does not limit the capability of our model since the
repeated variables can be rewrite to different names.

An API command c working on a configuration contains a memory environ-
ment M and a key handle-map H, which is denoted as 〈M,H, p〉. Operation
semantics are expressed as follows.

e↓M v
〈M,H,x:=e〉→〈M∪[x7→v],H,ε〉

H(M(yh))=(vt,vs,vk),tmp⊆vt

〈M,H,(xt,xs,xk):=checkTemplate(yh,tmp)〉→〈M∪[xt 7→vt,xs 7→vs,xk 7→vk],H,ε〉
vk←F,M(yt)∈℘

〈M,H,xk:=genKey(yt)〉→〈M∪[xk 7→vk],H,ε〉 ,
vs←F,M(yt)∈℘

〈M,H,xs:=genSeed(yt)〉→〈M∪[xs 7→vs],H,ε〉
vh←F,M(yt)∈℘

〈M,H,xh:=ObjectLoad(ys,yk,yt)〉→〈M∪[xh 7→vh],H∪[vh 7→(M(yt),M(ys),M(yk))],ε〉
yk↓M k,yc↓M senc(k,ṽ)

〈M,H,x̃:=sdec(yk,yc)〉→〈M∪[x̃7→ṽ],H,ε〉 ,
yk↓M k,yc↓M aenc(ek(k),ṽ)

〈M,H,x̃:=adec(yk,yc)〉→〈M∪[x̃7→ṽ],H,ε〉
M(ypA),M(yinA)∈℘,F∈M(ypA)⇒N/F∈M(yinA),F /∈M(ypA)⇒F /∈M(yinA)

〈M,H,xinA:=PAV (ypA,yinA)〉→〈M∪[xinA 7→M(yinA)],H,ε〉
yk↓M k,ỹv↓M ṽ,yhmac↓M HMAC(k,ṽ)

〈M,H,x̃:=checkHMAC(yk,yhmac,ỹv)〉→〈M∪[x̃7→ṽ],H,ε〉
〈M,H,p1〉→〈M ′,H′,ε〉

〈M,H,p1;p2〉→〈M ′,H′,p2〉 ,
〈M,H,p1〉→〈M ′,H′,p′1〉

〈M,H,p1;p2〉→〈M ′,H′,p′1;p2〉
a=λx̃.p,〈Me∪[x̃7→ṽ],H,p〉→〈M ′,H′,return e〉,e↓M′v

a(ṽ)↓H,H′v

We explain the second rule and the other rules are similar. For x := checkTemplate(yh, tmp),
it evaluates yh in M, finds the key referenced by the handle M(yh), and checks
whether tmp ⊆ vt. If so, it may store the key object in the tuple variables
(xt, xs, xk), noted M ∪ [xt 7→ vt, xs 7→ vs, xk 7→ vk]. By the requirement above,
we know that xt, xs, and xk are not defined in M. We extend the domain of M
to include them. Notice that only the internal function ObjectLoad can modify
the key handle-map. The last rule is standard for API calls on a configuration
where parameter values are assigned to corresponding variables. Then the API
command are executed and the returned value is given as the output value of
the call. This is denoted as c (v1, · · · , vn) ↓H,H′

v. Notice that we cannot observe
the memory used internally by the device to execute the commands. The only
exchanged data are input parameters and the returned value. This is the foun-
dation for the attacker model.

2.3 Attacker model and API security

Attacker model. The attacker is formalized in a classic Dolev-Yao style. The
knowledge of the attacker is denoted as a set of values derived from known
values V with his capability. Let V be a finite set of values, The knowledge of
the attacker K(V) is defined as the least superset of V such that v, v′ ∈ K(V)
implies

(1) (v, v′) ∈ K(V)
(2) senc(v, v′) ∈ K(V)
(3) aenc(v, v′) ∈ K(V)
(4) if v = senc(v′, v′′), then v′′ ∈ K(V)
(5) if v = aenc(ek(v′), v′′), then v′′ ∈ K(V)
(6) kdf(v, v′) ∈ K(V)
(7) hmac(v, v′) ∈ K(V)
API commands can be called by attackers in any sequences and with any

parameters in his knowledge. The returned values will be added to his set of
known values and enlarge his knowledge. Formally, An attacker configuration is
denoted as 〈H, V 〉 and has a reduction as follows:

c ∈ A, v1 · · · vk ∈ K (V) , c (v1, · · · , vk) ↓H,H′
v

〈H, V 〉→A 〈H′, V ∪ {v}〉
The set of initial known values V0 contains all the atomic constant values in C.

For all Asymmetric key value v′′ ∈ F , ek(v′′) ∈ V0. The set of initial handle-map
H0 is empty. In our model, →∗

A notes multi-step reductions.

API security. The TPM can act as the Root of Trust for Storage. The TPM
memory should be shielded from any inappropriate access by carefully designed
API. The main property of the Protected Storage Hierarchy required by TPM
2.0 specifications is secrecy. More specifically, the value of private keys loaded on
a TPM should never be revealed outside the secure device, even when exposed
to a compromised host system.

Formally, the sensitive keys available on the TPM should never be known by
the attacker, as well as the seed in a Storage Key and all keys derived from it.
The definition of Secrecy of API commands follows.
Definition 1 (Secrecy). Let A be an API. A is secure if for all reductions of
attacker configuration 〈∅, V0〉 →∗

A 〈H, V 〉, we have
Let g be a handle in H such that H(g) = (tmp, vs, vk) and F ∈ tmp. Then,

vs, vk /∈ K(V).
The language in section 2.2 can be used to model the TPM 2.0 API commands

of protected storage part. We give a brief specification in Appendix B. The
commands include TPM2 Duplicate, TPM2 Import, TPM2 Create and TPM2 Load.
We conclude they preserve secrecy in section 4. The proof is in Appendix B.

3 Type System

3.1 A Core Type System

In this section, we present a type system to statically enforce secrecy in API
commands. At first, we introduce the concept of security level [8], a pair σCσI ,
to specify the levels of confidentiality and integrity. We consider two levels:
High(H) and Low(L). Intuitively, values with high confidentiality cannot be
read by the attackers while data with high integrity should not be modified by
the attackers. For example, the asymmetric encryption key may have a security
level of LH, which denotes a public key with a high integrity level.

While it is safe to consider a public value as secret, low integrity cannot be
promoted to high integrity. Otherwise, data from the attackers may erroneously
be considered as coming from a secure device. Therefore, we have the confiden-
tiality and integrity preorders: L vC H and H vI L. We let σC and σI range
over {L,H}, while we let σ range over the pairs σCσI with σCσI v σ

′
Cσ

′
I iff

σC vC σ
′
C and σI vI σ

′
I . It gives the standard four-point lattice. Formally, type

syntax T is as follows:

T ::= σ|ρσ|SeedKσ[]|φKσ[T̃],

where
σ ::= σCσI = LL|LH|HL|HH

ρ ::= Unwrap|Dec|Sym|Any

φ ::= ρ|Wrap|Enc|hmac.

In our model, σ is the type for general data at such level. Label ρ specifies
the mode of the key object which depends on its template. As we have already
discussed in section 2.2, the TPM 2.0 specification limits the possible modes of
key objects to control their capability. Unwrap denotes the Storage Key Object;
Dec denotes the Asymmetric Decryption Key Object; Sym denotes the Sym-
metric Decryption Key Object; Any is the top mode including all the modes
of the objects Sym, Unwrap, and Dec. ρσ is the type of templates. All tem-
plates are public. Yet the templates with attribute F (with FixedTPM SET)
are generated by the TPM and cannot be forged. Thus they have a security level
LH. The other templates with attribute N or without any hierarchy attributes
(with FixedTPM CLEAR) may be forged by the attackers via the process of
duplication or loading. Thus they have a security level LL. The types are as
follows:

W,A, F ∈ tmp

` tmp : UnwrapLH
,

E, A, F ∈ tmp

` tmp : DecLH
,

E, S, F ∈ tmp

` tmp : SymLH
,

W,A ∈ tmp, F /∈ tmp

` tmp : UnwrapLL
,
E, A ∈ tmp, F /∈ tmp

` tmp : DecLL
,
E, S ∈ tmp, F /∈ tmp

` tmp : SymLL
.

