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Abstract

Efficient implementation of double point multiplication is crucial for elliptic curve cryptographic systems. We revisit three
recently proposed simultaneous double point multiplication algorithms. We propose hardware architectures for these algorithms,
and provide a comparative analysis of their performance. We implement the proposed architectures on Xilinx Virtex-4 FPGA,
and report on the area and time results . Our results indicate that differential addition chain based algorithms are better suited to
compute double point multiplication over binary elliptic curves for both high performance and resource constrained applications.
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I. INTRODUCTION

Elliptic curves have been extensively used in public key cryptography especially in embedded, resource-constrained, and high-
performance applications. Point multiplication is a major operation in many elliptic curve based cryptosystems. For example,
if a subgroup 〈P 〉 of an elliptic curve E is deployed in a Diffie-Hellman type key exchange protocol, then a party A chooses
a secret random integer a, computes aP , and sends it to the other party with whom A wants to share a secret key. For another
example, if a prime order cyclic subgroup G of an elliptic curve E is deployed in a Cramer-Shoup encryption scheme, then in
the key generation phase a party A computes aP + bQ as a part of her public key. Here, P,Q are two random generators of
G, and a, b are two random integers all chosen by the party A. Even though A announces P and Q as a part of her public key,
she has to keep a and b private as a part of her secret key. Similarly, in the decryption phase, A computes ãP1 + b̃P2, where
P1, P2 ∈ G are parts of a ciphertext, and the integers ã, b̃ have to be kept secret by A. The security of such cryptosystems
relies heavily on the difficulty of the discrete logarithm problem (DLP) in G (i.e., given P, aP ∈ G, compute a). A generic
way to solve DLP in G is to use the Pollard’s rho method that runs in time O(

√
G) [20]. Side channel analysis includes a class

of other methods to recover the secret a by making use of side channel information extracted from the computation of aP . A
conventional method for computing aP is to use a variant of double-and-add type algorithms based on the binary representation
of the secret exponent a. Such an algorithm would suffer from power analysis attacks when doubling and addition operations
are distinguishable [8]. One method to provide Diffie-Hellman type protocols with some level of protection against side channel
attacks is to split the scalar a = r + (a− r) for some secret random integer r, and to compute aP = rP + (a− r)P [7].

For the sake of generality, let G be an additive abelian group. Given an integer a and a point P ∈ G, a (single) point
multiplication algorithm computes aP ∈ G. Given two integers a, b and two points P , Q ∈ G, a double point multiplication
algorithm computes aP+bQ ∈ G. As we see in the above examples, having an efficient and secure1 double point multiplication
algorithm is crucial for many cryptographic schemes. Another scenario where one needs efficient and secure double point
multiplication is to speed up single point multiplication over elliptic curves with endomorphisms, see [11],[10],[12].

A naive way to perform double point multiplication is to perform two single point multiplications. A more efficient method
is to compute aP + bQ simultaneously. Straus-Shamir’s trick (see Algorithm 14.88 in [17]) and interleaving [18] are two such
methods. Straus-Shamir’s type simultaneous double point multiplication algorithms are vulnerable to side-channel analysis
because double and add instructions are not performed in a regular fashion. Fortunately, recoding the scalars a and b allows
us to adapt Straus-Shamir’s type algorithms in such a way that the same instructions are executed in the same order. Joye
and Tunstall [15] proposed several methods of regular recoding of scalars for regular point multiplication algorithms, which
can immediately be adapted to yield regular simultaneous double point multiplication algorithms. In particular, their signed-
digit recoding method with the digit set {±1,±3} yields a regular double point multiplication algorithm, that we call the
JT -{±1,±3} algorithm. JT -{±1,±3} costs half addition and one doubling per scalar bit. Using differential addition chains
(DAC) is another method to perform simultaneous double point multiplication; see for instance [19], [2], and [6]. DAC-method
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Table I. A comparison of three simultaneous double point multiplication algorithms JT -{±1}, B-NBC, and AK-DAC.
Double and add operations are denoted by D and A, respectively.