The type φKσ[T̃] describes the key values at security level σ which are used
to perform cryptographic operations on payloads of type T̃ . For the sake of
readability, we let T̃ denote a sequence T1, · · · , Tn of types and use x̃ : T̃ to type
a sequence x1, · · · , xn of variables. Label φ specifies the usage of the key values.
Intuitively, Seed value is stored as vs in a Storage Key Object to be used for the
derivation of HMAC key and symmetric key which are used for the protection
of the other objects; Wrap and Unwrap are a pair of asymmetric keys stored
as vk in a Storage Key Object used in the process of duplication; Enc and Dec
are similar but stored in a Decryption Key Object to encrypt/decrypt general
data; Sym is used in symmetric encryption and decryption; hmac is used in the
computation of HMAC for the protection of integrity.

Each type has an associated security level denoted by L(T). For basic types
we trivially have L(σ) = σ. As expected, we have L(ρKσ[T̃]) = σ for key types
and L(ρσ) = σ for template types. It is nature to define LC(T) and LI(T) for
confidentiality and integrity levels.

Based on security level of types, we have subtyping relations. Formally, ≤ is
defined as the least preorder such that:

(1) σ1 ≤ σ2 iff σ1 v σ2;
(2) LL ≤ φKLL [LL, . . . , LL] , LL ≤ ρLL, LL ≤ SeedKLL[];
(3) φKσ

[
T̃

]
≤ σ, SeedKσ[] ≤ σ, ρσ ≤ σ;

(4) ρKσ
[
T̃

]
≤ AnyKσ

[
T̃

]
, ρσ ≤ Anyσ.

The first condition means that rising the data security level is harmless. The
second condition means that untrusted data can be used in place of values of
types φKLL[LL, . . . , LL], SeedKLL[], and ρLL. The third one means that keys
and templates can be considered as generic data at their security level. The
last one shows that Any is the top modes subsumes all possible key objects. It
is obvious that subtyping relationship does not compromise the security, since
T ≤ T ′ implies L(T) v L(T ′).

Typing expressions After the definition of types, we introduce a typing en-
vironment Γ : x 7→ T , namely a map from variables to their respective types.
Type judgement for expressions is written as Γ ` e : T meaning that expression
e is of type T under Γ . This definition is similar to that of [4]. However, we
devise a new set of typing rules since we have extended the terms of expressions
in [4]. Actually, we need to devise new typing rules for the process of asym-
metric encryption and HMAC computation. Meanwhile, the typing rules for key
derivation function are modified since we have changed its description to match
the usage in the TPM 2.0 specification. the Typing rules for expressions are
described as follows.

[var] Γ (x)=T
Γ`x:T , [sub] Γ`e:T ′,T ′≤T

Γ`e:T , [tuple] Γ`x̃1:T̃1,Γ`x2:T2

Γ`(x̃1,x2):(T̃1,T2) ,

[kdf − s−H] Γ`x:SeedKHH [],usg=STORAGE

Γ`kdf(usg,x):SymKHH [T̃] ,

[kdf − s− L] Γ`x:SeedKLL[],usg=STORAGE
Γ`kdf(usg,x):SymKLL[LL,··· ,LL]

,

[kdf − i−H] Γ`x:SeedKHH [],usg=INTEGRITY

Γ`kdf(usg,x):hmacKHH [T̃] ,

[kdf − i− L] Γ`x:SeedKLL[],usg=INTEGRITY
Γ`kdf(usg,x):hmacKLL[LL,··· ,LL]

,

[wrapK]
Γ`x:UnwrapKσC σI [T̃]
Γ`ek(x):WrapKLσI [T̃] , [encK]

Γ`x:DecKσC σI [T̃]
Γ`ek(x):EncKLσI [T̃] ,

[Sym]
Γ`x:SymKσC σI [T̃],Γ`ỹ:T̃

Γ`senc(x,ỹ):LσI
,

[hmac]
Γ`x:hmacKσC σI [T̃],Γ`ỹ:T̃ ,σ′I=σI∪T∈T̃ LI(T)

Γ`HMAC(x,ỹ):LσI
,

[Wrap]
Γ`x:WrapKσC σI [T̃],Γ`ỹ:T̃

Γ`aenc(x,ỹ):LσI
, [Enc]

Γ`x:EncKσC σI [T̃],Γ`ỹ:T̃

Γ`aenc(x,ỹ):LσI
.

Rules [var], [sub], and [tuple] are standard to derive types directly from Γ
or via subtyping relationship. Rules [kdf − s−H], [kdf − s− L], [kdf − i−H],
and [kdf − i − L] states that given a seed and its usage, we may derive a new
key of the security level inherited from the seed. The security level of the seed
value can only be HH (Trusted) or LL (Untrusted). This can be done by laying
some restrictions on the foundation of the typing environment for values, which
we do in section 3.2. Rules [wrapK] and [encK] says that if an asymmetric
decryption key kx is of type ρKσCσI [T̃] where ρ ranges over {Unwrap, Dec},
then the corresponding encryption key ek(kx) is of type ρKLσI [T̃]. Notice that
the confidentiality level is L(Low), since public keys are allowed to be known
to the attacker, while the integrity level is the same with its decryption key.
Rules [Sym], [Wrap], and [Enc] state the encryption of data. The type of the

operand e is required to be compatible with that of the payload which is spec-
ified by the type of the key. The integrity level of the ciphertext should be the
same with that of the key. Rules [hmac] requires that the integrity level of the
HMAC should be σI

⊔
T∈T̃ LI(T), which represents the lowest integrity level of

σI and each level of LI(T) while T ∈ T̃ . The reason for it is the fact that if the
attacker may generate either the HMAC key or the plaintext, he could modify
the computation of HMAC. Ciphertexts and the HMAC can be returned to the
caller and consequently their confidentiality level is L.

Typing API commands Type judgement for API commands is denoted as
Γ ` p meaning that p is well-typed under the typing environment Γ . We devise a
new set of typing rules for the API commands since we have changed almost all
internal functions in comparison with those in [4]. It is more suitable to describe
the function of the protected storage part of the TPM 2.0 specification. For
simplicity, we write Γ (x̃) = T̃ or x̃ 7→ T̃ the binding of variables x̃ = (x1, · · · , xn)
respectively to their types T̃ = (T1, · · · , Tn). The judgement for API commands
is formalized as follows.

[API] ∀c∈A Γ`c
Γ`A , [assign] Γ`e:T Γ,x 7→T`p

Γ`x:=e;p , [seq] Γ`p1 Γ`p2
Γ`p1;p2

,

[checktmp] Γ`yh:LL ∀T̃∈PTS(tmp,℘)⇒Γ,x̃7→T̃`p
Γ`x̃:=checkTemplate(yh,tmp);p ,

[genKey −H] Γ`yt:AnyLH Γ,xk 7→AnyKHH [T̃]`p
Γ`xk:=genKey(yt);p

, [genKey − L] Γ`yt:LL Γ,xk 7→LL`p
Γ`xk:=genKey(yt);p

,

[genSeed−H] Γ`yt:AnyLH Γ,xs 7→SeedKHH []`p
Γ`xs:=genSeed(yt);p

, [genSeed− L] Γ`yt:LL Γ,xs 7→LL`p
Γ`xs:=genSeed(yt);p

,

[ObjLoad−H] Γ`ys:SeedKHH [] Γ`yk:ρKHH [T̃] Γ`yt:ρ
LH Γ,xh 7→LL`p

Γ`xh:=ObjectLoad(ys,yk,yt);p
,

[ObjLoad− L] Γ`ys:LL Γ`yk:LL Γ`yt:LL Γ,xh 7→LL`p
Γ`xh:=ObjectLoad(ys,yk,yt);p

,

[sdec]
Γ`yk:SymKσ[T̃] Γ,x̃7→T̃`p

Γ`x̃:=sdec(yk,yc);p
,

[Dec]
Γ`yk:DecKσ[T̃] Γ`yc:T Γ,x̃7→T̃`p LI(T)=L⇒Γ,x̃7→(LL,··· ,LL)`p

Γ`x̃:=adec(yk,yc);p
,

[Unwrap]
Γ`yk:UnwrapKσ[T̃] Γ`yc:T Γ,x̃7→T̃`p LI(T)=L⇒Γ,x̃7→(LL,··· ,LL)`p

Γ`x̃:=adec(yk,yc);p
,

[PAV −H]
Γ`(ypA,yinA):(UnwrapLH ,LL) Γ,xinA 7→AnyLσI`p

Γ`xinA:=PAV (ypA,yinA);p ,

[PAV − L] Γ`(ypA,yinA):(LL,LL) Γ,xinA 7→LL`p
Γ`xinA:=PAV (ypA,yinA);p ,

[chkHMAC]
Γ`yk:hmacKσ[T̃] Γ,x̃7→T̃`p

Γ`x̃:=checkHMAC(yk,yhmac,ỹv);p ,

[return] Γ`x̃:(LL,··· ,LL)
Γ`return x̃ , [command] Γ`x1:LL ··· Γ`xk:LL Γ`p

Γ`λx1,··· ,xk.p

Rule [API] says that an API is well-typed if all its commands are well-
typed. Rules [assign] and [seq] are standard rules as in [4] to recursively type
the expressions and sequential clauses under the same Γ . Rule [checktmp] is
adapted form the same rule in [4]. We have to type-check all the permitted
templates tmp′ in ℘ matching the checked template tmp, such that tmp ⊆ tmp′.
The Permitted Templates Set is denoted as

PTS (tmp, ℘) =
{(

ρLσI , SeedKσIσI [], ρKσIσI

[
T̃

])
|∃tmp′ ∈ ℘, tmp ⊆ tmp′∧ ` tmp′ : ρLσI

}
.

For example, if tmp = {W}, the permitted templates matching tmp are {W,A},
{W,A, N}, and {W,A, F}. The corresponding types are (ρLL, SeedKLL[], ρKLL[T̃])
and (ρLH , SeedKHH [], ρKHH [T̃]), where ρ = Unwrap. We need to type-check
the following clauses under the assumption that x̃ may have all the types in PTS.
Meanwhile, PTS({W,F}, ℘) = (UnwrapLH , SeedKHH [], UnwrapHH [T̃]). Rules
[genKey − H] and [genSeed − H] check that the input template should be in
℘ by requiring the type of yt as ρLH . The type of the returned sensitive value
should match with that of the input template and have a security level HH.
Rules [genKey−L] and [genSeed−L] provide to generate public random value.
Rules [ObjLoad−H] and [ObjLoad− L] are used to load the input key object
with an additional type-check of its input. The type of the template yt should
be compatible with the mode ρ of the key. The security level of the sensitive
values should match with that of the template. The object handle returned by
ObjectLoad should have a type LL. Rule [sdec] says that the symmetric de-
cryption is well-typed if assigning type T̃ to x̃ is well-typed in Γ . This is sound
since if the decryption succeeds, ciphertext e must be of the form enc(xk, x̃)
and the type of x̃ must be of type T̃ by Rule [Sym]. Rules [Dec] and [Unwrap]
are used to type asymmetric decryption. In case of asymmetric cryptography,
we need to consider that the encryption key is public. Thus the ciphertext x̃
may come from the attacker and have a type LL. Notice that ek(xk) should
have a type EncKLσI [T̃] or WrapKLσI [T̃] by the rule [EncK] or [WrapK] as
well as EncKLL[LL, · · · , LL] by the rule [sub] via the subtyping relationship:
ρKLσI [T̃] ≤ LσI ≤ LL ≤ ρKLL[LL, · · · , LL]. We distinguish these two cases
by the integrity level of the ciphertext. The rules [PAV − H] and [PAV − L]
are used for public hierarchy attributes validation. The purpose for PAV is to
check the consistency of hierarchy attributes between the parent object and the
child. The former rule says that if the parent object has the attribute FixedTPM
(F), then any allowable combination of the hierarchy attributes would be fine
for the child. The latter rule states that if the template of the parent object
does not include the attribute F, then F cannot be in the template of the child.
Rule [chkHMAC] states that if the HMAC of plaintext ỹv is checked, it must
be derived from the rule [HMAC]. Then, the HMAC key might be derived from
rule [kdf − i−H], [kdf − i− L] or [sub]. The former can promote the integrity
level of the plaintext and evaluate it to x̃. The latter two cases should have a
payload of level LL. Therefore, the type of x̃ should be T̃ . Rules [return] and
[command] state that the input parameter and output value of API commands
should be of type LL, which can be used by the attackers.

3.2 Properties of the Type System

In this section, some properties of our Type System are introduced, including
the main result, well-typed APIs are secure. The proof of the main theorem in
this section is in Appendix A. Centenaro, et al.[4] have proposed the notion of
value well-formedness in their type system in order to track the value integrity
at run-time. Their judgement was based on a mapping Θ from atomic values
to types. We follow this method but lay more restriction on the foundation of

this typing environment for values to obtain more valuable properties. Rules for
typing values are given in Table. They are close to those for typing expressions.

[empty]φ ` ∅,
[Env]

Θ`∅,v /∈dom(Θ),T=ϕKσ[T̃],SeedKσ []⇒(ϕ∈{Sym,Dec,Unwrap,hmac}∧σ=HH)

Θ∪{val 7→T}`∅ ,

[atom] Θ(val)=T
Θ`val:T , [sub] Θ`v:T ′,T ′≤T

Θ`v:T , [tuple] Θ`ṽ:T̃ ,Θ`v′:T ′

Θ`(ṽ,v′):(T̃ ,T ′) ,

[kdf − s−H] Θ`v:SeedKHH [],usg=STORAGE

Θ`kdf(usg,v):SymKHH [T̃] ,

[kdf − s− L] Θ`v:SeedKLL[],usg=STORAGE
Θ`kdf(usg,v):SymKLL[LL,··· ,LL]

,

[kdf − i−H] Θ`v:SeedKHH [],usg=INTEGRITY

Θ`kdf(usg,v):hmacKHH [T̃] ,

[kdf − i− L] Θ`v:SeedKLL[],usg=INTEGRITY
Θ`kdf(usg,v):hmacKLL[LL,··· ,LL]

,

[wrapK]
Θ`v:UnwrapKσC σI [T̃]
Θ`ek(v):WrapKLσI [T̃] , [encK]

Θ`v:DecKσC σI [T̃]
Θ`ek(v):EncKLσI [T̃] ,

[Sym]
Θ`v′:SymKσC σI [T̃],Θ`ṽ:T̃

Θ`senc(v′,ṽ):LσI
,

[HMAC]
Θ`v′:hmacKσC σI [T̃],Θ`ṽ:T̃ ,σ′I=σI∪T∈T̃ LI(T)

Θ`HMAC(v′,ṽ):LσI
,

[Wrap]
Θ`v′:WrapKσC σI [T̃],Θ`ṽ:T̃

Θ`aenc(v′,ṽ):LσI
, [Enc]

Θ`v′:EncKσC σI [T̃],Θ`ṽ:T̃

Θ`aenc(v′,ṽ):LσI

However, two additional rules [empty] and [env] are set to define the well-
formedness of our typing environment Θ. The rule [env] requires that Θ does
not contain multiple bindings for the same value. Moreover, only atomic fresh
keys at a security level of HH are allowable. It is sound because in operation
semantics for commands in section 2.2, atomic fresh keys can only be generated
by genKey and genSeed, which are internal functions that cannot be touched by
the attackers. On the basis of these rules, some properties for the types of key
values can be obtained by easy induction on the derivation of Θ ` v : φKσ[T̃].
Proposition 1 (Private Keys). If Θ ` ∅, Θ ` v : φKσ[T̃], and φ ∈ {Seed, Sym, Dec, Unwrap, hmac},
then σ ∈ {HH, LL}.
Proposition 2 (Low Keys). If Θ ` ∅, then Θ ` v : φKLL[T̃] implies T̃ =
LL, · · · , LL.
Proposition 3 (Public Keys). If Θ ` ∅, Θ ` v : φKσ[T̃], and φ ∈ {Wrap, Enc},
then σ ∈ {LH, LL}.