Algorithm Per-bit Regular DAC- Parallelizablecost based

JT -{±1,±3} 0.5A+ 1D Yes No No
B-NBC 2A+ 1D Yes Yes Yes
AK-DAC 1.4A+ 1.4D Yes Yes Yes

is attractive because it yields potentially simple power analysis resistant algorithms due to the uniform pattern of operations
executed; and it is especially efficient in elliptic curves setting because double and add operations can be performed using
x-coordinates only. Bernstein [6] proposed a double point multiplication algorithm based on the new binary chain, that we
call the B-NBC algorithm. B-NBC has a uniform structure, and costs two additions and one doubling per scalar bit. More
recently, Azarderakhsh and Karabina [4] proposed a simultaneous double point multiplication algorithm based on DAC, that
we call the AK-DAC algorithm. AK-DAC has a uniform structure, and costs 1.4 additions and 1.4 doublings per scalar bit.

In Table I, we present a brief comparison of these three simultaneous double point multiplication algorithms JT -{±1,±3},
B-NBC, and AK-DAC. All of these three algorithms are regular, and so they are potentially resistant against power analysis
attacks. However, comparing these algorithms from the efficiency point of view is not straightforward. Even though JT -
{±1,±3} has the best per-bit cost, B-NBC and AK-DAC have the advantage of being based on DAC. For example, in
elliptic curves setting, one can implement B-NBC and AK-DAC using the addition formulas that use only the x-coordinates
of the points, and that are much more efficient than their traditional counterparts. Moreover, JT -{±1,±3} is not parallelizable
in the sense that the double and add operations cannot be executed in parallel because an addition operation should always
follow after two consecutive doubling operations. Double and add operations can be totally parallelized in both B-NBC and
AK-DAC. If one deploys two parallel addition/doubling units, then the per-bit costs of B-NBC and AK-DAC becomes
1A+1D and 1.4A, respectively. Similarly, if one deploys three parallel addition/doubling units, then the per-bit cost of B-NBC
becomes 1A.

In this paper, we realize hardware implementations of JT -{±1,±3}, B-NBC, and AK-DAC using standard Weierstrass
binary elliptic curve groups, and present detailed performance comparisons with several area and time results. To the best of
our knowledge, these three algorithms are some of the most promising regular algorithms with low precomputation and storage
requirements, and their relative performance comparisons have not been analyzed.

The rest of the paper is organized as follows. In Section II, we review the naive method and the three algorithms JT -{±1,±3},
B-NBC, and AK-DAC for computing double point multiplication. In Section III, we provide hardware architectures and
implement them of FPGA and compare the implementation results. Finally, we conclude the paper in Section IV.

II. A REVIEW OF DOUBLE POINT MULTIPLICATION ALGORITHMS

In this section, we review the three algorithms JT -{±1,±3}, B-NBC, AK-DAC, and the naive method for computing
double point multiplication. We also introduce the elliptic curve equation over which we realize our implementation, and
introduce some notation that we refer throughout the paper.

Let EW,a,b be a non-supersingular binary generic elliptic curve (short Weierstrass) defined as

EW,a,b : y2 + xy = x3 + ax2 + b, (1)

where a, b ∈ F2` , and b 6= 0. The set of points (x, y), x, y ∈ F2` , that satisfy (1) together with a special point at infinity O
(group identity) form a finite additive abelian group that we denote by EW,a,b(F2`). The group operation can be performed
using the chord-and-tangent rule [13]. We have, P +O = O + P = P for all P ∈ EW,a,b(F2`), and the inverse of the point
P = (x, y) is −P = (x, x+ y).

A. Traditional Scheme

The traditional scheme (in Hardware) for fast computation of double point multiplication is to employ two parallel (point
multiplication) circuits to compute aP and bQ separately and add the final results together. The latency of computing double
point multiplication based on this scheme is one point multiplication and a point addition (using explicit addition formulas)
which requires to duplicate the hardware.