The next proposition says the type of private key is unique, if it has a security
level of HH.
Proposition 4 (Uniqueness of Key Types). Let Θ ` ∅. If Θ ` k : φKσ[T̃]
and Θ ` k : φ′Kσ′ [T̃ ′] with φ, φ′ ∈ {Seed, hamc, Sym, Unwrap, Dec}, then
σ = σ′. If σ = σ′ = HH, we also have φ = φ′.

The notion of well-formedness for memory environment follows the definition
3 in [4] except that we add item (1), which requires Θ is well formed. With this
requirement, we may apply proposition 1 to 4.
Definition 2 (Well-formedness).The judgement of well-formedness for mem-
ory environment and key handle-map is denoted as Γ, Θ ` M,H if

(1) Θ ` ∅, ie., the typing environment Θ is well formed by the typing rules
[empty] and [Env];
(2) Γ, Θ ` M, ie., M(x) = v, Γ (x) = T implies Θ ` v : T ;
(3) Θ ` H. Let H(h) = (tmp, vs, vk). ` tmp : ρLH implies Θ ` vs : SeedKHH [],
Θ ` vk : ρKHH [T̃]; ` tmp : LL implies Θ ` vs : LL, Θ ` vk : LL.

As we have mentioned above, the security level σ restrict the capability of
attackers such that they can read from LL, LH and modify LL, HL. Due to
ρKLH [T̃] ≤ LH ≤ LL and the subtyping rule, we may assume the knowledge
of attackers has a security level of LL. Proposition 5 proves that if we only give
the attacker atomic values of type LL, all the values that can be derived from
his capability are of a security level LL. In the proof of this proposition, we may
use proposition 2 (Low Keys) in some cases.
Proposition 5 (Attacker typability). Let Θ ` ∅, Θ ` H and V be a set of
atomic values. Suppose ∀v ∈ V, Θ(v) = LL. Then, v′ ∈ K(V) implies Θ ` v′ : LL
if v′ is an atomic values, and Θ ` v′ : (LL, · · · , LL) if v′ is a tuple.

Lemma 1 states that in a well-formed memory, each expression has a type
matched with its evaluation. Lemma 2 states that well-typed commands remain
well-typed at run-time and preserve well-formedness of typing environment.
Lemma 1. If Θ ` ∅, Γ, Θ ` M, Γ ` e : T , and e ↓M v, then Θ ` v : T .
Lemma 2. Let Γ, Θ ` M,H and Γ ` p. If 〈M,H, p〉 → 〈M′,H′, p′〉 then we
have
(1) if p′ 6= ε then Γ ` p′;
(2) ∃Θ′ ⊇ Θ such that Γ, Θ′ ` M′,H′.

With Lemma 1 and 2 above, we finally prove our main result that well-typed
API commands are secure.
Theorem 1. If Γ ` A, then A is secure.

4 Type-Based Analysis of TPM 2.0 Specification
Commands

In this section, we show that the TPM 2.0 Specification commands such as
TPM2 Duplicate, TPM2 Import, TPM2 Create and TPM2 Load are secure in the
framework of our model (It is expected to include more commands). We will
prove that these commands guarantee the secrecy of the key objects with FixedTPM
SET, even in case of the worst scenario in which the attacker may access all
loaded key objects via API commands to perform operations corresponding to
the protected storage hierarchies rooted in the TPM.

The API is defined in Trusted Platform Module Library (TPML) Family 2.0,
Part 3: Commands [15], which specifies the input parameters, the response, and
the detailed actions of each command. We may translate the detailed actions to
our language introduced in section 2.2. The commands that need to be formalized
include Object Commands in Chapter 14 and Duplication Commands in Chapter
15 of TPML 2.0, Part 3. As we have discussed in section 2.1, we focus on these
commands since they decide how an object might be connected to the protected
storage hierarchy rooted in the TPM.

The detailed actions in these commands contain internal functions specified
in section 7.6 of TPML 2.0, Part 4: Supporting Routines. These internal func-
tions should be called by Protected Capabilities. We have transferred these func-
tions to our language. Now we give an example of AreAttributesForParent(),
which decides whether the input handle refers to a parent object. It can be im-
plemented by (ObjTemplate, ObjSeed, ObjSensitive):= checkTemplate (Ob-
jHandle, {W}); In a similar way, we could formalize a set of internal functions
in section 7.6 of Part 4.

After this formalization, we could translate the protected storage API com-
mands such as TPM2 Create(), TPM2 Load(), TPM2 Duplicate(), and TPM2 Import()
in Part 3. We give an example of TPM2 Load(). The detailed translation is in
Appendix B.

Command TPM2 Load takes as input the handle of the parent object (par-
entH), the public area of the loaded object (inAttributes), an HMAC to check
the integrity (inHMAC), and the encrypted sensitive area of the loaded object
(LoadPrivate). The execution of the command depends on whether the loaded
object has FixedTPM SET in its template (F ∈ inAttributes) since it decides
whether FixedTPM is needed in the parent object. In the detailed actions of
Part 3, it is expressed by a standard if/else statement. For the former case, F
is needed to be included in the template of the parent object. The latter is not.
Thus we have different requirements for the first checkTemplate. There are no
differences in the following clauses. Then, the public attributes of the loaded
object should be checked to be consistent with the parent’s by PAV. If passed,
a symmetric key (symKeyP) for secure storage and an HMAC key (HMACk-
eyP) for integrity are derived from the secret seed (parentSeed) in the parent
object. After checking the integrity of the public area (inAttributesC) and the
encrypted sensitive area (LoadPrivate), the command will decrypt the sensitive
area by sdec. At last, new object are loaded and its handle (ObjH) is returned.

In a similar way, we have translated the Object Commands and Duplication
Commands in Trusted Platform Module Library (TPML) Family 2.0, Part 3:
Commands. In the following, we need to type-check these API commands by
our type system in section 3.1 to enforce the security of API commands. We
will give an example of the command TPM2 Load. The detailed specification is
in Appendix B.