B. The JT -{±1,±3} algorithm

Joye and Tunstall [15] proposed several methods of regular recoding of scalars for regular point multiplication algorithms.
One of these algorithms is so called the signed-digit recoding algorithm that allows regular implementation of m-ary point
multiplication algorithms. We represent their recoding algorithm for m = 4 in Algorithm 1. We should note that a typical choice
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Algorithm 1 JT -{±1,±3} scalar recoding algorithm

Inputs: a odd,m = 4
Output: a = (a`−1, . . . , a0) with odd ai ∈ {±1,±3}
1: i← 0
2: While a > m do
3: ai ← (a mod 2m)−m
4: a← (a− ai)/m
5: i← i+ 1
6: end While
7: ai ← a

Table II. An example to compute 71P + 93Q using JT -{±1,±3}
a 1 1 −3 3

b 1 1 3 1
Point P +Q 5P + 5Q 17P + 23Q 71P + 93Q

for m is m = 2k for some positive integer k, and the choice k = 2 seems to be optimal to get a competitive exponentiation
algorithm with reasonable storage requirements for resource constrained applications. For example, the choice of k = 2 requires
to store 8 group elements, whereas with the choice of k = 3, one has to store 32 group elements.

This recoding algorithm immediately yields a regular double point multiplication algorithm to compute aP+bQ, and we call
this algorithm JT -{±1,±3}. If a and b are `-bit integers, then JT -{±1,±3} requires about `/2 iterations, and at each iteration
a point X is updated to a point 4X +R for some R ∈ {±(P +Q),±(P −Q)}. Therefore, the per-bit cost of JT -{±1,±3}
is 0.5A + 1D. For example, Algorithm 1 recodes a = 71 = (1, 1,−3, 3) and b = (1, 1, 3, 1), and aP + bQ = 71P + 93Q is
computed as in Table II.

The cost of point addition and doubling in EW,a,b(F2`) are 13M+4S+9A and 5M+4S+5A, respectively [13]. Here, M,
S, and A, are the costs of multiplication, squaring, and addition in F2` , respectively. In Lopez-Dahap coordinates [16] where
one of the points is represented in affine, the cost of mixed projective point addition, i.e., (X3, Y3, Z3) = (X1, Y1, Z1)+(x2, y2),
reduces to 9M + 5S + 9A [3]. The explicit formulas for point addition (PA) and point doubling (PD) are as follows [3]:

PA :


A = Y1 + y2Z

2
1 , B = X1 + x2Z1, C = BZ1,

Z3 = C2, D = x2Z3, X3 = A2 + C(A+B2 + aC),

Y3 = (D +X3)(AC + Z3) + (y2 + x2)Z2
3

PD :


A = X1Z1, B = X2

1 , C = B + Y1, D = AC

Z3 = A2, X3 = C2 +D + aZ3

Y3 = (Z3 +D)X3 +B2Z3.

In Fig. 1, the data dependency graph for computing point addition and point doubling are illustrated employing four and
two parallel multipliers, respectively. As one can see, the total cost (latency) of computing point addition and point doubling
is 3M + 13 and 3M + 10 clock cycles, respectively. Therefore, the cost of computing double point multiplication using JT -
{±1,±3} is ≈ 0.5× (l − 1)× (3M + 13) + (l − 1)× (3M + 10). As we noted earlier, the latency of this scheme cannot be
reduced further.

C. The B-NBC algorithm

We briefly explain Bernstein’s double point multiplication algorithm based on the new binary chain [6]. Let a and b be two
positive integers. The new binary chain for (a, b) is computed as follows. Let (M,N) = (a, b) and D = a mod 2. CD(0, 0)
is defined as (0, 0), (1, 0), (0, 1), (1,−1). For (M,N) 6= (0, 0), CD(M,N) is defined recursively:

CD(M,N) =Cd(m,n),

(M + (M + 1mod2), N + (N + 1mod2)),

(M + (Mmod2), N + (Nmod2)),

(M + (M +Dmod2), N + (N +D + 1mod2)),
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Figure 1. Data dependency graph for computing (a) point addition [5] and (b) doubling employing parallel multipliers.

where m = bM/2c, n = bN/2c, and

d =


0 if (m+M,n+N ) mod 2=(0, 1)

1 if (m+M,n+N ) mod 2 = (1, 0)

D if (m+M,n+N ) mod 2=(0, 0)

1−D if (m+M,n+N ) mod 2=(1, 1).