Since the command TPM2 Load requires a branch, we need to devise two
typing environment Γ respectively to type these two cases. For both cases, it is
required that all the input parameters have type LL (line 00 and line 10). For the
former case, when checkTemplate requires a handle for a parent key object with
W,F SET. Then the type returned is (UnwrapLH , SeedKHH [], UnwrapKHH [T̃])
according to section 3.1. Then by the rule [PAV − H], we get the input at-
tributes after check should have type AnyLH because F ∈ inAttributes. By
kdf, we get two keys derived from the seed value in the parent sensitive area
with types SymKHH [SeedKHH [], AnyKHH] and hmacKHH [LH, AnyLH]. The
payload type is decided by the usage of the parent key object. Then after check-
ing the HMAC and symmetric decryption, the returned sensitive area types are

(SeedKHH [], AnyKHH [T̃]). With appropriate types of sensitive area and pub-
lic area, ObjectLoad could load the object into the TPM. Then the type of
the returned handle value is LL, which could be returned as the response. For
the latter case, checkTemplate requires a handle for a parent key with just W
SET and the returned type is in PTS({W}, ℘). There are two types in this
set, (LL,LL, LL) and (UnwrapLH , SeedKHH [], UnwrapKHH [T̃]). We have to
type-check the continuation clauses twice, under these two assumptions. The
two typing derivations are the same for PAV since F /∈ inAttributes. The input
template (inAttributes: LL) after PAV has type LL. For kdf, since the types
of payloads are decided by the usage of the parent key object, they both have
type LL,LL for the payloads. Thus these two cases are the same for checking
HMAC, decryption and loading the object. We finally type-check return ObjH
by [return].

We have shown that the command TPM2 Load is well-typed. By Theorem
1, we know that TPM2 Load is secure. In a similar way, we could type-check the
other commands that have been formalized in our model and enforce the security
of protected storage APIs of the TPM 2.0 specification. We have Theorem 2 to
state the security of the TPM 2.0 API commands concentrating on Protected
Storage part.
Theorem 2. For the protected storage API A = {TPM2 Create(), TPM2 Load(),
TPM2 Duplicate(), TPM2 Import()} defined by TPM 2.0 specification, A is se-
cure.

5 Conclusion

We have prososed a type system to statically enforce the security of storage
part of the TPM 2.0 API commands. Our type system consumes type-checks for
asymmetric cryptographic primitives. A formal proof has been proposed that
the commands can guarantee the secret of key values in security devices under
the worst scenario where the attackers in Delov-Yao style may gain access to all
keys loaded on the device and the API commands can be called by any sequence
with any parameters. This has not been proved before.

As future work, we foresee extending our model with more commands such
as those involved in Credential Management. We also plan to model the TPM’s
platform configuration registers (PCRs) which allow one to condition some com-
mands on the current value of a register. Moreover, more security properties
such as integrity and noninterference will be the subject of future work.

Acknowledgments

The research presented in this paper is supported by the National Basic Re-
search Program of China (No. 2013CB338002) and National Natural Science
Foundation of China (No. 61272476, No.61232009 and No. 61202420).

References

1. M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theo-
retical Computer Science, 298(3):387 – 415, 2003. Foundations of Software Science
and Computation Structures.

2. M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus
and automated verification of the direct anonymous attestation protocol. In IEEE
Symposium on Security and Privacy’08, pages 202–215, 2008.

3. D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga. Replay attack in TCG speci-
fication and solution. In Proceedings of ACSAC 2005, volume 10, pages 127–137,
Tucson, AZ (USA), December 2005. ACSA, IEEE Computer Society.

4. M. Centenaro, R. Focardi, and F. Luccio. Type-based analysis of pkcs]11 key man-
agement. In P. Degano and J. Guttman, editors, Principles of Security and Trust,
volume 7215 of Lecture Notes in Computer Science, pages 349–368. Springer Berlin
Heidelberg, 2012.

5. L. Chen and M. Ryan. Offline dictionary attack on TCG TPM weak authorisation
data, and solution. In D. Gawrock, H. Reimer, A.-R. Sadeghi, and C. Vishik, editors,
Future of Trust in Computing, pages 193–196. Vieweg Teubner, 2009.

6. L. Chen and M. Ryan. Attack, solution and verification for shared authorisation
data in TCG TPM. In P. Degano and J. Guttman, editors, Formal Aspects in
Security and Trust, volume 5983 of Lecture Notes in Computer Science, pages 201–
216. Springer Berlin Heidelberg, 2010.

7. S. Delaune, S. Kremer, M. Ryan, and G. Steel. A formal analysis of authentication
in the TPM. In P. Degano, S. Etalle, and J. Guttman, editors, Formal Aspects
of Security and Trust, volume 6561 of Lecture Notes in Computer Science, pages
111–125. Springer Berlin Heidelberg, 2011.

8. R. Focardi and M. Maffei. Types for Security Protocols. In Formal Models and
Techniques for Analyzing Security Protocol, volume 5, chapter 7, pages 143–181.
IOS Press, 2010.

9. S. Grgens, C. Rudolph, D. Scheuermann, M. Atts, and R. Plaga. Security evaluation
of scenarios based on the TCG’s TPM specification. In J. Biskup and J. Lpez, edi-
tors, Computer Security–ESORICS 2007, volume 4734 of Lecture Notes in Computer
Science, pages 438–453. Springer Berlin Heidelberg, 2007.

10. A. H. Lin, R. L. Rivest, and A. H. Lin. Automated analysis of security APIs.
Technical report, MIT, 2005.

11. ISO/IEC PAS DIS 11889: Information technology –Security techniques – Trusted
Platform Module.

12. Trusted Computing Group. TPM Specification version 1.2. Parts 1–3, revision.
http://www.trustedcomputinggroup.org/resources/ tpm main specification.

13. Keighren G, Aspinall D, Steel G. Towards a Type System for Security APIs. In:
Degano P, Vigan L, eds. Foundations and Applications of Security Analysis: Springer
Berlin Heidelberg, 2009, 173-192.

14. Centenaro M, Focardi R, Luccio F L, Steel G. Type-based analysis of PIN process-
ing APIs. Proceedings of the 14th European conference on Research in computer
security, 2009: 53-68.

15. Trusted Computing Group. TPM Specification version 2.0. Parts 1–4, revision.
http://www.trustedcomputinggroup.org/resources/ tpm main specification.

Appendix A: The proof of Theorem 1

Proposition 1 (Private Keys). If Θ ` ∅, Θ ` v : φKσ[T̃], and φ ∈ {Seed, Sym, Dec, Unwrap, hmac},
then σ ∈ {HH, LL}.
Proof. It can be proved by easy induction on the derivation of Θ ` v : φKσ[T̃].
The base cases are [atom], [kdf−s−h], [kdf−i−h], [kdf−s− l], and [kdf−i− l].
[atom] implies v 7→ φKσ[T̃] is in Θ. σ = HH can be derived by Θ ` ∅. For the
cases of [kdf − s − h], [kdf − i − h], [kdf − s − l], and [kdf − i − l], it is easy
to obtain the thesis. Inductive case is [sub]. Θ ` v : T with T ≤ φKσ[T̃] means
that either T = φKσ[T̃], by reflexivity of ≤, or σ = LL by the only rule for ≤
that gives a key type. We are done in the latter case. While in the former case,
it is sufficient to apply inductive hypothesis. ut
Proposition 2 (Low Keys). If Θ ` ∅, then Θ ` v : φKLL[T̃] implies T̃ =
LL, · · · , LL.
Proof. It can be proved by easy induction on the derivation of Θ ` v : φKLL[T̃].
First, by Θ ` ∅ and [env] we know that v 7→ φKLL[T̃] cannot be in Θ, thus
for the base case we have nothing to prove. Inductively, the judgement may
only derive from [sub], [kdf − s − l], [kdf − i − l], [wrapK], and [encK]. In the
case of [sub], it must derive from LL ≤ φKLL[LL, · · · , LL], which directly gives
T̃ = LL, · · · , LL. In the cases of [kdf − s− l] and [kdf − i− l], the typing rules
directly give the thesis. In the cases of [wrapK] and [encK], it must be that v is
ek(vk) and Θ ` vk : ρKσCL[T̃] where ρ = Unwrap or Dec. By proposition 1, we
know that σC = L and by inductive hypothesis, we obtain T̃ = LL, · · · , LL. ut
Proposition 3 (Public Keys). If Θ ` ∅, Θ ` v : φKσ[T̃], and φ ∈ {Wrap, Enc},
then σ ∈ {LH, LL}.
Proof. Public keys can only be typed by the rules [sub], [WrapK], and [EncK].
The only key types which admits subtypes are φKLL[LL, · · · , LL] via LL ≤
φKLL[LL, · · · , LL]. Therefore, if σ 6= LL, they can only be of levels LH by the
rules [WrapK] and [EncK]. ut
Proposition 4 (Uniqueness of Key Types). Let Θ ` ∅. If Θ ` k : φKσ[T̃]
and Θ ` k : φ′Kσ′ [T̃ ′] with φ, φ′ ∈ {Seed, hamc, Sym, Unwrap, Dec}, then
σ = σ′. If σ = σ′ = HH, we also have φ = φ′.
Proof. By proposition 1 (Private Keys), we know that σ, σ′ ∈ {LL,HH}. Let σ be
HH. By deviration of proposition 1 (Private Keys), we know that k : φKσ[T̃] is in
Θ or might derive from [kdf−s−h] or [kdf−i−h]. For the latter two cases, k must
be a value of the form kdf(usg, v). We trivially observe that Θ ` k : φ′Kσ′ [T̃ ′]
must derive from the same rule and the two types coincede. For the former
case, k must be an atomic value. It can be typed only via [atom] or [sub].
Therefore, Θ ` k : φ′Kσ′ [T̃ ′] must derive from one of these rules. In case of
[atom], we trivially obtain that the two types coincide. In case of [sub], it suffices
to observe that φ′Kσ′ [T̃ ′] ≤ φKσ[T̃], which implies σ′ v σ. Since LL and HH
are incomparable, we obtain that σ′ = HH and φ = φ′. The same proof holds
by picking σ′ = LL. Let now σ = σ′ = LL. We obtain T̃ = LL, · · · , LL and
T̃ ′ = LL, · · · , LL by proposition 2 (Low Keys). However, we have no guarantees
of the equality of φ and φ′. ut