Building the new binary chain for (a, b) requires max(dlog2 ae, dlog2 be) iterations, and at the each iteration three vectors are
added to the sequence. Let V0, V1, V2, . . . , V` be the new binary chain for (a, b), where V0 = CD(0, 0) and Vk = v

(1)
k , v

(2)
k , v

(3)
k

for i = 1, . . . , `. Because of the correspondence between the tuple (i, j) and the group element iP + jQ, it will be convenient
for us to call V0 the input, and call V1 the initial state (IS). By construction, there are six possibilities for V1: v(1)

1 is always
(1, 1), and (v

(2)
1 , v

(3)
1 ) ∈ {((2, 0), (2, 1)), ((2, 0), (1, 0)), ((0, 2),(0, 1)), ((0, 2), (1, 2)), ((2, 2), (2, 1)), ((2, 2), (1, 2))} In any

case, initial state V1 can be obtained from the input V0 at a cost of at most 2 additions and 1 doubling. Furthermore, Vk can
be obtained from Vk−1 at a cost of 2 additions and 1 doubling for all 2 ≤ k ≤ `. In particular, we have v(1)

k = v
(1)
k−1 + v

(2)
k−1,

v
(2)
k = 2v

(ik)
k−1, and v(3)

k = v
(jk)
k−1 + v

(3)
k−1 for some ik ∈ {1, 2, 3} and jk ∈ {1, 2}. The values of ik and jk can be determined

easily while computing the new binary chain as follows. By construction, the parities of the vectors v(1)
i , v

(2)
i , v

(3)
i must be

either (odd,odd), (even,even), (odd, even) or (odd,odd), (even,even), (even, odd), respectively, for all i = 1, . . . , `. This already
shows that v(1)

k = v
(1)
k−1 + v

(2)
k−1. Moreover, if the value of v(2)

k modulo 4 is (0, 0) then v
(2)
k = 2v

(1)
k−1; if it is (4, 4) then

v
(2)
k = 2v

(2)
k−1; and if it is (2, 4) or (4, 2) then v

(2)
k = 2v

(3)
k−1. Finally, if the parities of v(3)

k and v
(3)
k−1 are the same then

v
(3)
k = v

(2)
k−1 + v

(3)
k−1; otherwise v(3)

k = v
(1)
k−1 + v

(3)
k−1. Therefore, the new binary chain {Vk}`k=0 can be associated with what

we call the chain sequence

CS = {(ik, jk)}`k=1, ik ∈ {1, 2, 3}, jk ∈ {1, 2}. (2)

It also follows from the construction of {Vk}`k=0 that when two vectors in Vk−1 are added to obtain a vector in Vk, the
difference of the vectors v(1)

k−1 − v
(2)
k−1 and v

(jk)
k−1 − v

(3)
k−1 must belong to the set {±(P + Q),±(P − Q)} and {±P,±Q},

respectively. Therefore, the new binary chain {Vk}`k=0 can be associated with what we call the differences sequence

DS = {((ak, bk), (ck, dk))}`k=1, (3)

where ak, bk, ck, dk ∈ {−1, 0, 1}, ak and bk are nonzero, exactly one of ck and dk is zero, and ((ak, bk), (ck, dk)) represents
akP + bkQ and ckP + dkQ .
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Table III. An example to compute 71P + 93Q using B-NBC.

k CS DS v
(1)
k+1 v

(2)
k+1 v

(3)
k+1

0 P +Q 2P + 2Q P + 2Q
1 (1, 1) (−1,−1), (0,−1) 3P + 3Q 2P + 2Q 2P + 3Q
2 (3, 1) (1, 1), (1, 0) 5P + 5Q 4P + 6Q 5P + 6Q
3 (2, 2) (1,−1), (−1, 0) 9P + 11Q 8P + 12Q 9P + 12Q
4 (3, 1) (1,−1), (0,−1) 17P + 23Q 18P + 24Q 18P + 23Q
5 (3, 2) (−1,−1), (0, 1) 35P + 47Q 36P + 46Q 36P + 47Q
6 (3, 1) (−1, 1), (−1, 0) 71P + 93Q 72P + 94Q 71P + 94Q
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Figure 2. The data dependency graph for computing double point multiplication.