Proposition 5 (Attacker typability). Let Θ ` ∅, Θ ` H and V be a set of
atomic values. Suppose ∀v ∈ V, Θ(v) = LL. Then, v′ ∈ K(V) implies Θ ` v′ : LL
if v′ is an atomic values, and Θ ` v′ : (LL, · · · , LL) if v′ is a tuple.
Proof. The proof is by induction on the length of the derivation of v ∈ K(V). It
is trivial for length 0. When we prove the proposition holds for length i + 1, we
assume it holds for length i and consider all the cases of the attackers’ capability
in section 2.3.

For the public keys, due to the rules [WrapK] and [EncK], the public key
ek(v′′) should have a type EncKLσI [T̃] or WrapKLσI [T̃]. Thus, it can be given
the type LL by the subtyping relation ρKLσI [T̃] ≤ LσI ≤ LL, which allows
the attacker to type all the public encryption keys. For the tuple, it is easy to
show the case by induction on the arity of the tuple. For the cases of symmetric
encryption and decryption, note that the symmetric key has a security level
of LL. By proposition 2, it must have a type SymKLL[LL, · · · , LL] via [sub]
or [kdf − s − l]. By the rule [Sym] and [sdec], we obtain the thesis. For the
case of asymmetric encryption, the asymmetric encryption key with a security
level of LL may have a type EncKLL[LL, · · · , LL] or WrapKLL[LL, · · · , LL] by
proposition 2. By the rules [Wrap] and [Enc], we obtain the thesis. For the case
of asymmetric decryption, the private key with a security level of LL must have
a type UnwrapKLL[LL, · · · , LL] or DecKLL[LL, · · · , LL] by and proposition
2. This case is proved by the rule [adec]. For the case of key derivation function
(kdf), the seed value with a security level of LL should have a type SeedKLL[]
by proposition 2. Rules [kdf − s − l] and [kdf − i − l] state the thesis. For the
computation of the HMAC, the HMAC key with a security level of LL should
have a type hmacKLL[LL, · · · , LL] via [sub] or [kdf − i − l] by proposition 2.
By the rule [HMAC], we obtain the thesis. ut
Lemma 1. If Θ ` ∅, Γ, Θ ` M, Γ ` e : T , and e ↓M v, then Θ ` v : T .
Proof. The proof is by induction on the structure of e. The base case is for atomic
variable, where e is x. The thesis directly follows by the definition of Γ, Θ `
M. For the inductive steps, we should consider all the cases for constructing
expressions.

For the case of a tuple of atomic variables e = (x1, · · · , xn), it is easy to get
the thesis by induction on the arity of the tuple. For arity i + 1, e = (x̃1, x2), it
is typed by the rule [tuple]. Γ ` (x̃1, x2) : (T̃1, T2) implies that Γ ` x̃1 : T̃1 and
Γ ` x2 : T2. Since (x̃1, x2) ↓M v, it is sound to assume x̃1 ↓M ṽ1, M(x2) = v2,
and v = (ṽ1, v2). The arity of x̃1 is i. By induction, Θ ` ṽ1 : T̃1 holds. We have
Θ ` v2 : T2 due to the definition of Γ, Θ ` M. By the rule [tuple] for typing
values, we have Θ ` v : (T̃1, T2).

For the case of key derivation function e = kdf(usg, x), it might be typed by
the rule [kdf − s− l], [kdf − i− l], [kdf − s−h] or [kdf − i−h]. We just consider
the first case since the others are analogous. In this case, Γ ` kdf(usg, x) :
SymKLL[LL, · · · , LL] implies that Γ ` x : SeedKLL[]. Since kdf(usg, x) ↓M v,
it is sound to assume M(x) = vs and v = kdf(usg, vs). By induction, Θ ` vs :
SeedKLL[] holds. By the rule [kdf −s− l] for typing values, we obtain the thesis
Θ ` v : SymKLL[LL, · · · , LL].

For the case of symmetric encryption e = senc(xk, ỹ), it might be typed
by the rule [Sym] or [sub]. The latter can be reduced to the former. Thus, we
just consider the rule [Sym]. In this case, Γ ` senc(xk, ỹ) : LσI implies that
Γ ` xk : SymKσCσI [T̃] and Γ ` ỹ : T̃ . Since e ↓M v, it is sound to assume
M(xk) = vk, ỹ ↓M ṽ′, and v = senc(vk, ṽ′). By induction, Θ ` ṽ′ : T̃ holds. We
have Θ ` vk : SymKσCσI [T̃] due to memory well-formedness. By the rule [Sym]
for typing values, we have Θ ` senc(vk, ṽ′) : LσI , which states the thesis. It is
similar for the case of HMAC computing e = HMAC(xk, ỹ).

For the case of asymmetric encryption e = aenc(xk, ỹ), it might be typed by
the rule [Wrap], [Enc], or [sub]. We just consider the first case since the second
case is analogous and the case of [sub] can be reduced to the first two cases. In
the case of [Wrap], Γ ` aenc(xk, ỹ) : LσI implies that Γ ` xk : WrapKσCσI [T̃]
and Γ ` ỹ : T̃ . Since e ↓M v, it is sound to assume M(xk) = vk and ỹ ↓M ṽ′. By
induction, Θ ` ṽ′ : T̃ holds. We have Θ ` vk : WrapKσCσI [T̃] due to memory
well-formedness. By the rule [Wrap] for typing values, we have Θ ` aenc(vk, ṽ′) :
LσI , which states the thesis. It is similar for the case of asymmetric encryption
key e = ek(xk) ut
Lemma 2. Let Γ, Θ ` M,H and Γ ` p. If 〈M,H, p〉 → 〈M′,H′, p′〉 then we
have
(1) if p′ 6= ε then Γ ` p′;
(2) ∃Θ′ ⊇ Θ such that Γ, Θ′ ` M′,H′.
Proof. By induction on the structure of clauses p and the typing rules for com-
mands, it is trivial to prove item (1), since almost all commands reduce to empty
except the case p = p1; p2. It is proved by the rule [seq].