To summarize, given two positive integers a,b ∈ Z and two group elements P,Q ∈ G, the new binary chain for (a, b)
allows us to generate the chain sequence CS and the differences sequence DS as described in the previous paragraph. We
can then compute aP + bQ at a cost of (2A + 1D) ·max(dlog2 ae, dlog2 be), where A and D represent the cost of addition
and doubling in G, respectively. The chain sequence CS specifies the input to the doubling and addition operations at each
iteration. The differences sequence DS encodes the differences of the points that are the input points to the addition operations
at each iteration. Note that if P and −P can be identified with a same string SP that only depends on P for all P ∈ G, then
the differences of the points encoded by the differences sequence during the computation of mP + nQ can be identified only
with SP , SQ, SP+Q, and SP−Q. Table III presents an example for computing 71P + 93Q.

The computation of double point multiplication in EW,a,b(F2`) (see (1)) can be performed using differential point addition
and doubling formulas. As mentioned earlier, its per-bit cost is 2A + 1D, and one can employ two point addition circuits
and one point doubling circuit in parallel to reduce the latency. The mixed projective differential point addition and doubling
formulas for generic elliptic curves over F2` are defined as [16]

ZAdd = (X1 · Z2 +X2 · Z1)2,

XAdd = x · ZAdd + (X1 · Z2) · (X2 · Z1) (4)

and
ZDbl = (X2 · Z2)2,

XDbl = X4
2 + b · Z4

2 , (5)

where Pi = [Xi, Yi, Zi], P1 + P2 = [XAdd, YAdd, ZAdd], 2P2 = [XDbl, YDbl, ZDbl] in projective coordinates, and P1 − P2 =
(x, y). The combined point addition and doubling requires [16] 6M + 5S + 3A over F2` , where M, S, and A, are the costs
of multiplication, squaring and addition in F2` , respectively. Note that in hardware the fastest possible implementation of
combined point addition and doubling utilizes 3 parallel multipliers, and its latency is two multiplications.

In Fig. 2, the data dependency graph for computing two differential point additions and one point doubling in parallel is
illustrated. As one can see, it requires five parallel finite field multipliers, two circuits to perform double squaring, one circuit
to perform single squaring, and three adders to operate in parallel. The critical path has two field multipliers, two field adders,
and one field squarer. As one can see in Fig. 2 we achieved 100% multiplier utilization employing 5 field multipliers. The
differential input of DPA-1 is denoted by xdiff which is either x(P+Q) or x(−P+Q). Also, the differential input of DPA-2 is
denoted by xP /xQ which could be xP or xQ based on the given DS sequence. As one can see, the latency of computing
double point multiplication without considering coordinate conversion is about ≈ (l − 1)× (2M + 5) clock cycles.

D. The AK-DAC algorithm
Let a and b be two positive integers. In order to compute aP + bQ, AK-DAC starts with the initial values d = a, e = b,

~R = (P,Q), ~u = (1, 0), ~v = (0, 1), and ~∆ = (1,−1). We also define Ru = ~u · ~R, Rv = ~v · ~R, and R∆ = ~∆ · ~R. The initial
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Algorithm 2 AK-DAC double point multiplication algorithm

Inputs: a > 0, b > 0, P,Q
Output: aP + bQ

1: d← a, e← b, ~u← (1, 0), ~v ← (0, 1), ~∆← (1,−1)
2: Ru ← P, Rv ← Q, R∆ ← P −Q
3: While d 6= e do
4: Execute the first applicable rule in Table IV
5: end While
6: Using single point multiplication with input d and

(Ru +Rv), compute and return d(Ru +Rv)

Table IV. Update rules for double point multiplication

Rule Condition d e ~u ~v ~∆ Ru Rv R∆

R1 d ≡ e (mod 2) and d > e (d− e)/2 e 2~u ~u+ ~v ~∆ 2Ru Ru +Rv R∆

R1′ d ≡ e (mod 2) and d < e d (e− d)/2 ~u+ ~v 2~v ~∆ Ru +Rv 2Rv R∆

R2 d ≡ 0 (mod 2) d/2 e 2~u ~v ~u+ ~∆ 2Ru Rv Ru +R∆

R2′ e ≡ 0 (mod 2) d e/2 ~u 2~v ~∆ + (−~v) Ru 2Rv R∆ + (−Rv)

values yield Ru = P , Rv = Q, R∆ = Ru−Rv = P −Q, and dRu+eRv = aP +bQ, and the values d, e, ~u,~v, ~∆, Ru, Rv, R∆

are updated so that dRu+eRv = aP + bQ and R∆ = Ru−Rv hold, d, e > 0, and (d+e) decreases until d = e. When d = e,
we will have aP + bQ = dRu + eRv = d(Ru + Rv) which can be computed using a single point multiplication algorithm
with base Ru + Rv and scalar d. Note that when gcd(a, b) = 1, (d + e) in the algorithm will decrease until d = e = 1 and
we have aP + bQ = d(Ru +Rv) = Ru +Rv .