Item (2) can also be proved by induction on the structure of p.
Firstly, we need to extend Θ to Θ′ and prove Θ′ ` ∅. For the commands

ObjectLoad, genKey, and genSeed, new handles and fresh sensitive values need
to be generated, which means we should extend Θ in order to type the new
memory. In the other cases, Θ do not need to be extended. The handle returned
by ObjectLoad may have a type of LL. The new keys generated by genKey
should have a type ρKHH [T̃] where ρ ∈ {Sym, Dec,Wrap}, or LL according to
the attributes template it receives. In case of the command genSeed, the new
generated seed values should be assigned the type SeedKHH [] or LL depending
on the attributes. In all these three cases, we have Θ′ ` ∅.

Secondly, we need to prove Θ′ ` H. Only in the command ObjectLoad,
handle-map is extended. Template tmp is checked to be included in security
policy ℘. The type of the Loaded sensitive value is checked to be compatible
with that of its template in the rules [ObjLoad − h] and [ObjLoad − l]. Thus,
we obtain Θ′ ` H.

Thirdly, we need to prove Γ, Θ′ ` M′. For the command x := e, we just
apply Lemma 1 and the rule [assign]. For the command checkTemplate, we
approximate the possible types of the returned values using a least upper bound
which guarantees that the returned values can be typed the same as the variables
x̃ via subtyping. genKey assigns a type AnyKσ[T̃] to the variable xk such that
the type of the returned key value should be compatible with it via subtyping.

For the command genSeed, the returned seed must be typed the same as the
variable xs by the rule [genSeed − h] and [genSeed − l]. For the command
ObjectLoad, the returned handles should be public and have a type LL. For
the command sdec, according to Table 2, API semantics, the ciphertext should
be in the form senc(vk, v′). It must be typed by the rule [Sym] and the type
of the plaintext v′ should be compatible with that of the payload. Therefore, it
is sound to assume that the type of the returned plaintext value should have
the same type with the payload. It is similar to the command adec, except
that the encryption key might be typed by the rule [sub] rather than [wrapK]
or [encK] via subtyping relation LL ≤ ρKLL[LL, · · · , LL]. In this case, the
encryption key has a security level of LL rather than LH and the ciphertext has
an integrity level of L rather than H by the rule [Wrap] or [Enc]. Therefore, we
set a condition in the rules [Dec] and [Unwrap] to distinguish between these two
cases. For the command checkHAMC, the HMAC value must be computed by the
rule [HMAC]. We obtain the thesis by the rule [chkHMAC]. For the command
PAV, it checks that the input attributes are legal and the public attributes of the
parent should be compatible with that of the input. If checked, the input value
will be evaluated to the output. The rules [PAV − h] and [PAV − l] guarantee
that the values can be typed the same as the variables. ut

Theorem 1. If Γ ` A, then A is secure.

Proof. Let 〈∅, V0〉 →∗
A 〈H, V 〉. We first prove that there exists Θ such that Θ ` ∅,

Θ ` H, and Θ ` v : LL for each v ∈ V .

This is proved by induction on the length of the reduction. For length 0
we trivially take Θ such that ∀v ∈ V0, Θ ` v : LL. It is the case since H0 is
empty. For the inductive steps, we have 〈∅, V0〉 →∗

A 〈Hn, Vn〉 →A 〈H, V 〉. We
assume there exists Θ such that Θ ` ∅, Θ ` Hn, and Θ ` v : LL for each
v ∈ Vn. The last step 〈Hn, Vn〉 →A 〈H, V 〉 is conducted by a call to a com-
mand c ∈ A. Therefore, we have v1 · · · vk ∈ K (Vn), c (v1, · · · , vk) ↓Hn,Hv, and
V = Vn ∪ {v}. c (v1, · · · , vk) ↓Hn,Hv is due to c = λx1, · · · , xk.p, 〈M0,Hn, p〉 →
〈M,H, return e〉, and e↓Mv, where M0 = Mε ∪ [x1 7→ v1, · · · , xk 7→ vk]. From
Γ ` A we have Γ ` c which requires Γ ` x1 : LL, · · · , Γ ` xk : LL and Γ ` p.
By proposition 5, we have Θ ` v1 : LL, · · · , Θ ` vk : LL. Since x1, · · · , xn are
the only variables in the domain of M0, we can obtain that Γ, Θ ` M0. We have
proved that Γ, Θ ` M0,Hn and Γ ` p, thus by lemma 2 we have Γ ` return e
and ∃Θ′ ⊇ Θ such that Γ, Θ′ ` M,H. Therefore, Θ′ ` H. Γ ` return e implies
Γ ` e : LL. By lemma 1, we have Θ′ ` v : LL. It gives the thesis.

We have proved that there exists Θ such that Θ ` H and Θ ` v : LL for
each v ∈ V . Then, we want to prove that A is secure, according to definition 1.

Since H(g) = (tmp, vs, vk) and F ∈ tmp, it is obvious that Θ ` tmp : ρLH .
Thus, we have Θ ` vs : SeedKHH [] and Θ ` vk : ρKHH [T̃] by the definition of
Θ ` H. From proposition 4 and 5, we obtain the thesis that vs, vk /∈ K(V). ut

Appendix B: The proof of Theorem 2

Theorem 2. For the protected storage API A = {TPM2 Create(), TPM2 Load(),
TPM2 Duplicate(), TPM2 Import()} defined by TPM 2.0 specification, A is se-
cure.
proof. We need to translate the API commands A to our language in section
2.2 by the method introduced in section 4. Then, we need to type check these
commands as follows. Finally, we get the conclusion by Theorem 1. ut

Table 3. Analysis of API Commands TPM2 Load()

LINE Γ

00 TPM2 Load(parentH, inAttributes, inHMAC, LoadPrivate)
01 (F ∈ inAttributes)
02 (parentAttributes, parentSeed, parentKey):= checkTemplate (parentH, {W, F});
03 inAttributesC:= PAV (parentAttributes, inAttributes);
04 symKeyP:= kdf(STORAGE, parentSeed);
05 HMACkeyP:= kdf(INTEGERITY, parentSeed);
06 (LoadPrivateC, ObjAttributesC):=checkHMAC(HMACkeyP, inHMAC, (LoadPrivate, inAttributesC));
07 (ObjSeed, ObjSensitive):=sdec(symKeyP, LoadPrivateC);
08 ObjH:=ObjectLoad(ObjAttributesC, ObjSeed, ObjSensitive);
09 return ObjH;

10 TPM2 Load(parentH, inAttributes, inHMAC, LoadPrivate)
11 (F /∈ inAttributes)
12 (parentAttributes, parentSeed, parentKey):= checkTemplate (parentH, {W});
13 inAttributesC := PAV (parentAttributes, inAttributes);
14 symKeyP:= kdf(STORAGE, parentSeedC);
15 HMACkeyP:= kdf(INTEGERITY, parentSeedC);
16 (LoadPrivateC, ObjAttributesC):=checkHMAC(HMACkeyP, inHMAC, (LoadPrivate, inAttributesC));
17 (ObjSeed, ObjSensitive):=sdec(symKeyP, LoadPrivateC);
18 ObjH:=ObjectLoad(ObjAttributesC, ObjSeed, ObjSensitive);
19 return ObjH;

Table 4. Analysis of API Commands TPM2 Load()

LINE Γ

00 parentH: LL, inAttributes: LL, inHMAC: LL, LoadPrivate: LL
01 (F ∈ inAttributes)

02 . . . , parentAttributes: UnwrapLH , parentSeed: SeedKHH [], parentKey: UnwrapKHH [T̃]
03 . . . , inAttributesC: AnyLH

04 . . . , symKeyP: SymKHH [SeedKHH [], AnyKHH]
05 . . . , HMACkeyP: hmacKHH [LH, AnyLH]
06 . . . , LoadPrivateC: LH, ObjAttributesC: AnyLH