It is discussed in [4] that, if a and b are `-bit integers, then aP + bQ can on average be computed in about 1.4` additions
and 1.4` doublings. Moreover addition and doubling operations can be performed using differential addition and differential
doubling formulas as the difference of the group elements to be added are known by construction. We give an example in Table
V to show intermediate values of Algorithm 2 with input a = 71, b = 93, P,Q and P −Q. Note that in step 6 of Algorithm
2, we have d = 1, Ru = 31P + 37Q, Rv = 40P + 56Q, and the output is Ru +Rv = 71P + 93Q, as required.

The data dependency graph for computing double point multiplication employing four parallel multipliers, three squarers,
and two adders is illustrated in Fig. 3 based on differential point addition and doubling formulae given in [22]. One should
note that the difference of two points is given in projective coordinates as we need to update them at each iteration based on
the conditions given in Algorithm 2. As one can see, we first perform data-flow analysis for ECC computations to understand
how data has to move between the different logic and computational elements such as field multipliers, adders, and squarers.
Then, we perform a latency analysis to determine where potential bottlenecks may occur and then find a balance between
desired performance and the cost of implementing the design. Therefore, the latency of computing double point multiplication
on binary generic curves is ≈ 1.4 × (l − 1) × (2M + 9), without considering the cost of conversion from mixed projective
coordinates to affine coordinates, where M is the cost of a field multiplication.

III. IMPLEMENTATIONS OF DOUBLE POINT MULTIPLICATION ALGORITHMS

A. Hardware Architectures

In this section, we propose hardware architectures for computing double point multiplication algorithms reviewed in Section
II, and implement them. The hardware architectures are depicted in the Figs 4a and 4b for B-NBC algorithm and AK-DAC

Table V. An example to compute 71P + 93Q using AK-DAC

Rule d e ~u ~v ~∆ Ru Rv R∆

71 93 (1, 0) (0, 1) (1,−1) P Q P −Q
R1′ 71 11 (1, 1) (0, 2) (1,−1) P +Q 2Q P −Q
R1 30 11 (2, 2) (1, 3) (1,−1) 2P + 2Q P + 3Q P −Q
R2 15 11 (4, 4) (1, 3) (3, 1) 4P + 4Q P + 3Q 3P +Q
R1 2 11 (8, 8) (5, 7) (3, 1) 8P + 8Q 5P + 7Q 3P +Q
R2 1 11 (16, 16) (5, 7) (11, 9) 16P + 16Q 5P + 7Q 11P + 9Q
R1′ 1 5 (21, 23) (10, 14) (11, 9) 21P + 23Q 10P + 14Q 11P + 9Q
R1′ 1 2 (31, 37) (20, 28) (11, 9) 31P + 37Q 20P + 28Q 11P + 9Q
R2′ 1 1 (31, 37) (40, 56) (−9,−19) 31P + 37Q 40P + 56Q −9P − 19Q
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multipliers [23].

1R

Control Unit 

(FSM)

CS-chain

S0

S2

S1

S3

S4

0

1

DPA-1 PD DPA-2

2R 3R

0 1 2

1R
2R

0 1

1R 2R 3R
1R 2R

3R

0 1 0 1 0 1

preload

QP+ P2 QP+2
preload preload

QPx +

QPx +−

0

1 Px

Qx

0S

1S

2S 3S

4S

m2 m2 m2 m2 m2

m m

m2 m2 m2

),( 22 ZX ),( 33 ZX
Reg. Reg.

),( 11 ZX
Reg.

m2 m2 m2

DS-chain

}
}

Control main inputs 

Control Diff. inputs 

(a)

DPA

PD

S0

S1 S2

S3

uR

vR

∆R

uR

∆R

uR
vR

vR−
S4 S5

S6 S7

S8

Control Unit 

(FSM)

S-chain

S0

S2

S1

S3

S4

S5

S6

S7

0

1

0

1

0

1

0

1

2

0

1

2

0

1

2

(b)

Figure 4. Hardware Architecture for computing double point multiplication based on (a) B-NBC algorithm (b) AK-DAC
algorithm.

algorithm, respectively.Since the architectures of the naive method and the JT -{±1,±3} algorithm are rather straightforward,
we do not include them in the following.

B. Arithmetic Unit

The arithmetic unit is the main part for each architecture which is composed of F2` adders, squarers, and finite field
multipliers as described in the following.

1) Addition and Squaring : Addition of two field elements, say, A =
∑l−1
i=0 aiα

i = (al−1, · · · , a1, a0) and B =
∑l−1
i=0 biα

i =
(bm−1, · · · , b1, b0) in F2` represented by polynomial basis is C = A + B and can be obtained by pair-wise addition of the
coordinates of A and B over F2 (i.e., modulo 2 addition) as ci = ai ⊕ bi. Addition requires only one clock cycle to store the
results in the registers.

For squaring an element A ∈ F2` , we first simply insert zeros between each bit in the bit-vector representing A which must
be followed by a reduction operation as A2 =

∑l−1
i=0 aiα

2i mod f(x). The reduction, mod f(x) (f(x) is a degree-l irreducible
polynomial) is computed using XOR and shift operations only. Squaring is a simply hardwired permutations (inserting zeros)
and requires only one clock cycle over F2` (note that the irreducible polynomial is fixed in this work).

2) Multiplication: Finite field multipliers are available in bit-level (with area complexity of O(m) and time complexity of
O(m)), digit-level (with area complexity of O(mδ) and time complexity of O(m/δ)), and bit-parallel (with area complexity of
O(m2) for quadratic and O(mlog23) for subquadratic with time complexity of O(1)) architectures depending on the available
resources. The digit-level polynomial basis multiplier architecture proposed in [21] is used in this work. For the binary extension
field F2233 , recommended by NIST [1], the irreducible polynomial is F2` : F2233 = F2[x]/x233 + x74 + 1 is a trinomial. In
Fig. 5, the polynomial basis digit-level multiplier with serial-in parallel-out (SIPO) architecture is depicted. As one can see, in
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[21].

Table VI. The FPGA implementation results of different double point multiplication algorithms over GF (2233) on Xilinx
Virtex-4.

Naive Method 6 Mults. (Section II-A) B-NBC 5 Mults. (Section II-C) [6]

d q
Latency CPD Time Area AT Latency CPD Time Area AT

[# Clock cycles] [ns] [µs] [# Slices] Area × Time [# Clock cycles] [ns] [µs] [# Slices] Area × Time

7 34 17,937 3.40 60.9 6,218 0.38 17,828 3.38 60.2 5,207 0.31
13 18 10,305 3.93 40.4 9,693 0.39 10,244 3.90 39.9 8,117 0.32
18 13 7,920 3.97 31.4 11,335 0.35 7,874 3.91 30.7 9,492 0.29
26 9 6012 4.31 25.9 16,612 0.43 5,978 4.29 25.7 13,911 0.35

JT -{±1,±3} 4 Mults. (Section II-B) [15] AK-DAC 4 Mults. (Section II-D) [4]

7 34 40,057 3.42 136.9 4,196 0.57 25,437 3.38 85.9 4,146 0.35
13 18 23,145 3.98 92.1 6,541 0.60 14,884 3.88 57.7 6,462 0.37
18 13 17,860 4.01 71.6 7,649 0.54 11,586 3.97 45.9 7,557 0.34
26 9 13,632 4.33 59.1 11,210 0.66 8,947 4.28 38.2 11,075 0.42

each clock cycle δ coefficients of the operand A are processed having all bits of operand B available through multiplication
process. In this architecture, the J blocks perform bit-wise AND operation as ai�B. The ×xi blocks perform corresponding
shift operations and are only wiring. Once the δ partial products are computed at the output of J blocks, they are multiplied
by xi, 1 ≤ i ≤ δ and then reduced using mod f(x) blocks. The F2` adder block performs addition (XOR) over δ+1 l-bit field
elements. Therefore, the critical-path delay of the F2` adder is (dlog2(δ + 1)e)TX . For multiplier operation, first the registers
〈Y 〉 and 〈Z〉 are preloaded with the operand B and zero (0 ∈ F2` ), respectively. The register 〈X〉 provides in each clock
cycle d bits of operand A. Then, the results of the multiplication are available after Mq =