07 . . . , ObjSeed: SeedKHH [], ObjSensitive: AnyKHH [T̃]
08 . . . , ObjH: LL

10 parentH: LL, inAttributes: LL, inHMAC: LL, LoadPrivate: LL
11 (F /∈ inAttributes)
12 . . . , parentAttributes: LL, parentSeed: LL, parentKey: LL /

. . . , parentAttributes: UnwrapLH , parentSeed: SeedKHH [], parentKey: UnwrapKHH [T̃]
13 . . . , inAttributesC: LL
14 . . . , symKeyP: SymKLL[LL, LL] / . . . , symKeyP: SymKHH [LL, LL]
15 . . . , HMACkeyP: hmacKLL[LL, LL] / . . . , HMACkeyP: hmacKHH [LL, LL]
16 . . . , LoadPrivateC: LL, ObjAttributesC: LL
17 . . . , ObjSeed: LL, ObjSensitive: LL
18 . . . , ObjH: LL

Table 5. Analysis of API Commands TPM2 Duplicate()

LINE Γ

00 TPM2 Duplicate(parentH, dupH)
01 (ObjAttributes, ObjSeed, ObjSensitive):= checkTemplate (dupH, {N});
02 (parentAttributes, parentObjSeed, parentKey):= checkTemplate (parentH, {W, A});
03 data:= genSeed(parentAttributes);
04 symKey:= kdf(STORAGE, data);
05 HMACkey:= kdf(INTEGERITY, data);
06 outSymSeed:=aenc(ek(parentKey), data);
07 dupPrivate:=senc(symKey, (ObjSeed, ObjSensitive));
08 outerHMAC:=HMAC(HMACkey, (dupPrivate, ObjAttributes));
09 return (outerHMAC, dupPrivate, outSymSeed);

Table 6. Analysis of API Commands TPM2 Duplicate()

LINE Γ

00 parentH: LL, dupH: LL
01 . . . , ObjAttributes: LL, ObjSeed: LL, ObjSensitive: LL
02 . . . , parentAttributes: LL, parentObjSeed: LL, parentKey: LL /

. . . , parentAttributes: UnwrapLH , parentObjSeed: SeedKHH [], parentKey: UnwrapKHH [SeedKHH []]
03 . . . , data: LL / data: SeedKHH []
04 . . . , symKey: LL / symKey: SymKHH [LL, LL]
05 . . . , HMACkey: LL / HMACkey: hmacKHH [LH, LL]
06 . . . , outSymSeed: LL / outSymSeed: LH
07 . . . , dupPrivate: LL / dupPrivate: LH
08 . . . , outerHMAC: LL

Table 7. Analysis of API Commands TPM2 Import()

LINE Γ

00 TPM2 Import(parentH, inAttributes, inHMAC, dupPrivate, inSymSeed)
01 F /∈ inAttributes
02 (parentAttributes, parentSeed, parentKey):= checkTemplate (parentH, {W, A});
03 inAttributesC:= PAV (parentAttributes, inAttributes);
04 data:=adec(parentKey, inSymSeed);
05 symKey:=kdf(STORAGE, data);
06 HMACkey:=kdf(INTEGERITY, data);
07 (dupPrivateC, ObjAttributesC):=checkHMAC(HMACkey, inHMAC, (dupPrivate, inAttributesC));
08 (ObjSeed, ObjSensitive):=sdec(symKey, dupPrivateC);
09 symKeyP:=kdf(STORAGE, parentSeed);
010 HMACkeyP:=kdf(INTEGERITY, parentSeed);
011 impPrivate:=senc(symKey, (ObjSeed, ObjSensitive));
012 outerHMAC:=HMAC(HMACkeyP, (impPrivate, ObjAttributesC));
013 return (outerHMAC, impPrivate, ObjAttributesC);

Table 8. Analysis of API Commands TPM2 Import()

LINE Γ

00 parentH: LL, inAttributes: LL, inHMAC: LL, dupPrivate: LL, inSymSeed: LL
01 F /∈ inAttributes
02 . . . , parentAttributes: LL, parentSeed: LL, parentKey: LL /

. . . , parentAttributes: UnwrapLH , parentSeed: SeedKHH [], parentKey: UnwrapKHH [LL]
03 . . . , inAttributesC: LL
04 . . . , data: LL
05 . . . , symKey: SymKLL[LL, LL]
06 . . . , HMACkey: hmacKLL[LL, LL]
07 . . . , dupPrivateC: LL, ObjAttributesC: LL
08 . . . , ObjSeed: LL, ObjSensitive: LL
09 . . . , symKeyP: LL / symKeyP: SymKHH [LL, LL]
010 . . . , HMACkeyP: LL / HMACkeyP: hmacKHH [LH, LL]
011 . . . , impPrivate: LL / impPrivate: LH
012 . . . , outerHMAC: LL

Table 9. Analysis of API Commands TPM2 Create()

LINE Γ

00 TPM2 Create(parentH, inAttributes)
01 (F ∈ inAttributes)
02 (parentAttributes, parentSeed, parentKey):= checkTemplate (parentH, {W, A, F});
03 inAttributesC:= PAV (parentAttributes, inAttributes);
04 ObjSensitive:=genKey(inAttributesC);
05 ObjSeed:=genSeed(inAttributesC);
06 symKeyP:=kdf(STORAGE, parentSeed);
07 HMACkeyP:=kdf(INTEGERITY, parentSeed);
08 createPrivate:=senc(symKey, (ObjSeed, ObjSensitive));
09 outerHMAC:=HMAC(HMACkeyP, (createPrivate, inAttributesC));
010 return (outerHMAC, createPrivate, ObjAttributes);

10 TPM2 Create(parentH, inAttributes)
11 (F /∈ inAttributes)
12 (parentAttributes, parentSeed, parentKey):= checkTemplate (parentH, {W, A});
13 inAttributesC:= PAV (parentAttributes, inAttributes);
14 ObjSensitive:=genKey(inAttributesC);
15 ObjSeed:=genSeed(inAttributesC);
16 symKeyP:=kdf(STORAGE, parentSeed);
17 HMACkeyP:=kdf(INTEGERITY, parentSeed);
18 createPrivate:=senc(symKey, (ObjSeed, ObjSensitive));
19 outerHMAC:=HMAC(HMACkeyP, (createPrivate, ObjAttributes));
110 return (outerHMAC, createPrivate, ObjAttributes);

Table 10. Analysis of API Commands TPM2 Create()

LINE Γ

00 parentH: LL, inAttributes: LL
01 (F ∈ inAttributes)

02 . . . , parentAttributes: UnwrapLH , parentSeed: SeedKHH [], parentKey: UnwrapKHH [T̃]
03 . . . , inAttributesC: AnyLH

04 . . . , ObjSensitive: AnyKHH [T̃]
05 . . . , ObjSeed: SeedKHH []
06 . . . , symKeyP: SymKHH [HH, HH]
07 . . . , HMACkeyP: hamcKHH [LH, LH]
08 . . . , createPrivate: LH
09 . . . , outerHMAC: LH

10 parentH: LL, inAttributes: LL
11 (F /∈ inAttributes)
12 . . . , parentAttributes: LL, parentSeed: LL, parentKey: LL /

. . . , parentAttributes: UnwrapLH , parentSeed: SeedKHH [], parentKey: UnwrapKHH [T̃]
13 . . . , inAttributesC: LL
14 . . . , ObjSensitive: LL
15 . . . , ObjSeed: LL
16 . . . , symKeyP: LL / symKeyP: SymKHH [LL, LL]
17 . . . , HMACkeyP: LL / HMACkeyP: hamcKHH [LL, LL]
18 . . . , createPrivate: LL / createPrivate: LH
19 . . . , outerHMAC: LL