⌈
l
δ

⌉
, 1 ≤ δ ≤ m clock cycles in

the register 〈Z〉. The main advantage of this multiplier is that it operates in higher clock frequencies in comparison to the
counterparts available in the literature such as Karatsuba multiplier.

3) Inversion: Inversion is the most expensive operation and can be computed using the Extended Euclidean Algorithm
(EEA) or Fermat’s Little Theorem (FLT) [9]. Base on FLT, one can write A2l−2 = A−1 whose computation requires l − 1
squarings and l−2 multiplications as 2l−2 = (11 · · · 110)2. However, Itoh and Tsujii (IT) [14] proposed an efficient algorithm
for computing inversion over F2` . The IT scheme requires blog2(l − 1)c+HW (l− 1)− 1 multiplications and l− 1 squarings,
where HW (l− 1) is the Hamming weight (number of ones) of the binary representation of l− 1. Inversion over F2233 using
Itoh-Tsujii scheme [14] requires blog2(l − 1)c+ h(l − 1)− 1 = 10 multiplications and l − 1 = 232 squarings.

C. Control Unit and Memory

The control unit is designed with a finite state machine (FSM) based on the double point multiplication algorithms given in
the previous sections. It schedules the computation tasks by generating the signals and switching the operands for arithmetic
units. The intermediate results are stored in the register files. We note that the control unit is simpler and requires smaller
area than the other units in the data path. Since it is implemented as a FSM, it can easily mapped into the FPGA by the
synthesis tools. To store the input and output points and the intermediate results we employed a register file using flip-flops
of the FPGA. Also, several multiplexers are employed to chose appropriate registers and connect to the arithmetic unit.
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Figure 6. Implementation results of different double point multiplication algorithms and their comparison to the counterparts
in terms of (a) digit-size and area-time products and (b) area and computation time over GF (2233) on Xilinx Virtex-4 FPGA.

D. Implementation Results and Comparisons

In this section, we implement the proposed architecture for double point multiplication in the previous sections to evaluate
its area and time requirements. We have selected the Xilinx® Virtex™-4 xc4vlx200 device as the target FPGA. The proposed
architecture is modeled in VHDL and synthesized for different digit sizes using XST™ of Xilinx® ISE™ version 12.1 design
software. The results of implementations of double point multiplication algorithms based on the proposed hardware architectures
are reported in Table VI for l = 233 and different digit sizes d = {7, 13, 18, 26}. As shown in this table, we provided the
latency (number of clock cycles), total time of computation, critical path delay (CPD), occupied area (number of slices) and
area-time products. The Naive method requires largest area in comparison to the other schemes and AK-DAC scheme requires
the smallest area. The B-NBC scheme provides fastest results and best area-time trade-offs in comparison to the counterparts.
The JT -{±1,±3} is the slowest method and is not efficient in terms of time-area trade-offs. In Fig. 6, we plotted the area,
time, and area-time results in terms of the digit-size of different scheme for more clarification.

In Fig. 6, implementation results of different double point multiplication algorithms and its comparison to the traditional
method is illustrated. In Fig. 6a, we plot area-time products in terms of the digit-size and in Fig. 6b the area given by number
of occupied slices is plotted in terms of time of computing double point multiplication.

IV. CONCLUSION

In this paper, efficient implementation of double point multiplication over binary elliptic curves is presented. We provide a
comprehensive analysis and comparison of double point multiplication algorithms based on differential addition chains, binary
double and add method, and naive method. We investigate the performance and efficiency of these schemes based on the
required area and time of computation. Our results indicate that the differential addition chain based schemes are the most
suitable schemes for computing double point multiplication. For instance, we show that the scheme proposed in [6] provides the
fastest double point multiplication, and the one presented in [4] requires the smallest silicon area for simultaneous computation.
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